
An Approach to Optimize Data Processing in Business
Processes

Marko Vrhovnik1, Holger Schwarz1, Oliver Suhre2, Bernhard Mitschang1, Volker Markl3

Albert Maier2, Tobias Kraft1
1University of Stuttgart
Universitätsstrasse 38

70569 Stuttgart
Germany

firstname.lastname@
ipvs.uni-stuttgart.de

2IBM Deutschland
Entwicklung GmbH

Schönaicher Str. 220
71032 Böblingen

Germany
{suhre,amaier}@de.ibm.com

3IBM Almaden
Research Center
650 Harry Road

San Jose, CA 94120-6099
USA

markl@us.ibm.com

ABSTRACT
In order to optimize their revenues and profits, an increas-
ing number of businesses organize their business activities
in terms of business processes. Typically, they automate
important business tasks by orchestrating a number of ap-
plications and data stores. Obviously, the performance of
a business process is directly dependent on the efficiency of
data access, data processing, and data management.

In this paper, we propose a framework for the optimiza-
tion of data processing in business processes. We introduce a
set of rewrite rules that transform a business process in such
a way that an improved execution with respect to data man-
agement can be achieved without changing the semantics of
the original process. These rewrite rules are based on a
semi-procedural process graph model that externalizes data
dependencies as well as control flow dependencies of a busi-
ness process. Furthermore, we present a multi-stage control
strategy for the optimization process. We illustrate the ben-
efits and opportunities of our approach through a prototype
implementation. Our experimental results demonstrate that
independent of the underlying database system performance
gains of orders of magnitude are achievable by reasoning
about data and control in a unified framework.

1. INTRODUCTION
Enterprises use a multitude of heterogeneous applications

and data stores. In a typical enterprise, the customer rela-
tionship management of a Siebel system will interact with
a SAP sales and distribution system, as well as with busi-
ness data warehouses and production planning systems from
possibly different vendors. The grand challenge of informa-
tion management nowadays is the integration and concerted
operation of these different systems.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Business process execution languages (also called work-
flow languages) like BPEL [14] together with service-oriented
architectures and Web services integrate complex systems,
and create a single execution framework for all the activi-
ties of an enterprise. Information integration systems unify
the heterogeneous persistent storage systems (databases, file
systems, content management systems) used by these appli-
cations.

As discussed in [4], the integration of databases and pro-
gramming languages is one of the major challenges for re-
search in the coming decade. We address this problem in the
context of information integration and business wide work-
flows, by proposing a framework that makes data process-
ing operations, e.g., SQL statements, first class citizens in
a workflow language, and consequently in its optimization
and execution. In analogy and as extension to QGM-like ap-
proaches [16], we define a Process Graph Model (PGM) to
reason about workflows and their data flow and control flow
issues. Furthermore, we show opportunities that arise for
the rule-based optimization of data processing in business
processes.

The main contributions of this paper are:

• We show how to exploit knowledge on the data flow
as well as on the control flow of a business process for
reasoning upon optimization decisions.

• We extend query optimization to the level of complex
business tasks expressed as business processes.

• We develop a multi-step control strategy for compre-
hensive treatment of the optimization task.

• We demonstrate the opportunities, benefits and gen-
erality of our approach by means of a case study.

The remainder of this paper is organized as follows: Af-
ter detailing on workflow languages in Section 2, we discuss
related work in Section 3. In Section 4, we introduce our
approach for rule-based optimization of business processes.
We comment on the rewrite rules and the control strategy
used in this approach in Section 5 and Section 6, respec-
tively. In Section 7, we present our experimental results.
Section 8 concludes and lists future work.

615

2. WORKFLOW LANGUAGES AND DATA
MANAGEMENT

We focus on the business process execution language
BPEL [14] that is broadly adopted by industry and, hence,
can be seen as the de facto standard. BPEL exemplifies
capabilities of typical workflow languages to express busi-
ness processes1. Similar to other process specification ap-
proaches, BPEL fosters a two-level programming model.
The function layer consists of executable software compo-
nents in form of Web services that carry out the basic activi-
ties. The choreography layer specifies a process model defin-
ing the execution order of activities. By means of the Web
service approach, BPEL achieves independence from the im-
plementation level of activities and the execution platform.

BPEL offers various language constructs to express ac-
tivities as well as control flow patterns. In the following,
we describe the usage patterns of some activities that are
relevant for the further discussion: (i) invoke activities call
Web services during process execution, (ii) assign activities
create the appropriate input for activities based on results
from earlier service invocations, (iii) sequence activities se-
quentially execute activities, (iv) ForEach activities allow
to iterate over datasets, and (v) flow activities concurrently
execute activities.

In most workflow languages, users define process models in
a graph-like fashion, supported by corresponding graphical
design tools. From a modeling point of view, process design
tools favor the description of control flow over data flow.
This is also true for BPEL, where control flow is explicitly
modeled, whereas data flow is only implicitly defined by
specifying BPEL variables used as input and output data of
activities. These variables are also used at the choreography
layer, e.g., as part of conditions in the BPEL loop constructs.

The BPEL specification [14] comprises additional activity
types. Furthermore, it supports elaborated compensation
and error handling concepts. So far, the language speci-
fication is not finished. Proposed extensions comprise the
support for human interaction, sub processes and the abil-
ity to embed Java code into the business process.

2.1 Data Management at the Choreography
Level

In most business processes, accessing and processing data
in enterprise data stores is a central task. Hence, the follow-
ing primitive data usage patterns have to be supported for
a comprehensive data provisioning: (i) Use business data to
decide on the control flow. For example, one could use an
inventory service to decide whether to call a supplier or not.
(ii) Update business data. For example, the delivery time
for an item may change based on information received from
the supplier of the item. (iii) Retrieve business data and
send it to partners, i.e., clients, services and humans. (iv)
Store business data that was changed by partners.

The service-oriented approach allows to hide enterprise
data stores behind Web services. This is achieved by so-
called adapters that encapsulate SQL-specific functionality
in Web services. They provide a well-documented, interop-
erable method for data access. Adapters represent proven
and well-established technology and are provided by differ-
ent vendors in a similar way. Nevertheless, database vendors

1In compliance to the BPEL specification, we use the term
business process to denote processes specified by BPEL.

pursue various additional approaches to support data man-
agement at the choreography level:

• The Oracle r© BPEL Process Manager provides XPath
extension functions that are embedded into assign ac-
tivities [15]. The statement to be executed on a remote
database is provided as parameter to the function. The
functions support any valid SQL query, update oper-
ations, DDL statements as well as stored procedure
calls. Data retrieved by an extension function is stored
in a set-oriented process variable expressed in XML.

• The Microsoft Windows r© Workflow Foundation [13]
uses SQL activities to provide database processing as
part of business processes. These activities are orga-
nized in so-called activity libraries and executed by a
runtime engine. The workflow as well as its variables,
activities, and parameters are for example described
by XOML, an extensible object markup language.

• IBM’s WebSphere r© Process Server follows another
approach to bring set-orientation to BPEL and its
choreography layer [7, 8]. It introduces information
service activities that for example allow to process data
in a set-oriented manner expressed via SQL. Further-
more, it allows to pass data sets between activities by
reference rather than by value. In this paper, we call
such a direct integration approach BPEL/SQL.

The main common property of all three approaches is that
data management tasks are explicitly modeled at the chore-
ography layer. Hence, the basic concepts we present here,
are applicable to all three approaches. In this paper, we
focus on BPEL/SQL to explain these concepts. We will
further discuss generality issues in Section 4 and Section 7.

So-called SQL activities reflect the mentioned data usage
patterns in BPEL/SQL. They provide read and write access
to BPEL variables. Variables that refer to tables stored
in a database system are called set reference variables. A
lifecycle management facility is responsible for creating and
removing these tables as needed. Variables of a set-oriented
data structure representing a table that is materialized in
the process space are called set variables. Furthermore, SQL
activities may embed an SQL statement including several
input parameters as host variables. An input parameter
may be a scalar value or a set reference variable, i.e., a table
reference. Input parameters are valid at any position in
the SQL statement where in case of a scalar value a host
variable or in case of a set reference variable a table name is
allowed. Set reference variables as well as set variables may
store the result set of SQL activities. A retrieve set activity
is a specific SQL activity that allows to load data from a
database system into the process space.

2.2 Sample Scenario
Our example is based on an order handling scenario. The

process takes a set of orders and decides whether to process
them directly or not. In the latter case, an employee has to
approve an order according to some business policy. After
this approval, the process sends notifications for all rejected
orders. In parallel, it processes the remaining orders. This

r©Oracle BPM is a trademark of Oracle Corporation. Win-
dows Server 2003 is a trademark of Microsoft Corporation.
WebSphere and DB2 are trademarks of IBM Corporation.

616

INVOKE OrderFromSupplier
IN: #CurrentItem.ItemID#, #CurrentItem.ItemQuantity#,
OUT: #OrderConfirmation#

FOREACH #CurrentItem# IN #SV_ItemList#

SELECT ItemID, SUM(Quantity) AS ItemQuantity
FROM #SR_Orders#
WHERE Approved=1
GROUP BY ItemID
→ #SR_ItemList#

Order

Confirmations

Orders

INSERT INTO #SR_ OrderConfirmations#

VALUES (#CurrentItem.ItemID#,
#CurrentItem.ItemQuantity#,
#OrderConfirmation#)

GroupOrdersByItemID

OrderFromSupplier

ForEachItemOrder

InsertOrderConfirmation

(a) BPEL Business Process 'Order
Processing' and its Control Flow

(b) SQL Statements behind SQL Activities;
Data Dependencies and Data Stores

SQL

SQL

RetrieveItemList RETRIEVE #SR_ItemList# INTO #SV_ItemList#
SQL

Figure 1: Sample Process

part of the overall scenario, i.e., the automatic processing
of approved orders, is depicted in Figure 1(a). Modeling
this process in BPEL/SQL is quite straightforward. Activ-
ity GroupOrdersByItemIDs creates a set of orders each con-
taining an itemID and the required quantity. ForEachIte-
mOrder now iterates over these orders. A Web service call
(OrderFromSupplier) submits the orders to suppliers, which
return confirmation information whether they can supply
the requested items or not. Activity InsertOrderConfirma-
tion makes this confirmation persistent.

We show SQL statements and additional information
for the sample process in Figure 1(b). For clarity we
mark BPEL variables by surrounding hash marks (#). Set
reference variable SR Orders refers to table Orders con-
taining all orders. Activity GroupOrdersByItemID con-
tains a SELECT statement that extracts items from ap-
proved orders and writes them to set reference variable
SR ItemList. RetrieveItemList reads these orders into set
variable SV ItemList. The succeeding ForEachItemOrder
activity iterates over SV ItemList and binds a tuple of this
set to the variable CurrentItem in each iteration. The at-
tributes ItemID and ItemQuantity of CurrentItem serve as
input for the OrderFromSupplier and InsertOrderConfirma-
tion activities. The latter specifies an INSERT statement,
which writes the result of the Web service call into an Or-
derConfirmations table that is referenced by a set reference
variable SR OrderConfirmations.

This sample business process contains potential for op-
timization. Figure 2 shows the processes resulting from
three subsequent optimization steps. In a first step, it is
possible to merge the Web service invocation OrderFrom-
Supplier into the SQL statement of activity InsertOrder-
Confirmation. This is achieved by the user-defined function
OrderFromSupplier (Figure 2(a)). Based on the resulting
process, we are further able to rewrite the tuple-oriented
cursor loop into a single set-oriented SQL activity. Hence,
the entire processing of the ForEachItemOrder activity can
be replaced by one SQL activity (Figure 2(b)). In a last
step, we could merge this activity with the GroupOrders-
ByItemID activity (Figure 2(c)). In Section 4, we elaborate
on the set of rewrite rules for such optimizations. Logically,
the resulting process combines in a single SQL activity the
same processing as the original process. The important dif-

INSERT INTO #SR_ OrderConfirmations#

VALUES (#CurrentItem.ItemID#,
#CurrentItem.ItemQuantity#,
OrderFromSupplier(#CurrentItem.ItemID#,

#CurrentItem.ItemQuantity#))

FOREACH #CurrentItem# IN #SV_ItemList#

SELECT ItemID, SUM(Quantity) AS ItemQuantity
FROM #SR_Orders#
WHERE Approved=1
GROUP BY ItemID
→ #SR_ItemList#

Order

Confirmations

Orders

GroupOrdersByItemID

ForEachItemOrder

OrderFromSupplier +
InsertOrderConfirmation

INSERT INTO #SR_ OrderConfirmations#
SELECT ItemID, ItemQuantity, OrderFromSupplier(ItemID,

ItemQuantity)
FROM #SR_ItemList#

SELECT ItemID, SUM(Quantity) AS ItemQuantity
FROM #SR_Orders#
WHERE Approved=1
GROUP BY ItemID
→ #SR_ItemList#

Order

Confirmations

Orders

GroupOrdersByItemID

ForEachItemOrder

(a) Process 'Order Processing' After First Optimization Step

(b) Process 'Order Processing' After Second Optimization Step

INSERT INTO #SR_ OrderConfirmations#
SELECT ItemID, ItemQuantity,

OrderFromSupplier(ItemID, ItemQuantity)
FROM (SELECT ItemID, SUM(Quantity) AS ItemQuantity

FROM #SR_Orders#
WHERE Approved=1
GROUP BY ItemID)

Order

Confirmations

Orders

OrderProcessing

(c) Process 'Order Processing' After All Optimization Steps

SQL

SQL

SQL

SQL

SQL

RetrieveItemList RETRIEVE #SR_ItemList# INTO #SV_ItemList#
SQL

Figure 2: Optimization of Sample Process

ference is that all set-oriented data management activities
are performed by the underlying database system in a single
SQL statement. In Section 7, we show that this results in a
remarkable performance improvement independent from the
underlying DBMS. The main reasons are:

• Compared to the original process, there are more op-
timization opportunities for the database system.

• The optimization leads to a reduction of data volume
transferred between the database level and the work-
flow processing level.

• Overhead that is associated with the processing of each
SQL statement is saved because only a single state-
ment is left.

Although the optimization of the sample process seems
to be straightforward, several conditions on control flow de-
pendencies and data dependencies have to hold in order to
preserve the workflow semantics. Here are some examples
for slight modifications of the process shown in Figure 1
(a) and how they affect or inhibit the optimization process
shown in Figure 2 (more details are given in Section 5.1):

• Assume a process where SQL activity InsertOrderCon-
firmation does not access the result of the Web service
call. In this case, there is no data dependency between
both activities in the ForEach loop. Hence, the Web
service invocation cannot be merged into the SQL ac-
tivity and no further optimizations of the ForEach loop
are possible.

617

• Assume an additional SQL activity SQL1 in between
the activities GroupOrderByItemID and ForEachItem-
Order. Further assume that SQL1 does neither access
table Orders nor table OrderConfirmation, i.e., there
is no data dependency. The optimization would basi-
cally work as shown in Figure 2. The final workflow
would contain activity SQL1 followed by activity Or-
derProcessing shown in Figure 2 (c).

• Now, assume the same additional activity SQL1 as
before. This time it is placed before the OrderFrom-
Supplier activity in the loop. Then, the Web service
call of activity OrderFromSupplier can still be merged
into SQL activity InsertOrderConfirmation as shown
in Figure 2 (a). But further optimization steps are in-
hibited because two separate SQL activities remain in
the ForEach loop. Hence, it is not possible to rewrite
the cursor loop into a single set-oriented SQL activity.

Similar considerations apply if the ForEach loop would
be replaced by other control flow constructs, e.g., the flow
activity in BPEL that allows to define concurrent execution.
For efficient reasoning upon such optimization decisions, we
need an appropriate internal representation of processes that
explicitly models control flow dependencies as well as data
dependencies in a single graph structure (see Section 4).

3. RELATED WORK
Optimization of data management and data processing

in business processes covers several optimization levels as
well as optimization subjects. Obviously, there is process
optimization at the level of the business model and there is
query optimization at the data and database level.

With a business-oriented perspective, optimization on the
process level is often termed business process re-engineering
[12]. At this level, the business model and the involved
processes are analyzed from a business point of view and
the control flow is exploited for optimization. We do not
address optimization on this level. We rather assume that
process designers conduct process re-engineering activities
before the rule-based transformation of business processes
is accomplished.

At the data level, the database community has focused
on optimizing data flow based on graph models, e.g., the
query graph model (QGM) [16]. This comprises the con-
struction of optimized query execution plans for individual
queries as well as multi-query optimization. Multi-query
optimization detects common inter- and intra-query subex-
pressions and avoids redundant computation [10, 3, 18, 19].
Our work builds on this paradigm. Moreover, our approach
borrows well-known concepts for rule-based optimization, all
grounded on graph-transformations [16, 17]. In contrast to
QGM, our process graph model refers to control flow issues
as well as to data dependencies.

Federated database systems integrate data sources and
provide a homogeneous database schema for heterogeneous
sources. In analogy to federated database systems [9], our
framework contains an optimizer, complementing the query
optimizers of the database management systems that are
responsible for executing the data management activities of
a process.

In contrast to pure data flow and control flow optimiza-
tion, there are several approaches that exploit in addition to
data flow knowledge some kind of control flow knowledge.

Coarse-grained optimization (CGO) [11] is an approach
for optimizing sequences of data processing tasks. Similar to
CGO, our optimization approach is based on rewrite rules.
However, our work is more general in two aspects: First, we
do not restrict the optimization to data processing activities,
e.g., we also consider Web service calls. Secondly, we do not
restrict the flow definition to sequences.

An interesting piece of work is shown in [22], where
DBMS-like capabilities are expressed as Select-Project-Join
queries over one or more Web services. The query concept
introduced implicitly reflects a notion of set-orientation and
it further enables optimization towards an optimal pipelined
query processing over the involved Web services. The capa-
bilities at the choreography layer are far from BPEL ex-
pressiveness and the capabilities for data processing are re-
stricted to retrieval only. A similar approach is described in
[21]. There, a language for modeling workflows is sketched
that is tightly integrated with SQL. The concept of an active
table/view is used to represent the workflow and to provide
its data. It is a proprietary and restricted approach that
does not reflect available standards like BPEL.

ACTIVE XML [1] is an approach where XML documents
allow for embedded Web service calls. Optimization work in
Active XML refers to deciding which of the embedded Web
service calls need to be processed for efficiently answering
a query posed over the XML document. This interesting
work is related to [22], and similarly restricted with respect
to control flow issues and data management operations.

The microprocessor, compiler and programming language
community considers optimization of control flow [2]. Well-
known optimization approaches cover keyhole optimization,
instruction reordering, speculative execution, and branch
prediction. They are usually studied in a context where ba-
sic operations are very simple, e.g., assignments. We apply
these ideas to a workflow scenario where basic operations
are as complex as SQL statements and Web services.

A first approach to unify data and control flow is presented
in [20]. However, they only consider database-internal pro-
cessing and address the optimization of loops and sequences
containing database commands. We extend this work as we
want to support the whole range of control flow constructs
provided by workflow languages. Furthermore, we focus on
an integrated execution framework that covers the database
and the choreography level.

The seamless integration of operations on business data
into the workflow languages opens the space for considering
control flow as well as data flow issues together. New opti-
mization potential could be exploited. Hence, a comprehen-
sive approach that enables data-level optimization of busi-
ness processes has to cover data flow as well as control flow
issues. Therefore, we propose a graph model that explic-
itly exposes activities, control flow, and data flow. Further-
more, it is independent from the workflow language. Exist-
ing process-related models like Petri nets and Event-Driven
Process Chains are based on graphs or automatons as well.
In contrast to our graph model, they focus on control flow
and are used to investigate properties of a process and its ac-
tivities [6]. Our work is the first to combine several concepts
from the programming language and database communities,
and that presents an integrated approach.

618

PGM Optimizer

Optimizer Engine

Control
Strategy

Condition

Action

Rule rewritten
BPEL/SQL

PGM to BPEL/SQL

rewritten
PGM

BPEL/SQL

BPEL/SQL to PGM

PGM

Figure 3: Processing Model

4. RULE-BASED OPTIMIZATION OF BUSI-
NESS PROCESSES

The main idea behind our optimization approach is to
apply rewrite rules to BPEL/SQL processes. While these
rules keep the semantics of the original process, they change
its structure as well as its constituent parts in such a way
that the resulting process shows improved performance.

Figure 3 presents the processing model behind our op-
timization approach. The core component is an optimizer
engine that operates on the internal representation of a pro-
cess. This engine is configured by a set of rewrite rules and
a control strategy for rule application. Each rewrite rule
consists of two parts: a condition and an action part. The
condition part defines what conditions have to hold for a
rule application in order to preserve the process semantics.
It refers to the control flow dependencies as well as to the
data dependencies of a process. Additionally, it considers
detailed information of process activities. The type of SQL
statements is a good example, as the condition part of some
rewrite rules states that they are applicable to certain com-
binations of INSERT and DELETE statements only. The
action part of a rewrite rule defines the transformations ap-
plied to a process provided that the corresponding condition
part is fulfilled. In Section 5, we further elaborate on an ap-
propriate ruleset and give examples for the condition and
action part of a rewrite rule.

So far, we described that rewrite rules come along with
a set of conditions that allow to identify rules being appli-
cable to a given process. In addition to that, the optimizer
has to decide where on the process structure and in which
order rewrite rules are applied. This is the main task of
the control strategy. One of its functions is to identify so-
called optimization spheres, i.e., parts of a process for which
applicable rewrite rules should be identified. Determining
such spheres is necessary, because if one applies rewrite rules
across spheres, the semantics of a process may change. An-
other function of the control strategy is to define the order
in which rule conditions are checked for applicability and
the order in which rules are finally applied. In Section 6, we
provide more details on these issues.

4.1 Process Graph Model
As already mentioned, the optimizer engine works on an

internal representation of processes. We developed a Pro-
cess Graph Model (PGM) for this purpose. Formally, PGM
defines a process as a tuple (A, Ec, Ed, V, P) where A rep-
resents the set of process activities, Ec represents directed

control flow edges, Ed is a set of directed data flow edges, V
is a set of typed variables used in the process, and P covers
partners, i.e., external systems the process interacts with.
This model is similar to well-known query graph models like
QGM [16]. QGM defines a query as a tuple (B, Ed, Q, Ep),
where B (called boxes) is a set of operations, Q represents
the set of quantified tuple variables, called quantifiers, Ed

is a set of data flow edges between quantifiers and boxes,
and Ep is a set of predicate edges connecting quantifiers.
PGM extends the scope of such models by adding control
flow edges and links to external systems. Like QGM, our
process graph model allows to reason about an optimization
approach, e.g., to show that a lossless mapping from and to
the internal representation is possible and that the termina-
tion of the optimization process is guaranteed. In favor of
a concise presentation we do not elaborate on these aspects
here and present the set of rewrite rules on the BPEL/SQL
level in Section 5.

PGM turns out to be the appropriate basis for rule-based
transformations as the condition part as well as the action
part of rewrite rules can directly be expressed as graph con-
ditions and graph transformations, respectively. PGM sup-
ports this by explicitly modeling control flow dependencies
as well as data dependencies in a single graph structure. In
workflow languages like BPEL/SQL, only the control flow
part is explicitly modeled whereas the data dependencies
are implicitly covered by variables and variable references.
Remember that the conditions of our rewrite rules refer to
both, control flow and data dependencies. Hence, phrasing
these conditions directly on BPEL/SQL would make them
more complex and thus more error-prone.

4.2 Generality Issues
For the discussion of generality, we first want to empha-

size two important preconditions for our optimization ap-
proach: (i) The optimizer engine needs to know the exact
statements that are used in data management tasks. This
is important because several rewrite rules transform these
statements. (ii) The optimizer engine needs to know control
flow dependencies as well as data dependencies in order to
check rule conditions. Control flow dependencies are pro-
vided by the workflow language. Data dependencies have to
be extracted from variables and variable references. Control
flow dependencies as well as data dependencies are external-
ized by the PGM representation of a business process.

These preconditions are fulfilled by all approaches men-
tioned in Section 2.1 as they all explicitly define data man-
agement tasks at the choreography layer. Microsoft’s Work-
flow Foundation and IBM’s WebSphere Process Server pro-
vide specific SQL activities. The definition of such activi-
ties comprises the SQL statement to be executed. Oracle
provides XPath extension functions that receive the SQL
statements as parameters.

A key advantage of PGM is that it makes the optimiza-
tion process depicted in Figure 3 independent from a specific
workflow language. PGM comprises a set of basic activity
types that are common to major workflow languages. Hence,
for a particular language, only a mapping to PGM and vice
versa has to be provided. This is achievable for the three ap-
proaches mentioned in Section 2.1. Furthermore, PGM can
easily be extended which provides the flexibility to adjust
it to future extensions of BPEL as well as to the constructs
of other workflow languages. For BPEL extensions, a mod-

619

Insert-Insert Merging

Delete-Delete Merging

Delete-Insert Merging

Insert-Delete Merging

Update-Update Merging

Update Merging Rules

Assign Pushdown

Web Service Pushdown

Eliminate Temporary Table

Activity Merging Rules Tuple-to-Set Rules

Delete Tuple-to-Set

Insert Tuple-to-Set

Update Tuple-to-Set

Rewrite Rules

Figure 4: Classification of Rewrite Rules

ification of the mapping components BPEL/SQL to PGM
and PGM to BPEL/SQL is necessary. For other workflow
languages, individual mapping components have to be pro-
vided. If a certain workflow language allows for additional
optimization rules, they can easily be added to the ruleset of
the PGM Optimizer, and, based on the optimization sphere
concept, be latched into the control strategy.

Our optimization approach supports different database
languages as well as different underlying DBMSs. A lan-
guage dialect is reflected in the condition and action part of
a rule. Thus, new dialects can be incorporated simply by
adding the corresponding rules and, if necessary, by adapt-
ing the control strategy. In Section 7, we show that the
performance improvements are independent from the un-
derlying DBMS.

In this paper, we assume that all data management activ-
ities of a process are issued against a single database system.
However, in a practical setting, heterogeneity with respect
to data sources is the normalcy. We can use existing fed-
erated database technology [5] that homogenizes heteroge-
neous data source to extend our optimization approach to
this general case and to carry all findings and results over.

5. REWRITE RULES
In this section, we introduce rewrite rules for the rule-

based optimization of processes. Figure 4 shows the set of
rules we focus on in this paper. Rule classes are shown in
rectangles whereas their instances are given as plain text.
Based on the similarity of rules, we distinguish two major
classes of rewrite rules: Activity Merging Rules and Tuple-
to-Set Rules.

Remark that according to our processing model, we apply
these rules to PGM processes. In favor of a concise presen-
tation in this section, we introduce the rules based on the
set of BPEL/SQL activities and omit details at PGM level.

The purpose of Activity Merging Rules is to resolve data
dependencies by merging a source activity and a consecutive
destination activity that depends on data delivered by the
source activity. The destination activity is always an SQL
activity while the source activity may be an assign activity,
an invoke activity or an SQL activity. In the following, we
explain some Activity Merging Rules in more detail.

The Web Service Pushdown rule pushes an invoke activ-
ity into the SQL activity that depends on the Web service
invocation. As a result, the Web service becomes part of
the SQL statement. This pushdown is only applicable if

the underlying DBMS supports Web service calls, e.g., as
user-defined function calls.

The Assign Pushdown rule directly integrates an assign
activity into an SQL activity. It requires an assign activ-
ity writing a variable that serves as input for a consecutive
SQL activity. We push the assign operation into the SQL
statement replacing the considered variable through its def-
inition. This allows to omit the assign activity.

The Eliminate Temporary Table rule removes the usage of
temporary tables within SQL statements of SQL activities.
BPEL/SQL allows to load a query result set into a table that
is referenced by a result set reference [8]. If such a table is
created for each single process instance at process start up
time, and if it is dropped as soon as the process instance has
finished, we call it a temporary table. Within an SQL activ-
ity, this rule replaces the usage of a result set reference that
refers to a temporary table directly by its definition state-
ment. This reduces the costs for the lifecycle management
of temporary tables as well as for SQL processing.

Update Merging Rules merge two consecutive SQL activ-
ities executing updates on the same database tables into a
single SQL activity. As an example, consider two successive
INSERT statements both updating the same database table.
By using the SQL UNION ALL operation, the Insert-Insert
Merging rule merges these INSERT statements, thereby re-
ducing the number of SQL activities in the BPEL/SQL pro-
cess. As Figure 4 shows, there are similar rewrite rules for
other combinations of updates.

The class of Tuple-to-Set Rules addresses loops iterating
over a given set and executing an SQL activity for each tu-
ple of the set. These rules replace such a loop and the SQL
activity in the loop body by a single SQL activity, which
covers the semantics of the entire loop. By transforming the
tuple-oriented SQL statement into a set-oriented SQL state-
ment, the iterative execution of the SQL activitiy becomes
needless. Thus, we can remove the ForEach activity from
the process logic. In the following section, we discuss the
Insert Tuple-to-Set rule in more details.

5.1 The Insert Tuple-to-Set Rule
The Insert Tuple-to-Set rule requires a situation as shown

on the left hand side of Figure 5. A ForEach activity iterates
over a set of rows that is provided by a preceding SQL activ-
ity. The body of the ForEach loop consists of a single SQL
activity containing an INSERT statement. By applying the
Insert Tuple-to-Set rule, we replace the ForEach activity by
a single SQL activity covering a set-oriented INSERT state-
ment and the SQL statement that produced the set (shown
in Figure 5 right hand side).

The rational behind this rule is to avoid calling a database
system in each loop iteration because this causes overhead
for transmitting and processing SQL statements. Another
motivation is that the set-oriented SQL statement resulting
from this rewrite rule offers additional optimization opportu-
nities at the database level. This rewrite rule is an example
for optimizations that are not achievable by the underlying
DBMS alone. The DBMS receives only one INSERT state-
ment per iteration of the ForEach activity. Hence, it has no
means to combine these statements into a single one as done
by the Tuple-to-Set rule.

In the following, we show how to apply this rule to a
BPEL/SQL process. The motiviation for going into details
here is twofold. First, we want to show that it is not straight-

620

expri(…) → vset

over: vset

current row: vrow

INSERT INTO vsr

exprk(vrow.c1, …, vrow.cn)

INSERT INTO vsr

SELECT T2.c1, …, T2.cn
FROM
TABLE(expri(…))

AS T1(c1, …, cn),
TABLE(exprk(T1.c1, …, T1.cn))

AS T2(c1, …, cn)

Action

ak: SQL

process P process P*

ai: SQL

aj: ForEach

ak*: SQL

Figure 5: Insert Tuple-to-Set Rule

forward to define rule conditions in such a way that the pro-
cess semantics is preserved when applying a rewrite rule.
Secondly, the example demonstrates that for the efficient
evaluation of rule conditions, a process representation that
explicitly defines control flow dependencies as well as data
dependencies is mandatory.

In analogy to conventional optimization, we consider ac-
tivities that have no side effects and that are defined on
a single data source. To exclude non-determinism at the
choreography level, we assume processes without parallel ac-
tivities referencing the same variable. We call processes that
comply with these assumptions well-formed processes.

5.1.1 The Rule Conditions
As shown in Figure 5, the Insert Tuple-to-Set rule consid-

ers a BPEL/SQL process P that is transformed into process
P∗. V = {vset, vrow, vsr} is the set of variables, vset being
a set variable, vrow providing a row of a materialization set,
and vsr being a set reference variable referring to a table.
A = {a1, a2, ..., an} is the set of activities of P , where the
index uniquely numbers all activities in A.

A first set of conditions characterizes the activities the
Insert Tuple-to-Set rule builds on:

• Activity Condition A1: Activity ai is of type SQL pro-
viding the results of query expression expri in a set
variable vset.

• Activity Condition A2: ForEach activity aj iterates
over vset and provides the current row in variable vrow.
The value of column c is denoted by vrow.cl with l =
1...n.

• Activity Condition A3: Activity ak is of type SQL
being the only activity within the loop body of aj .
Activity ak executes an INSERT statement exprk that
is either a query expression or a VALUES expression
taking the tuple values provided by vrow as input.

Before we discuss further conditions based on data depen-
dencies and interfering control flow dependencies in Section
5.1.3, we demonstrate the rule’s action part.

5.1.2 The Rule Action
The following transformation steps convert P into P∗:
• Transform ak to ak∗ by rewriting the SQL statement

of ak as it is shown in Figure 5. Intuitively speaking,
we “pull up” the INSERT statement by joining expri

with a correlated table reference containing the results
of expression exprk for each row. Due to the cor-
relation between the joined tables within the FROM
clause, we add the keyword TABLE to the table ref-
erence. Remark that this is the generalized version of
the Tuple-to-Set rule. In Figure 2, we applied a sim-
plified rule that is appropriate for INSERT statements
with a VALUES clause.

• Replace aj including ak by ak∗.

• Remove ai and adapt the control flow accordingly, i.e.,
connect all direct preceding activities with all direct
succeeding activities of ai.

This transformation converts the former correlation be-
tween the ForEach activity and the SQL activity in its body
into a correlation between two tables in ak∗. This opens up
optimization at the database level and thus leads to perfor-
mance improvements.

5.1.3 Further Data and Control Flow Dependencies
Now, we extend the set of conditions by adding further

conditions based on data dependencies and interfering con-
trol flow dependencies:

• Data Dependency Condition D1: A single write-read
data dependency based on vset does exist between ai

and aj , such that ai writes vset before aj reads vset.

• Data Dependency Condition D2: There is a single
write-read data dependency based on vrow between aj

and ak, such that aj writes vrow before ak reads it.

• Value Stability Condition S1: vset is stable, i.e., it does
not change between its definition and its usage.

• Value Stability Condition S2: In each iteration of aj ,
ak reads that value of vrow that is provided by aj .

In the following discussion, we demonstrate that it is not
sufficient to consider only data dependencies. Rather, we
also have to take into account control flow dependencies that
interfer with data dependencies.

The focus of Condition D1 is on activities providing a
materialization set that is afterwards iteratively read by a
ForEach activity. Remark that the existence of a write-read
data dependency does not only depend on the fact that two
activities access the same variable. We also have to take into
account control flow dependencies. Consider the situation
depicted in Figure 6(a) where ai and aj are executed on al-
ternative paths. In BPEL, this is modeled by switch or pick
activities. Although both activities process the same vari-
able, there is no write-read data dependency since at most
one of the activities is executed. As a consequence, we can
not apply the Insert Tuple-to-Set rule. Remark that Figure
6 shows several variations in the control flow of process P
from Figure 5. Hence, activities ai and aj are exactly the
same as in Figure 5. Especially, the ForEach activity aj

contains ak as before.
The same problem arises, if only one of the two activities

is executed on an alternative path. Assume, as shown in
Figure 6(b), that aj is part of an alternative path, but ai is
not. Since we can not determine, whether aj will execute at
all, we can not guarantee that a write-read data dependency
between both activities exists at runtime.

621

(a)

SWITCH

ai: SQL
write vset

aj: ForEach
read vset

SWITCH

ai: SQL
write vset

aj: ForEach
read vset

...

(b) (c)

(d) (e)

ai: SQL
write vset

aj: ForEach
read vset

ax: …
read vset

FLOW

ai: SQL
write vset

ax:
write vset

possible execution orders:
ai, ax
ax, ai

SWITCH

ai: SQL
write vset

ax:
write vset

…

aj: ForEach
read vset

Figure 6: Critical interferences among data flow and
control flow dependencies

Condition D1 also requires that there is a single write-read
data dependency between ai and aj based on vset. Hence,
there must not be another activity that reads vset and is
executed after ai. In Figure 6(c), we assume that such an
activity ax does exist, i.e., there is a write-read data depen-
dency based on vset between ai and aj as well as a write-read
data dependency based on vset between ai and any activity
ax that is executed after ai. Thus, aj as well as ax depend
on the value of vset written by ai. If we would apply the
Tuple-to-Set rule, we would remove ai, and thereby destroy
the write-read data dependency between ai and ax. As a
result, the runtime behavior of P∗ and P may differ, since,
in P∗, ax reads a different value of vset than in P . Hence,
we only can apply this rule, if there is no activity other than
aj relying on the value of vset written by ai.

Condition D2 claims the existence of a single write-read
data dependency between aj and ak based on vrow. Dif-
ferent to D1, the ForEach activity and the SQL activity ak

express a well-defined control flow dependency, because the
definition of ForEach activities ensures that a row of vset is
provided by aj before it is processed by ak. Hence, there
is a write-read dependency between both activities. Finally,
from condition A3 follows that ak is the only reader of vrow,
since it is the only activity executed in the loop body.

According to Condition S1, the rule’s action can only be
applied if vset does not change during its usage. Hence,
we have to ensure that there is no other activity than ai

writing variable vset. In other words, there is no write-write
data dependency based on vset between ai and any activity
ax ∈ A. Such data dependencies exist, if ax writes vset

between the execution of ai and ak and one of the following
control flow dependencies holds:

1. Activity ai and ax are executed in parallel (see Figure
6(d)). As discussed above, our assumption on well-
formed processes prohibits this situation. The same
argument holds if activity aj and the enclosed activity
ak are executed in parallel to ax.

2. Activity ax is defined on an alternative path between
ai and ak (see Figure 6(e)). If ax writes vset there is a
write-write dependency between ai and ax. Condition
S1 ensures that the Insert Tuple-to-Set is not applied
in this situation.

The purpose of condition S2 is to make sure that in each
iteration of aj , ak reads the value of vrow that was previously
written by aj . Therefore, we have to avoid activities that
change vrow and run in parallel to the ForEach activity. This
is excluded because we assume well-formed processes.

5.2 Properties of the Ruleset
The rewrite rules presented in the previous sections show

the following properties: They preserve the semantics of the
original process and they likely improve its performance.

The Semantics Preserving Property is individually guar-
anteed for each rule by its composition. Each rule consists
of a condition and an action part. A rule action may only
be executed if the corresponding condition evaluates to true.
A condition identifies data dependencies as well as control
flow dependencies between activities such that the proposed
action keeps the process semantics.

For the Performance Improvement Property the following
observations are important:

• All rewrite rules reduce the number of activities which
in turn reduces the processing overhead. A reduced
number of SQL activities in the choreography layer
leads to fewer database calls. This reduces the over-
head for translating, optimizing and processing SQL
statements. Furthermore, this may reduce the size of
intermediate result and thus the amount of data trans-
ferred between the database level and the choreogra-
phy layer.

• By merging SQL statements in the choreography layer,
we create more sophisticated SQL statements, that
provide a higher potential for optimization on the
database level than a single SQL statement. This
will most likely enable further opportunities at the
database level, e.g., detecting common subexpressions.

• The application of a rewrite rule may enable the appli-
cation of further rewrite rules, possibly enforcing the
two positive effects mentioned above.

As our experimental results in Section 7 show, perfor-
mance improvements of several orders of magnitude are
achievable. In the following section, we discuss dependencies
between rewrite rules and show that typically the applica-
tion of a rule enables the application of further rules.

6. CONTROL STRATEGY
In this section, we explain the control strategy for rule-

based optimization of business processes. It divides the
overall process in several optimization spheres and applies
rewrite rules considering their dependencies.

6.1 Enabling Relationships
Our control strategy exploits dependencies among rewrite

rules, i.e., the application of one rule may enable the appli-
cation of another rule. The dependencies depicted in Fig-
ure 7 are as follows: The application of any Activity Merging

622

Insert Tuple-to-Set

Update Tuple-to-Set

Delete Tuple-to-Set

Tuple-to-Set Rules

Web Service Pushdown

Assign Pushdown

Eliminate Temp. Table

Activity Merging Rules

Update-Update

Delete-Delete

Delete-Insert

Update Merging Rules

Insert-Delete

Insert-Insert

Figure 7: Enabling Relationships

rule to the activities inside a ForEach activity may reduce
the number of these activities to one, and, in turn, may
enable the application of the Tuple-to-Set rule. The appli-
cation of a Tuple-to-Set rule constructs a new SQL activity
that might further be merged via application of an Activ-
ity Merging rule. If an assign activity cuts the data flow
between two activities, pushing the assign activity into the
succeeding activity may result in a direct data dependency
between the two activities and thereby enable the appli-
cation of Activity Merging Rules. The same holds for the
Web Service Pushdown rule enabling further Activity Merg-
ing Rules. The application of an Update Merging rule may
reduce the number of updates on a table to a single one.
If such a single update is executed on a temporary table,
the Eliminate Temporary Table rule might become applica-
ble. Among the Update Merging Rules, there is no specific
order except for the Insert-Insert, Delete-Insert and Insert-
Delete rule. The application of the latter two results in an
INSERT statement that uses an EXCEPT to combine an
insert as well as a delete operation. This may enable the
application of the Insert-Insert rule. Among the Tuple-to-
Set Rules, there is no specific order. Each of these rules
addresses a different update statement in the loop body.

Merging activities produces more sophisticated SQL state-
ments. Besides the enabling relationships on the choreogra-
phy level, this may also enable optimization at the database
level, that would not be possible otherwise. The perfor-
mance gain depends on the optimization potential of the
SQL statements as well as on the capabilities of the query
optimizer of the database management system that pro-
cesses these statements.

6.2 Optimization Spheres
Due to the structure of a process, we have to consider

boundaries that must not be crossed during the optimization
procedure. This is necessary to avoid changes to the original
process semantics when applying rewrite rules.

Such a boundary is given in BPEL by scope activities
that define the execution context of activities. A BPEL
process defines a global processing scope for all its embedded
activities. Scopes can be nested to create global and local
execution environments for activities.

Condition

Action

Rule

Sphere

Determine Rewrite Rule

Load Rewrite Rule

3Apply Rewrite Rule 1

2

Sphere Hierarchy

Figure 8: Optimization Procedure

A scope can declare fault- and compensation handlers
defining undo steps of arbitrary complexity that reverse the
effects of partially completed processing steps. Removing or
inserting an activity from or into a scope causes an adap-
tation of these handlers in order to preserve the original
process semantics. But determining and adapting affected
handlers is a sophisticated task. Thus, in order to preserve
the original semantics and to reduce complexity, we defined
transformations that do not cross scope boundaries. We
consider a scope as a closed optimization space, that we call
Scope Optimization Sphere (SOS). The effects of a rewrite
rule are always local to a SOS.

We consider Loop Optimization Spheres (LOS) as another
type of optimization sphere. They comprise a ForEach ac-
tivity with its nested activities and all surrounding activities
that are necessary for applying a Tuple-to-Set rule. In anal-
ogy to SOSs, all effects of a rule’s action are local to a LOS.

6.3 Overall Control Strategy
As shown in Figure 3, our optimizer engine gets the PGM

representation of a process as input. In a first step, the
optimizer identifies all optimization spheres within this rep-
resentation. The nesting character of a process defines a
tree that represents a hierarchical ordering on all optimiza-
tion spheres. The global processing scope defines the root
and the most nested optimization spheres define the leaves
of this tree. We traverse this tree in a depth-first manner
(in post-order) to guarantee that all nested spheres are pro-
cessed prior to an enclosing sphere. When optimizing an
enclosing sphere, we treat all nested SOSs as black boxes.
However, we consider their data dependencies to activities
within the enclosing optimization sphere, in order to prove
a rule’s condition. Unlike nested SOSs, we do not treat
nested LOSs as black boxes, since we want to exploit the
enabling relationships provided by the LOS’s optimization
taking place before.

For each optimization sphere, we apply our ruleset ac-
cording to the control strategy that we discuss below. For
each sphere type, we use a different control strategy that
comprises the associated ruleset and the order in which the
rules are applied. This way, a sphere is optimized in an
iterative way, until we have processed all rules.

Figure 8 illustrates the optimization procedure. In a first
step, the next rule to be considered is determined by the ap-
propriate control strategy. Within the sphere, we search for
a group of activities that fulfills a rule’s condition. If found,

623

we apply the rule’s action to these activities. When this
rule is not applicable any more, we proceed with the next
rule according to the control strategy. This proceeds until
we have applied the full ruleset. This way, we optimize all
spheres within the hierarchy, until we reach the root sphere
that is optimized in a final step.

Algorithm 1 optimizeSphereHierarchy

Require: sphere-hierarchy sh
Ensure: optimized sphere-hierarchy sh

while sh is not fully traversed do
s← getNextSphere(sh)
optimizeSphere(s)

end while

Algorithm 2 optimizeSphere

Require: sphere s
Ensure: optimized sphere s

cs← getControlStrategy(s)
while cs is not finished do

r ← getNextRule(cs)
while s is not fully traversed do

a← getNextActivity(s)
m← findMatch(a, s, r)
if m �= ∅ then

applyRule(m, r)
end if

end while
end while

Algorithms 1 and 2 illustrate this procedure. Method
optimizeSphereHierarchy (Algorithm 1) traverses a given
sphere hierarchy sh, and calls method optimizeSphere (Al-
gorithm 2) for each optimization sphere in sh. This method
is responsible for the rule-based optimization of a sphere.
Function getNextSphere implements the depth-first traver-
sal strategy. Method optimizeSphere first calls function get-
ControlStrategy that either returns a LOS or SOS control
strategy cs depending on the given sphere type of s (see
Section 6.4). getNextRule delivers the next rewrite rule r,
until we have processed cs. In a next step, we try to find
all matches for r in sphere s. Therefore, function getNext-
Activity implements a depth-first traversal strategy in this
sphere returning all activities in s exactly once and ignoring
activities that are part of a nested LOS or SOS. For each
delivered activity a, function findMatch checks, whether r’s
condition matches to a subprocess in s starting with a. It
returns match m. The rule conditions guarantee that there
is at most one match for each activity a. Match m serves as
input for method applyRule that transforms s by applying
r’s action. Otherwise, we skip this method and consider the
next rewrite rule in the following iteration. The separation
of the two algorithms allows to adapt the control strategy
on both levels towards given constraints.

6.4 Control Strategy for Optimization Spheres
As shown in Figure 9, there are different control strategies

for the sphere types, a LOS control strategy and a SOS con-
trol strategy. Both are based on the enabling relationships
discussed in Section 6.1 and shown in Figure 7.

When optimizing a LOS, the objective is to remove the
whole loop by applying a Tuple-to-Set rule. Due to their

Assign Pushdown

Web Service Pushdown

LOS Control Strategy

Update Update

Delete Delete

Delete Insert

Update Merging Rules

Insert Delete

Insert Insert

SOS Control Strategy

Eliminate Temp. Table

Tuple-to-Set Rules

Insert Tuple-to-Set

Update Tuple-to-Set

Delete Tuple-to-Set

Figure 9: Control Strategy for Optimization Spheres

enabling relationships, we first apply the class of Activity
Merging Rules to the activities that are part of the LOS.
Since they may have enabling relationships on other rules,
we start with the two Pushdown rules. Due to their mu-
tual enabling relationships we alternate between both rules
as long as they are applicable. Afterwards, we apply all
Update Merging Rules before the Eliminate Temporary Ta-
ble rule. The order among the Update Merging Rules is
as follows: we start with the Update-Update and Delete-
Delete rule. Due to their enabling relationships, we execute
the Delete-Insert and Insert-Delete rule before executing the
Insert-Insert rule. After having executed all Activity Merg-
ing Rules, we finally apply the remaining Tuple-to-Set Rules
according to the ordering shown in Figure 9. In the best
case, we have succeeded in replacing the loop by a single
SQL activity, otherwise the loop will be retained.

Since we consider nested loops within a SOS as a single
optimization sphere, all rewrite rules except the Tuple-to-Set
Rules take also part in the SOS control strategy.

6.5 Termination
For the set of rewrite rules and the presented control strat-

egy, we can guarantee, that the optimization process termi-
nates after a finite number of steps for the following reasons.

The sphere hierarchy is traversed from bottom to top, i.e.,
when the optimization process leaves an optimization sphere
and ascends to its enclosing parent sphere, the optimization
process will never re-descend to it. Hence, the traversal
finally ends in the optimization sphere at top-level.

The traversal strategy within an optimization sphere guar-
antees, that each activity of an optimization sphere is con-
sidered exactly once, when searching for a rule match. This
ensures, that the process of match finding will terminate
within an optimization sphere in a finite number of steps.

With the current set of rules, each rule application reduces
the number of activities. So, oscillating rule applications are
impossible, i.e., there can not be a cycle among rules, where
some rules undo the transformations of other rules.

Our ruleset consists of a finite number of rules and there
is a finite number of activities in each optimization sphere.
Furthermore, if for a certain source activity a merging rule

624

0

20

40

60

80

100

120

W
eb

 S
er

vi
ce

 P
us

hd
ow

n

As
si

gn
 P

us
hd

ow
n

In
se

rt-
In

se
rt

M
er

gi
ng

El
im

in
at

e
Te

m
po

ra
ry

 T
ab

le

In
se

rt
Tu

pl
e-

to
-S

et

Optimization Rules

R
u

n
ti

m
e

in
 %

 o
f

O
ri

g
in

al
 P

ro
ce

ss
s

10k
100k
1000k

Figure 10: Effectiveness of Rewrite Rules

has resolved all its data dependencies to other activities that
enable a rule’s application, then the rule can not be applied
to this activity any more. Each Tuple-to-Set rule can only
be applied once to the activities within a LOS because it
always eliminates some of the pattern matching activities.
Therefore, we conclude, that each rule can only be applied
a finite number of times to the same activity.

7. EXPERIMENTS
As part of a proof of concept, we analyzed the effective-

ness of rewrite rules in two scenarios. The first one comprises
small business processes to which only a single rewrite rule
is applicable. This allows to evaluate rewrite rules in isola-
tion. The second scenario is more complex and allows the
application of several rewrite rules according to the control
strategy explained in the previous section.

7.1 Experimental Setup
The experimental setup consists of three components: the

runtime environment for business processes and for Web ser-
vices as well as the database management system. All com-
ponents run on a Windows Server 2003 system with two 3.2
GHz processors and 8 GB main memory. We used Web-
Sphere Process Server version 6.0.1 [7] as the runtime en-
vironment for business processes. The business processes
access data managed by DB2 version 8.1. The table that
is accessed by data management activities in the processes
was provided in varying size, ranging from 10,000 up to 1
Million rows. For the experiments presented in Figure 11,
we additionally used Oracle 10g Release 2.

7.2 Results
In a first set of experiments, we focused on individual

rewrite rules. We designed various processes that (i) allow
the application of exactly one rewrite rule, and (ii) consist
of a minimum set of activities. In Figure 10 we show results
for processes that allow the application of the Web Service
Pushdown, the Assign Pushdown, the Insert-Insert Merging,
the Eliminate Temporary Table, and the Insert Tupel-to-Set
rule, respectively. These results allow to evaluate the iso-
lated effects of each rewrite rule. Any business process and
the corresponding optimized process were executed more
than 100 times. The average runtime of the original pro-

0,00

20,00

40,00

60,00

80,00

100,00

1k 2k 5k 10k 100k

Data Volume

R
un

tim
e

in
 %

 o
f O

rig
in

al

P
ro

ce
ss

Sample Process Optimized Process DBMS1

0,00

20,00

40,00

60,00

80,00

100,00

1k 2k 5k 10k 100k

Data Volume

R
un

tim
e

in
 %

 o
f O

rig
in

al

P
ro

ce
ss

Sample Process Optimized Process DBMS2

Figure 11: Performance Improvement for Sample
Scenario (see Figure 1) on different DBMSs

Table 1: Effectiveness of Insert Tuple-to-Set rule:
Factor by which runtime is reduced when applying
Insert Tuple-to-Set rule

Data Volume 10k 100k 1000k

Factor 245 2090 ≈15000

cess is taken as 100%. The corresponding average runtime
of the optimized version is reported in Figure 10. In order to
identify scalability effects, we repeated all experiments with
varying data volume (10k, 100k, 1000k).

Figure 10 shows two groups of rewrite rules. The Push-
down and Update Merging Rules belong to a first group
of rules that do not substantially influence process perfor-
mance. Performance improvement and performance degra-
dation are both within a 5% range to the 100% margin.
These rules are nevertheless indispensable due to their en-
abling property as discussed in Section 6.1.

A more detailed analysis reveals why these rules did not
improve process performance. The Web Service Pushdown
rule had no effect because calling a Web service in a SQL
statement causes approximately the same overhead than
calling it on the process level. The Insert-Insert Merging
rule combines two INSERT statements into a single one. As
the optimizer of the database system was not able to identify
a more efficient query plan for the combined SQL statement,
the process performance was not affected. The same argu-
ment also applies to the remaining Update Merging Rules.

The other group consists of the Eliminate Temporary Ta-
ble rule and the Tuple-to-Set Rules. They lead to signif-
icant performance improvements. Applying the Eliminate
Temporary Table rule always cuts the process runtime by at
least a factor of two. A detailed analysis reveals the main
influencing factors: (i) There is no overhead for the lifecycle
management concerning the temporary table. (ii) The rule
replaces a set reference that refers to a temporary table di-
rectly by the SQL statement providing the content of this
temporary table. Hence, two SQL statements are merged
into a single one, which, in this case, allows the underlying
database system to identify a more efficient query plan.

The Tuple-to-Set Rule cuts the runtime of a process by
several orders of magnitude. Table 1 shows this effect in
more detail. Tuple-to-Set Rules combine the iterated execu-
tion of SQL statements into one data management activity.
In the 10k case for example, 10,000 tuple-oriented INSERT
statements are merged into one set-oriented INSERT state-
ment that is processed much more efficiently and that causes
less processing overhead.

In Figure 11, we demonstrate the effect of applying rewrite

625

rules to a more complex scenario, i.e., the sample process
shown in Figure 1. The number of executions of the SQL
activity inside the ForEach activity is proportional to the
table cardinality. Hence, the execution time of the origi-
nal process, denoted as Sample Process, grows linear to the
table cardinality. In Figure 11, we show the average run-
time of the original process as 100%. As already shown in
Section 2.2, the Optimized Process is the result of applying
three rewrite rules to the Sample Process: The Web Service
Pushdown rule, a Tuple-to-Set Rule and finally, the Elim-
inate Temporary Table rule. The only difference between
the two optimized processes in Figure 11 is that the SQL
statements of the process are executed by different database
systems from different vendors. The figure shows that (i)
performance improvements of an order of magnitude are
also achievable in such complex scenarios, (ii) that they are
largely independent of the table cardinality, and (iii) that
they are independent of the underlying database system.
A more detailed analysis reveals that the performance im-
provement is mainly caused by the Tuple-to-Set rule and the
Eliminate Temporary Table rule. This finding is consistent
with the results presented in Figure 10. Nevertheless, the
application of additional rewrite rules was necessary to ex-
ploit enabling effects, i.e., Web Service Pushdown enables
the Tuple-to-Set Rule, which in turn enables the Eliminate
Temporary Table rule (as described in Section 6).

8. CONCLUSION
In this paper, we have shown a promising approach to

extend the optimization of business processes to data pro-
cessing affairs. Our approach adds another level of optimiza-
tion in between well-known process-level optimization and
database-level optimization. As a result, and for the first
time, business process specifications can be optimized over
the whole spectrum from the process level to the data level.

We introduced an optimization framework that is built
on a rule-based rewrite approach combined with a sophisti-
cated multi-stage control strategy to guide the optimization
process. The distinctive property of our approach is that
the rewrite rules are based on a process graph model that
externalizes data dependencies as well as control flow de-
pendencies of the business process. We have shown that
these two kinds of dependencies are indispensable in order
to guarantee for sound rewrite rules that keep the semantics
of the original business process. Based on a prototype and
a case study, we have shown that independent of the un-
derlying DBMS, there is a huge optimization potential that
induces significant performance improvements.

In future work, we will extend the scope of applicability
with respect to the supported subset of BPEL, additional
workflow languages as well as support for non-SQL data
management, e.g., based on XQuery.

9. REFERENCES
[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,

T. Milo, and N. Preda. Lazy Query Evaluation for
Active XML. In Proc. SIGMOD Conference, 2004.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison Wesley,
1985.

[3] N. Dalvi, S. Sanghai, P. Roy, and S. Sudarshan.
Pipelining in Multi-Query Optimization. In Proc.
PODS Conference, May 2001.

[4] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S.
Szalay, D. J. DeWitt, and G. Heber. Scientific data
management in the coming decade. SIGMOD Record,
34(4):34–41, 2005.

[5] K. Hergula and T. Härder. Coupling of FDBS and
WfMS for Integrating Database and Application
Systems: Architecture, Complexity, Performance. In
Proc. EDBT Conference, 2002.

[6] S. Hinz, K. Schmidt, and C. Stahl. Transforming
BPEL to Petri Nets. In Proc. of 3rd International
Conference on Business Process Management, 2005.

[7] IBM. Information Integration for BPEL on
WebSphere Process Server.
http://www.alphaworks.ibm.com/tech/ii4bpel.

[8] IBM. WebSphere Business Integration Server
Foundation v5.1.
http://www-306.ibm.com/software/integration/wbisf.

[9] V. Josifovski, P. Schwarz, L. M. Haas, and E. T. Lin.
Garlic: a new flavor of federated query processing for
DB2. In Proc. SIGMOD Conference, 2002.

[10] D. Kossmann. The State of the art in distributed
query processing. ACM Comput. Surv., 32(4):422–469,
2000.

[11] T. Kraft, H. Schwarz, R. Rantzau, and B. Mitschang.
Coarse-Grained Optimization: Techniques for
Rewriting SQL Statement Sequences. In Proc. VLDB
Conference, 2003.

[12] F. Leymann, D. Roller, and M.-T. Schmidt. Web
services and business process management. IBM
Systems Journal, 41(2), 2002.

[13] Microsoft. Windows Workflow Foundation.
http://msdn.microsoft.com/windowsvista/building/
workflow.

[14] OASIS. Web Services Business Process Execution
Language Version 2.0. Committee Draft, Sept. 2005.
http://www.oasis-
open.org/committees/download.php/14616/wsbpel-
specification-draft.htm.

[15] Oracle. Oracle BPEL Process Manager.
http://www.oracle.com/technology/products/ias/bpel/
index.html.

[16] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible Rule-Based Query Rewrite Optimization in
Starburst. In Proc. SIGMOD Conference, 1992.

[17] A. Rosenthal and U. S. Chakravarthy. Anatomy of a
Modular Multiple Query Optimizer. In Proc. VLDB
Conference, 1988.

[18] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and Extensible Algorithms for Multi Query
Optimization. In Proc. SIGMOD Conference, 2000.

[19] T. Sellis. Multiple-Query Optimization. TODS,
13(1):23–52, 1988.

[20] T. K. Sellis and L. D. Shapiro. Query Optimization
for Nontraditional Database Applications. IEEE
Trans. Software Eng., 17(1):77–86, 1991.

[21] S. Shankar, A. Kini, D. DeWitt, and J. Naughton.
Integrating databases and workflow systems.
SIGMOD Record, 34(3):5–11, 2005.

[22] U. Srivastava, K. Munagala, J. Widom, and
R. Motwani. Query Optimization over Web Services.
In Proc. VLDB Conference, 2006.

626

