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ABSTRACT
We consider the privacy problem in data publishing: given a
database instance containing sensitive information “anonymize”
it to obtain a view such that, on one hand attackers cannot
learn any sensitive information from the view, and on the
other hand legitimate users can use it to compute useful
statistics. These are conflicting goals. In this paper we
prove an almost crisp separation of the case when a use-
ful anonymization algorithm is possible from when it is not,
based on the attacker’s prior knowledge. Our definition of
privacy is derived from existing literature and relates the
attacker’s prior belief for a given tuple t, with the pos-
terior belief for the same tuple. Our definition of utility
is based on the error bound on the estimates of counting
queries. The main result has two parts. First we show that
if the prior beliefs for some tuples are large then there exists
no useful anonymization algorithm. Second, we show that
when the prior is bounded for all tuples then there exists
an anonymization algorithm that is both private and useful.
The anonymization algorithm that forms our positive result
is novel, and improves the privacy/utility tradeoff of previ-
ously known algorithms with privacy/utility guarantees such
as FRAPP.

1. INTRODUCTION
The need to preserve private information while publishing

data for statistical processing is a widespread problem. By
studying medical data, consumer data, or insurance data,
analysts can often derive very valuable statistical facts, some-
times benefiting the society at large, but the concerns about
individual privacy prevents the dissemination of such databases.

Clearly, any anonymization method needs to trade off
between privacy and utility: removing all items from the
database achieves perfect privacy, but total uselessness, while
publishing the entire data unaltered is at the other extreme.
In this paper we study the tradeoff between the privacy and
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Age Nationality Score
25 British 99
27 British 97
21 Indian 82
32 Indian 90
33 American 94
36 American 94

(a) Test Scores

Age Nationality Score
21-30 * 99
21-30 * 97
21-30 * 82
31-40 * 90
31-40 * 94
31-40 * 94

(b) 2-diversity and
3-anonymity [13]

Age Nationality Score
25 British 99
28 Indian 99
29 American 81
32 Indian 90
39 American 84
32 Indian 89

(c) FRAPP [3]

Age Nationality Score
25 British 99
21 British 99
22 Indian 89
32 Indian 90
28 Indian 99
29 American 81
33 American 94
27 American 94
32 British 83
36 American 94
26 American 99
39 Indian 94

(d) αβ algorithm

Table 1: Different data publishing methods

the utility of any anonymization method, as a function of
the attacker’s background knowledge. When the attacker
has too much knowledge, we show that no anonymization
method can achieve both. We therefore propose to study
anonymization methods that can protect against bounded
adversary, which have some, but only limited knowledge.
We show that in this case the tradeoff can be achieved.

1.1 Basic Concepts
Throughout the paper we will denote with I the database

instance containing the private data. I is a collection of
records, and we denote n = |I| its cardinality. We also
denote D the domain of all possible tuples, i.e. I ⊆ D and
denote m = |D|. For example, the data instance I in Fig 1
(a) consists of n = 6 records representing test scores, and
D is the domain of all triples (x, y, z) where x ∈ [16, 35]
is an age, y is a nationality (say, from a list of 50 valid
nationalities), and z ∈ [1, 100] is a test score, thus m = 20 ·
50 ·100 = 100, 000. The goal of an anonymization algorithm
is to compute a new data instance V from I that offers both
privacy (hides the tuples in I) and utility. The notion of
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Definition Meaning
D Domain of tuples
I Database instance I ⊆ D
V Published view V ⊆ D
n Database size n = |I|
m Domain size m = |D|, n � m
k Attacker’s prior prior of tuple t, Pr[t] ≤ k n

m
γ Attacker’s posterior posterior Pr[t|V ] ≤ γ

ρ Query estimation error |Q(I)− Q̃(V )| ≤ ρ
√

n

Table 2: Symbols used in the paper; formal defini-
tions in Sec. 2.

privacy that we use in this paper compares the attacker’s
prior probability of a tuple belonging to I, Pr[t] = Pr[t ∈ I]
with the a posteriori probability, Pr[t|V ] = Pr[t ∈ I|V ].
If the algorithm is private, then in particular: if Pr[t] is
low, Pr[t|V ] must also be low. It makes sense to express the
attacker’s prior as Pr[t] = k n

m
, for some k, since the database

contains n tuples out of m. We also denote γ a bound on the
a posteriori. The notion of utility that we use in this paper
measures how well a user can estimate counting queries. An
example of a counting query Q for the data in Fig 1 (a) is
count the number people from poor African countries that
received a score > 98: assuming the user has a list of poor
African countries, the answer of Q on I, denoted Q(I), can
simply be obtained by scanning the table I and counting
how many records satisfy the predicate. But the user doesn’t
have access to I, only to V , hence she will compute instead
an estimate, Q̃(V ), over V . Our definition of utility consists
in a guaranteed upper bound on the absolute error of the
estimator, more precisely, it is given by a parameter ρ s.t.
|Q(I)− Q̃(V )| ≤ ρ

√
n. (We explain the particular choice of

ρ
√

n in a moment.) These parameters are summarized in
Table 2, and defined formally in Sec. 2.

1.2 Our Main Results
In this paper we prove two complementary main results.

First, when k = Ω(
√

m) then no algorithm can achieve both
utility and privacy (Theorem 3.3). In other words, if the
adversary is powerful, i.e. his prior is Pr[t] = k n

m
= Ω( n√

m
)

for some tuples t, then no algorithm can achieve both privacy
and utility. This justifies us to consider adversaries that
are bounded in power, i.e. their prior is bounded. Second,
when k = O(1), equivalently when the adversary’s prior
is bounded by Pr[t] ≤ k n

m
= O( n

m
), then we describe an

algorithm that achieves a utility of ρ =
√

k/γ (Theorems 4.3
& 4.4). Here, and throughout the paper, the notations O(−)
or Ω(−) refer to asymptotic functions in n and m.

1.3 Related Work
We discuss now the related work in order to place our re-

sults in context. Privacy mechanisms can be classified into
three categories, according to where they are deployed dur-
ing the life cycle of the data since the time it is collected
from individuals to the point it is made available for users.
See Figure 1. In local perturbation, (1), the individuals trust
no one but themselves, and they anonymize their respec-
tive data before transferring it to the central server. In data
publishing, (2), anonymization occurs at the central server.
Now the individuals are required to trust this server, but
the advantage is that one may design better anonymization

Figure 1: Data anonymization: (1) Local perturba-
tion (2) Data publishing (3) Output perturbation.

algorithms. All results in this paper are for data publishing.
In output perturbation, (3), the data is kept on a trusted cen-
tral server that accepts user queries, evaluates them locally,
then returns a perturbed answer. The best privacy/utility
tradeoffs can be achieved in this setting, but the cost is that
the user can never see the data directly, and can access it
only through the interaction with the server, which often is
limited in what kinds of queries it supports. Some output
perturbation algorithms place a bound on the number of
queries, i.e. the server counts how many queries it answers
on behalf of a user and stops once a limit has been reached.
Referring to Fig. 1 we note that all “positive” results ex-
tend automatically to the right (e.g. any local perturbation
algorithm can also be used in data publishing), while all
“negative” results extend to the left.

The relevant results from the related work in the literature
are captured in Table 3, where we attempted to present them
in a unified framework. We explain now the positive and
negative results.

Positive results There are several randomized algorithms
for local perturbation [1, 9, 10, 18, 2, 15, 3]. Each tuple in
the database I is locally perturbed by replacing it with a
randomly chosen tuple according to a predefined probabil-
ity distribution. FRAPP [3] is a framework that generalizes
all algorithms in this class, and also achieves the (provably)
best privacy/utility in this class: ρ = k/γ. Note that our

algorithm improves this, by reducing ρ to ρ =
√

k/γ (note
that k/γ > 1 because k > 1 and γ < 1). The reason we
could improve the utility is that we use the power of the
trusted server to make better perturbation in the data. In
data publishing, virtually all techniques described in the lit-
erature are variations of the k-anonymity method (e.g. [19,
13, 17, 20]), which do not guarantee the privacy and/or util-
ity, and, hence, do not relate directly to our results. In out-
put perturbation, a much better tradeoff of ρ = log(k/γ)/

√
n

can be achieved [8], if the number of queries can be bounded
to O(n). In contrast, our algorithm guarantees utility for all
queries.

Negative results The first impossibility result was shown
in [6] and says that any algorithm which guarantees ρ = o(1)
for more than Ω(nlog2n) queries will be completely non-
private. Their result is stated to say that no algorithm can
achieve absolute errors |Q(I) − Q̃(V )| ≤ o(

√
n), which cor-

responds to ρ = o(1). The error guarantees in our algorithm
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Local perturbation (1) Data publishing (2) Output perturbation (3)
Unbounded Bounded
queries queries

Positive
Results

FRAPP [3]: w.h.p. ρ = k
γ

This paper: w.h.p. ρ =
√

k
γ

(Theorems 4.3 & 4.4)
w.h.p ρ = log(k/γ)√

n
,

for O(n) queries
[1] [9] [10], MASK [18],
OLAP [2], Sketches [15]:
weaker utility

k-anonymity [19], l-diversity [13],
Swapping [17], Anatomy [20]: no
formal guarantees

SuLQ [5], Differen-
tial Privacy [7] [8]

Negative
Results
(utility)

This paper: If ρ = o(1) with
probability > 1/2, then no privacy
(Theorem 2.6)

If ρ = o(
√

n) for
all queries, then
no privacy [6]

If ρ = o(1) for
Ω(nlog2n) queries,
then no privacy [6]

Negative
Results
(privacy)

This paper: Utility impossible
for k = Ω(

√
m) (Theorem 3.3)

Table 3: Classification of privacy preserving techniques; w.h.p = with high probability; o(.) is used w.r.t n

are indeed larger, namely ρ = O(1), but on the other hand
we guarantee this for all queries. The second result in [6]
is that no privacy can be guaranteed if all queries can be
estimated with ρ = o(

√
n). This seems to contradict our

result, which states ρ = O(1) = o(
√

n). The distinction lies
in the fact that our error guarantee is only with high proba-
bility (denoted w.h.p. in Table 3) while the negative result
in [6] makes the assumption that all queries are guaranteed
to have that error bound. We explain now what we mean by
“with high probability” (which is the same as in FRAPP).
Our anonymization algorithm is a randomized algorithm s.t.
for any query Q, the probability that the algorithm outputs
a view V s.t. |Q(I) − Q̃(V )| ≤ ρ

√
n is 1 − ε, where ε is a

parameter of the algorithm. Now suppose we run the at-
tack in [6] to our algorithm. In that attack the adversary
evaluates a large number of counting queries, say N , and
must obtain good estimates on all queries. Now, in order
to attack our algorithm, all these queries are estimated over
the same view V , so the probability (over V ) that all esti-
mates are good is (1− ε)N . When N is too large, the attack
cannot continue: this is why the result in [6] does not con-
tradict ours. On the other hand, if N = Ω(n log2 n), then
we show (in Theorem 2.6) that the attack succeeds, hence
no privacy/utility can be obtained in Data Publishing when
ρ = o(1) (see Table 3), even when ε = 1/2.

The negative results in [6] were obtained without giving
any definition of an adversary and of privacy. They state
that if one wants to have a lot of utility, then there is a
major privacy breach that would violate whatever definition
of privacy one adopts. Thus, our main impossibility result
(Theorem 3.3) is incomparable to [6], and in some sense
much more subtle. It states that if the adversary is more
powerful than a certain bound, then we cannot achieve both
privacy and utility. Our result is the first negative result
trading off an adversary’s power for utility.

The techniques that we use to derive our Theorem 3.3 im-
prove over an impossibility result in [8] for a different notion
of privacy, called ε-indistinguishability, which is stated for a
different setting (without an adversary).

1.4 Example
Our anonymization algorithm is closest in spirit to, and

improves over FRAPP, and we illustrate here the two algo-
rithm’s using the data in Table 1(a) (a database of English
test scores).

FRAPP anonymizes data as follows. Independently for
each tuple in the database I the algorithm randomly chooses
whether to keep it in V , or whether to replace it with another
tuple, randomly chosen from the domain D. The proportion
of retained tuples is governed by a parameter γfrapp. For
example if we choose the parameter γfrapp = 1/3, the a pos-
teriori probability for the adversary with no prior knowledge
remains less than 1/3. Table 1(c) illustrates a possible out-
put of FRAPP. Two tuples from the original instance have
been retained while four have been replaced by uniformly
chosen random tuples. For illustration purposes the tuples
that have been retained are highlighted.

Our algorithm, called αβ operates in two steps. First, for
each tuple in the instance I it randomly chooses whether
to keep it in V or whether to remove it. Second, for each
tuple in the domain D it randomly chooses to insert it in V
with a probability β. A particular output of the algorithm
is shown in Table 1(d): four tuples have been retained from
the original data, and eight new tuples have been inserted.
We highlight the four tuples that come from I. We choose
the parameters α and β so that the a posteriori is same 1/3
as that of Table 1(c): this can seen by noting that Table 1(d)
contains the same ratio 1/3 of true tuples to noise tuples.
Thus, FRAPP and αβ have the same privacy in this exam-
ple. However, αβ has a better utility, intuitively because
it contains four of the original tuples, while FRAPP only
retained two. We will prove this formally in Section 4.

1.5 Specific Contributions
In this paper we make the following specific contributions:

• We define a bounded adversary, a notion of privacy that
protects against a bounded adversary, and a notion
of utility that gives guarantees on the estimation of
arbitrary counting queries. (Sec. 2.)

• We prove that for powerful adversaries no algorithm
can achieve both privacy and utility (Sec. 3).

• We describe the αβ anonymization algorithm that guar-
antees privacy and utility for bounded adversaries, and
improves the utility of FRAPP. We describe an esti-
mation algorithm for counting queries with arbitrary
complex predicates. (Sec. 4).

• We present two extensions of the αβ algorithm. First,
we show how one can publish multiple views over the
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same data, for example when the data has been up-
dated. Then we discuss how one can further improve
the privacy if one has some information about the ad-
versary’s prior. (Sec. 4.4)

• We validate experimentally the utility of our algorithm
on a real dataset. (Sec. 5).

• We present an extension of our theoretical results to
priors with correlations between tuples. (Sec. 6).

2. NOTATIONS AND DEFINITIONS
A database instance is a table consisting of n tuples, I =

{t1, t2, .., tn}, where each tuple has l attributes A1, . . . , Al,
and each attribute Ai takes values from a finite domain Di.
We denote D = D1 × . . .×Dl the domain of all tuples with
attributes A1, . . . , Al, thus, I ⊆ D, and we write m = |D|.
Our goal is to design an algorithm that computes a view
V ⊆ D from I s.t. (1) an adversary cannot determine, by
using V , whether any particular tuple t belongs to I, and
(2) any user can use V to compute approximate values to
counting queries over I. The first property is privacy, the
second is utility.

Modeling the Adversary We model the adversary’s
background knowledge using a probability distribution Pr1
over the set of all possible database instances I. Formally,
Pr1 : 2D → [0, 1] is such that

∑
I⊆D Pr1[I] = 1. For each

tuple t ∈ D we denote Pr1[t] = Pr1[t ∈ I] the marginal dis-
tribution (i.e. Pr1[t] =

∑
I:t∈I Pr1[I]), and call Pr1 tuple-

independent when the tuples are independent of each other.
Clearly, we do not know Pr1, only the attacker knows it,
and we should design our privacy algorithm assuming the
worst about Pr1. As we shall see, however, it is impossible
to achieve privacy and utility when the attacker is all pow-
erful, hence we will make reasonable assumptions about Pr1
below.

Modeling the Algorithm A privacy-preserving algo-
rithm is a randomized algorithm A that, given I, computes
a view V . We denote PrI

2[V ] the probability distribution
on the algorithm’s outputs, i.e. PrI

2 : 2D → [0, 1] is s.t.∑
V⊆D PrI

2[V ] = 1. Unlike Pr1, we have total control over
Pr2, since we design the algorithm A.

As the algorithm A needs to be public, an adversary can
compute the induced probability Pr12[t|V ] = Pr12[t ∈ I|V ]
based on his prior distribution Pr1 and the algorithm’s dis-
tribution Pr2, namely Pr12[t|V ] =

∑
I⊆D:t∈I PrI

2[V ]Pr1[I].

We call Pr1[t] the prior probability of the tuple t and Pr12[t|V ]
the posterior probability of the tuple t conditioned on the
view V . Throughout this paper we assume that the ad-
versary is computationally powerful and that Pr12[t|V ] can
always be computed by the adversary irrespective of the
computation effort required.

2.1 Classification of Adversaries
We will prove in Sec. 3 that it is impossible to achieve

both privacy and utility if the adversary is too powerful,
hence we propose here to study adversaries with restricted
power, based on placing a bound on his prior knowledge.
We will show that for certain values of this bound privacy
and utility is possible.

Specifically, we restrict the adversary by assuming that
for every tuple t his prior probability Pr1[t] is either small,
or equal to 1. In the first case we will seek to hide the tuple

from the adversary; in the second case there’s nothing to do,
since the adversary already knows t. Another way to look at
this is that we require the algorithm to preserve the privacy
for tuples for which Pr1[t] is small: if Pr1[t] is large, we may
well assume that it is 1, in essence giving up any attempt to
hide t from the adversary.

Definition 2.1. Let d ∈ (0, 1). A d-bounded adversary is
one for which ∀t ∈ D, either Pr1[t] ≤ d or Pr1[t] = 1.

We also consider a sub-class of d-bounded adversaries
called the d-independent adversary, which further require
Pr1 to be tuple-independent:

Definition 2.2. A d-independent adversary is a d-bounded,
tuple-independent adversary.

Thus, for a d-independent adversary there can be no cor-
relations among tuples. However within a tuple there may
be correlations among the attributes. For example consider
a table with the schema (age, nationality, disease). A d-
independent adversary who knows the correlation “Japanese
have a low probability of having heart attack” corresponds
to the distribution in which every tuple having the nation-
ality Japanese and the disease heart attack has a low prior
probability.

2.2 Privacy definition and motivation
Our definition of privacy is based on comparing the prior

probability Pr1[t] with the a posteriori probability Pr12[t |
V ], and is derived from existing definitions in the literature.

Definition 2.3. An algorithm is called (d, γ)-private if the
following holds for all d-independent adversaries Pr1, views
V , and tuples t s.t. Pr1[t] ≤ d:

d

γ
≤ Pr12[t|V ]

Pr1[t]
and Pr12[t|V ] ≤ γ

If tuple t fails the left (or right) inequality then we say
there has been a negative (or positive) leakage, respectively.

Our definition of (d, γ)-privacy is an adaptation of the
notion of a (ρ1, ρ2) breach defined in [9]. A positive (ρ1, ρ2)
breach, for ρ1 < ρ2, is defined when the prior is Pr[t] ≤ ρ1

and the posteriori is Pr[t|V ] > ρ2. Thus a positive leakage
(right inequality) in (d, γ)-privacy is precisely a (d, γ) breach
(ρ1 = d, ρ2 = γ). On other hand, a negative (ρ1, ρ2) breach
in [9] does not correspond to our setting, because it is meant
to capture large values of the prior, while in our case the
prior is ≤ d. Instead, our definition for negative leakage is
relative, i.e. the a posteriori cannot drop by more than a
factor of ρ1/ρ2 = d/γ.

The privacy definition assumed in [9, 13, 11] is based
on variations of the (ρ1, ρ2)-breach (called the Uniformative
principle in [13]). In [8, 3] privacy is based on a different def-
inition called ε-indistinguishability in [8] and γ-amplification
in [3]: we show in our technical report [16] how those related
to (d, γ)-privacy.

2.3 Utility
Our definition of utility is based on how well one can es-

timate counting queries, i.e. queries of the form count the
number of records satisfying a certain predicate. Formally:

Definition 2.4. A counting query is a query of the form:

select count(*) from I where C
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where C is any condition on the attributes A1, A2, . . . , Al of
the database I. We denote with Q(I) the result of evaluating
Q on an instance I; thus, Q(I) is a number.

We illustrate with two examples:

Q1 = select count(*)

from I

where (age > 16 and age < 17 or age > 55)

and score > 91

Q2 = select count(*)

from I

where score > 98 and nationality in

(select country from Regions

where continent=’Africa’

and GDP < 10000)

The first query counts the number of either very young
or very old people that scored > 91. The second query
counts the number of testers with score over 98 and coming
from a poor African country. This query uses an auxiliary
table Regions to check the continent of a country and its
GDP to determine if that country is poor. In general the
where condition in a query Q may use arbitrarily complex
predicates over one, or several attributes.

Our notion of utility is based on how well the users can
approximate counting queries. Users do not have access to
the database I, only to a view V . The anonymization al-
gorithm must specify how users can estimate query answers
by rewriting a query Q expressed over I into an estimator
Q̃ expressed over V , s.t. Q̃(V ) approximates Q(I). The es-
timator will examine the tuples in V , apply any necessary
complex predicates, and perform other computations. The
only information that it cannot access is the secret database,
I. Our formal notion of utility requires that the absolute er-
ror |Q(I)− Q̃(V )| be small, for all queries Q

Definition 2.5. A randomized algorithm A is called (ρ, ε)-
useful if it has an estimator s.t. for any query Q and in-
stance I:

Pr2
[
|Q(I)− Q̃(V )| ≥ ρ

√
n

]
≤ ε

Thus ρ
√

n represents a bound on the absolute error, guar-
anteed with a probability of at least 1− ε.

2.4 Discussion
Choice of privacy parameters An intuitive reference

point for the bound d of the adversary is n/m, since the
database has n tuples from a domain of size m, so we should
expect that the adversary’s prior is Pr1[t] ≥ n/m at least for
some tuples t; in [2] privacy was also measured with respect
to a parameter ‘s’ equal to n/m. More precisely, the bound
on the adversary will be d = kn/m, for some k > 1. The a
posteriori, γ, is larger, and measured in absolute values. For
example, γ = 0.05 means that the view V leaks no tuple t
with more than 5% probability.

Choice of utility parameters We discuss now our par-
ticular choice for the definition of utility (Def. 2.5). A first
observation is that if the algorithm could guarantee |Q(I)−
Q̃(V )| = O(1) then privacy is compromised: the attacker
simply counts the number tuples in the databases that are
equal to a given tuple, say Age = 28, Nationality = Indian,
Score = 99. The real answer can be only 0 or 1, depending

on whether the tuple is present in I or not, hence, if the esti-
mator is too accurate then there is a privacy leakage. Thus,
the absolute error cannot be O(1). Dinur and Nissim [6]
showed that, in a different setting from ours, if queries can
be estimated with an absolute error of o(

√
n), then there

would be massive privacy breaches. That result requires the
estimator to guarantee the error deterministically. Never-
theless, we can adapt their results to our setting and prove
the following in our technical report [16]:

Theorem 2.6. Let A be any randomized algorithm. If there
exists ρ = o(1) s.t. for all I and for all queries Q, we have

Pr2(|Q̃(V )−Q(I)| ≤ ρ
√

n) > 1/2, then there exists a tuple
t such that Pr1[t] is small (≤ n/m) but Pr1[t|V ] is large
(≥ 2/3).

This explains that the absolute error cannot be o(
√

n)
either, and justifies our choice of expressing the absolute
error as ρ

√
n. In practice, one wants ρ to be some small

constant.
k-Anonymity We argued in the introduction that the

k-anonymity algorithm do not satisfy our formal notions of
privacy and utility; we justify this here briefly, referring to
the k-anonymity and l-diversity variant, introduced in [13].
Considering a d-independent adversary, privacy is compro-
mised when the adversary knows that some tuples have very
low probability. To see the intuition, consider the instance
in Table 1(b). Suppose a d-independent adversary is trying
to find out Joe’s test score, and he knows that Joe is likely
to have a low score: i.e. Pr1[t] is very low for a tuple saying
that Joe’s score is greater than 95, and larger (but still ≤ d)
for tuples saying that his score less than 90. If the adversary
knows that Joe’s age is less than 30, then his record is among
the first three: since the first two tuples have scores 99 and
97, they have very low probability. The adversary, thus,
concludes that Joe’s scores is 82 with very high probability.
Notion of (ρ, ε)-usefulness is also not satisfied. Suppose we
want to estimate the number of students between 29 and
31 years old from Table 1(c): the answer can be anywhere
between 0 and 6, and, if our estimate is the average, 3, then
the only way we can guarantee any accuracy is by making
assumptions on the distribution of the data.

3. IMPOSSIBILITY RESULT
Our main impossibility result says that if the attacker is

powerful (i.e. his prior is large, d = Ω(n/
√

m)), then no
algorithm can achieve both privacy and utility. This holds
even if the attacker’s prior is tuple-independent. For the
impossibility result, we first show that if d = Ω(n/

√
m) then

no (d, γ)-private algorithm can provide even a weak notion
of utility, called meaningfulness, which was first considered
in [8]. We then prove that any algorithm that has some
utility must be meaningful. Meaningfulness is based on the
notion of statistical difference:

Definition 3.1. The statistical difference between two dis-
tributions PrA and PrB over the domain X is SD(PrA,PrB)
=

∑
x∈X | PrA(x)− PrB(x) |.

Note that SD(PrA,PrB) ∈ [0, 2]: it is 0 when PrA = PrB ,
and is 2 when ∀x.(PrA(x) = 0 ∨ PrB(x) = 0). We explain
now informally the connection between statistical difference
and utility. Suppose an algorithm A gives reasonable esti-
mates to counting queries Q. Let Q be a “large” query,

535



i.e. if executed on the entire domain it returns sizeable frac-
tion, say 1/5. When we estimate Q on the view published
for a particular instance I we will get some errors, which
depend on actual size n = |I|. If there is any utility to
A then a user should be able distinguish between the two
extreme cases, when Q(I) = n and when Q(I) = 0. To cap-
ture this intuition, define the uniform distribution Pr1(I)
as follows: if |I| = n, then Pr1[I] = 1

(m
n)

, and if |I| 6= n,

then Pr1[I] = 0. Thus, Pr1 makes every instance of size n
equally likely. Let EQ be the event (|I| = n∧Q(I) = n), and
E′

Q the event (|I| = n ∧ Q(I) = 0). Then we expect to be
able to differentiate between the following two distributions:
PrQ

A(V ) = Pr12[V |EQ] and PrQ
B(V ) = Pr12[V |E′

Q]. To ob-

tain a reasonable estimate for Q, SD(PrQ
A,PrQ

B) should be

large. On the other hand, if SD(PrQ
A,PrQ

B) is very small then
no reasonable estimate of the query can be obtained from
any of the published views. An algorithm is meaningless if
the SD(PrQ

A,PrQ
B) is small for a large fraction of the queries

Q. An algorithm is meaningful if it is not meaningless.

Definition 3.2. Let f < 1 be a constant independent of the
domain size m and database size n. Let Q be a counting
query and Q(D) represent the number of tuples in the do-
main D which satisfy Q. Consider all queries Q s.t 1

2
(1 −

f) ≤ Q(D)
m

≤ 1
2
(1+f). An algorithm A is called meaningless

if SD(PrQ
A,PrQ

B) is smaller than 1/2 for a fraction 2/3 of
queries Q.

Next we state our impossibility result using meaningful-
ness as the definition of utility. For the sake of concreteness
we use the constant 1/2 for statistical difference and 2/3
for the fraction of queries in the definition of meaningful-
ness. However, the impossibility result works for arbitrary
constants.

Theorem 3.3. Let A be a meaningful algorithm. Then for
all γ < 1 there exists a constant c, independent of m,n and
γ such that A is not (d, γ)-private for any d ≥ 1

c
γ

1−γ
n√
m

.

In particular no meaningful algorithm can offer (k n
m

, γ)-
privacy for k = Ω(

√
m)

Intuitively, the theorem states that if we fix γ as the bound
on the posterior then any algorithm providing meaningful
utility cannot provide (d, γ)-privacy for d = Ω(n/

√
m). Ab-

sence of (d, γ) privacy means that there is a d-independent
adversary for which the following happens for some tuple t.
There is a positive leakage (Pr1[t] ≤ d but Pr12[t|V ] ≥ γ)
or there is negative leakage (Pr12[t|V ] is much smaller than
Pr1[t])

To make the theorem 3.3 strong, we used meaningfulness
which is a very weak notion of utility. Our notion of (ρ, ε)-
usefulness is much stronger as shown by the proposition
below. Thus, the result in theorem 3.3 applies to (ρ, ε)-
usefulness as well.

Proposition 3.4. Let A be any (ρ, ε)-useful algorithm. If

ρ = o(
√

n) then for any query Q, SD(PrQ
A,PrQ

B) > 2(1−2ε).
In other words, any useful algorithm is meaningful.

4. ALGORITHM

4.1 The αβ Algorithm
The αβ algorithm (Algorithm 1) takes as input a database

instance I and publishes a view V . We assume that I has l

attributes A1,A2,...,Al. Each attribute Ai takes values from
a finite domain Di. We denote D = D1×. . .×Dl the domain
of all tuples with attributes A1, . . . , Al, thus, I ⊆ D, and we
write m = |D|.

Algorithm 1 αβ (Inputs: I, α, β, D1, .., Dl)

1: Let D = D1 ×D2 × . . .×Dl

2: α-step For every tuple in I, insert it in the view V
independently with probability α + β.

3: β-step For every tuple in D which is not in I, insert it
in the view V independently with probability β. (Algo-
rithm 2 shows how to do this efficiently)

4: Publish V , α, β and D1,..,Dl

The large size of D makes a naive implementation of the
αβ algorithm impossible. Specifically the β-step, which re-
quires going through all tuples in the domain and inserting
them with probability β, will have time complexity O(m).
However, note that the expected number of tuples to be in-
serted is βm, which is much smaller. We shall see in Sec. 4.2
that βm ≤ (k/γ)n. Algorithm 2 is a simple randomized al-
gorithm which runs in expected time of O(βm). It simulates,
exactly, the β-step of the αβ algorithm.

Algorithm 2 β-step Inputs: β, D1, .., Dl

1: Pick a random number r according to the binomial dis-
tribution with parameters m−n and β. The probability
that r equals i is thus

(
m−n

i

)
βi(1− β)m−n−i

2: Insert r tuples into the view as follows:
3: repeat
4: For all attributes Aj , pick a value aj ∈ Dj uniformly

at random
5: Let t = (a1, a2, . . . , al)
6: if t not in V ∪ I then
7: insert t in V
8: end if
9: until r tuples have been inserted in V

Note that in step 4 of the β-step algorithm, we may pick
a tuple which is already in the view. This would result
in an unnecessary increase in the run time of the algorithm.
However, the probability of a tuple being picked again is very
low as βm � m. A nice property of the β-step algorithm is
that if T denotes the actual run time of the algorithm and T0

the expected run time, then the probability that T is greater
than T0 by a additive factor of c, goes down exponentially
with c.

Next we give the estimation algorithm. Given a view V
the goal is to obtain an estimate Q̃(V ) which approximates
the actual answer Q(I). Recall that α and β are published

Algorithm 3 Estimation Inputs: V ,Q,α,β,D1, .., Dl

1: Let D = D1 × . . .×Dl.
2: Compute nV = Q(V ); that is nV is the result of the

query evaluated on the view V .
3: Compute nD = Q(D); that is nD is the query evaluated

on the entire domain (we explain below how to do this
efficiently)

4: Q̃(V ) = nV −βnD
α
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Example 4.1 We illustrate the estimation algorithm using
the Table 1(a) as an example. Table 1(d) is a sample view
published by the αβ algorithm. Domain for the attributes
age, nationality and score are the sets [20,39], {American,
British, Indian} and [81,100] respectively. m = 20×3×20 =
1200 and n = 6. The parameters used are α = 2/3 and
β = 2αn/m = 1/150. Suppose a researcher has the hypoth-
esis ‘Test score of an individual is less than three times his
age’. For this purpose the following query Q needs to be
evaluated:

Q = select count(*)

from I

where score < 3*age

nD, the number of tuples in the entire domain which satisfy
Q, is 190. nV = 6 is the query evaluated on the view. The

estimate, Q̃(V ), is nV −βnD
α

= 6−190/150
0.66

= 7.1 while the
original answer n0 = 4.

Computing Q(D) In the rest of this subsection we dis-
cuss how to compute Q on the domain D, line 3 of the
Algorithm 3.

All prior methods (like privacy algorithms for OLAP)
assume that the where condition in the query is a con-
junction of simple predicates, i.e. each predicate involves
one attribute. An example of such a query is (score <
90)and(age > 30). But the predicate score < 3 ∗ age in
Example 4.1 is not of this form. We explain here how to
compute Q(D) for queries with arbitrarily complex condi-
tions, C. Our discussion is informal, and we refer to our
technical report [16] for the formal algorithm.

For any boolean condition C, denote p(C) the probability
that a randomly chosen tuple t ∈ D satisfies C: p(C) =
|{t|t ∈ D, C(t)}|/m (recall: m = |D|). It suffices to show
how to compute p(C), because Q(D) = p(C)m.

We express C in DNF, thus, C = C1∨C2∨. . .∨Ck, and ap-
ply inclusion/exclusion to p(C) =

∑
i p(Ci)−

∑
i,j p(Ci, Cj)+

. . . Thus, it suffices to show how to compute p(C) where C
is a conjunction of atomic predicates. For that, we rely on
three ideas.

First, if C is an atomic predicate on, say, two attributes
Ai, Aj then we evaluate p(C) by iterating over Di × Dj .
In the example above, C is score < 3 ∗ age, and we can
evaluate p(C) by brute force, by iterating over the domain of
all (score, age) pairs. Denoting mk = |Dk|, for k = 1, . . . , l,
the cost of computing p(C) over attributes Ai, Aj is mimj :
note that this is much smaller than m = m1m2 . . . ml.

Second, if C = C1 ∧ C2 and C1, C2 are conditions that
refer to distinct sets of attributes, then p(C) = p(C1)p(C2).
This is obvious, since C1, C2 are independent.

Third, suppose C = C1 ∧ C2 and the predicates in C1

and C2 share some common attributes, say Ai and Aj .
Then we consider all pairs of constants a ∈ Di and b ∈
Dj . We create mimj predicates C1[a/Ai, b/Aj ] and similarly
C2[a/Ai, b/Aj ], and compute their probabilities. Here a/Ai

means that we substitute all occurrences of the attribute
Ai with the constant a, and similarly for b/Aj . Finally,
C1[a/Ai, b/Aj ] and C2[a/Ai, b/Aj ] are independent, hence
p(C) =

∑
a∈Di,b∈Dj

p(C1[a/Ai, b/Aj ])p(C2[a/Ai, b/Aj ]). The

cost is a multiplicative factor mimj .
Thus, the algorithm’s running time depends on the largest

number of attributes shared between two expressions C1, C2.

This depends on how we factor the conjunction C, and is
related to the tree width [21].

Example 4.2 Consider the condition: C = P1(A1, A2) ∧
P2(A2, A3)∧P3(A3, A4), where P1, P2, P3 are three complex
predicates (e.g. P1 = A2

1 +A2
2 ≥ 20). We write C as follows:

C = C1 ∧ P3(A3, A4)

C1 = P1(A1, A2) ∧ P2(A2, A3)

We proceed top-down. To evaluate C we note that the two
conjuncts share the common attribute A3, so we substitute
A3 with every constant a3 ∈ D3, and compute the probabil-
ities of P3(a3, A4), and of:

C1[a3/A3] = P1(A1, A2) ∧ P2(A2, a3)

The probability of P3(a3, A4) is obtained by iterating over all
a4 ∈ D4 and checking if the condition P3(a3, a4) is true. The
probability of C1[a3/A3] is obtained recursively. Here the
two conjuncts share A2, so we iterate over all a2 ∈ D2 and
compute the probabilities of P1(A1, a2) and P2(a2, a3). Our
discussion leads to the following formula, where p(P1(a1, a2))
is 1

m
if (a1, a2) satisfies the predicate P1 and is 0 otherwise

(and similarly for P2, P3):

p(C) =
∑

a3∈D

(
∑

a2∈D2

∑
a1∈D1

p(P1(a1, a2))p(P2(a2, a3))∑
a4∈D4

p(P3(a3, a4)))

The time complexity is m3(m1m2 + m4).

4.2 Privacy and utility analysis
The following theorem shows that the αβ algorithm sat-

isfies (d, γ)-privacy.

Theorem 4.3. The αβ algorithm is (d, γ)-private where

d ≤ γ if we choose α and β such that β
α+β

≥ d(1−γ)
γ(1−d)

and

α + β ≤ 1− d
γ

As shown in our technical report [16], any (d, γ)-private
algorithm satisfies differential privacy, the notion of privacy
described in [7]. This means, in particular, the αβ-algorithm
satisfies differential privacy as well.

Next we show that the αβ-algorithm satisfies the defini-
tion of (ρ, ε)-usefulness.

Theorem 4.4. Let r be a constant and α, β be such that
β ≤ rα2 n

m
. Then, the αβ algorithm is (ρ, ε)-useful for ρ =√

2(r + 1)ln( 2
ε
)n

Choice of parameters We wish to ensure ( kn
m

, γ)-privacy,

where k is a constant, i.e. d = kn
m

is the bound on the adver-
sary’s prior probability, and γ is the bound on the posteriori
probability that is acceptable for us. We also want to ensure
utility. Choosing α+β = 1

2
satisfies both Theorems 4.3 (as-

suming d/γ < 1/2) and 4.4. Next, we choose β = k
γ

n
m

= d
γ
.

This satisfies Theorem 4.3 (since 1 > 1−γ
1−d

(α + β)), and also

satisfies Theorem 4.4 whenever k
γ
≤ r

4
.

In other words, with these choices of parameters we have

(k n
m

, γ)-privacy and (ρ, ε)-usefulness for ρ = 2
√

2 k(1−γ)
γ

ln( 2
ε
).

The privacy/utility tradeoff is like this. We want to protect
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against a powerful adversary, k � 1, and want to guarantee
a small a posteriori, γ � 1; and this limits the bound on
the estimate’s error as ρ ≈

√
k/γ.

Comparison with randomized response algorithms
The FRAPP method has the best tradeoff among the local
perturbation algorithms. The tradeoff for that method can
be expressed as ρ = k/γ. On the other hand the αβ al-

gorithm has a much better tradeoff of ρ =
√

k/γ. Thus
for the same privacy (i.e k and γ) the αβ algorithm yields
smaller errors as compared to other methods. This becomes
especially important since the error bound is actually ρ

√
n

which means that even a small change in ρ gets amplified,
as
√

n is often large. We support our claim by providing
empirical results as described in the case study.

4.3 Comparison to FRAPP
FRAPP [3] provides a general framework for representing

randomized response algorithm. Many randomized opera-
tors like ‘select a size’ [9] and MASK [18] were described
using this framework. We describe here their framework,
then compare it to the αβ algorithm.

The database instance and the published view are denoted
by column vectors x and y, respectively, of size m. The
randomized response algorithm is represented as a m × m
matrix A whose entry apq represents the probability that
the tuple p of the database gives rise to the tuple q in the
view. Given the matrix A and the input database x, the
view y is generated by a localized random process. The
random process, in some sense, can be succinctly represented
as y = Ax.

[3] show that the utility of the algorithm increases when
the condition number of the matrix A decreases: the condi-
tion number is the ratio between the largest and the small-
est eigenvalue. On the other hand, the privacy constraint
requires that the ratio of any two entries in the same row
of the matrix remains bounded. Under this condition [3]
prove that the matrix that achieves optimal privacy/utility
tradeoff is as follows: diagonal elements are γfrapp, and all

non-diagonal elements are
1−γfrapp

m−1
.

Our αβ algorithm strictly generalizes the FRAPP frame-
work by taking advantage of the fact that it can use a central
server. Formally, the transformation in our algorithm is de-
scribed as y = Ax+b. Thus the random process effectively
adds a noise vector b to Ax. Intuitively speaking, this pro-
vides privacy as the effective ratio of entries in a row remains
bounded. Moreover, utility improves because of the lower
condition number of A.

For the αβ algorithm, the matrix A is the diagonal matrix
with each diagonal entry equal to α. The noise vector b is
the uniform vector with all entries equal to β.

4.4 Extensions

4.4.1 Updates
Suppose the data owner updates the instance I, and thus

obtains several versions I1, I2, . . . If the data owner runs the
αβ algorithm separately on each version, she obtains a se-
quence of views V1, V2, . . . This, however, creates a severe
privacy breach. For example, consider the case when a sin-
gle tuple t occurs in each of the published views. As β is
significantly smaller than α, that the probability that t was
inserted in each of the views, when it does not belong to the
original database, is very small. This results in an obvious

privacy breach with respect to t. The problem is that the in-
stances I1, I2, . . . are highly correlated, i.e. two consecutive
instances share a large number of tuples. To avoid this sce-
nario, we describe Algorithm 4 below. It allows us to publish
multiple views while providing the same privacy. For read-
ability we consider only the extreme case, when I remains
unchanged (this is the worst case), i.e. I1 = I2 = . . . The
algorithm needs a parameter v, which represents a bound
on the number of views published.

Algorithm 4 Publishing multiple views

1: Let V1, V2, . . . , Vi−1 be the views published so far.
2: Compute V ′ = ∪i−1

j=1Vj .
3: Generate the view Vi as follows:
4: start
5: For each tuple in the original instance I, insert it in

Vi with probability α + β
6: For each tuple in V ′−I, insert it in Vi with probability

(α + β)e−
1
v

7: For every other tuple in the domain, insert it in Vi

with probability [1− (α + β)]i−1β
8: end start
9: Publish Vi

We discuss three aspects of publishing multiple views: we
analyze the privacy, we examine the total size (note that we
insert more tuples for each new version), and we examine
its utility.

For privacy, note that once a noisy tuple has been inserted
in some published view, the algorithm increases the proba-
bility of its insertion for future views. This makes it hard to
determine whether a tuple occurs in the database even if it
occurs in a lot of published views, and allows us to prove in
the technical report [16] that the algorithm is (d, γ)-private.

The size of the views increases, but it is bounded. To
see that note that the probability of inserting a new noisy
tuple, i.e. a tuple outside V ′, becomes exponentially smaller
with each published view. It can be shown that the size of
any view is not more than the size of V1 (the first published
view) times 1

α+β
. This gives an upper bound on the size of

all published views, which is independent of the number of
views.

The utility of a view Vi in the sequence is slightly less
than that for the first view. The estimator for a query Q on
the view Vi is

Q̃(Vi) =
nVi − (α + β)e−

1
v nV ′ − [1− (α + β)]i−1βnd

(α + β)(1− e−
1
v )

Here nVi is the answer of the query Q evaluated over the
view Vi; nV ′ is the answer of the query Q evaluated over
the union V ′ of all the previously published views; nd is the
answer evaluated over the entire domain. It can be shown
that by using this estimator, the privacy utility tradeoff of

the view Vi can be expressed as ρ = v
√

k
γ

4.4.2 Non-uniform Noise Vector
So far we considered arbitrary d-independent adversaries,

i.e. tuple independent adversaries with the only restriction
that tuple probability < d. The prior for such adversaries
can be very different from the underlying distribution from
which the database was drawn. For example consider a
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database with schema (age, nationality, disease). Flu is a
more common disease than cancer. Thus, according to the
source distribution, the probability of a person having flu
is higher than her having cancer. An adversary, however,
might know that the person X has a fatal disease. For that
particular X, the prior would have a higher probability for
cancer.

However, if we know the attacker’s prior then we can im-
prove the privacy/utility tradeoff by generating the random
noise according to this prior. More precisely, we modify the
noise vector b according to a source distribution, the distri-
bution which models the prior. Adding noise according to
the source distribution allows us to add the smallest amount
of noise, while providing the same privacy. Adding a smaller
amount of noise enables better utility. We modify the αβ al-
gorithm as follows. Instead of inserting tuples with uniform
probability β, we do so with probability β(t), a function pro-
portional to source(t). We consider the following source dis-
tribution: Each value a in the domain of attribute Ai has an
associated source probability, p(a); the source distribution is
attribute-independent, i.e. source(t) = p(t.A1) · · · p(t.Al).

This demands changes in both the β-step of the αβ algo-
rithm as well as the estimation algorithm. The β-step can
be approximated as:

Algorithm 5 Generalized β-step

1: Compute the binomial distribution corresponding to pa-

rameters m− n and
∑

t∈(D−I) source(t)

m−n
2: Generate a random number r using this binomial distri-

bution
3: Insert r tuples into the view using the following proce-

dure:
4: repeat
5: For all attributes Aj , pick a value aj ∈ Dj randomly

according to the distribution p(aj)
6: Let t = (a1, a2, . . . , al)
7: if t not in I then
8: V = V ∪ t
9: end if

10: until r tuples have been inserted in V

The estimate for query Q also changes. For a fixed β, it
was simply nv−βnd

α
, where nD denotes the number of tuples

in the domain which satisfy the query, i.e. nD = |Q(D)|.
Now, instead of βnD, we need to evaluate

∑
t∈(Q(I)) β(t).

5. EXPERIMENTS
To compare the privacy utility trade off of the αβ algo-

rithm and the FRAPP method, we experimented with US
census data in the Adults database. The database is widely
used in experiments for illustration of privacy preserving
algorithms [13, 4]. The database I has 9 attributes and
n = 30162 tuples. The product of the attributes active do-
mains has m = 648023040 tuples, thus n/m ≈ 4.65× 10−5.
For both methods, the parameters were chosen so as to
ensure (10n/m, 0.2)-privacy: i.e. the adversary’s prior is
bounded by d = 0.0465% and the posterior by γ = 20%.
Privacy for both the methods was, thus, fixed to the same
value.

We compared the utility of both the methods, by running
all possible selection queries with up to three attributes.
That is, for every subset of (up to) three attributes Ai, Aj , Ak,

Figure 3: Graph of average cumulative error vs Q(I)
for the FRAPP and αβ algorithm: Upper curve cor-
responds to the FRAPP algorithm showing around
4.5 times larger errors on average than the αβ algo-
rithm

i, j, k ∈ {1, . . . , 9}, and every three values a ∈ Di, b ∈ Dj ,
c ∈ Dk, we evaluated the query:

select count(*)

from I

where Ai = ’a’ and Aj = ’b’ and Ak = ’c’

Figure 2 shows the result of comparison. Each dot rep-
resents one query Q, where x = Q(I) and y = Q̃(V ): thus,
a perfect estimator would correspond to the y = x line.
It is evident that the αβ algorithm provides much better
estimates and hence has better utility. Figure 2 points to
another interesting property: For small values of Q(I) the
estimated values are far off (even negative); this is neces-
sary to preserve privacy. But for large values of Q(I) the
estimations are much better and meaningful.

As described earlier the tradeoff for αβ algorithm is ρ1 ≈√
k/γ. Actually, the exact formula is ρ1 = 2

√
2 k(1−γ)

γ
ln( 2

ε
).

While for FRAPP it is ρ2 = 2 k(1−γ)
γ

√
ln( 2

ε
). Thus ρ1

ρ2
=√

2γ
k(1−γ)

, which for our choice of k and γ is 1√
20

∼ 1
4.5

.

However ρ1 and ρ2 are theoretical upper bounds on the error.
Figure 3 compares the observed values of ρ1 and ρ2. It

is a graph of cumulative average error vs. Q(I). There are
two curves. Each point (x, y) on the curves has the fol-

lowing connotation: y is the average error |Q̃(V ) − Q(I)|
taken over all queries with Q(I) ≥ x. The upper curve
represents the cumulative average errors for the FRAPP
method while the lower curve corresponds to the αβ algo-
rithm. From the graph one can compute the approximate

ratio of the observed values
ρobs
1

ρobs
2

. As evident from the graph

it is ∼ 120
520

= 1
4.3

very close to the theoretically predicted
value.

6. TUPLE CORRELATIONS
So far our analysis was restricted to tuple-independent ad-

versaries. This makes the impossibility result very strong,
but restricts the applicability of the αβ algorithm. Here we
discuss several extensions to tuple correlations. First, we
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2(a): FRAPP algorithm [3] 2(b): αβ algorithm

Figure 2: Graph of Q̃(V ) vs Q(I) for the FRAPP and αβ algorithm: Each query corresponds to a point. Points

near the line y = x have Q̃(V ) ∼ Q(I) which means that query gets estimated well. Points lie on a band with
the width of band signifying the extent of errors.

show that if the adversary knows arbitrary correlations, then
no algorithm can achieve both privacy and utility. Then we
examine a restricted class of correlations called exclusions,
which is sufficiently general to model join/link attacks. For
explaining the behavior of our algorithm with respect to
these adversaries we need to distinguish between positive
and negative leakage. Positive leakage happens when the
adversary is able to determine with high probability that a
specific tuple exists in the database. On the other hand, neg-
ative leakage occurs when it is possible to determine with
high confidence that a specific tuple does not exist in the
database. As described earlier, (d, γ)-privacy ensures ab-
sence of positive as well as negative leakage against all d-
independent adversaries.

For adversaries with correlations restricted to exclusions,
we show that our algorithm still guarantees privacy against
positive leakages(utility, of course, is unchanged), but it can-
not protect against negative leakage. The policy of protect-
ing against positive leakage while permitting negative leak-
age is sometimes acceptable in practice, and it raises the
question whether our algorithm could be strengthened in
this case: after all the impossibility result in Theorem 3.3
is based on privacy definition for protecting against both
negative and positive leakages. We answer this negatively,
by giving a variant of the impossibility result for positive
leakages only.

6.1 Arbitrary Correlations
Suppose we publish a view V of a database of diseases

with schema (age, zip, disease) using our algorithm. An
attacker knows the age and zip code for both Joe and Jim.
Now Joe and Jim are brothers: if one has diabetes, then the
other is quite likely to have diabetes as well (at least that’s
what the attacker believes). Suppose the attacker finds two

tuples in V matching both Joe and Jim having diabetes. The
probability that none was in I and were inserted by the algo-
rithm is very small: β2. In contrast, because of their strong
correlation, the probability that they were in the instance I
is now much larger: Pr1[t ∩ t′] � Pr1[t]Pr1[t

′]. Thus, upon
seeing both tuples in the view the attacker concludes that
they occurred in the original database with high probability.
This is the reason why our algorithm has difficulties hiding
data when the prior has correlations.

To the best of our knowledge, [14] is the only approach in
literature that handles such correlations. However, the ap-
proach is designed for the case when there is a single sensitive
attribute. It is not clear what the privacy utility tradeoff for
the method would be, in presence of multiple sensitive at-
tributes or when the distinction between sensitive and non-
sensitive attributes is not made. Perhaps, the difficulty in
dealing with such correlations is unavoidable. The follow-
ing theorem shows that if the adversary is allowed arbitrary
tuple correlations then any algorithm providing meaningful
utility will have a positive leakage on some tuple. Theo-
rem 6.1 is proved using a reduction from the negative result
in [7]. The proof appears in our technical report [16].

Theorem 6.1. Let A be any meaningful algorithm. Then
for every d = Ω(n/m), there exists a d-bounded adversary
for which Pr1[t] ≤ d but Pr12[t|V ] ≥ 3/4 for some tuple t.

6.2 Exclusions
We consider now some restricted forms of correlations:

exactly one tuple from a set of tuples occurs in the database.

Definition 6.2. A d-exclusive adversary is a d-bounded ad-
versary with the following kind of correlations among the tu-
ples: There is a partition of D into a family of disjoint sets,
D =

⋃
j Sj, s.t.
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• Tuples are pairwise independent if they do not belong
to the same set.

• Exactly one tuple in each set occurs in the database
instance

This type of correlations models adversaries performing
join/link attacks. Such attackers are able to determine some
of the identifying attributes of a particular tuple, say the age
and nationality of a person that they know must occur in the
database. The adversary can thus identify a set of tuples Sj

of the domain such that exactly one tuple in the set belongs
to the database.

6.2.1 Positive results for d-exclusive adversaries
We have already seen the privacy analysis for the αβ al-

gorithm for (d, γ)-privacy, which is a privacy definition for
protection against d-independent adversaries. In this sec-
tion, we show that the algorithm provides a slightly weaker
form of guarantee for d-exclusive adversaries. We show
that the algorithm ensures that there is no positive leak-
age for d-exclusive adversaries: That is if Pr1[t] ≤ d then
Pr12[t|V ] ≤ γ.

Theorem 6.3. If α + β = 1
2

and β ≥ 2 d
γ
( 1−γ

1−d
) then the

algorithm ensures absence of positive leakage for all tuples
and for all d-exclusive adversaries, i.e if Pr1[t] ≤ d then
Pr12[t|V ] ≤ γ

The algorithm cannot guarantee absence of negative leak-
age for d-exclusive adversaries, as seen from the following
example:

Example 6.4 Suppose we publish a view V of a database
of diseases with schema (age, zip, disease) using our algo-
rithm. An attacker knows the age and zip code of a per-
son Joe and additionally knows that no other person in the
database has the same combination of age and zip code. The
prior belief of the attacker is that Joe has exactly one dis-
ease but any one of the diseases is equally likely. Suppose
the attacker finds a tuple t1 in V matching Joe and Dia-
betes. Let us consider the tuple t2 corresponding to Joe and
Malaria. Theorem 6.3 shows that there won’t be a positive
leakage for t1. However, for t2 there is a drastic drop in the
a posteriori probability causing a negative leakage.

6.2.2 Impossibility results for d-exclusive adversaries
In this section we extend the impossibility result for d-

exclusive adversaries to accommodate the case when nega-
tive leakage is legally allowed and only positive leakage is
considered as a privacy breach. The impossibility result
shows that if an algorithm satisfies some form of weak util-
ity then there exists a d-exclusive adversary, for d = Ω( n√

m
),

for which there is positive leakage on some tuple.
The impossibility result holds only for a restricted class of

randomized algorithms. However, the class is broad enough
to encompass many of the privacy preserving algorithms in
the literature. The class of algorithms which we consider
satisfy the following bucketization assumptions:

• The algorithm is such that if the prior distribution
is tuple independent then the posterior distribution
is also almost tuple independent. More formally, the
tuples in the domain can be partitioned into buckets
such that the distribution Pr12[ti|V ] over the tuples

obeys the following condition: If two tuples ti and tj

lie in different buckets then they are independent con-
ditioned on the view.

• Let the number of buckets be NB . We assume that
the distribution of tuples both of the database instance
and the domain among the buckets is not too skewed.
More formally , for every k > 1 there exists a Nk < NB

such that if we remove any Nk buckets, the remaining
still contain a fraction 1/k of tuples of I as well as D.

For example consider the method of full domain general-
ization (in [12]) as applied to ensure k-anonymity or the
anatomy method (in [20]) as applied to ensure l-diversity.
For both the methods the tuples corresponding to the dif-
ferent anonymized groups form buckets which satisfy the
assumptions above.

The impossibility result for d-independent adversaries as
well as the result for d-bounded adversaries had used mean-
ingfulness as the utility definition. Impossibility result for
d-exclusive adversaries requires a slight modification to this
definition and is based on the notion of k-meaningfulness.
Intuitively, k-meaningfulness works on the basis that a view,
which publishes a small fraction of the database while not
providing any information for other tuples, does not have
good utility. More formally, a view V is k-meaningless if
there is a small set S, where S ⊂ I, such that V does not
provide any information for tuples outside S. We denote |S|
as n(1− 1

k
) where 1/k is a large fraction close to 1. The con-

straint that “V does not provide any information for tuples
outside S” is represented as follows: Given a query Q, it is
not possible to distinguish whether the answer to the query
is |Q∩S| or |Q∩S|+ n

k
, based on V . Thus, if EQ is the event

that Q(I) = |Q ∩ S| and E′
Q is the event Q(I) = |Q ∩ S|,

then the probability that V is published when EQ occurs is
approximately same as the probability when E′

Q occurs.

Definition 6.5. Let S be a subset of I with |S| ≤ n(1− 1
k
).

Let EQ be the event that Q(I) = |Q ∩ S| and E′
Q be the

event Q(I) = |Q ∩ S|+ n
k
. Consider all queries Q s.t 1

2
(1−

f) ≤ Q(D)
m

≤ 1
2
(1 + f). A view V is called k-meaningless

if for a fraction 2/3 of queries Q, 1
2
≤ Pr12[V |EQ]

Pr12[V ]
≤ 2 and

1
2
≤ Pr12[V |E′

Q]

Pr12[V ]
≤ 2

A view is called k-meaningful if it is not k-meaningless.
The following theorem shows that if the adversary is d-
exclusive, then any algorithm, which satisfies the bucketiza-
tion constraints and publishes k-meaningful views, will have
positive leakage for some tuple.

Theorem 6.6. Let A be any algorithm which satisfies the
bucketization assumptions with Nk ≥ 3

d
. Let V be any k-

meaningful view published by A. Then there exists a constant
c independent of n and m for which there is a d-exclusive
adversaries with d = max( 3

Nk
, c n√

m
) having positive leakage

on some tuple.

7. CONCLUSIONS
We have described a formal framework for studying both

the privacy and the utility of an anonymization algorithm.
We proved an almost tight bound between privacy and util-
ity, based on the attacker’s power. For the case where pri-
vacy/utility can be guaranteed, we have described a new,
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quite simple anonymization algorithm, based on random in-
sertions and deletions of tuples in/from the database. We
have done a limited empirical study, and saw a good pri-
vacy/utility tradeoff. An interesting problem for future work
lies in bridging the gap between the impossibility result and
the positive algorithm. In terms of d, the bound on adver-
sary’s prior, the gap can be expressed as between O(n/m)
and Ω(n/

√
m).
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