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ABSTRACT
Many enterprises nowadays use business processes, based on the

BPEL standard, to achieve their goals. These are complex, often

distributed, processes. Monitoring the execution of such processes

for interesting patterns is critical for enforcing business policies

and meeting efficiency and reliability goals. BP-Mon (Business

Processes Monitoring) is a novel query language for monitoring

business processes, that allows users to visually define monitoring

tasks and associated reports, using a simple intuitive interface, sim-

ilar to those used for designing BPEL processes. We describe here

the BP-Mon language and its underlying formal model. We also

present the language implementation and describe our novel opti-

mization techniques. An important feature of the implementation is

that BP-Mon queries are translated to BPEL processes that run on

the same execution engine as the monitored processes. Our exper-

iments indicate that this approach incurs very minimal overhead,

hence is a practical and efficient approach to monitoring.

1. INTRODUCTION
A Business Process (BP for short) consists of some business ac-

tivities undertaken by one or more organizations in pursuit of some

particular goal. It often interacts with other BPs of the same or

other organizations. BP Management Systems are software plat-

forms that facilitate the definition, deployment, execution, and mon-

itoring of BPs. Because of their central role in carrying out busi-

ness activities, and their complexity, monitoring of BPs is a critical

activity in modern enterprises.

For some intuition about the type of monitoring that a BP may

require, I imagine a manager of a Web-accessible auctioning busi-

ness. Monitoring of process executions may allow the manager to

guarantee fair play, detect frauds, and track services usage and per-

formance. The manager can ask, for instance, to be notified when-

ever an auctioneer cancels bids too often, or when buyers attempt to

confirm bids without first giving their credit details, so that she can

block their actions. Similarly, being notified whenever the average

response time of the database in a given service passes a certain
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threshold, allows her to fix the problem or switch to a backup data-

base. In general, BP monitoring encompasses the tracking of par-

ticular patterns in the executions of individual processes or in the

interaction between different processes, as well as the provision of

statistics on the performance of some processes or the system. Our

goal here is to provide intuitive, easy to use, efficient tools to facil-

itate this critical task.

Before presenting our results let us briefly highlight some of the

main characteristics of existing BP Management Systems and the

challenges encountered in monitoring current BPs.

Background. BPs operate in a cross-organization, distributed en-

vironment, and the software implementing them is fairly complex.

Standards enable the design, development and deployment of such

software. The recent BPEL standard (Business Process Execution

Language[6]) provides an XML-based language to describe both

the interface exposed by a process, and its full operational logic

and execution flow. Since the BPEL syntax is quite complex, com-

mercial vendors offer systems that allow to design BPEL specifica-

tions via a visual interface, using an intuitive view of the process, as

a graph of activity nodes connected by control flow edges. Designs

are automatically converted to BPEL specifications. These can be

automatically compiled into executable code that implements the

described BP and runs on a BPEL application server [27].

An instance of a BP specification is an actual running process

which includes specific decisions, real actions, and actual data. BP

Management Systems allow to trace process instances – the activi-

ties they perform, messages sent or received by each activity, vari-

able values, performance metrics – and send this information as

events (in XML format) to monitoring systems (often called BAM

– Business Activity Monitoring – systems). Typical monitoring

systems (e.g. [3, 20]) allow users to specify events of interest, and

actions to be performed when the events are identified. Events may

be atomic or composite (i.e. consist of a group of other atomic or

composite event). Detection and processing of (composite) events

has been an active research area since the early 90’s. Rich event

algebras have been proposed for describing composite events (e.g.

[16, 29]), and sophisticated evaluation and optimization techniques

have been developed for their detection [23] (see Section 7 for de-

tails). Nevertheless, existing technology suffers from three main

drawbacks when it comes to the monitoring of BPEL BPs.

Abstraction level. In existing systems, the specification of mon-

itoring tasks and, in particular, of the the relevant (composite) events,

requires intimate knowledge of both the monitored application and

the specific events emitted by activities. This is contradictory to the

high level abstraction employed when defining BPEL BPs, where

implementation details (including the types of run-time events gen-

erated by the system) are deliberately hidden. Thus, programmers

nowadays use two distinct tools, one for defining BPs at a high level
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of abstraction, typically via a graphical UI, and another for defin-

ing monitoring tasks for the BPs, typically via lower level Event-

Condition-Action style rules. The abstraction gap between these

tools is akin to the one between assembly and high level languages.

To close this gap, it is desirable that the specifications of moni-

toring be performed on the same (high) level of abstraction as that

of the BPs, possibly even using a similar specification language.

Such a monitoring tool would allow (a) simultaneous formulation,

by the BP designer, of a BP and its corresponding monitoring tasks,

and (b) a faster learning curve of the monitoring language.

Optimization. A variety of methods have been proposed for op-

timized processing of (composite) events, employing relation and

object-oriented database technology [32, 16], petri nets, finite state

automata, event graphs, and storage minimization (See [29] for a

survey) . The proposed methods are generic, hence can be em-

ployed in a variety of application domains, including BP monitor-

ing. A disadvantage, however, of a generic approach is that it does

not exploit the particular properties of BPs and available knowledge

about them. As a simple example, assume we wish to be notified

when a given activity sequence occurs in some process. If, accord-

ing to its (BPEL) specification, an activity o never co-occurs with

such a sequence, monitoring for the sequence can be stopped im-

mediately if an activation of o is detected. While such knowledge

about BPs structure is naturally valuable for optimization, to our

knowledge it is not exploited by any current BP monitoring tool.

Runtime monitoring that considers the processes structure has

been studied, e.g., for models and query languages based on tem-

poral logics as LTL (See Section 7). But what is desirable here are

optimizations stated directly in terms of BPEL and a corresponding

high-level monitoring language.

Deployment. As mentioned above, BPs are specified in a high

level manner and the specifications are automatically compiled into

executable code that can, in principle, run on any BPEL application

server [27]. Analogously, it is desirable that a monitoring task be

defined in a declarative manner, and be compiled, and easily de-

ployed, on whatever BPEL application server chosen for the mon-

itored BP. In existing monitoring tools, however, the monitoring

tasks are written in proprietary languages and are not portable[11].

The BP-Mon (BP Monitoring) system presented here addresses

these three problems, making the following contributions.

Query language We present a high-level intuitive graphical query

language that allows for simple description of the execution pat-

terns to be monitored. A tight analogy between the graphical in-

terface used by commercial vendors for the specification of BPEL

BPs and the graphical query interface that we use for monitoring

allows natural and intuitive design of monitoring tasks.

Evaluation and optimization We provide a dedicated efficient automata-

based algorithm to identify occurrences of monitored patterns. We

present a novel optimization technique that speeds up computa-

tion, by pruning redundant monitoring, based on an analysis of the

process BPEL specification.

Implementation and deployment To support flexible deployment, our

system compiles a BP-Mon query q into a BPEL process specifi-

cation S, whose instances perform the monitoring task. As for all

standard BPEL specifications, S can now be automatically com-

piled into an executable code to be run on the same BPEL appli-

cation server as the monitored BP. We describe experiments that

indicate that the resulting monitoring is very efficient and incurs

only very minimal overhead.

In summary, BP-Mon offers a high-level, intuitive design of

monitoring tasks. It compiles these tasks into efficient and stan-

dard BPEL processes, thus providing easy deployment, portability,

and minimal overhead.

Discussion. In a previous paper [4] we proposed to use a graph-

ical query language for querying BP specifications. There, the goal

was to be able to retrieve specifications with certain properties (e.g.

where an execution path from activity A to activity B is possible),

and the solution relied on modeling specifications and queries as

graph grammars. In contrast, our work here is concerned with

querying the actual execution of process instances (e.g. to find

when an actual execution path that started at activity A arrives to

activity B), and the solution is based on automata construction. The

two works are complementary: The query language of [4] can be

used to discover parts of BPs that require monitoring, while mon-

itoring can be used to check at runtime properties that cannot be

statically determined by querying the specification.

As mentioned above, events are sent to monitoring systems in

XML format. A natural question is why not use XQuery, cou-

pled with some XML stream-processing engine [22], to process

this stream? A key observation is that the XML elements in this

stream describe individual events. To express any non-trivial query

about a process execution flow, one needs to write a fairly complex

XQuery query, that performs an excessive number of joins, and can

hardly (if at all) be handled by existing streaming engines. Further-

more, standard XML stream processing would still be inadequate

for the task, even if a more query-friendly nested XML represen-

tation, that reflects the flow, had been chosen for the data. XML

stream engines manage tree-shaped data, expect to receive the tree

elements in document order, and process siblings sequentially, as

they arrive. However, a BP execution is essentially a nested set

of DAGs. In a DAG, some activities may run in parallel and in-

terleave, hence the events flow in BPs does not necessarily follow

document order. Nesting of DAGs in BPs follows from the fact

that processes contain composite activities with complex internal

execution flow, itself represented by a DAG. Interleaving of events

from different DAGs of a BP is another aspect of parallelism. Here,

parallel processing, that processes each event according to its posi-

tion/nesting in the flow is called for. This is provided by BP-Mon .

Paper organization. Section 2 provides an overview of BP-Mon,

and Section 3 briefly describes the underlying formal model. Sec-

tion 4 deals with query evaluation and optimization. Extensions

to the model are considered in Section 5. Section 6 describes our

implementation and the experiments preformed to measure the per-

formance of the system. We conclude in section 7.

2. MONITORING BUSINESS PROCESSES
We start by presenting an informal overview of BP-Mon via

a running example that extends the Web auctioning BP scenario

introduced in the Introduction.

2.1 Underlying technology
Let us first briefly describe some of the underlying technology;

what BPEL BPs are and what data is available for their monitoring.

BPEL. As mentioned in Section 1, BPEL is essentially a high

level specification language with an XML-syntax that allows to de-

scribe a process’ execution flow and interaction with other processes.

A BPEL specification describes a process as a DAG consisting of

activities (nodes), and links (edges) between them that detail the ex-

ecution order of the activities. (Cycles are captured by a particular

while node, described below.) An activity is either atomic or com-

pound. The atomic activities that can be used in a BPEL specifica-

tion include operations such as invoke, for invoking an operation of

some web service; receive, for waiting for a message from an ex-

ternal source; reply, for replying to an external source; and assign,

for copying data from one variable to another. Compound activities

are typically composed of several (atomic or compound) activities.
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Figure 1: An Auction business process.

Figure 2: The seller flow.

Their types include sequence, where the component activities have

sequential execution order; flow, where partial order is specified on

component activities (possibly with parallelism), switch, for condi-

tional execution; while, for looping; etc.

The BPEL XML-syntax is complex. Hence, commercial ven-

dors offer systems that allow users to design BPEL specifications

via an intuitive graphical interface, (with the graphical design being

automatically converted to BPEL syntax). Figures 1 and 2 illustrate

such an interface. The circle at the top of a BP (see Figure 1) is its

entry point; the square at the bottom is its exit point. In the BP of

Figure 1, users register to the system by invoking the register activ-

ity (whose details are not shown here). As part of this activity, they

choose to play a seller or a buyer role. Depending on their choice,

they are directed in the following switch activity to one of the two

compound activities: seller process and buyer process. Figure 2 is

a zoom-in into the seller process, that shows its internal flow.

Different icons, with activity names attached to them, denote dif-

ferent activity types. Each activity has associated data variables

whose values can be tested and/or passed to other activities. For

conciseness we omit these from the figures here. Activities that are

invoked by (resp. invoke) other activities/users are marked by small

incoming (outgoing) arrows. The BPEL switch, while, and flow

constructs are represented by diamond shaped nodes that contain a

question mark, a circular arrow, and two parallel lines, respectively.

The switch icon in Figure 1 was explained above. The while icon at

the top of Figure 2 indicates that the seller can repeat the described

activity any number of times. At each round she can either manage

her existing auctions (e.g. decide to cancel an auction, or to cancel

some specific bid, etc.) or add new items for sale. New items are

added to the database by the add item to db activity. Once the up-

date is confirmed the track auction process is invoked to wait until

the auction ends and declare the winner. The internal structure of

this process is depicted in Figure 3. The flow construct here al-

Figure 3: Auction notifier process.

〈actionData〉
〈header〉

〈processName〉 auctionHouse 〈/processName〉
〈instanceId〉 517 〈/instanceId〉
〈sensor target=”add item request”/〉
〈timestamp〉 2006-05-31T11:32:46.510+00:00 〈/timestamp〉

〈/header〉
〈payload〉

〈activityData〉
〈activityType〉 receive 〈/activityType〉
〈evalPoint〉 completion 〈/evalPoint〉
〈durationInSeconds〉 0.1 〈/durationInSeconds〉

〈/activityData〉
〈variableData〉

〈target〉 $itemVar 〈/target〉
〈data〉 〈addItemRequest〉

〈category〉 MP3 player 〈/category〉
〈description〉 iPod mini 4GB 〈/description〉
〈price〉 50 〈/price〉

〈/addItemRequest〉
〈/data〉 〈/variableData〉 〈/payload〉

〈/actionData〉
Figure 4: BPEL event.

lows to handled the winner and the seller in parallel. The process

notifies them about the auction results and awaits their approval.

BPEL events. An instance of a BPEL specification is an actual

running process that follows the logic described in the specifica-

tion. BP Management systems allow to trace instance executions.

For each activity issued, two events are generated, at its activation

and completion, respectively. Events are reported in XML format.

Figure 4 shows a completion event for the add item request activ-

ity of Figure 2 (with some data omitted for brevity). The header

includes identification information for the event: the BP name, the

instance ID, the activity name, and a time-stamp. The provided data

includes the activity type (e.g. invoke, receive, sequence etc.), the

reporting point (activation or completion of the activity), the activ-

ity duration, and variables information (variable names and values).

For a compound activity, the events corresponding to its inter-

nal flow are reported between its activation and completion events.

The events stream of an instance can be viewed as a (nested) DAG

(see Figure 5). The nodes for an activity represent its activation

and completion events, resp. Flow edges (represented in the figure

by solid arrows) connect activation and completion nodes of the

same activity and record causal dependencies between distinct ac-

tivities of a process. Zoom-in edges (represented by dashed arrows)

connect the activation (resp. completion) node of each compound

activity to the the start (rep. end) nodes of the DAG that describes

the activity’s internal flow. Note that the edges in the DAG connect

nodes with increasing time stamps. Recall that some activities may

run in parallel (e.g. notify winner and notify seller). At any given

time t, the DAG represents the execution up to point t.

2.2 BP-Mon

In the auction scenario, the system supervisor may want to be no-

tified when a seller cancels bids or auctions too often, or when buy-

ers attempt to confirm bids without first giving their credit details.

She may also want to be informed when the average response time
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Figure 5: Execution Trace as DAG.

Figure 6: Too many cancels.

of the database server for a given service passes a certain threshold,

and to gather statistics about the response time. BP-Mon monitor-

ing queries can be used to accomplish these tasks.

For monitoring process instances, BP-Mon uses execution pat-

terns (abbr. EX-patterns). Intuitively, these extend string regular

expressions to (nested) DAGs. The patterns look much like the

specifications. In addition to standard BPEL constructs, such as

while, switch, etc., they may include two additional new constructs,

denoted or and rep, describing, resp., alternative patterns and rep-

etitions. The patterns also allow to navigate in the activities flow

along two axes: path-based and zoom-in-based. Following the use

of / and // in XPath to denote single and multiple step navigation,

our patterns use edges with single and double heads to denote sin-

gle and multiple edge paths, resp. Similarly, compound activities

may have singly or doubly bounded boxes, the latter denoting an

unbounded zoom-in into the activities internal flow.

The activities and edges of EX-patterns can be associated with

variables, which can be used in selection conditions on the values

of the associated attribues/data variables and in reports. To issue a

report, a reporting icon, depicted as a page with two small arrows,

can be connected to a reporting point in the pattern (an atomic or

a compound activity). A BP-Mon query may include several such

reporting icons/points. Two reporting modes are available: local,

where an individual report is issued for each process instance, and

global, that considers all the BP instances. For each report, one

can specify when should it be issued (e.g. at the first time that the

reporting point is reached, at periodic time interval, or when certain

conditions are satisfied) and what should be the structure of the

output (in XML format) or the actions triggered at this point. The

following examples illustrate the features available for monitoring.

Figure 7: Average response time.

EXAMPLE 2.1. The query in Fig. 6, monitors auctions to guar-

antee fair play. It looks for users that register as sellers, and re-

peatedly cancel bids or auctions. The ‘or’ here denotes that we

are looking for an occurrence of one of the two cancel activities.

The ‘rep’ denotes repetitions of this pattern, with the ≥ 5 indicat-

ing that at least 5 occurrences are required. The double headed

arrows indicate that the activities may occur at any distance from

the beginning of the seller process, and also at any distance from

each other (in the given instance). The double bounding of the

seller process box denotes unbounded zoom-in; we look for can-

celation activities in this process and (transitively) the compound

activities that it includes/invokes. A report, with the name of the

corrupt auctioneer, is issued as soon as the pattern is matched, i.e.

when five cancelations are identified. If we want to get re-notified

if/when cancelations are further repeated, a Report* command can

be used instead. Finally, to trigger corrective activity, an Invoke

command is used.

EXAMPLE 2.2. The query in Figure 7 may be used to guaran-

tee service quality. The datastore service is in charge of interaction

with the database and is used massively in the auctioning process

to store and manage items and bids. To monitor its response time,

we look for a pattern of an invoke activity, immediately followed

by a receive operation. (The partnerlink attribute identifies the tar-

get/source service). Note that the single headed arrow here indi-

cates consecutive operations. Also note that we use here a global

reporting mode that aggregates the data of all the BP instances. Let

us now consider some types of reports. The following is an example

for a time-based sliding window report, where we request to get an

hourly report of the average response time and standard deviation

in the last couple of hours:
Report* Every 1 hrs Range 2 hrs

<response-time>

<avg>avg($y.startTime-$x.endTime)</avg>

<std>std($y.startTime-$x.endTime)</std>

</response-time>

BP-Mon also supports match-based windows where the window

slides over the previous matches of the pattern in the given instance

(if the report is local) or in all the running instances of the given BP

(if it is global). For example, to issue a report, every 100 matches,

that provides the average response time and standard deviation of

the last 200 calls to the database, we could use in the above report

Every 100 entries Range 200 entries

Grouping may also be employed. For instance, we can group the

database calls according to the type of the requested operation and

report response time only for operations with frequency ≥ 10. For

that we add at the bottom of the above command

Group by $x.operation having count()>10

EXAMPLE 2.3. Assume that, to promote sales, we wish to pe-

riodically give prizes to our users, for example, to credit the seller

and buyer pairs in the 10000th sell, 20000th sell, 30000th sell, etc.

The query in Figure 8 reports the names of the winners. Since no-

tifications for each buyer-auctioneer pair are processed in parallel

(recall the flow construct in figure 3), so is their monitoring.
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Figure 8: x10,000 buyer.

Figure 9: No registration.

EXAMPLE 2.4. Finally, the query in Figure 9 monitors illegal

access. It identifies instances where a user attempts to submit bids

without first registering to the system, and reports the instance ID

and the corrupt execution path. We use here a path predicate (es-

sentially a subquery) that is attached to the transitive edge connect-

ing the start node to the bid request node and restricts the assigned

paths to those that do not include registration.

We may furthermore want to combine run-time monitoring with

specification analysis, and identify execution paths that do not com-

ply with the BP specification. The query in Figure 10 compares a

bidder’s run-time execution flow (the $x on the left) to what is al-

lowed according to the specification (the $y on the right). In this

simple example the two query patterns, on the run and the speci-

fication, are similar, but in general one can use different patterns,

e.g. one pattern on the specification to identify what needs moni-

toring, and another pattern on the run to perform this monitoring.

The queries so far all have a single reporting point. We also

support queries with multiple reports.

EXAMPLE 2.5. Assume that we wish to obtain weekly statistics

about the the average age of the users that register to the system at

different times of the day. We can attach to the register node of the

query in Figure 6 the following report request.
Report Every 1 week Range 1 week

<age-by-hour>

<avg>avg($x.age)</avg>

</age-by-hour>

Group by $x.startTime.hour()

Here is a comment about the semantics of such report points (a

full account is given in Sections 3 and 5). As mentioned earlier, a

user may request a report to be issued as soon as a match for the

pattern is identified. In order not to block reporting, only the nodes

and edges in the pattern that precede a report point are considered

Figure 10: Static and dynamic analysis.

relevant to it. For a report to be conditional on the occurrence of the

full pattern it needs to be attached to the last node in the pattern or to

the outermost box, as in all the previous examples. Thus, the report

here will include information about all registered users, regardless

of whether they had later canceled bids or not. To get the same

reports only for corrupt users, the same report should have been

connected to the rep or the auctionHouse boxes.

3. THE FORMAL MODEL
BP-Mon queries consist of two main ingredients: (1) EX-patterns

that are matched to execution traces and (2) reports generated from

these matches. Reports are discussed in Section 5; we focus here on

BP-Mon’s pattern matching. We first explain how execution traces

are modeled and then consider EX-patterns and their semantics.

(An efficient algorithm to identify pattern occurrences is presented

in section 6). To simplify the presentation we consider in this and

the next section a basic data model. We then enrich it in Section 5

to obtain the full fledged model.

Event traces. As mentioned earlier, the execution trace of a

process instance can be viewed as a DAG. Each activity is rep-

resented by a pair of time-stamped nodes, corresponding to its ac-

tivation and completion. For a compound activity, the DAG that

represents its internal flow appears (time-wise) between its activ-

ity activation and completion nodes, and is connected to them by

zoom-in edges. This is formalized below.

We assume the existence of three domains, N of nodes, L of

node labels, and an ordered domain T of time stamps. We first

define the auxiliary notion of activation-completion labeled DAGs.

DEFINITION 3.1. An activation-completion labeled DAG is a

tuple G = (N, E, λ, τ) in which N ⊂ N is a finite set of nodes,

E is a set of edges with endpoints in N , λ : N → L is a labeling

function on the nodes, and τ : N → T is a time-stamp function on

the nodes. We assume G satisfies the following:

1. The edges in E are of two types: flow, and zoom-in.

2. The nodes in N are partitioned into pairs, called activity

pairs. Each pair n1, n2 shares a label, i.e., λ(n1) = λ(n2).

In such a pair, one node is designated as an activation, the

other as a completion; they are denoted by act(l) and com(l),

resp., where l is their shared label. There is precisely one

flow edge from act(l) to com(l); no other flow edges leave

act(l), and no other flow edges enter com(l).

3. τ assigns distinct time stamps to nodes of G s.t. if there is an

edge from n1 to n2, then τ(n1) < τ(n2).

We assume the graph has a single start node without incoming

edges, and a single end node without outgoing edges, denoted by

start(G) and end(G), resp.

DEFINITION 3.2. The set EX of execution traces (abbr. EX-

traces) is the smallest set of graphs that satisfies the following.

1. [flat trace] If G is an activation-completion labeled DAG

without zoom-in edges, then G ∈ EX .

2. [nested trace] If G1, G2 are in EX , and (act(l), com(l)) is

an activity pair of G1, then the graph G consisting of G1,

G2, and two new zoom-in edges (act(l),start(G2)) and

(end(G2),com(l)), is in EX , provided the combined time-

stamp function τ on G1 ∪ G2 satisfies constraint 3 of Defin-

ition 3.1 above.

A prefix of an EX-trace is defined in the standard way, as any graph

obtained by removing some nodes, all their descendent nodes, and

all edges into and out of deleted nodes.

In the sequel, we call a subgraph G2 that is connected, as in Item

2 above, by zoom-in edges to an activity pair (act(l),com(l)),
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Figure 11: Execution pattern.

an internal trace of the pair. Such a subgraph, omitting the internal

traces of its own activities, is called a direct internal trace. Observe

that in general a given activity pair may have several internal traces

connected to it. This happens when the activity implementation

includes several parallel processes.

Execution patterns. Queries are modeled by execution pat-

terns (abbr. EX-patterns), that generalize EX-traces similarly to

the way tree patterns generalize XML trees. EX-patterns are EX-

traces without time stamps (since they are not real executions but

just patterns) where node labels are either specified, or left open

using a special ANY symbol, and where two additional new label

symbols can be used: or and rep. or describes alternative pat-

terns and rep describes one or more repetitions of a given pattern.

Edges in a graph are either regular edges, interpreted over edges, or

transitive, interpreted over paths. Similarly, activity pairs may be

regular or transitive, for searching only in their direct internal trace

or zoom-in transitively inside it.

DEFINITION 3.3. An execution pattern (EX-pattern) is a pair

p = (ê, T ) where ê is an EX-trace without time stamps1, whose

nodes are labeled by labels from L ∪ {any, rep, or}, and T is a

distinguished set of activity pairs and flow and zoom-in edges in

ê, called transitive activities and edges, resp. The nodes in p with

labels other than rep and or are called concrete nodes. We say that

p is concrete if it contains only concrete nodes.

Graphical BP-Mon queries are naturally mapped to EX-patterns:

Each activity icon labeled l is mapped to a pair of nodes act(l),

com(l), that inherit properties like double bounding. Addition-

ally, nested activities are connected by zoom-in edges (simple or

double-headed) to these two nodes in the obvious manner. For ex-

ample, Figure 11 depicts the EX-pattern corresponding to the query

of Figure 6. (The reporting part is omitted for now and will be con-

sidered in Section 5). The transitive edges are double headed and

the transitive activity pairs are double bounded. The ≥ 5 that was

attached to the rep node on the query is a shorthand for a sequence

of 4 occurrences of the pattern followed by a regular rep node.

Intuitively, EX-patterns with or and rep nodes extend string reg-

ular expressions to concrete EX-pattern expressions. Namely, each

EX-pattern defines a (possibly infinite) set of concrete EX-patterns,

denoted concrete(p), obtained from p by replacing each rep pair

by a sequence of one or more copies of its internal trace and each

or pair by one of its possible internal traces. (We omit the formal

definition for space constraints).

To evaluate a query, the patterns in concrete(p) are matched to

a given EX-trace. A match is represented by an embedding.

1An EX-trace without time stamps is defined as in Definitions 3.1
and 3.2 above, by dropping the time-stamp function τ , and the cor-
responding constraints.

DEFINITION 3.4. Let p = (ê, T ) be a concrete EX-pattern and

let e be an EX-trace. An embedding of p into e is a homomorphism

ψ from the nodes and edges in p to nodes edges and paths in e s.t.

1. [nodes] an activation (resp. completion) node is mapped to

an activation (completion) node. Node labels are preserved;

however, a node labeled by any can be mapped to any node.

2. [edges] each (transitive) edge from node m to node n in p

is mapped to an edge (path) from ψ(m) to ψ(n) in e. If the

edge [n, m] belongs to a direct internal trace of a transitive

activity, the edge(s on the path) from ψ(m) to ψ(n) can be

of any type (flow, or zoom-in) and otherwise must have the

same type as [n, m].

The start and end of ψ, denoted by start(ψ) and end(ψ), are the

earliest and the latest time stamps of nodes in ψ(p), respectively.

A pattern may have many matches in a given EX-trace. In some

cases, users are satisfied by one match. In other cases, they may

want to be informed on all (or some) matches. When one match

suffices, it is desirable to find an early one. In the next section, we

present an algorithm that is guaranteed to find a match, if one exists,

and that can also find all matches, if so desired. The algorithm

works in a greedy manner, matching pattern nodes to the earliest

possible events. We next formally define the property of the first

match it finds. We use the following auxiliary notations. Given a

concrete EX-pattern p, and an embedding ψ′ on a prefix p′ of p, we

say that an embedding ψ of p extends ψ′, if ψ agrees with ψ′ on

p′. If S is a set of embeddings of p, we denote by S↓ψ′ the set of

embeddings in S that extend ψ′, restricted to nodes(p)\nodes(p′).

When S is a singleton {ψ}, we write ψ↓ψ′ .

DEFINITION 3.5. Let p be an EX-pattern, e an EX-trace, and

S a set of embeddings of patterns in concrete(p) into e. An em-

bedding ψ ∈ S is greedy (in S) if the following holds:

(1) start(ψ) is minimal in the set {start(φ) | φ ∈ S}.

(2) Let n be the node with minimal time stamp in ψ, i.e. τ(ψ(n)) =
start(ψ), and denote ψ restricted to n by ψ′. Then, inductively,

ψ↓ψ′ is greedy in S↓ψ′ .

It is easy to show (by induction on the pattern size) that

PROPOSITION 3.6. For every EX-pattern p and every EX-trace

e, if the set S of embeddings of p into e is not empty, then an em-

bedding that is greedy in S exists.

Assume given an algorithm that given an EX-pattern p and an

Ex-trace e, finds an embedding φ that is greedy w.r.t the set of

all embeddings of p in e. The following observation, that follows

easily from the proposition, implies that the algorithm can easily

be extended to find all embeddings of p into e.

OBSERVATION 3.7. If the set S of embeddings of p contains

more than one embedding, and ψ is a greedy embedding in S, then

S \ {ψ} is a non-empty set of embeddings, hence it contains an

embedding φ that is greedy in it, such that start(ψ) ≤ start(φ).

Note that since EX-patterns may contain choices (e.g. or) sev-

eral greedy matches with the same start time may exist. Indeed,

even for some concrete EX-patterns more than one greedy match

exist, e.g. due to symmetry in the EX-pattern. If several such

greedy matches exist, one can be chosen arbitrarily.

4. MATCHING AND OPTIMIZATION
We next explain how pattern matches are detected. We start by

describing a simple pattern matching algorithm, then propose an

effective optimization technique that exploits the BP specification

to speed up computation, by focusing on the relevant parts of the
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events trace. It should be noted, however, that already the simple

initial algorithm exploits knowledge about the common structure of

BP traces, i.e. their nested DAG shape, to optimize the processing.

In particular, when searching for an occurrence of a subpattern in

the internal trace of a compound activity, if a completion event for

the activity occurs, the algorithm immediately infers that the pat-

tern can no longer occur in this internal trace and backtracks. (See

details below). While this may remind the reader of XML stream-

engines (which, when encountering an end-tag of an element, infer

that the matching of a subpattern inside the element failed), there

are two important differences which make the processing of BP pat-

terns more intricate. First, BP patterns contain two navigation axes:

the standard path-based navigation and the novel zoom-in naviga-

tion that allow users to query about activity flows that are nested

at any depth inside the internal traces of compound activities. Sec-

ond, unlike XML streams, where tree elements arrive in document

order and siblings can be processed sequentially, in BPs the events

of parallel sibling activities interleave. Here, a parallel processing

of events according to their position in the flow is called for.

4.1 Pattern Matching
We assume that the execution of processes, and matching of pat-

terns, start at time 0. We are given an EX-pattern p and our goal

is to find the matches for p in an (incrementally discovered) EX-

trace e. At a time t, what is known from an EX-trace e is only a

prefix consisting of the nodes with time-stamp ≤ t and the edges

between them. Each arriving new event is appended to the prefix,

with incoming edges of the two kinds described in Section 3.

To simplify the presentation, we first assume that p is a concrete

EX-pattern. After presenting the algorithm for this restricted case,

we explain how it extends naturally to general EX-patterns.

Concrete patterns. The algorithm works in a greedy manner,

trying to incrementally extend a greedy embedding for a prefix of

p (initially empty), to a greedy embedding for a larger prefix. On

failure it backtracks, refines the prefix embedding and retries to

proceed again. Given an EX-pattern p we construct an automaton

A whose states are the nodes of p. Its start (resp. end) states cor-

respond to the start (end) nodes of p. A state can be active or

inactive. Initially, only the start state is active. Other states become

active once they get activation messages from all their respective

parents, or due to the backtrack operator described below.

We maintain two data structures for backtracking. The first,

an (initially empty) list called the events-list, contains trace

nodes that may need to be (re)processed. Each new event (node) is

appended to its end. The second, called tested, is a map from

a subset of the states to events in events-list, representing

the embedding computed thus far for some prefix of the pattern.

Initially the mapping of all states is set to null. Each state (pat-

tern node) maintains a current-event variable that points to

an event in the events-list that the state needs to process. If

it points to the place after last in the list it means that the state

awaits the arrival of a new event. Initially the current-event

of the start state points to the beginning of events-list and the

current-event of all other states are set to null.

Each active state executes the algorithm depicted in Fig. 12. We

assume that every iteration of the algorithm (the body of the while

loop), which involves reading and possibly writing in the data struc-

tures and (in)activating some states, is executed atomically (our im-

plementation uses for that a simple locking mechanism.)

Each active state s reads iteratively events from events-list

(line 2) and processes them. This processing stops when s becomes

inactive, and restarts when s becomes active again. If an event

matches the conditions on the state and on its incoming edges (line

Automaton state s

1 While s is active do:
2 n = current-event.
3 Advance current-eventto next event in events-list.
4 If match?(s, n)
5 (a) Set s’s entry in tested to point to n.
6 (b) Inactivate s.
7 (c) Send an activation message to the children states of s,

setting their current-event to that of s.
8 Else % not matched %
9 If n is a completion event, s is a completion state, and the

activation event of n’s activity is assigned in tested to the
activation counterpart of s,

10 backtrack(s)
11 Else, if n is a completion event for one of s’s ancestors in the

zoom-in hierarchy, or a completion event for the end activity,
12 backtrack

′(s)
13 End While

Figure 12: Processing events.

match?(state s, event n): boolean
1 If (a) n’s labels satisfies the label conditions of s, and
2 (b) for every parent ŝ of s, tested contains some assignment

n̂ to ŝ and the trace path from n̂’to n satisfies the conditions
on the edge (ŝ, s) in the pattern,

3 return True
4 Else return False

Figure 13: Matching an event.

4), it is added to tested (line 5). The state is then inactivated

(line 6) and we proceed with (i.e. sends activation message to) its

children2 (line 7). The match? predicate is depicted in Figure 13.

It tests whether, given a state s, an event n, and the tested entries

of the parents of s, n is a potential assignment for s.

If a match of an activation node fails, the event is skipped, and

the algorithm proceeds to the next event. For a failure of a com-

pletion event, we consider two cases: First (line 9), if the state

represents activity completion whose activation counterpart was

matched in tested with the activation counterpart of the given

event (but the given state and event nevertheless don’t match), this

implies a failure for the part of the pattern involving the imple-

mentation of the activation-completion pair. The algorithm then

backtracks (line 10), trying to find another match for this part. The

backtrack operator is described in Figure 14. It finds the last

point where a decision was made on the matching of a previous

relevant activity ŝ and retries from there.3 A second type of failure

that needs treatment (line 11) is when the event is a completion for

an activity whose activation is assigned in tested to an ancestor

s′ of s (or similarly, if the event is the last event of the trace). This

implies a failure to match the part of the pattern from s′ to its com-

pletion (resp. from the beginning of the pattern to its completion).

Here, the algorithm backtracks (lines 12), trying to find another

match for this part, using a different version of backtrack, de-

noted backtrack’, that considers for backtracking only ancestors

in the same or higher level in the zoom-in hierarchy.

A match for the pattern is identified if&when the final state of

the automaton is inserted into tested. On success, tested con-

tains the match for the pattern nodes. The mapping for the edges

consists of the edges/paths that were used to qualify these assign-

ments in line (2) of the match? procedure. To find consecutive

matches, if requested, a backtrack operation is applied to the final

state and the matching process continues to find the next match.

The matching fails if all active states read the end event of the trace

before a successful match is found. An earlier detection of failure

is considered below.

2A child becomes active after receiving messages from all its par-
ents. It then starts reading events from the last current-event
it received.
3The reactivated ŝ now begins to read events starting from its
current-event.
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backtrack(state s)
1 Choose an ancestor ŝ of s, whose event in tested is an activation

event with maximal timestamp (among s’s ancestors).
2 Clear, in tested, the entries of ŝ and its descendant states.
3 Inactivate the descendants of ŝ and set their current-event to null,
4 Reactivate ŝ.

Figure 14: Backtrack.

The correctness of the algorithm is proved by induction on the

size of the pattern (omitted here). The worse case time complexity

of the algorithm is polynomial in the size of the trace (with the

exponent determined by the size of the pattern). The intuition is that

the algorithm exhaustively checks all relevant embeddings, and the

upper bound on their number is polynomial in the size of the trace

(with the exponent determined by the pattern size).

Before extending the algorithm to work with general patterns, let

us comment about some of its properties.

Remark 1 The algorithm works greedily, in a deterministic man-

ner, attempting to match events as early as possibly and backtrack-

ing on failure. Two possible alternatives could be (1) to use a

non-deterministic automaton that checks simultaneously all pos-

sible embeddings, thus avoiding backtracking, and (2) to construct

some deterministic variant of that non-deterministic automaton. Just

like for standard regular expressions, a disadvantage of the first ap-

proach is the need to manage simultaneously a large number of

active states[18]. A disadvantage of the second approach is the po-

tential exponential growth in the size of the automaton[17]. Our

algorithm provides a hybrid solution. We use a small automaton

with the same size as the pattern, and since states are inactivated

as soon as a matching event is assigned to them, only relatively

few states are simultaneously active. The price paid for this is the

need for backtracking. An optimization technique that allows to

identify failures early and thus to avoid some redundant work and

backtracking is presented below. Our experiments, presented in

Section 6, show the optimized algorithm to be extremely efficient.

Remark 2 The events of the trace are recorded in events-list

for backtracking. It is easy to see that an event n will never be re-

processed if n and its preceding events are not pointed by tested

or any of the current-event variables of the states. Such an

event can be removed from the list. We show below that the opti-

mization technique mentioned above is also useful for identifying

such redundant events.

It is possible to build (rather artificial) scenarios where all events

must be retained in events-list “for ever”. For example, con-

sider a BP with an activity A that invokes itself (recursively) and

may also, arbitrarily later, invoke some other activity B. Assume

that our query searches for an A activity that invoked both A and

B. If the given BP trace contains a long sequence of A’s, we need

to keep them all since we do not know in advance which of them

(if any) will invoke a B later on. The problem here is that all the

A activities remain ”alive” for an unbounded time, hence may in-

voke new children activities arbitrarily late. In practice, in a typical

BP, the number of individual activities that are kept alive unbound-

edly is bounded, so such phenomena are unlikely to occur. Indeed,

in all the real life examples we examined, the number of events

that needed to be retained was fairly small and proportional to the

pattern size. Finding bounds on the number of events needed to

be recorded, for various fragments of BP-Mon, is an on-going re-

search.

Handling or and rep. We briefly sketch below the adjustments

needed to handle or and rep.

[or] Consider an activity pair (act(or),com(or)) in p. When the

automaton state s of act(or) (resp. the state s′ of com(or))

is activated it does not read any events but immediately sends

activation messages to all its children (with its current event).

For s′ to get activated it suffices that it receives an activation

message from one of the activity internal traces. The children

of s (resp. s′) check match? w.r.t their grandparents rather

than their parents (or great grandparents if the grandparents

are also or nodes). For the children of s′, a more lenient ver-

sion of match? is employed, where condition (b) needs to

be satisfied only for the grandparent that activated s′.

Since s′ may now be activated several times, due to sev-

eral branches of the or, and consequently its children may

be matched to several events, we maintain in tested a set

of events for each state, corresponding to the various possi-

ble matches. The context of each matching (i.e. to which

choices of or branches it corresponds) is recorded with the

events, and all consequent tests/operations take into consid-

eration only assignments relevant to the given context. We

omit the details for space constraints.

[rep] The processing of rep follows similar lines. It is based on

the observation that an activity pair (act(rep),com(rep)) in

p, which stands for one or more repetitions of some subpat-

tern p′, can be viewed as an or between the pattern p′ and the

pattern containing one occurrence of p′ followed by another

rep of p′. This “virtual” or is treated as above, recursively.

4.2 Optimization
So far, our algorithm ignored the BPEL specifications of the

monitored processes. Let us now see how to use them to avoid

redundant processing and to record only useful history.

As a simple example, consider the query in Figure 6, that moni-

tors corrupt sellers, and the auctionHouse BP in Figure 1. If the

process trace reports an invocation of the buyer process com-

pound activity, we immediately know that this activity, as well as

all the events in its internal trace, are irrelevant to the query pat-

tern and can be ignored. Furthermore, since the BP specification

indicates that only one of buyer process and seller process can

occur in a given process instance, we can infer that the invocation

of buyer process is inconsistent with the pattern and a match for

the pattern is impossible. These notions are now formally defined.

DEFINITION 4.1. Let S be a BPEL specification and o an ac-

tivity in S. Given an EX-pattern p and a node n (resp. an edge e)

in p, we say that the activation/completion of o is irrelevant to n

(resp. e) if there is no embedding of p into an EX-trace of S where

o’s activation/completion event is assigned to n (resp. appears on

a path assigned to e).

We say that o is inconsistent with p if p cannot be embedded into

any EX-trace of S that contains an activation event of o.

We explain below how irrelevancy and inconsistency are deter-

mined. For now, assuming that such a detection algorithm is given,

we show how it can be used to refine the algorithm described above.

• When an active state reads events from the events-list,

it can ignore the events that are irrelevant to the correspond-

ing pattern node. This prevents event assignments that will

for sure be detected later as unfit.

Events that are irrelevant to all the pattern nodes and edges

need not be recorded in the events-list. An event n that

is relevant to some of the states/edges may be removed from

the events-list as soon as it is not pointed by tested

or any of the current-event variables of the states, and

is also irrelevant to all states with current-event point-

ing to a preceding event and their descendent states and edges

(as it will never be useful for backtracking).

• When an active state reads an activation event for an activity

that is inconsistent with the query pattern it can immediately

declare failure and stop the query processing.
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• Similarly, if an active state reads an activation event for an

activity that is inconsistent with the internal trace of some of

the state’s ancestors trough the zoom-in relationship (w.r.t the

specification of the activity currently assigned to that ances-

tor), a backtrack operation to the ancestor can be issued. This

early backtracking eliminates future redundant matchings.

Testing irrelevance and inconsistency. To conclude the

discussion, we need to explain how irrelevance and inconsistency

are tested. To check the irrelevance of the activation/completion of

an activity o to a node n (edge e) in the pattern p, one needs to test

if an instance of the given BP may contain a subtrace of shape sim-

ilar to p where the activation/completion of o represents n (resp.

appears on the path that represents e). If not, the activity is irrele-

vant to the pattern node (edge). To check inconsistency one needs

to check if a BP instance that contains both an activation of o and

a subtrace of the shape p may exist. Again, if not, the activity is

inconsistent with the pattern.

The key difficulty here is that analyzing the possible runs of a

BP is essentially a verification problem [15] and is typically of

very high complexity (from NP-hard for very simple specifications

to undecidable in the general case [26]). To overcome this, and

nevertheless provide an algorithm of tractable complexity, we have

decided to rely on a safe, rather than exact, detection of irrele-

vance and inconsistency. Namely, our algorithm may miss some

cases of these properties, but those that are identified as irerel-

evant/inconssitent are indeed such. Optimization-wise this only

means that some optimization opportunities may be missed, but the

correctness of the matching algorithm is not compromised.

To detect irrelevance and inconsistency in a safe manner we rely

on a query language, called BP-QL, which we have developed in

a previous work [4], for analyzing BP specifications. BP-QL is a

graphical query language with syntax very similar to that of BP-Mon .

The key difference between the two languages is in the semantics

of the queries: BP-Mon is given as input an execution trace and

checks whether the specified pattern appears in the trace; BP-QL,

on the other hand, is given a BP (BPEL) specification and checks

whether the pattern may appear in some possible instance of the

specified BP. If so, it retrieves, for each pattern node (edge), the set

of activities relevant to it. To guaranty query evaluation of poly-

nomial time complexity, BP-QL ignores the run-time semantics of

certain BPEL constructs such as conditional execution and variable

values. So query answers may be a superset of the actual answers

(see [4] for details).

The (safe) detection irrelevance and inconsistency works as fol-

lows: To find irrelevant activities, we interpret the BP-Mon pat-

tern as a BP-QL query over the BP specification. Activities that

are not returned for given pattern node (edge) are all irrelevant

for it. To check for inconsistency of an activity o with the given

BP-Mon pattern, we add o to the pattern and interpret the aug-

mented pattern as a BP-QL query. If query the result is empty the

activity is inconsistent with the pattern. Observe that since query

answers are supersets of the exact answers we may not identify the

irrelevance or inconsistency of some activities, but all those that are

identified as irerelevant/inconssitent are indeed such.

It is important to note that since we are querying the BP spec-

ifications, all the decisions regarding the potential inconsistency

(irrelevance) of activities with (to) the pattern (pattern nodes) can

be made statically, at compile time, before the monitoring starts,

hence cause no delays in the actual monitoring processes.

5. THE FULL LANGUAGE
For simplicity, we used so far a very simple data model and ig-

nored report generation. We now briefly consider useful extensions

that enhance the expressive power, and facilitate the monitoring of

real life business processes.

Data values and predicates. In practice, an execution trace

carries additional information about the performed activities, such

as the names and values of data variables. This is modeled by la-

beling the nodes in both EX-traces and EX-patterns with this ad-

ditional data, requiring the embeddings to respect these labels too.

EX-patterns may also use label or path predicated. For instance,

rather than searching specifically for cancel auction request and

cancel bid request, one may ask for all the activities whose name

contains the string “cancel”. One can also use predicates on the

activity time-stamps to focus the search on certain time intervals.

Variables and joins. Ex-patterns can be extended by attaching

variables to concrete activities and edges, and by (in)equality con-

ditions on variables. Pattern activities attached to (un)equal vari-

ables are mapped to trace activities all having (distinct) identical

labels, and pattern edges labeled by (un)equal variables are mapped

to paths whose sequences of labels are all (different) equal words.

Querying specifications. In some cases we want to relate mon-

itoring to the BP specification. See, e.g., Example 2.4 in Section 2.

To query specifications, we rely again on BP-QL [4], whose graph-

ical interface resembles ours. Queries then consist of two parts, that

query the specification and the execution trace, respectively. (See,

e.g. Figure 10). Join conditions between variables attached to the

nodes/paths of the two parts provide the glue between them.

Distributed systems and queries. In a distributed setting,

each peer holds a set of BPs and may provide (resp. use) activi-

ties to (of) remote peers. Users may wish to monitor these remote

components as well, (provided access is allows by the respective or-

ganizations). The data model and query language extend naturally

to this setting, associating peer ids with activity pairs in execution

traces/patterns. When an activity pair s, s′ in a query is annotated

by a peer id P , the search for its internal EX-pattern is restricted

to traces supplied by P . The pattern matching algorithm presented

in Section 4 extends naturally to this distributed setting. To avoid

shipping events between sites, the (sub)automaton Â, correspond-

ing to the internal EX-pattern of an activity pair s, s′ annotated by

P is installed on the peer P . When s is matched, it notifies the

start node of Â; a matching for Â is computed on P (as described

in Section 4). On success, s′ is informed (and is activated). If the

matching fails, s in notified (and consequently backtracks).

Reports. We conclude by briefly considering report generation.

Assume first that a report is attached to the end node of an EX-

pattern p. A match (pc, ψ) for a concrete EX-pattern pc ∈ concrete(p)
can be viewed as an XML document (tree), that records the ψ

assignment for the activities (activation-completion pairs) and the

edges in pc. Each match found by the algorithm of Section 4 gen-

erates one such XML entry. The Report command is applied to

this stream of matches. The syntax and semantics resembles that

of previous proposals for such reports [25, 13]; we only mention

here the main constructs. By default a report is issued for each en-

try. To issue a report only when certain conditions are satisfied a

When cond statement can be used, where cond is a boolean con-

dition on the value of attributes or aggregate functions (described

below). Periodic reports may be generated by the Every time com-

mand, where time may be a time interval or the number of entries

generated since last report. A sliding window describing the en-

tries relevant for the generation of the report can be defined using

the Range time command. The structure of the report - an XML

document - is described in a manner similar to that of the return

clause of XQuery and may include grouping of entries and aggre-
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Figure 15: Architecture.

gations like average, max, min, count, sum. Two reporting modes

are available: A local report is issued for a given process instance

and uses only entries of that instance. A global report is issued per

BP and uses entries of all the BP instances.

In general, report commands may be attached to any node in the

pattern. The portion of the execution pattern relevant to such a

report consists of the prefix of the pattern including the report node

and its predecessors. The report generated for such a (sub) pattern

ignores the rest of the pattern, and is processed in the same way as

described above.

Remark: A naive, and very inefficient, approach to process a query

with several report nodes is to compute, separately, the matches of

each of their respective pattern prefixes. Recall however that our

algorithm works in a greedy manner by matching pattern prefixes,

then expanding them to matches for larger prefixes. This can natu-

rally be exploited to factorize the common processing, computing

matches for reports of “shorter” prefixes and then expending them,

when possible, to the reports of larger prefixes.

6. IMPLEMENTATION AND EXPERIMENTS
The query language and algorithms presented above have been

implemented and tested in the BP-Mon monitoring system. A

demo of the system will be given in the upcoming SIGMOD [5]. To

support flexible deployment, the system compiles BP-Mon queries

into BPEL specifications. The specification S(p) generated for a

query pattern p describes a process (essentially the automaton de-

scribed in the previous section) that will perform the monitoring

task for p. S(p) is then automatically compiled into an executable

code to be run on the same BPEL application server as the mon-

itored BP. The system architecture is depicted in Figure 15. We

describe below the various components.

Visual editor. BP-Mon queries are written via a visual editor,

in one of two modes: The user can draw the patterns from scratch,

using a drag-and-drop items palette. Or, starting from a specifi-

cation of a BP p, use a wizard to create queries to monitor p, as

follows: The user marks the nodes of p that she wishes to include

in the query. Then by one click a query draft is created, where non

selected nodes are omitted and the selected nodes are connected

with transitive edges that reflect their flow and zoom-in relation-

ship in p. The user can then add conditions on node values, add

report points, make final adjustment, and click a button to finish.

Query translator. The query translator compiles a query on p

to a BPEL process - the Query Process (QP) in Fig. 15 – that imple-

ments the automaton of Section 4. Each state is implemented as a

compound activity consisting of two components, one in charge of

reading the incoming events, the other in charge of events process-

ing and backtracking. The QP is deployed onto the BPEL server

where the instances of p are executed. Several QPs, monitoring the

same or different processes, may be deployed on a server.

Dispatcher. For each query, our system generates one QP in-

stance per monitored BP instance. Processes and instances in BPEL

servers have id’s, and these are used by the dispatcher module to

dispatch the BP instances events to the right QP instances. It sub-

scribes to relevant events of the queried BPs when a query is de-

ployed, and receives the relevant events generated by instances of

these BPs (as described in Section 2). The first event from a new BP

instance causes the dispatcher to create a new instance of relevant

QPs. Further events are delegated to the running QP instances.

Report generation. The final step is generating the reports. As

explained in Section 5, a successful matching for the query pattern

associated with a report node generates an XML entry recording the

embedding, and the Report command is applied to this stream of

matches. Observe that from this point and on, since all the special

BPEL-related issues have already been treated by the BP-Mon en-

gine, we are back to standard XML stream processing, and can use

a standard such engine to generate the report. In our implemen-

tation we support two alternatives for report generation. The first

uses the streaming system of [25].4 The second uses a lightweight

in house reporting tool based on XQuery and XSLT. But in prin-

ciple any XML streaming tool that supports the needed reporting

features can be plugged into our architecture.

6.1 Experiments
The implementation by translation of queries into BPEL processes,

then running them on the same server as the queried processes,

has two main advantages: Portability of queries between BPEL en-

gines; and a great simplification of the software devolvement, ex-

ploiting the infrastructure provided by such engines for parallel and

distributed process management, and software composition. The

price payed for this is the extra load on the BP server who now

needs to also run query instances. To estimate the overhead in-

curred by running the query on the same server, the performance

impact on the queried processes, the scalability of the solution, and

the effectiveness of the optimizations, we ran several experiments.

We considered BPs with varying number of activities, where

the monitoring involves different percentage of the activities in the

BPs. We varied the ratio of processes vs. queries, and also varied

the type of the monitored processes, from I/O bounded BPs, to CPU

bounded ones.5 Since the generation of reports is fairly standard,

we focused on the parts specific to BP-Mon, i.e. the matching of

patterns; our measurements do not include report generation time.

In the experiments, we used a family of processes consisting of

sequences of nested while constructs, with atomic activities that

each invokes a given Java class, some run in parallel, and with an

optional wait activity between them. By configuring the number

of while iterations and the properties of the Java class we could

vary the size of the process, the characteristics of the activities (I/O

or CPU bounded), and the percentage of queried process activities

(our queries queried activities appearing only in some of the loops).

The queries use the Report* option that requires matching of con-

secutive occurrences of the searched pattern in the EX-trace (as this

requires more processing than a single Report). We measured ex-

ecution time (in seconds) of processes and queries. The tests were

performed on Pentium4 3.0GHz, dual core with 1GB RAM mem-

ory, running Windows XP Professional, JBoss AS 4.0.4. Oracle

BPEL Process Manager 10.1.2. with Oracle 9i database.

A representative sample of results is shown in Figures 16 - 19.

Figure 16 demonstrates the very minimal overhead of our solution

4This streaming system is actually relational, but the fairly simple
structure of the BP-Mon XML allows for natural translation to
relational format and back to XML.
5Since our experiments showed no significant difference between
I/O bound and CPU bound BPs, the results discussed below use
activities with a uniform mix of I/O and CPU load.
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Figure 16: Queries overhead.

Figure 17: Varying number of queried processes.

as well as its scalability. Each BP here consists of 200 activities; the

monitored patterns involve about 40% of the activities. The graph

shows, for a varying number of BPs, four measurements of total ex-

ecution time for an entire workload. The first (left-most) column in

each set shows the execution time of the BPs, with events genera-

tion, but without monitoring. The second column shows the execu-

tion time of the BPs when monitored, with one query per process.

Clearly, the overhead on process execution due to monitoring is

very low. The third column shows the execution time of the queries.

As should be expected, their execution time is slightly higher than

the processes themselves – a query is invoked with the process,

but lags behind a bit when processing its events. (Recall that the

queries here report consecutive occurrences of the searched pat-

tern in the EX-trace, hence continue the monitoring till the process

ends. Queries that report just one occurrence stop as soon at it is

detected and thus entail even lesser overhead). Obviously, all the

results are affected by the scalability of the BPEL server itself. We

can see that the execution time grows linearly with the number of

concurrent processes.

The queries that we show here have 3 reporting points. Recall

that one of our optimizations is factorizing the common pattern

matchings for the reports. To illustrate the reduction in process-

ing time that this achieves, the forth column shows what would be

execution time for the three matches if computed separately.

In the above experiment all process instances are monitored,

each by one query. To measure the effect of changing these pa-

rameters, we varied the overall number of queries, assigning to

each process a subset of random size, with uniform distribution.

Figure 17 illustrates representative results, for 50 process instances

with parameters the same as above (200 activities, of which 40%

occur in the monitored patterns), and the average number of queries

per process varying from 0 to 2. We can see that the growing num-

ber of queries has only minimal effect on execution time. Indeed

as already seen in the previous experiment, the execution time is

mostly affected by the running time of the monitored processes and

the overhead due to query processing is marginal.

Figure 18 illustrates the effect of monitoring different percent-

age of the BP activities. We ran the experiment with the same 50

instances as above, and query patterns involving 10% to 100% of

the BP activities. The execution time grows moderately with the

percentage of monitored activities. In practice the common case

is likely to be close to the lower left part of the curve, as typical

BP specifications are large with only small part being relevant for

a particular monitoring task.

We conclude by considering the effect of our optimization tech-

nique of pruning redundant monitoring based on an analysis of the

BPEL process specification. Figure 19 illustrates the improvement

Figure 18: Varying number of queried activities.

Figure 19: Impact of Optimization.

achieved by applying this method. The scenario here is similar to

what we have seen in Example 2.1: the BPEL specification has a

switch construct, and only one branch is relevant to the query. The

process instances choose randomly one of the branches. We mea-

sured the execution time of optimized and non-optimized queries,

varying the number of process instances. The experiments shows a

performance gain of almost 50%, reflecting the 50% of the process-

ing, that involves non interesting branches, that was avoided. Of

course, performance improvement in general will depend on the

mix of processes, queries, and their properties.

7. CONCLUSION AND RELATED WORK
This paper presents BP-Mon, a novel query language and sys-

tem for monitoring BPs. BP-Mon offers a high level intuitive de-

sign of monitoring tasks. A novel optimization technique exploits

available knowledge on the BP structure to speed up computation.

BP-Mon queries are compiled into standard BPEL processes, thus

providing easy deployment, portability, and minimal overhead. We

conclude by discussing some of the language design and imple-

mentation challenges with respect to related work.

Visual query languages. The design of BP-Mon was inspired

by previous works on visual query languages for XML and graph-

shaped data, such as XQBE [7] and Graphlog [10]. While all these

languages consider only flat graphs, BP-Mon supports nested graphs

and, correspondingly, enriches the standard path-based navigation

with a novel (transitive) zoom-in, that allows to query process com-

ponents at any depth of nesting. BP-Mon’s syntax resembles that

of the BP-QL language [4] which we have developed for querying

BP specifications. The two languages are complementary - BP-QL

can be used to focus on parts of BPs that require monitoring, while

BP-Mon is used to check at runtime properties that cannot be stat-

ically determined by querying the specification. Together they pro-

vide a uniform framework for static and dynamic BP analysis.

Composite events. BP monitoring entails the detection and process-

ing of composite events. Event detection is at the core of sev-

eral related application domains, such as active databases, publish-

subscribe and production systems[32, 16, 31]. A variety of for-

malisms have been proposed for the specification of composite events,

including event algebras, situation calculus, temporal languages,

process algebra, transaction logic and computation tree logic (see

[28] for an overview), allowing to define composite events based

on the time stamps and casual dependencies of individual (or other

composite) events. As explained in the Introduction, a key differ-

ence of the present work is the higher abstraction level employed

here. Following the BPEL philosophy, BP-Mon users need not be

aware of the underlying implementation details of the monitored
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BP and the type of run-time events generated by the system. The

specifications of monitoring tasks is performed on the same (high)

level of abstraction as that of the BPs specification.

Runtime monitoring. A vast amount of work was performed

on verification of concurrent and distributed systems using speci-

fication languages such as LTL. Recently, this approach has been

applied to Web service composition, using the BPEL framework

[21]. Runtime monitoring based on LTL, Statecharts, and related

formalisms has also received a lot of attention recently (see [30]

and [24]). These works are mainly focused on error detection, e.g.

concurrency related bugs. Our approach is different in that it relies

on the BPEL model for the visual language used to specify moni-

toring requests, and on execution on a BPEL engine for the moni-

toring itself. These points contribute to the ease of deployment and

the efficiency of execution of our monitoring tool.

Optimization. A variety of methods have been proposed for op-

timized processing of (composite) events, employing relation and

object-oriented database technology [32, 16], petri nets, finite state

automata, event graphs, and storage minimization (See [29] for

a survey) . These methods are generic, that is they can be em-

ployed in a variety of application domains. To our knowledge the

present work is the first to propose a BP-specific optimization that

exploits knowledge about the BP structure, and is complementary

to the above works. The use of schema knowledge is an important

XML query optimization technique [14, 12, 18]. In our case, the

“schema” is the BP specification and the optimization goal is to

reduce computation time and memory requirements for the BPEL

processes implementing a query. The key differences from XML

schema-based optimization are the two navigation axes considered

here, the inherent higher complexity of BP specifications analysis

and the need to resort to safe, rather than exact, analysis. Further

optimization to be studied may include pattern simplifications, e.g.

replacing non-transitive edges with transitive ones and reducing

pattern nesting by eliminating unnecessary compound activities.

DFA vs. NFA. Many XML filtering engines are based on finite

automata, either deterministic (DFA) or non-deterministic (NFA).

Some works support path sharing, converting large numbers of

XPath queries into a single NFA [12, 9]. Other are based on DFA

[17, 18]. NFA-based approaches are space efficient, requiring a rel-

atively small number of states to represent complex queries. DFA-

based approaches are time efficient since their state transitions are

deterministic, but the conversion from an NFA to a DFA increases

the number of states exponentially. To avoid this exponential blow

up, works like [17] compute the states lazily, at run-time. Follow-

ing this principle we use a DFA, auto-generated as a BPEL process,

which instantiates the required states (activities) as it progresses.

Memory requirements. Lower bounds on the space required

for the evaluation of continuous select-project-join queries over re-

lational streams are considered e.g. in [1, 2]. The challenges en-

countered in our work are similar, but the queries are inherently

more complex. We are currently investigating syntactic restrictions

on EX-patterns and BP specs to provide bounds for memory needs.

BP management. In the introduction we reviewed BAM (Busi-

ness Activity Monitoring) systems. Software runtime analysis tools

like Purify, Quantify and PureCoverage [19] closely follow the ex-

ecution of applications and allow to create extensive reports about

memory usage, memory leaks, memory and performance bottle-

necks, and code coverage. Unlike BP-Mon these tools are very

low level and are targeted at developers. Complementary to this

line of work is the post-analysis of traces that were gathered and

stored in databases [8]. We are currently examining the extension

of BP-Mon with facilities for querying stored logs.
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