
Answering Aggregation Queries in a Secure System Model
 Tingjian Ge

Department of Computer Science
Brown University

tige@cs.brown.edu

 Stan Zdonik
Department of Computer Science

Brown University

sbz@cs.brown.edu

ABSTRACT
As more sensitive data is captured in electronic form, security
becomes more and more important. Data encryption is the main
technique for achieving security. While in the past enterprises were
hesitant to implement database encryption because of the very high
cost, complexity, and performance degradation, they now have to
face the ever-growing risk of data theft as well as emerging
legislative requirements. Data encryption can be done at multiple
tiers within the enterprise. Different choices on where to encrypt
the data offer different security features that protect against
different attacks. One class of attack that needs to be taken
seriously is the compromise of the database server, its software or
administrator. A secure way to address this threat is for a DBMS to
directly process queries on the ciphertext, without decryption. We
conduct a comprehensive study on answering SUM and AVG
aggregation queries in such a system model by using a secure
homomorphic encryption scheme in a novel way. We demonstrate
that the performance of such a solution is comparable to a
traditional symmetric encryption scheme (e.g., DES) in which each
value is decrypted and the computation is performed on the
plaintext. Clearly this traditional encryption scheme is not a viable
solution to the problem because the server must have access to the
secret key and the plaintext, which violates our system model and
security requirements. We study the problem in the setting of a
read-optimized DBMS for data warehousing applications, in which
SUM and AVG are frequent and crucial.

1. INTRODUCTION
1.1 Motivation
In the past, enterprises were hesitant to implement database
encryption because of the very high cost, complexity, and
performance degradation. With the ever-growing risk of data theft
and emerging legislative requirements like California’s SB 1386
and NY State’s Information Security Breach and Notification Act,
enterprises must now report any data breach that has happened
when unencrypted data is compromised. Rather than risk public
damage to a brand or legal and possibly government (FTC)
intervention, database encryption is now a top priority [30].

There are a number of points of security attack in database systems,
including storage media theft, application-level compromises,
malicious DBAs, wiretapping client-server communication
channels, key theft, and breaking into DBMS runtime environment.
It was reported by several sources, including the draft of National
Strategy to Secure Cyberspace announced by the White House
[29], about 70% of security breaches are attributable to internal
users. Thus, “separation of duty”, which involves having a separate
Security Administrator (SA), has become a golden rule. The DBA’s
role is to perform usual DBA tasks. The SA would administer
privileges and permissions and manage keys and decryption, etc.
For example, the “Database Vault” feature in a recent Oracle
release [20] is such a step towards limiting a DBA’s privileges.

1.2 System Model and the Problem
Consider the issue of where to encrypt the data in a consolidated
environment of applications and databases. We have two
categories: “inside-the-box” and “outside-the-box” encryption. In
the former, encryption and decryption are performed by the
database server in its runtime environment (i.e., “the box”), which
is managed and inspected by the DBA. In the latter, encryption is
handled outside the database server environment. In light of the
previous discussion, outside-the-box is certainly more desirable for
security; frequently it is a must. Note that the security administrator
(SA) is considered to be outside the “box” (i.e., outside the
database server environment). When a client application itself
performs encryption and decryption, the client takes the role of SA.
Generally, we call the secure agent that handles encryption and
decryption the Key Holder. We assume the adversary cannot
compromise the Key Holder. This system model is shown in Figure
1.

 Key Holder (Client / SA, etc.)

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Very Large Database
Endowment. To copy otherwise, or to republish, to post on servers or to
redistribute to lists, requires a fee and/or special permissions from the publisher,
ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

DB Server Environment
(Managed by DBA)

Communication is protected by
encryption

Encrypted Data
On Disk

Figure 1: Illustrating the outside-the-box encryption model. The
sensitive data at the server and on disk is encrypted (as shown in
grey).

519

Compared to inside-the-box encryption, this model has the
following advantages in data security:
• It follows the rule of “separation of duties”. The

administrative and security duties are divided between the
DBA and the SA.

• Sensitive data from the DBMS logs, configuration files,
temporary tables, memory, etc. is secure at the server.

• Communication between the database server and outside
environment is protected as well.

• Key management becomes easier. Since the storage of keys is
restricted to the Key Holder, we do not need to manage keys
at the server. We do not need to deal with key theft at the
server or key distribution in general.

Note that the secure system model we described is simply a general
abstraction of the data encryption part of the “Database-As-a-
Service” (a.k.a. database outsourcing) proposed in [11] (an
example of such a business is [31]). Database outsourcing is an
instance of the outside-the-box encryption due to the privacy and
trust issues [3]. Outside-the-box encryption also implies that even
when a database is not outsourced, we still have a separate entity,
SA (who may not be the client and is certainly not the DBA), that
handles encryption. Of course, database outsourcing also includes a
usage model with issues besides data encryption.

An equally critical issue is query processing in such a model.
Clearly, it is desirable for most of the query processing to occur at
the database server. One would also like to minimize the
communication cost between the server and the Key Holder (say, in
returning query results). However, it is difficult to process a query
at a server that does not have access to the decryption key nor the
plaintext. While there has been work on performing comparison
and indexing directly on the ciphertext, thus handling some SQL
query types, so far there is no general, secure solution for the SUM
and AVG aggregate queries in such a system model. This paper
gives a comprehensive solution to this problem.

1.3 Related Work
Pioneering work in this area includes [2, 3, 10, 12, 13, 14, 17, 24].
Most of this work shares the goal of supporting efficient query
processing on encrypted data. Much of this research addresses the
problem of indexing ciphertext. For example, Agrawal et al [2]
propose an order preserving encryption scheme (OPES) by which
indexes can be built directly on ciphertext. We can use this scheme
in our “un-trusted server” model (with its assumption that the
adversary does not know the plaintext value distributions). The
authors of [2] state that OPES can handle directly (without
decryption) any interesting SQL query types, except SUM and
AVG. Indeed, any approach that can handle comparison and
indexing on ciphertext likely has this property. Our techniques
proposed in this paper are complimentary to theirs, and therefore,
taken together, they provide a complete solution. As a matter of
fact, in some column stores such as C-Store [25, 27], two
ciphertexts for the same column can coexist redundantly. In
general, only one ciphertext would be accessed for each query, thus
the I/O cost stays about the same. Moreover, as pointed out in [4,
26], SUM and AVG aggregate queries are very frequent and
important in data warehousing, OLAP, and large database
applications, the target of column-oriented (read-optimized)
systems, such as C-Store [25, 27].

There have been proposals of using homomorphism in the database
context. In particular, Hacigumus et al [12] propose to handle SUM

and AVG using a particular homomorphic encryption function
based upon the so-called Privacy Homomorphism [22]. The usage
is simple and straightforward as each value is encrypted separately.
Unfortunately, as pointed out by Mykletun and Tsudik [17], its
encryption scheme is insecure, demonstrated by its vulnerability to
a basic ciphertext-only attack. Instead, the authors in [17] describe
a simple alternative for supporting aggregation queries assuming a
bucketization scheme in [10] (i.e., splitting the attribute domain
into a set of buckets). This essentially assumes two things:

1. A bucketization scheme must be deployed at the server;
2. The bucketization scheme is indeed secure.

While assumption (1) indicates the usage limitation of this simple
approach, there has been some work (e.g., [2, 13]) that negates
assumption (2). Large buckets are not a feasible solution, as an
equijoin becomes a cross-product of buckets, with the result size
(and client effort) growing rapidly with larger buckets (as shown in
[10]). On the other hand, a fine partitioning makes the scheme
vulnerable to estimation exposure. The relative size of buckets
reveals information about the distribution of the data. Moreover,
relationships between fields in a tuple can be revealed. More details
can be found in [2, 13]. Further, a fine partitioning also makes the
solution in [17] for SUM and AVG very costly (in both
communication and post-processing at the client), as one encrypted
value for each potentially qualified bucket must be sent to the
client for decryption.

1.4 Overview of Our Solution
In contrast to [12], we propose to use a secure modern
homomorphic encryption scheme, which typically operates on a
much larger (encryption) block size (say 2K bits) than single
numeric data values. The simple solution of encrypting only one
value in an encryption block, which makes it trivial to apply the
homomorphic property for SUM and AVG, is highly inefficient
Instead, we propose an interesting way to manipulate multiple data
values in large encryption blocks. Such manipulation handles
complex and realistic scenarios such as predicates in queries,
compression of data, overflows, and more complex numeric data
types (float), etc. Therefore, our work is the first comprehensive
study of using a secure, modern homomorphic scheme to compute
SUM and AVG in an un-trusted server environment. Specifically,
our contributions are:

• A solution for computing SUM and AVG queries in the
described system model. The queries can be general (e.g., with
predicates), and data can be first compressed, and then
encrypted.

• A randomized algorithm plus its analysis to improve the
performance of our solution.

• A technique for using this scheme on floating point numbers.
• An actual implementation of a homomorphic encryption

scheme and computation of SUM and AVG in a real database
system. We then test the viability of the solution in terms of
performance.

The basic idea underlying our solution is to densely pack data
values in an encryption block, and perform computation directly on
the ciphertext using a secure homomorphic encryption scheme in a
novel way. This approach fits with our system and security model
because the database server performs the bulk of the computation
without having access to the secret key or the sensitive data. In the
end, a constant number of ciphertext blocks are passed back to the
trusted agent (i.e., the Key Holder) to perform a final decryption
and simple calculation of the final result. Moreover, because of the

520

dense packing of values to reduce the number of modular
multiplications and the minimization of the number of expensive
decryption operations, the performance is acceptable. We
demonstrate that the performance of SUM and AVG with our
approach is comparable to that of using a traditional symmetric
encryption scheme, such as DES [6]. The latter is not a viable
solution in our system and security model, as the database server
must have access to the secret key or plaintext.

We study the problem in the context of an open-source column-
oriented DBMS called C-Store [25, 27]. C-Store is a read-
optimized relational DBMS. The most salient difference between it
and a traditional “row-store” is the way that it stores data by
column rather than by row and the way that it uses sorting and
compression [1, 25]. Our encryption techniques fit naturally with
the design of C-Store. We will also discuss how to apply our
techniques to row-store systems.

The rest of the paper is organized as follows. In Section 2, we
briefly introduce the background needed for the paper. We present
our basic solution of doing SUM and AVG over encrypted data in
Section 3. Section 4 presents a randomized approach to further
improve our algorithm, and we then illustrate how we can apply
our technique for floating-point data in Section 5. In Section 6, we
discuss special usage scenarios, some other system aspects, and
usage in row stores. And in Section 7 we show some experimental
results to verify the performance viability of the solution. Finally,
we conclude the paper and point out some future work in Section 8.

2. BACKGROUND
2.1 Compression in C-Store
In C-Store, data can be stored either uncompressed or compressed
using one of the three compression methods: Run length encoding
(RLE), Bitmap encoding, and Delta encoding [18, 23, 25]. Data
compression can clearly save I/O cost, but it can also increase CPU
costs if the database has to decompress a lot of data to process the
query. The key to the high performance of C-Store is that it can
often evaluate significant pieces of a query without decompressing
the data [1].

When encryption is combined with compression, the data is first
compressed using any of the C-Store compression schemes, and
then an encryption algorithm is run on the compressed data. C-
Store’s goal is to evaluate queries without decompressing the data.
Thus, in fact, our scheme often requires no decompression, and
minimum decryption (at the end of query processing).

2.2 Homomorphic Encryption
Homomorphic encryption is a well-known technique in
cryptography. The additive homomorphic property of a
homomorphic cryptosystem is:

)()()(bencaencbaenc ×=+

where a and b are two plaintext message blocks, and “enc” is the
encryption function that takes a plaintext message block (and an
encryption key, which we omit) and returns the ciphertext block.
Thus, it is clear that in the above equation, “ ” operates on the
plaintext, and “×” operates on the ciphertext. An example of such
an encryption scheme is the Paillier system [21]. In our
experiments, we use a generalized version of the original Paillier
system [5]. Such a system is provably secure under some number
theoretic assumption, which is commonly regarded as more secure
than those that are not provably secure (e.g., commonly used block

ciphers), which are more prone to attacks as computational power
improves.

+

Homomorphic encryption has been used in voting systems, etc [5].
In this work, we use it to handle most of the computational work of
SUM and AVG queries while keeping data in ciphertext form. The
generalized Paillier cryptosystem suits our needs because other
than the homomorphic property, it has a nice property that by
dynamically adjusting the encryption block size, the ciphertext
expansion factor can be close to 1. That is, there is a parameter s
(proportional to the block size), such that the ciphertext expansion
factor is

s
s 1+ . For example, if , the expansion factor is 1.25.

Clearly the bigger s is, the smaller the expansion factor. However,
a large s value causes big encryption block size, which slows down
cryptographic operations on the data. Thus there is a tradeoff.

4=s

3. A SOLUTION FOR SUM AND AVG
3.1 The Basic Building Block
In this section, we describe a simple basic building block, which
uses the homomorphic encryption property to efficiently compute
SUM or AVG over an encrypted column. For now we assume that
there are no predicates in the query, nor any compression on the
column (i.e., the encoding type is uncompressed). For example,
SELECT AVG(salary) FROM employees, where salary is not
compressed, but encrypted.

Note that for a typical homomorphic encryption scheme, such as
the generalized Paillier system, the size of a plaintext block has to
be sufficiently big (e.g., at least 1024 bits) to be secure. Thus we
consider the operations () as operating on big
binary numbers. As a result, a plaintext block needs to hold more
than one data value in general. For example, if the plaintext block
size is 2048 bits, it should hold integer values each
of which is 32 bits.

×+,,, decenc

6432/2048 =

We first show how we encrypt the data. Typically only a small
fraction of the columns are sensitive and in need of encryption.
One should be able to specify which columns to encrypt. In this
way, a query referencing a non-sensitive column does not have to
go through the expensive decryption operation on that column. Just
as in Oracle [19], we provide column-level encryption. Recall that
C-Store organizes and stores data column-wise. We subdivide the
column data into encryption blocks which have to be relatively
large (such as 2K bits) to be secure. Each such block, then,
contains multiple column values.

Let us illustrate this through an example. Suppose each plaintext
encryption block can hold 64 data values, and the whole column of
the table fits in 32K such blocks, which implies that the whole table
has 64 * 32K = 2M records. We use the generalized Paillier scheme
to do one encryption on each block, and get 32K ciphertext blocks,
as shown in Figure 2. Suppose each value has 32 bits, then a block
has 32 * 64 = 2K bits. In the encryption operation, each block is
treated as a 2K bit number, and is converted to a ciphertext block.
Note that in a plaintext block, we can imagine there is an invisible
boundary between two values, each of which is 32 bits. But
because each encryption block is treated as one big number during
encryption, there are no value boundaries within a ciphertext block
(i.e., it no longer holds that each 32-bit sub-block is the encryption
of an integer, but rather, information of all values are “mingled”
together). Next we give Algorithm 1 to compute SUM (illustrated
in Figure 2), followed by a toy example (Figure 3).

521

Figure 2: Organizing values into encryption blocks, encrypting using
the generalized Paillier scheme, and using Algorithm 1 to sum them.
The left-hand side is plaintext. Each block is shown as one row,
containing 64 actual values. Encryption treats each block as one large
2K bit number, and converts the 32K plaintext blocks into 32K
ciphertext blocks on the right-hand side. The product of the 32K
ciphertext large numbers, when decrypted back, corresponds to the
sum of the 32K plaintext large (2K-bit) numbers.

Note that in step 3, this algorithm produces the sums of the vertical
slices through each block (i.e., the sums of the i’th position in each
block). The algorithm assumes for now that these sums do not
overflow the 32 bit representation for integers. We will relax this
shortly.

Figure 3 shows a toy example in which we have 3 encryption
blocks (n=3), each containing 4 values (k=4). As we discussed, in
an actual system, n and k are much bigger. Step 0 is the encryption
of plaintext blocks (left side) to ciphertext (right side). Step 1,2,
and 3 roughly correspond to the same step numbers used in
Algorithm 1. In step 1, we do a modular multiplication on the
ciphertext blocks, followed by a decryption of the product in step 2.
Finally in step 3 we split the resulting plaintext block into 4 (i.e., k)
values (18,15,10, and 22), corresponding to the sums of the four
vertical slices of the three plaintext blocks. Thus adding them
together produces the total sum, 65.

Theorem 1: Assume no “overflow” when adding up a vertical

“slice” to get ∑ (for
=

n

i
ijv

1

kj ≤≤1). That is, ∑ does not overflow

the number of bits for each value in a block, thus no carry bits
between vertical slices (See Figure 2). Algorithm 1 correctly
computes the sum of all

=

n

i
ijv

1

kn ⋅ values.

Proof: Let pi (ni ≤≤1) be the i’th plaintext block, i.e.,
. From homomorphic property, after step (2) of

the algorithm, . Because of the

assumption of no overflow between slices, .

Thus, finally the output . ■

ikiii vvvp ooo ...21=

∑ ∑
= =

==
n

i

n

i
ikiii vvvps

1 1
21 ... ooo

)1(
1

kjvs
n

i
ijj ≤≤=∑

=

∑∑∑
= ==

=
n

i

k

j
ij

k

i
i vs

1 11

In Algorithm 1, we only do one decryption in step (2), and n-1
modular multiplications (a multiplication is much cheaper than
decryption), as opposed to having to decrypt every data value if we
were not using a homomorphic encryption scheme. It is clear that
the computation of AVG would be similar.

Note that the heavy computation work happens in step (1) (where n
can be huge) and is carried out at the database server in the system
model described in Section 1. Steps (2), (3), and (4) beginning with
a decryption are executed at the secure agent (Key Holder).

3.2 Handling Overflows
In Theorem 1 we made an assumption that there is no overflow in
the sums of vertical slices. However, overflows are possible. If
overflows did happen, there would be carry bits between two
vertical slice boundaries when the plaintext blocks are added up.
Whether or not overflows happen depends on the actual value
range, and the number of records.

Example 1. Suppose the average value in each vertical slice is
within 1024, and the column type is INT (32 bits). This allows us to
have

M4
1024
232

=
 encryption blocks. If each block has 64 values, there

can be 256M values. Even un-compressed, the table can have
256M records. Compression allows even more records to be
accommodated. ■

The above suggests that overflow may be rare, yet we still need to
handle it. One approach is to simply leave some extra space
preceding each plaintext value in an encryption block. This
approach, albeit simple, has the downside of increasing the
ciphertext size. A more sophisticated approach is to organize the
encryption blocks into groups, shown next.

Algorithm 1.

Input: (for i=1,…,n), each of which is the encryption of a
block of k values v (for j=1,…,k), decryption key K.

ic

ij

Output: The sum of all values: kn ⋅ ∑
ji

ijv
,

(1) Compute . Note that under the generalized

Paillier cryptosystem, these are modular multiplications.

∏
=

=
n

i
icc

1

(2) Compute s , the decryption of c using key K.),(cKdec=
(3) Split s into k values of equal bit length si (for i=1,…,k),

such that , where the operator o is “bit-
string concatenation” treating s

kssss ooo ...21=

i as a bit-string (instead of
a binary number).

(4) Output ∑ (treating s
=

k

i
is

1

i as a binary number).

5 8 6 1

9 2 3 11

4 5 1 10

18 15 10 22

1000100……1110

0110011……0101

1011000……1011

0110101……1101

+ ×

18+15+10+22 = 65

Step 0

Step 1

Step 2

Step 3

Figure 3: An illustrative toy example of Algorithm 1.

V64

V128

32K’th
block

encrypt

1st block C1 V1 V2

2nd block V65 C2

C32K
+ ×

sum product

522

As illustrated in Figure 4, Algorithm 1 is applied within each
group. Each group is similar to what is shown in Figure 2. The
difference is that we also maintain a row vector of partial sums
(sums of values in each vertical slice) for each group. In the
ciphertext world, the row vector corresponds to the (modular)
product of the ciphertext blocks in the group. Thus, in Figure 4, for
each of the two groups, we only show its plaintext representation.
We dynamically maintain the partial sums row vector during the
insertion of values. By keeping track of the sums of vertical slices
we ensure that no overflow happens for each slice of a group. We
stop filling a slice when the next value v would cause it to
overflow. In such a case, we try to place v in the next slice (to the
right). This continues until v cannot be placed in any slice which
means that the group is full. When a group is full, a new one is
created. Thus this approach has less overhead on ciphertext size
and is more efficient in I/O. In the toy example of Figure 3, in the
plaintext (left side), the (18, 15, 10, 22) row vector is what we
maintain on the side when we encrypt values. Suppose the capacity
of each of the four positions is 25, and the next value to insert is 8.
Then the first vertical slice would overflow (18+8 > 25) if we put
the new value there. Hence we put the new value into the second
slice and the partial sum row vector becomes (18, 23, 10, 22).

We note that the overflow handling technique introduced in this
section applies to the general cases discussed in the following
sections as well. We do not explicitly show it in the algorithms for
simplicity.

3.3 An Extension of Algorithm 1
A typical query will select a subset of the rows of a table and then
aggregates over that subset. Therefore, in this context some values
in a block have no contribution to the sum. Moreover, in many
columns, some values may appear many times and a compression
method, such as Run Length Encoding, makes it easy to know the
number of repetitions. We can capture this by associating an
integer weight with each value to be summed. We extend
Algorithm 1 and add a “weight matrix”, as shown in Figure 5. Each
value in the plaintext blocks has a weight specified by an integer at
the corresponding position in the weight matrix, and we want to
compute the weighted sum, i.e., the sum of each value multiplied
by its weight. Interestingly, this small extension works for
predicates in queries as we will discuss in Section 3.4 and for
compressed data. The following algorithm describes the extension.

Algorithm 2.

Input: (for i=1,…,n), each of which is the encryption of a
block of k values (for j=1,…,k) of the same bit

length, decryption key K, and the weight matrix w

ic

ijv

ij
(for i=1,…,n, j=1,…,k).

Output: The weighted sum of all values: kn ⋅ ij
ji

ij wv ⋅∑
,

(1) sum = 0
(2) For each vertical slice j = 1 to k, do

(3) Compute . Note that in the

generalized Paillier cryptosystem, these are modular
multiplications and exponentiations.

∏
=

=
n

i

w
i

ijcc
1

(4) Compute),(cKdecs = , the decryption of c using
key K.

(5) Split s into k values of equal bit length s)1(ki

The complication here is that each of the k values in an encryption
block in general has different weights, thus we cannot simply raise
the ciphertext block to a power of a uniform weight. Instead, we do
it in k loops, and the j’th loop takes the j’th value in “s” and
discards the rest. In the toy example of Figure 3, suppose the 1st
column of the weight matrix is 2, 0, 1, the 2nd column is 1, 3, 0, the
3rd is 1, 2, 5, and the last column is 6, 0, 1. Let the three blocks
(rows) of ciphertext be c1, c2, and c3. Then Algorithm 2 proceeds in
four loops (one for each vertical slice). In the 1st loop, we compute

1, decrypt it, and then only take the value in the
1

3
0

2
2

1)()()(cccc =
st position (i.e., s1 in step 5 and 6 of the algorithm). As we will

show in Theorem 2, indeed , the weighted
sum of the first vertical slice of the plaintext in Figure 3. In the
same manner, the 2

141409251 =×+×+×=s

nd loop starts by computing ,
and so on. After four loops, we get the weighted sum of the 12
values.

0
3

3
2

1
1)()()(cccc =

k positions

Group 1: b blocks

Group 1 partial sums

S1 Sk

Group 2

Group 2 partial sums

i ≤≤ ,
i.e., s ksssFigure 4: Organizing encryption blocks into groups. ooo ...21= .

(6)
jssumsum +=

(7) End For loop.
(8) Output sum.

32K’th
block

encrypt

C1

C2

C32K

1st block

2nd block
V65

V1 V2 V64

V128

+ ×

Weight Matrix

)3(

)8(

)1(

sum product

Figure 5: Illustrating Alg. 2, computing the 1st vertical slice.

523

Theorem 2: Assume there’s no “overflow” when adding up a
vertical “slice” to get ∑ (for). That is, ∑

does not exceed the space for each value in the plaintext encryption
block (See Figure 5). Algorithm 2 correctly computes the weighted
sum .

=

⋅
n

i
ijij wv

1

kj ≤≤1
=

⋅
n

i
ijij wv

1

ij
ji

ij wv ⋅∑
,

Proof Idea: The idea of this proof is similar to that of Theorem 1,
so we omit the details. One additional point is that the
homomorphic property states that)()()(bencaencbaenc ×=+ , it

follows , where the modular exponentiation
operates on the ciphertext. Algorithm 2 has k loops (outer loop),
and each loop computes a partial weighted sum of a vertical slice in
Figure 5. Thus, the j’th loop takes the j’th value in “s” and discards
the rest. ■

waencwaenc))(()(=×

Note that compared to encryption or decryption, modular
multiplication is much cheaper. We will discuss the performance
improvement in Section 4. Also note that when we implement
Algorithm 2, we can carry out the k loops in parallel, i.e.,
incrementally compute the k products at the same time block by
block. Thus we only need to read the ciphertext from the disk once.

3.4 Handling Predicates
We discuss how to use Algorithm 2 to handle predicates in the
query. We classify predicates into two categories: (1) those that do
not reference a sensitive, encrypted column and (2) those that do.

Example 2. Suppose we have a schema: Employees (name
VARCHAR(50), age INT, salary INT ENCRYPTED, company
VARCHAR(50)), where only the “salary” column is encrypted.
Consider these queries:

Q1: SELECT AVG(salary) FROM employees WHERE
 age > 35 AND company = ‘SUN’

Q2: SELECT AVG(salary) FROM employees WHERE
 salary > 60000 AND company =’MICROSOFT’

Using our classification, Q1’s predicates are in the first category,
while Q2 has a predicate in the second category. ■

We first consider the case in which all predicates are in the first
category. Many DBMS’s support bitmap indices. Evaluating a
predicate on a column with a bitmap index results in a bit-string, in
which each bit indicates whether a row in the table is qualified (1
indicates the record is qualified, and 0 otherwise). Then this bit-
string is used to “mask” the aggregated column (salary), and the
resulting aggregate is computed over the masked rows. It is easy to
see how we can derive this bit-string with other forms of index as
well. In our context, this bit-string is essentially a one-dimensional
form of the “weight matrix” in Algorithm 2 (treating each bit value
0/1 as the weight of the attribute value). That is, we have 1’s and
0’s in the weight matrix. It is easy to verify that Algorithm 2 indeed
computes the correct SUM (likewise, AVG) of the qualified
records. Note that the weight matrix of Algorithm 2 does not
necessarily require extra space overhead since it is simply the bit-
string that the DBMS (e.g., C-Store) would compute anyway as a
result of predicate evaluation.

In the toy example of Figure 3, we have 12 attribute values, thus 12
records in the table. Suppose the first 4 records use the 1st
encryption block to store salary, the next 4 records use the 2nd
encryption block, and so on. Suppose evaluating a predicate results

in a 12-bit bit-string 1001,0110,1000, indicating that records 1, 4,
6, 7, and 9 satisfy the predicate. Then the weight matrix derived
from the bit-string, in row major form, is (1,0,0,1; 0,1,1,0; 1,0,0,0).

For a query that has a predicate of category 2 (such as Q2 of
Example 2), the encrypted column in the predicate may or may not
be the column being aggregated. Like a plaintext column, an index
can be built on the encrypted column using a scheme that handles
indexing on ciphertext (discussed in Section 1.3). Note that if the
column in the predicate is also the one being aggregated (such as
Q2), the sensitive column is encrypted differently for SUM/AVG
(using a homomorphic scheme) than in the index. Now the
predicate can be evaluated efficiently without decryption, resulting
in a bit-string just as a category 1 predicate does. Then we proceed
using Algorithm 2 to compute the SUM/AVG. We will discuss
issues such as storage and updates in Section 6.2.

Let us illustrate this through Q2 of Example 2. We build an index
on the salary column. In the index, values are encrypted using
OPES [2]. There is also an index on the plaintext company column.
The salary column is also encrypted using a homomorphic scheme
as described. Using the 1st index to evaluate the predicate
salary>60000 results in a bit-string B1 indicating which records
satisfy this predicate. Similarly, using the 2nd index for company
=’MICROSOFT’ will result in a bit-string B2. Let B be the bitwise
AND of B1 and B2. Then we treat B as the weight matrix and
proceed using Algorithm 2.

Since the index is directly built on the ciphertext and searching it
does not involve decryption, searching an index on ciphertext has
the same cost as searching a plaintext index. Therefore, the query
performance is exactly the same as a query with a category 1
predicate with the same selectivity.

For a group-by query:

SELECT AVG(salary) FROM employees GROUP BY company

We can use the index on company to get a bit-string for each
distinct company value. Again we use each of those bit-strings to
compute the AVG of a group. Now, suppose the query also has a
HAVING clause:

SELECT AVG(salary) FROM employees GROUP BY company
 HAVING AVG(salary) > 60000

Then the index on ciphertext would not help us on the HAVING
clause here. What the database server gets from a homomorphic
scheme is simply a ciphertext AVG value for each company. For
such a query, we have to resort to a post-processing step at the Key
Holder to filter out some groups after decryption. We assume,
however, that the number of possible groups is manageable.

3.5 Allowing Compression
A sensitive column can be first compressed by any encoding type
supported by C-Store, and then encrypted using a homomorphic
scheme; we show how we can still use Algorithm 2 to compute
SUM or AVG efficiently. Thus we save both I/O costs (by
compression) and CPU costs (by avoiding decompression and by
minimizing the number of decryptions).

In Section 2.1, we mentioned the three compression methods that
C-Store supports. We first consider a sorted column encrypted after
being RLE compressed. Recall that the RLE compression produces
pairs (v, n), where v is the data value, and n is the number of
repetitions. We put all v values from the pairs in the encryption

524

blocks and encrypt them separately as described earlier using a
homomorphic scheme. The n values go into the weight matrix and
are either encrypted separately, or are left in the clear, depending
on the security requirement of the application. It is clear that
Algorithm 2 gives the correct result. Note that the weight matrix of
Algorithm 2 does not have extra space overhead here as well, as it
is part of the representation of compressed data.

A similar approach also applies to Bitmap encoding (which has a
value part and bitmap). We encrypt the value parts together in
blocks, and by simply counting the set-bits in the bitmaps we get
the weights.

Delta encoding is a little different. In Delta encoding, we have a
sequence of values (base, inc1, inc2,…, incn) corresponding to the
n+1 actual values in the column: base, (base+inc1),
(base+inc1+inc2),…, and (base+inc1+ …+incn). Their sum is

. Therefore, we can
simply put (base, inc

1...)1()1(21 ×++−×+×++× nincnincnincnbase
1, inc2,…, incn) sequences in encryption

blocks, and n+1, n, n-1, …, 1 in the weight matrix. Figure 6
illustrates this.

Finally, we can combine the discussions in Section 3.4 and 3.5.
We allow data to be compressed and encrypted, and queries to have
predicates. It is analogous to the case of having predicates with
uncompressed data that we discussed in Section 3.4: some of the
weight values resulting from compression are reduced (possibly not
all the way to 0), as some records are filtered out by the predicates.

Note that in the system model of Section 1, the database server
passes a constant number (k) of ciphertext blocks to the secure
agent (Key Holder), which does the final decryption and addition.

4. A RANDOMIZED ALGORITHM TO
FURTHER IMPROVE PERFORMANCE

We introduce and analyze a randomized technique to further
improve the performance of Algorithm 2.

4.1 The Randomized Algorithm
Recall what happens in Algorithm 2. We have k rounds (where k is
the number of column values in an encryption block), and in each
round we essentially compute a partial sum over a vertical slice of
the plaintext values. For simplicity of presentation, we show the
algorithm for uncompressed columns and with predicates in the
query. This can be easily extended to include compression types.

The cost of Algorithm 2 is: a constant number (k) of decryptions
plus modular multiplications, where n is the number of
encryption blocks, and p is the combined selectivity of the
predicates. We can see that, as the number of records in the table
grows, n grows, hence the cost of the modular multiplications
grows linearly, whereas the cost of the decryptions stays constant.
Therefore, a mechanism to further lower the cost of the modular
multiplications would give us additional benefit. Our randomized
algorithm does just that by exploiting pre-computation and sharing

of intermediate results among sub-tasks. In Section 4.2, we present
a probabilistic analysis of this algorithm.

pkn ⋅⋅

The high level idea is that we divide the encryption blocks into
groups each of size s (encryption blocks). We call each of these
groups a segment. The computation of all k vertical slices is carried
out in parallel one segment after another. For each segment, using
the same amount of space as the original ciphertext (s blocks), we
pre-compute and store s modular multiplications of uniformly
random subsets of the s blocks (i.e., s product values out of the

values in total). Accordingly, for each product, we store an s-bit
value identifying the subset (a “1” in i’th bit indicates the i’th block
of the segment gets selected to be in the subset and included in the
precomputed product). The computation of each vertical slice
within a segment tries to use both the pre-computed values, and the
results of already computed vertical slices within the segment. Note
that as in Algorithm 2, a slice corresponds to a slice of “weights”,
or in the plaintext world, a slice of values to be summed. In the
ciphertext world, the multiplication is always carried out on the
whole “wide” ciphertext blocks. Figure 7 shows pictorially how the
computation of k vertical slices proceeds in a parallel manner. The
algorithm follows.

s2

base inc1 inc2

base base+inc1 base+ inc1 +inc2 Segment 1

 base x 3 inc1 x 2 inc2 x 1

Segment 2Figure 6: Using Alg. 2 for encrypted and Delta-encoded data.

Figure 7: Illustrating parallel computation of vertical slices.

Algorithm 3.

For each segment,
 For i from 0 to k-1, (each vertical slice)
 From the 0/1 weight matrix in Alg.2, extract an s-bit
 value t (i.e., the actual subset to be multiplied)
 corresponding to this segment and vertical slice.
 Consider s+i (s-bit) values b which)10(−+≤≤ isjj

 are the s values identifying the pre-computed subsets
 and i values identifying the actual subsets computed
 for previous slices (in previous i loops). Find one
 value b with minimum Hamming distance with t. *

 From the product value identified by b , which is *

 either pre-computed or computed in previous i loops,
 derive the needed product identified by t.
 Specifically, if b and t match exactly, nothing *

 needs to be done. Else, for a bit change 0 1 from
 *b to t, we multiply some ciphertext block value;
 for a bit change 1 0, we multiply the (modular)
 inverse of some value (which is also pre-computed).
 End for i loop.
 Accumulate k product values (one for each vertical slice)
 across segments (by doing multiplications).

End for each segment.

525

In Algorithm 3, to compute a product block value corresponding to
some vertical slice, we look at two sources for speedups:

1. s pre-computed product values for the segment
2. i product values just computed for previous slices of the

same segment (in previous loops; i is the loop index).

We look for the “closest” match from these two sources by
comparing the identifying bitmaps to find the minimum Hamming
distance. For a bit difference, we either need to do a modular
multiplication (for a 0 1 change) or a modular division (i.e.,
multiplying the inverse, for a 1 0 change).

We show a toy example. Let k=4, as the example in Figure 3. But
unlike Figure 3, we have many more blocks, and let the segment
size s=4. Consider the 1st segment. Let the four blocks of ciphertext
in this segment be c1, c2, c3, and c4. Let the first four rows of weight
matrix in Algorithm 2 or 3 (corresponding to this segment) be

0101
0111
1010
1101 . Let be the pre-computed modular products of

uniformly random subsets of the 4 ciphertext blocks. The 1
32

41

321

42

cc
cc
ccc

cc

st
column of the weight matrix indicates we need to compute c1c3c4.
By seeking the minimum Hamming distance, we know we can use
the pre-computed c1c4 and multiply it by c3. The 2nd column of the
weight matrix requires computing c2c3 and that is immediately
available from the same pre-computation. The 3rd column requires
computing c1c3c4 again and that is available as we just got it for the
1st column (i.e., in a previous i loop of algorithm 3). The 4th column
requires computing c1c2 and we obtain it from (c1c2c3)/c3. Likewise,
Algorithm 3 then proceeds to the next segment for the k products.

4.2 The Analysis
We next analyze the cost of Algorithm 3. We first compute the
expected number of modular multiplications M that it needs to
perform per segment. Let

iM denote the number of multiplications
performed for vertical slice i of the segment. We have,

 ∑
−

=

=
1

0
)1()()(

k

i
iMEME

As
i
 is a discrete random variable with non-negative values, we

have (from [15])
M

1

∑ ∑
∞

= =

≥=≥=
1 1

)2()(Pr)(Pr)(
r

s

r
iii rMrMME

Let random variables denote the Hamming distance between

the s-bit value t (identifying the i’th vertical slice) and value
 as described in Algorithm 3. Thus from

Algorithm 3, we have

ijM

)10(−+≤≤ isjb j

)3(])[(Pr]min[Pr)(Pr
10

is
ijijisji rMrMrM +

−+≤≤
≥=≥=≥

where the last equality follows from the fact that the s pre-
computed subset products are chosen uniformly at random, and we
assume the subset identifiers of already computed vertical slices are
also uniformly random. As we’ll discuss later, we may make them

1 Intuitively, for r from 1 upwards, accumulatively, is the

probability that we add 1 to the expectation.
)(Pr rMi ≥

correlated to further enhance performance, but that can only reduce
the total number of multiplications.

To compute], imagine that we fix the s-bit value t

(identifying the i’th vertical slice), and enumerate the cases that the
uniformly random value differs from t. Thus,

[Pr rMij ≥

jb

)4(
2

][Pr s

s

ru
ij

u
s

rM
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=≥

Finally, combining (1) to (4), we have,

)5(
2

)(
1

0 1
∑∑

∑−

= =

+

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
k

i

s

r

is

s

s

ru u
s

ME

From (5), we can compute the expected number of multiplications
within a segment, given k, s values. Now suppose the previous
Algorithm 2 were used, it is easy to see that the number of
multiplications within a segment would be psk ⋅⋅ , where p is the
combined selectivity of all predicates on other columns. Likewise,
for Algorithm 3, from (5), we can further compute a “percentage”
value

sk
ME
⋅

)(, and compare it with p. Actually, to be precise, we also

need to count the cumulative multiplications “across” segment
boundaries. For an upper bound, we simply assume every vertical
slice of a segment is a non-empty subset (product). Hence the
additional percentage due to this is no more than

sksn
kn 1

=
⋅⋅
⋅ ,

where n is the total number of segments. Therefore, the
multiplication percentage of Algorithm 3, , satisfies *p

ssk

MEpE 1)()(* +
⋅

≤

For a given k value, we can determine the optimal s value (segment
size) that minimizes the value bound (A simple program will
do). For example, if k=64, the best upper bound is 0.27 when s=7.
Therefore, on average, when the combined selectivity of predicates
on other columns is greater than 0.27, Algorithm 3 performs better
than Algorithm 2. The nice thing about it is that regardless of how
close the selectivity is to 1, Algorithm 3 “stabilizes” the number of
multiplications, as if the selectivity were staying at 0.27. In
contrast, Algorithm 2 will proportionally perform a lot more
multiplications as the selectivity increases.

*p

Algorithm 3 typically reads a subset of pre-computed s products,
and a small fraction (

sk
M
⋅

, which has expected value 0.12 in the

example of k=64 and s=7) of the original ciphertext block values
(or the inverse). At run time, according to the actual selectivity of
the predicates, we can compare the costs and decide whether to
kick off Algorithm 3 for a segment, or just use Algorithm 2. For
example, when the selectivity is very low, Algorithm 2 performs
fewer multiplications and is chosen.

Note that we could further improve Algorithm 3 using other
techniques. For instance, if we know a predicate is most likely on
some column, we can organize encrypted column values in the
vertical slices by clustering on the “predicate column”. This way,
even though the bit vectors of the vertical slices are not uniformly

526

random, “reuses” of product values are much more likely because
the k target subset identifiers probably have either all 1’s, or all 0’s
(due to the clustering).

5. ON FLOATING-POINT NUMBERS
Observant readers may notice that the techniques we introduced of
using homomorphic encryption to do SUM and AVG only work
with integer types (For negative integers, one can use a “bias” to
reduce to the non-negative value case). For REAL or DOUBLE,
this is inherently much harder, due to the separation of the
“exponent” and the “significant” part of a number. Given that
floating point numbers are often a requirement, we now show how
the homomorphic approach can also be made to work on floating-
point numbers.

5.1 Some Observations and the Basic Idea
The IEEE 754 floating-point standard has single precision and
double precision number formats. Throughout this section, we
illustrate the ideas on single precision floating point numbers. With
straightforward changes they work with double precision as well.
The actual value of a single precision number is

, where the significant and
exponent parts are 23 and 8 bits, respectively.

(exp 127)(1) (1) 2s onentsignificant −− + ×

Observation 1: If we add two numbers that differ by at least 24 in
their exponents, the result is simply the bigger of the two numbers.
This is because when we shift the significant part of the number
with a smaller exponent to the right during the normalization step
of the addition, all significant bits are shifted out. For example,

 plus is simply , as their exponents
(15 and –9) differ by 24.

1522763.1 × 9218.1 −× 1522763.1 ×

Observation 2: SQL does not restrict the order of the numbers
upon which SUM or AVG is applied. In particular, if we knew the
maximum exponent in the list of numbers we are aggregating, we
would only need to consider the subset of numbers whose
exponents differ by no more than 23 from the maximum exponent.

This is interesting in two ways:
• It makes SUM and AVG faster and more efficient, if

significantly fewer numbers need to be summed due to this.
• As we describe next, it enables the homomorphic encryption

technique.

Note that computing SUM or AVG on the same set of numbers, but
in a different order, we may get a result of different precision. But
there is no requirement on how an order should be selected, and
even if we could determine an order, it might be impossible or very
inefficient to enforce it. We also note that in practical applications
an attribute with values whose exponents differ by 24 or more is
arguably rare. However we still need to be able to handle this case
for completeness.

For the sake of simplicity, we assume, for now, that the exponents
are almost uniformly distributed in [0, 255] (i.e. [-127, 128] after
subtracting the bias). Also, for now, we just consider positive
numbers (s=0). The idea is that we still use groups of encryption
blocks, similar to what we do to handle overflows in Section 3.

Let us consider one example of grouping. We may divide the
encrypted blocks into 32 groups (G0, …, G31), each covering 8
values of the exponent range [0, 255] (say, G0 covers [248, 255],
G1 covers [240, 247], and so on). Imagine that a predicate on
another column selects a subset of the encrypted column values to

be summed. The maximum exponent in this subset of values falls
in one of the groups, say Gi, according to the 8-value range that it
covers. Once we can determine that, we use only group Gi to
compute the sum using the algorithms we presented earlier. This is
shown in Figure 8. Thus there are two key questions:

1. What values are encrypted in each group?
2. How can one determine which group to use at run-time to
process a query given that values are encrypted?

……

G0 (for max. exp.
in [248,255])

G1 (for max. exp.
in [240,247])

G31 (for max.
exp. in [0,7])

Figure 8: Illustrating groups of encryption blocks for
floating-point numbers.

5.2 What Values Are in Each Group?
We start by answering the first question above. Let us consider
group Gi covering maximum exponent range [e, e+7]. From
Observation 2, in order for a set of numbers whose maximum
exponent is in [e, e+7] to use encrypted values in group Gi only, Gi
needs to contain all numbers whose exponents are in [e-23, e+7].
We encrypt the 24-bit significant part (the default leading bit “1”
and 23-bit significant part as in the IEEE 754 floating-point
standard) of these numbers normalized to having exponent e. That
is to say,

1. For a number whose exponent is exactly e, we encrypt its
24-bit significant as it is.
2. For a number with exponent)71(≤≤+ jje , its 24-bit
significant part is shifted left j bits (i.e., multiplied by 2j) and
then encrypted. Thus, we encrypt 24 + j bits.
3. For a number with exponent)231(≤≤− jje , its 24-bit
significant part is shifted right j bits (i.e., divided by 2j) and
then encrypted. Thus, we encrypt 24 - j bits.

For example, consider G0, which covers maximum exponent range
[248, 255]. For numbers with significant part S and with exponent
248, we simply put “ ” (24 bits) into a plaintext block for
encryption. (Note that the small circle denotes concatenation.) But
for numbers with exponent 249, 250, … and 255, we shift “ ”
left 1, 2, … and 7 bits, respectively; and for numbers with exponent
225, 226, … and 247, we shift “ ” right 23, 22, … and 1 bit(s),
respectively. We then put the “normalized” significant part into
plaintext blocks for encryption.

So1

So1

So1

Consider a list of floating-point numbers we want to sum. The
maximum exponent must fall in one of the groups. Once we can
discover the group, we can use that group only to compute the
significant value of the sum (with normalized exponent e), applying
our algorithms for summing integers. For example, suppose our list
of numbers to sum is 9 , , and . We first
determine that the maximum exponent (12) falls in group G

225.1 × 1225.1 × 62375.1 ×
14.

From the group partition we also know we need to normalize the
numbers to have exponent 9 before we add them up, by shifting the
significant part of the 2nd number left 3 bits and by shifting the

527

significant part of the 3rd number right 3 bits. We then encrypt the
normalized significant parts of group G14 using a homomorphic
scheme as described earlier (clearly we need to note the bit position
that separates the integer and fractional parts of the numbers).

Note that this process discards the numbers (if any) whose
exponents are too small to contribute to the sum.

5.3 Which Group to Use for a Query?
Now we tackle the second question in Section 5.1. First we must
realize that the trivial solution of storing the exponent of each value
and finding the maximum among the set of records being summed
is not secure because we cannot expose value range information.
Also decrypting each exponent at run-time would be too costly.

In the following, we use bitmaps and talk about them in terms of
the set of records that they represent. We will use set operators on
bitmaps. For example, U would correspond to bitwise OR. We use
[0] to denote a bitmap of all zeros.

Bitmaps are compact and their operations (such as bitwise AND)
are fast given today’s hardware. Suppose that we have a bitmap

 for each encryption group indicating which records are in
that group’s maximum exponent range (i.e., contains records
whose values’ exponents are in [e

iM iG

iM
i, ei+7]). Further, suppose that P

is the bitmap produced by evaluating a given query predicate. We
look for the smallest i, such that (Mi ∩ P) ≠ [0]. Recall that a
smaller index i corresponds to a group with higher exponent range.

To be more efficient, we use a binary search. Let the number of
groups be n. We define bitmaps , ,

. Note that . The
algorithm is as follows. We invoke it with parameters (0, n-1).

n 0 0S M= 1 0S M M= U 1

11 0 1n nS M M M− −= ...U U U 110 ... −⊆⊆⊆ nSSS

Once we determine which group to use, we need to determine all
the values in the group that are also in P . For this we need another
bitmap T for each group G . T contains the record positions of all
values in G that we need to consider (with exponents in [e

i i i

i i-23,
ei+7], and not just [ei, ei+7] as in M). Therefore, AND’ing T with

i i

P gives a bitmap of all the values that we should sum.

6. DISCUSSION
6.1 Other Operations
So far we only deal with SUM and AVG on a single (encrypted)
column. There are situations in which an application may require

an aggregate over a more complex expression. Consider the
following two queries:

Q1: SELECT SUM (2) FROM employees salary*
Q2: SELECT SUM () FROM products quantityprice*

For Q2, suppose the price column is encrypted, while the quantity
column is not. In many (though not all) cases, we can still apply
our techniques. For example, if the sum of an expression can be
converted to an equivalent expression on the sum of the column
(such as in Q1), then we can still use the techniques we introduced
to first compute the sum of the column. For Q2, if the quantity
column is of integer type, then we put it into the “weight matrix” of
Algorithm 3. Not all expressions can be handled this way. For
instance, suppose the quantity column were also encrypted, then
Q2 could not be processed using our algorithms.

For JOIN (which is beyond the scope of this paper), there are two
cases. If the join predicate is on a sensitive, encrypted column, then
handling this is an open question. As far as we know, none of the
existing solutions can completely handle this without decryption
(even with OPES). If the join predicate is not on a sensitive column
and the result set contains a column encrypted with a homomorphic
scheme, the database server may have to put “pointers” in the result
set, pointing to values at specific positions in ciphertext blocks
passed to the Key Holder (as a ciphertext block contains multiple
values).

6.2 Update and Storage
In the scheme we described, updates on individual values would
require a whole encryption block to be re-encrypted. The increased
cost does not include much I/O (as an encryption block is still
typically much smaller than a page), but consists mostly of re-
encrypting a block typically larger than an individual value (CPU
cost). However, this is not a serious issue for many OLAP
applications. Recall that data warehouse systems (e.g., C-Store) are
read-optimized. Analytical processing in decision support differs
from online transaction processing in that it involves very complex
queries (often with aggregates) and few or no updates [26]. Also,
updates in a system like C-Store are performed in large batches [4,
26]. Thus, individual updates are not a concern.

Algorithm BinaryFindGroup (low, high).
Input: P , , … .

0S 1−nS
Output: The group to use for SUM or AVG.

 If low , RETURN low. high≥
 Let

⎥⎦
⎥

⎢⎣
⎢ +

=
2

highlowi

 If P AND Si ≠ [0],
 Then RETURN BinaryFindGroup (low, i).
 Else RETURN BinaryFindGroup (i+1, high).
 End.

As discussed in Section 3.4, if the predicate in an aggregate query
is on the column being aggregated, we need to build an index on
that column which is encrypted with OPES. In this case the column
is encrypted in two ways. This does not affect query performance
(compared to a query with a predicate on a plaintext column), but
takes more disk space. It does not seem to be a serious issue as the
cost of disk space has been falling rapidly in recent years, and the
trend continues. In addition, the aggressive compression techniques
in C-Store allow us to support storing columns in different ways
(e.g., in different sort-orders) without an explosion in space [25].
However, if space is really an issue, we can resort to a sparse B+
tree index. C-Store organizes columns into projections (sets of
columns) and each projection has a sort-key [25]. We can sort the
sensitive aggregate column before applying homomorphic
encryption and then build a sparse page-level index over the
encrypted column. The first plaintext value of each page is also
OPES encrypted and the sparse index is built using those values as
keys. It is then clear how we can perform a range query with such
an index, and compute SUM or AVG afterwards. For example,
consider a range query such as “SELECT AVG(salary) FROM t1
WHERE salary > 60,000 AND salary < 500,000”. The initial
answer will be imprecise because the first and last pages used may

528

contain values outside the range. The database server must pass
these first and last pages to the Key Holder (as well as the total
number of values used for the tentative AVG result) for post-
processing to make the final result accurate.

6.3 Usage in Row Store Systems
Although we conducted the work in a column-oriented database
system, the same techniques can be applied to a row store system.
In a row store, the homomorphic encryption ciphertext would be
stored “outside” the table, much like an “index”, except that it is
for the computation of SUM and AVG, not for search.

7. EXPERIMENTS
7.1 Setup
Our experiments were conducted using C-Store on Debian Linux.
We implemented the generalized Paillier system using the GMP
library [28] (edition 4.2). We enhanced the C-Store code to support
encryption with different schemes, such as DES and generalized
Paillier. We also changed C-Store’s code for aggregates and
implemented and evaluated Algorithm 1, 2, and 3 as described in
the paper. The algorithms were implemented in C++. The
experiments were run on a Linux workstation with an AMD
Athlon-64 2Ghz processor and 512 MB memory.

The goal of the experiments is to verify the viability of the solution
in terms of performance (Certainly we have also verified that the
computation result is actually correct, i.e., consistent with that of
plaintext). To the best of our knowledge, using a homomorphic
scheme seems to be the only solution so far to securely compute
SUM and AVG without having access to the decryption key and
the plaintext. Yet it is still necessary to verify that the performance
of such a solution is acceptable.

7.2 Experiment 1
In this experiment, we evaluated the performance of an AVG query
on different database sizes but with fixed selectivity (25%) using
homomorphic encryption and Algorithm 2, with overflow handling
as described in Section 3.2. We compared its performance with the
C-Store system using both DES encryption and no encryption at
all. The plaintext of salary is generated uniformly at random in the
range of 20,000 to 200,000 (As the bulk of the computation is on
ciphertext, the performance does not have much dependency on the
actual plaintext values). We experimented on a category (1) query
SELECT AVG(salary) FROM employees WHERE age > ?, as
well as a category (2) query SELECT AVG(salary) FROM
employees WHERE salary > ?. The selectivity of the predicates in
both queries is fixed at 25%. The two categories are described in
Section 3.4 (i.e., based on whether it references an encrypted
column). One index is built on the plaintext age and another is built
on the salary column encrypted using an order-preserving scheme
[2]. As we discussed in Section 3.4, their query running times are
about the same since the selectivity is the same. Hence we only plot
one set of curves.

Figure 9 shows the result. We can see that, with a state-of-the-art
homomorphic encryption scheme (generalized Paillier), C-Store
runs slightly faster than using DES for encryption. This is due to
the saving in the decryption cost during execution. We see that the
cost of using homomorphic encryption, albeit lower than using
DES, is still much higher than that of the plaintext (i.e., when the
column is not encrypted at all). The reason is that although the

decryption cost is now constant, there is a cost of modular
multiplications, which is proportional to the number of records.
Dense packing of values in encryption blocks reduces the number
of modular multiplications. As expected, we find that the cost of
final decryption and addition at the Key Holder is negligible
compared to the whole cost. Thus we do not plot it separately.

7.3 Experiment 2
In contrast to the first experiment, we now fix the data size to be
50M records, but vary the selectivity of the predicates from 5% up
to 65% and compare the query run time using Algorithm 2 to that
of DES. The first two bars in each group of three bars in Figure 10
show the result.

We find that the performance difference (ratio) between DES and
generalized Paillier (using Algorithm 2) is quite consistent across
different selectivities. The reason is that with Algorithm 2, while
the decryption cost is constant, the modular multiplication cost is
proportional to the number of qualified records selected by the
predicates and is the dominant part of the CPU cost when the
number of records is large. With DES encryption, the CPU cost,
dominated by decryption, is also roughly proportional to the
number of qualified records.

7.4 Experiment 3
Experiment 3 is the same as the previous experiment, except that
we change Algorithm 2 to Algorithm 3 and look at the
improvement under different selectivities of the predicate (with the
same data size). Figure 10 also shows this result.

When the selectivity is low (25% or below), Algorithm 3 is no
better than Algorithm 2. In fact, the execution engine should revert
to Algorithm 2 when the resulting number of modular
multiplications from using Algorithm 3 is no smaller, as we
discussed in Section 4.2. When the selectivity is high (in our
experiment, 35% or more), Algorithm 3 begins to dominate, and we
can see that performance roughly “stabilizes” as the selectivity
goes up, whereas with Algorithm 2, the run time is proportional to
selectivity. This is the power of using randomness in Algorithm 3,
which we also mathematically analyzed in Section 4.2.

7.5 Experiment 4
We now try to evaluate the different choices of “segment” size in
Algorithm 3, in the same setting as experiment 3 with the
selectivity fixed to 50%. From Figure 11, we see that within the
range from 5 to 16 (for parameter s), the performance of Algorithm
3 is relatively insensitive to the segment size and is in the optimal
range. This matches our analysis in Section 4.2 (where we
computed that the optimal segment size to be 7).

7.6 Some Comments
Homomorphic encryption is still a very promising area in
cryptography. As cryptography advances, we expect to see more
advanced homomorphic schemes that are not only provably secure,
but also are faster than today’s schemes.

The speed of our algorithms crucially depends on the efficiency of
the underlying implementation of the big number arithmetic
library. In our case, we use the GMP library (edition 4.2), which is
generally believed to be fast. However, there is one potential
optimization on a large number of modular multiplications by using
the Montgomery algorithm [16], which is currently not done in
GMP. As GMP improves, we expect the performance of our
algorithms will improve accordingly.

529

Our encryption techniques are unique in their ability to compute
SUM and AVG at the server without needing to decrypt the
ciphertext. Without this ability, in the secure system model, we
would have to compute the SUM and AVG at the Key Holder,
which is in general infeasible due to the communication cost and
the computing resource constraints at the Key Holder. In order to
make this technique viable in practice, we need only show that the
performance of our algorithms is competitive with previous
approaches. The experiments clearly indicate that this is the case.

8. CONCLUSIONS
In this paper, we first discuss the choices of deploying encryption
in a consolidated environment of applications and databases. We

then point out a secure system model compliant to the
acknowledged security principles, including separation of duty. In
such an un-trusted server environment, we give a comprehensive
study for computing SUM and AVG using a secure modern
homomorphic scheme that operates in big blocks. Combining this
with other schemes that handle comparison and indexing (for other
query types), we approach a nearly complete solution.

9. ACKNOWLEDGMENTS & REFERENCES
This work was supported by the NSF, under the grants IIS-0086057
and IIS-0325838, and a gift from Vertica Systems, Inc.

0

5

10

15

20

25

30

35

40

5M 15M 25M 35M 45M 55M
Number of records

Q
ue

ry
 ru

nn
in

g
tim

e
(s

ec
on

ds
)

Plaintext
Paillier
DES

[1] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and
execution in column-oriented database systems. In SIGMOD 2006.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving
encryption for numeric data. In SIGMOD, 2004.

[3] A. Ceselli, E. Damiani, S. Vimercati, S. Jajodia, S. Paraboschi, and P.
Samarati. Modeling and assessing inference exposure in encrypted
databases,. In ACM TISSEC, 2005.

[4] S. Chaudhuri and U. Dayal, An overview of data warehousing and
OLAP technology, ACM SIGMOD Record, 26:1, 1997.

[5] I. Damgard, and M. Jurik: A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system, PKC 2001.

[6] DES. Data Encryption Standard. FIPS PUB 46, 1977.
[7] P. Gibbons and Y. Matias, New sampling-based summary statistics for

improving approximate query answers. In SIGMOD, 1998. Figure 9: Performance of Alg. 2 and comparisons.
[8] O. Goldreich. Foundations of Cryptography. Cambridge University

Press, 2003.
[9] S. Goldwasser and S. Micali. Probabilistic Encryption. In J. of

Computer and System Sciences, Vol. 28, April 1984.

0

10

20

30

40

50

60

70

80

90

5% 15% 25% 35% 45% 55% 65%

Selectivity

R
un

ni
ng

 T
im

e
(s

ec
on

ds
) DES

Alg. 2
Alg. 3

[10] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over
encrypted data in database-service-provider model. SIGMOD, 2002.

[11] H. Hacigumus, B. R. Iyer, and S. Mehrotra. Providing database as a
service. In ICDE, March 2002.

[12] H. Hacigumus, B. R. Iyer, and S. Mehrotra. Efficient execution of
aggregation queries over encrypted databases. In DASFAA, 2004.

[13] M. Kantarcioglu and C. Clifton. Security issues in querying encrypted
data. In IFIP WG 11.3 on Data and Applications Security. 2005.

[14] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin. Dynamic
Authenticated Index Structures for Outsourced Databases. SIGMOD
2006.

[15] M. Mitzenmacher, E. Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge Univ. Press, 2005.

[16] P. L. Montgomery, Modular Multiplication without trial division,
Mathematics of Computation, 44, pp. 519-521, 1985.

Figure 10: Algorithms under different selectivities.

[17] E. Mykletun, G. Tsudik. Aggregation queries in the database-as-a-
service model. IFIP WG 11.3 on Data and Application Security 2006.

0

10

20

30

40

50

60

3 5 7 16 32 64

Segment Size (s)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
) [18] P. O’Neil and D. Quass. Improved Query Performance with Variant

Indexes, In Proceedings of SIGMOD, 1997.
[19] Oracle Corporation. Database Encryption in Oracle 8i, August 2000.
[20] Oracle Corp. Oracle Database 10g Release 2, Database Vault. 2006.
[21] P. Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In EUROCRYPT'99, 1999.
[22] R. Rivest, L. Adleman, and M. Dertouzous. On data banks and privacy

homomorphisms. Foundations of Secure Computation, 1978.
[23] M. Roth, S. Van Horn: Database Compression. In SIGMOD, 1993.
[24] D. X. Song, D. Wagner, A. Perrig. Practical techniques for searches on

encrypted data. In IEEE Symp. on Security and Privacy, 2000.
[25] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M.

Ferreira, E. Lau, A. Lin, S. Madden, E. O'Neil, P. O'Neil, A. Rasin, N.
Tran, S. Zdonik. C-Store: A Column Oriented DBMS. In VLDB 2005.

Figure 11: Alg. 3 and different segment sizes.

[26] J. Widom, Research problems in data warehousing, In CIKM, 1995.
[27] http://db.csail.mit.edu/projects/cstore/.
[28] http://www.swox.com/gmp/.
[29] http://www.whitehouse.gov/pcipb/cyberstrategy-draft.pdf.
[30] http://www.vormetric.com/documents/FINALPart2Database
 EncryptionCoreGuardvsColumnLevelWhitePaper7.pdf.
[31] http://www.datafix.com/.

530

	1. INTRODUCTION
	1.1 Motivation
	1.2 System Model and the Problem
	1.3 Related Work
	1.4 Overview of Our Solution

	2. BACKGROUND
	2.1 Compression in C-Store
	2.2 Homomorphic Encryption

	3. A SOLUTION FOR SUM AND AVG
	3.1 The Basic Building Block
	3.2 Handling Overflows
	3.3 An Extension of Algorithm 1
	3.4 Handling Predicates
	3.5 Allowing Compression

	4. A RANDOMIZED ALGORITHM TO FURTHER IMPROVE PERFORMANCE
	4.1 The Randomized Algorithm
	4.2 The Analysis

	5. ON FLOATING-POINT NUMBERS
	5.1 Some Observations and the Basic Idea
	5.2 What Values Are in Each Group?
	5.3 Which Group to Use for a Query?

	6. DISCUSSION
	6.1 Other Operations
	6.2 Update and Storage
	6.3 Usage in Row Store Systems

	7. EXPERIMENTS
	7.1 Setup
	7.2 Experiment 1
	7.3 Experiment 2
	7.4 Experiment 3
	7.5 Experiment 4
	7.6 Some Comments
	8. CONCLUSIONS
	9. ACKNOWLEDGMENTS & REFERENCES

