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ABSTRACT  
As more sensitive data is captured in electronic form, security 
becomes more and more important. Data encryption is the main 
technique for achieving security. While in the past enterprises were 
hesitant to implement database encryption because of the very high 
cost, complexity, and performance degradation, they now have to 
face the ever-growing risk of data theft as well as emerging 
legislative requirements. Data encryption can be done at multiple 
tiers within the enterprise. Different choices on where to encrypt 
the data offer different security features that protect against 
different attacks. One class of attack that needs to be taken 
seriously is the compromise of the database server, its software or 
administrator. A secure way to address this threat is for a DBMS to 
directly process queries on the ciphertext, without decryption. We 
conduct a comprehensive study on answering SUM and AVG 
aggregation queries in such a system model by using a secure 
homomorphic encryption scheme in a novel way. We demonstrate 
that the performance of such a solution is comparable to a 
traditional symmetric encryption scheme (e.g., DES) in which each 
value is decrypted and the computation is performed on the 
plaintext. Clearly this traditional encryption scheme is not a viable 
solution to the problem because the server must have access to the 
secret key and the plaintext, which violates our system model and 
security requirements. We study the problem in the setting of a 
read-optimized DBMS for data warehousing applications, in which 
SUM and AVG are frequent and crucial. 

1.  INTRODUCTION 
1.1  Motivation 
In the past, enterprises were hesitant to implement database 
encryption because of the very high cost, complexity, and 
performance degradation. With the ever-growing risk of data theft 
and emerging legislative requirements like California’s SB 1386 
and NY State’s Information Security Breach and Notification Act, 
enterprises must now report any data breach that has happened 
when unencrypted data is compromised. Rather than risk public 
damage to a brand or legal and possibly government (FTC) 
intervention, database encryption is now a top priority [30]. 

There are a number of points of security attack in database systems, 
including storage media theft, application-level compromises, 
malicious DBAs, wiretapping client-server communication 
channels, key theft, and breaking into DBMS runtime environment. 
It was reported by several sources, including the draft of National 
Strategy to Secure Cyberspace announced by the White House 
[29], about 70% of security breaches are attributable to internal 
users. Thus, “separation of duty”, which involves having a separate 
Security Administrator (SA), has become a golden rule. The DBA’s 
role is to perform usual DBA tasks. The SA would administer 
privileges and permissions and manage keys and decryption, etc. 
For example, the “Database Vault” feature in a recent Oracle 
release [20] is such a step towards limiting a DBA’s privileges. 

1.2  System Model and the Problem 
Consider the issue of where to encrypt the data in a consolidated 
environment of applications and databases. We have two 
categories: “inside-the-box” and “outside-the-box” encryption. In 
the former, encryption and decryption are performed by the 
database server in its runtime environment (i.e., “the box”), which 
is managed and inspected by the DBA. In the latter, encryption is 
handled outside the database server environment. In light of the 
previous discussion, outside-the-box is certainly more desirable for 
security; frequently it is a must. Note that the security administrator 
(SA) is considered to be outside the “box” (i.e., outside the 
database server environment). When a client application itself 
performs encryption and decryption, the client takes the role of SA. 
Generally, we call the secure agent that handles encryption and 
decryption the Key Holder. We assume the adversary cannot 
compromise the Key Holder. This system model is shown in Figure 
1. 
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Figure 1: Illustrating the outside-the-box encryption model. The 
sensitive data at the server and on disk is encrypted (as shown in 
grey). 

519



Compared to inside-the-box encryption, this model has the 
following advantages in data security: 
• It follows the rule of “separation of duties”. The 

administrative and security duties are divided between the 
DBA and the SA. 

• Sensitive data from the DBMS logs, configuration files, 
temporary tables, memory, etc. is secure at the server. 

• Communication between the database server and outside 
environment is protected as well. 

• Key management becomes easier. Since the storage of keys is 
restricted to the Key Holder, we do not need to manage keys 
at the server. We do not need to deal with key theft at the 
server or key distribution in general. 

Note that the secure system model we described is simply a general 
abstraction of the data encryption part of the “Database-As-a-
Service” (a.k.a. database outsourcing) proposed in [11] (an 
example of such a business is [31]). Database outsourcing is an 
instance of the outside-the-box encryption due to the privacy and 
trust issues [3]. Outside-the-box encryption also implies that even 
when a database is not outsourced, we still have a separate entity, 
SA (who may not be the client and is certainly not the DBA), that 
handles encryption. Of course, database outsourcing also includes a 
usage model with issues besides data encryption. 

An equally critical issue is query processing in such a model. 
Clearly, it is desirable for most of the query processing to occur at 
the database server. One would also like to minimize the 
communication cost between the server and the Key Holder (say, in 
returning query results). However, it is difficult to process a query 
at a server that does not have access to the decryption key nor the 
plaintext. While there has been work on performing comparison 
and indexing directly on the ciphertext, thus handling some SQL 
query types, so far there is no general, secure solution for the SUM 
and AVG aggregate queries in such a system model. This paper 
gives a comprehensive solution to this problem. 

1.3  Related Work 
Pioneering work in this area includes [2, 3, 10, 12, 13, 14, 17, 24]. 
Most of this work shares the goal of supporting efficient query 
processing on encrypted data. Much of this research addresses the 
problem of indexing ciphertext. For example, Agrawal et al [2] 
propose an order preserving encryption scheme (OPES) by which 
indexes can be built directly on ciphertext. We can use this scheme 
in our “un-trusted server” model (with its assumption that the 
adversary does not know the plaintext value distributions). The 
authors of [2] state that OPES can handle directly (without 
decryption) any interesting SQL query types, except SUM and 
AVG. Indeed, any approach that can handle comparison and 
indexing on ciphertext likely has this property. Our techniques 
proposed in this paper are complimentary to theirs, and therefore, 
taken together, they provide a complete solution. As a matter of 
fact, in some column stores such as C-Store [25, 27], two 
ciphertexts for the same column can coexist redundantly. In 
general, only one ciphertext would be accessed for each query, thus 
the I/O cost stays about the same. Moreover, as pointed out in [4, 
26], SUM and AVG aggregate queries are very frequent and 
important in data warehousing, OLAP, and large database 
applications, the target of column-oriented (read-optimized) 
systems, such as C-Store [25, 27]. 

There have been proposals of using homomorphism in the database 
context. In particular, Hacigumus et al [12] propose to handle SUM 

and AVG using a particular homomorphic encryption function 
based upon the so-called Privacy Homomorphism [22]. The usage 
is simple and straightforward as each value is encrypted separately. 
Unfortunately, as pointed out by Mykletun and Tsudik [17], its 
encryption scheme is insecure, demonstrated by its vulnerability to 
a basic ciphertext-only attack. Instead, the authors in [17] describe 
a simple alternative for supporting aggregation queries assuming a 
bucketization scheme in [10] (i.e., splitting the attribute domain 
into a set of buckets). This essentially assumes two things: 

1. A bucketization scheme must be deployed at the server; 
2. The bucketization scheme is indeed secure. 

While assumption (1) indicates the usage limitation of this simple 
approach, there has been some work (e.g., [2, 13]) that negates 
assumption (2). Large buckets are not a feasible solution, as an 
equijoin becomes a cross-product of buckets, with the result size 
(and client effort) growing rapidly with larger buckets (as shown in 
[10]). On the other hand, a fine partitioning makes the scheme 
vulnerable to estimation exposure. The relative size of buckets 
reveals information about the distribution of the data. Moreover, 
relationships between fields in a tuple can be revealed. More details 
can be found in [2, 13]. Further, a fine partitioning also makes the 
solution in [17] for SUM and AVG very costly (in both 
communication and post-processing at the client), as one encrypted 
value for each potentially qualified bucket must be sent to the 
client for decryption. 

1.4  Overview of Our Solution 
In contrast to [12], we propose to use a secure modern 
homomorphic encryption scheme, which typically operates on a 
much larger (encryption) block size (say 2K bits) than single 
numeric data values. The simple solution of encrypting only one 
value in an encryption block, which makes it trivial to apply the 
homomorphic property for SUM and AVG, is highly inefficient 
Instead, we propose an interesting way to manipulate multiple data 
values in large encryption blocks. Such manipulation handles 
complex and realistic scenarios such as predicates in queries, 
compression of data, overflows, and more complex numeric data 
types (float), etc. Therefore, our work is the first comprehensive 
study of using a secure, modern homomorphic scheme to compute 
SUM and AVG in an un-trusted server environment. Specifically, 
our contributions are: 

• A solution for computing SUM and AVG queries in the 
described system model. The queries can be general (e.g., with 
predicates), and data can be first compressed, and then 
encrypted. 

• A randomized algorithm plus its analysis to improve the 
performance of our solution. 

• A technique for using this scheme on floating point numbers. 
• An actual implementation of a homomorphic encryption 

scheme and computation of SUM and AVG in a real database 
system. We then test the viability of the solution in terms of 
performance. 

The basic idea underlying our solution is to densely pack data 
values in an encryption block, and perform computation directly on 
the ciphertext using a secure homomorphic encryption scheme in a 
novel way. This approach fits with our system and security model 
because the database server performs the bulk of the computation 
without having access to the secret key or the sensitive data. In the 
end, a constant number of ciphertext blocks are passed back to the 
trusted agent (i.e., the Key Holder) to perform a final decryption 
and simple calculation of the final result. Moreover, because of the 
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dense packing of values to reduce the number of modular 
multiplications and the minimization of the number of expensive 
decryption operations, the performance is acceptable. We 
demonstrate that the performance of SUM and AVG with our 
approach is comparable to that of using a traditional symmetric 
encryption scheme, such as DES [6]. The latter is not a viable 
solution in our system and security model, as the database server 
must have access to the secret key or plaintext. 

We study the problem in the context of an open-source column-
oriented DBMS called C-Store [25, 27]. C-Store is a read-
optimized relational DBMS. The most salient difference between it 
and a traditional “row-store” is the way that it stores data by 
column rather than by row and the way that it uses sorting and 
compression [1, 25]. Our encryption techniques fit naturally with 
the design of C-Store. We will also discuss how to apply our 
techniques to row-store systems. 

The rest of the paper is organized as follows. In Section 2, we 
briefly introduce the background needed for the paper. We present 
our basic solution of doing SUM and AVG over encrypted data in 
Section 3. Section 4 presents a randomized approach to further 
improve our algorithm, and we then illustrate how we can apply 
our technique for floating-point data in Section 5. In Section 6, we 
discuss special usage scenarios, some other system aspects, and 
usage in row stores. And in Section 7 we show some experimental 
results to verify the performance viability of the solution. Finally, 
we conclude the paper and point out some future work in Section 8. 

2.  BACKGROUND 
2.1  Compression in C-Store 
In C-Store, data can be stored either uncompressed or compressed 
using one of the three compression methods: Run length encoding 
(RLE), Bitmap encoding, and Delta encoding [18, 23, 25]. Data 
compression can clearly save I/O cost, but it can also increase CPU 
costs if the database has to decompress a lot of data to process the 
query. The key to the high performance of C-Store is that it can 
often evaluate significant pieces of a query without decompressing 
the data [1]. 

When encryption is combined with compression, the data is first 
compressed using any of the C-Store compression schemes, and 
then an encryption algorithm is run on the compressed data. C-
Store’s goal is to evaluate queries without decompressing the data. 
Thus, in fact, our scheme often requires no decompression, and 
minimum decryption (at the end of query processing). 

2.2  Homomorphic Encryption 
Homomorphic encryption is a well-known technique in 
cryptography. The additive homomorphic property of a 
homomorphic cryptosystem is: 

  )()()( bencaencbaenc ×=+

where a and b are two plaintext message blocks, and “enc” is the 
encryption function that takes a plaintext message block (and an 
encryption key, which we omit) and returns the ciphertext block. 
Thus, it is clear that in the above equation, “ ” operates on the 
plaintext, and “×” operates on the ciphertext. An example of such 
an encryption scheme is the Paillier system [21]. In our 
experiments, we use a generalized version of the original Paillier 
system [5]. Such a system is provably secure under some number 
theoretic assumption, which is commonly regarded as more secure 
than those that are not provably secure (e.g., commonly used block 

ciphers), which are more prone to attacks as computational power 
improves. 

+

Homomorphic encryption has been used in voting systems, etc [5]. 
In this work, we use it to handle most of the computational work of 
SUM and AVG queries while keeping data in ciphertext form. The 
generalized Paillier cryptosystem suits our needs because other 
than the homomorphic property, it has a nice property that by 
dynamically adjusting the encryption block size, the ciphertext 
expansion factor can be close to 1. That is, there is a parameter s 
(proportional to the block size), such that the ciphertext expansion 
factor is 

s
s 1+ . For example, if , the expansion factor is 1.25. 

Clearly the bigger s is, the smaller the expansion factor. However, 
a large s value causes big encryption block size, which slows down 
cryptographic operations on the data. Thus there is a tradeoff. 

4=s

3.  A SOLUTION FOR SUM AND AVG 
3.1  The Basic Building Block 
In this section, we describe a simple basic building block, which 
uses the homomorphic encryption property to efficiently compute 
SUM or AVG over an encrypted column. For now we assume that 
there are no predicates in the query, nor any compression on the 
column (i.e., the encoding type is uncompressed). For example, 
SELECT AVG(salary) FROM employees, where salary is not 
compressed, but encrypted. 

Note that for a typical homomorphic encryption scheme, such as 
the generalized Paillier system, the size of a plaintext block has to 
be sufficiently big (e.g., at least 1024 bits) to be secure.  Thus we 
consider the operations ( ) as operating on big 
binary numbers. As a result, a plaintext block needs to hold more 
than one data value in general. For example, if the plaintext block 
size is 2048 bits, it should hold  integer values each 
of which is 32 bits. 

×+,,, decenc

6432/2048 =

We first show how we encrypt the data. Typically only a small 
fraction of the columns are sensitive and in need of encryption. 
One should be able to specify which columns to encrypt. In this 
way, a query referencing a non-sensitive column does not have to 
go through the expensive decryption operation on that column. Just 
as in Oracle [19], we provide column-level encryption. Recall that 
C-Store organizes and stores data column-wise. We subdivide the 
column data into encryption blocks which have to be relatively 
large (such as 2K bits) to be secure. Each such block, then,  
contains multiple column values. 

Let us illustrate this through an example. Suppose each plaintext 
encryption block can hold 64 data values, and the whole column of 
the table fits in 32K such blocks, which implies that the whole table 
has 64 * 32K = 2M records. We use the generalized Paillier scheme 
to do one encryption on each block, and get 32K ciphertext blocks, 
as shown in Figure 2. Suppose each value has 32 bits, then a block 
has 32 * 64 = 2K bits. In the encryption operation, each block is 
treated as a 2K bit number, and is converted to a ciphertext block. 
Note that in a plaintext block, we can imagine there is an invisible 
boundary between two values, each of which is 32 bits. But 
because each encryption block is treated as one big number during 
encryption, there are no value boundaries within a ciphertext block 
(i.e., it no longer holds that each 32-bit sub-block is the encryption 
of an integer, but rather, information of all values are “mingled” 
together). Next we give Algorithm 1 to compute SUM (illustrated 
in Figure 2), followed by a toy example (Figure 3). 
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Figure 2: Organizing values into encryption blocks, encrypting using 
the generalized Paillier scheme, and using Algorithm 1 to sum them. 
The left-hand side is plaintext. Each block is shown as one row, 
containing 64 actual values. Encryption treats each block as one large 
2K bit number, and converts the 32K plaintext blocks into 32K 
ciphertext blocks on the right-hand side.  The product of the 32K 
ciphertext large numbers, when decrypted back, corresponds to the 
sum of the 32K plaintext large (2K-bit) numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that in step 3, this algorithm produces the sums of the vertical 
slices through each block (i.e., the sums of the i’th position in each 
block). The algorithm assumes for now that these sums do not 
overflow the 32 bit representation for integers. We will relax this 
shortly. 

Figure 3 shows a toy example in which we have 3 encryption 
blocks (n=3), each containing 4 values (k=4). As we discussed, in 
an actual system, n and k are much bigger. Step 0 is the encryption 
of plaintext blocks (left side) to ciphertext (right side). Step 1,2, 
and 3 roughly correspond to the same step numbers used in 
Algorithm 1. In step 1, we do a modular multiplication on the 
ciphertext blocks, followed by a decryption of the product in step 2. 
Finally in step 3 we split the resulting plaintext block into 4 (i.e., k) 
values (18,15,10, and 22), corresponding to the sums of the four 
vertical slices of the three plaintext blocks. Thus adding them 
together produces the total sum, 65. 

 

 

 

 

 

 

 

 

 

 

Theorem 1:  Assume no “overflow” when adding up a vertical 

“slice” to get ∑  (for 
=

n

i
ijv

1

kj ≤≤1 ). That is, ∑ does not overflow 

the number of bits for each value in a block, thus no carry bits 
between vertical slices (See Figure 2). Algorithm 1 correctly 
computes the sum of all 

=

n

i
ijv

1

kn ⋅  values. 

Proof: Let pi ( ni ≤≤1 ) be the i’th plaintext block, i.e., 
. From homomorphic property, after step (2) of 

the algorithm, . Because of the 

assumption of no overflow between slices, . 

Thus, finally the output .                                 ■ 

ikiii vvvp ooo ...21=

∑ ∑
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=

∑∑∑
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j
ij
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1 11

In Algorithm 1, we only do one decryption in step (2), and n-1 
modular multiplications (a multiplication is much cheaper than 
decryption), as opposed to having to decrypt every data value if we 
were not using a homomorphic encryption scheme.  It is clear that 
the computation of AVG would be similar. 

Note that the heavy computation work happens in step (1) (where n 
can be huge) and is carried out at the database server in the system 
model described in Section 1. Steps (2), (3), and (4) beginning with 
a decryption are executed at the secure agent (Key Holder). 

3.2  Handling Overflows 
In Theorem 1 we made an assumption that there is no overflow in 
the sums of vertical slices. However, overflows are possible. If 
overflows did happen, there would be carry bits between two 
vertical slice boundaries when the plaintext blocks are added up. 
Whether or not overflows happen depends on the actual value 
range, and the number of records. 

Example 1.  Suppose the average value in each vertical slice is 
within 1024, and the column type is INT (32 bits).  This allows us to 
have 

M4
1024
232

=
 encryption blocks. If each block has 64 values, there 

can be 256M values. Even un-compressed, the table can have 
256M records. Compression allows even more records to be 
accommodated.                                                                 ■ 

The above suggests that overflow may be rare, yet we still need to 
handle it. One approach is to simply leave some extra space 
preceding each plaintext value in an encryption block. This 
approach, albeit simple, has the downside of increasing the 
ciphertext size. A more sophisticated approach is to organize the 
encryption blocks into groups, shown next. 

Algorithm 1. 

Input:  (for i=1,…,n), each of which is the encryption of a 
block of k values v (for j=1,…,k), decryption key K. 

ic

ij

Output: The sum of all  values:  kn ⋅ ∑
ji

ijv
,

(1) Compute . Note that under the generalized 

Paillier cryptosystem, these are modular multiplications. 

∏
=

=
n

i
icc

1

(2) Compute s , the decryption of c using key K.),( cKdec=
(3) Split s into k values of equal bit length si (for i=1,…,k), 

such that , where the operator o  is “bit-
string concatenation” treating s

kssss ooo ...21=

i as a bit-string (instead of 
a binary number). 

(4) Output ∑ (treating s
=

k

i
is

1

i as a binary number). 

5 8 6 1

9 2 3 11 

4 5 1 10 

18 15 10 22 

1000100……1110 

0110011……0101 

1011000……1011 

0110101……1101 

+ ×  

18+15+10+22 = 65 

Step 0 

Step 1 

Step 2 

Step 3 

Figure 3:  An illustrative toy example of Algorithm 1. 

V64

V128

32K’th  
block 

encrypt 

1st block C1 V1 V2 

2nd block V65 C2 

C32K
+  ×  

sum product 
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As illustrated in Figure 4, Algorithm 1 is applied within each 
group. Each group is similar to what is shown in Figure 2. The 
difference is that we also maintain a row vector of partial sums 
(sums of values in each vertical slice) for each group. In the 
ciphertext world, the row vector corresponds to the (modular) 
product of the ciphertext blocks in the group. Thus, in Figure 4, for 
each of the two groups, we only show its plaintext representation. 
We dynamically maintain the partial sums row vector during the 
insertion of values. By keeping track of the sums of vertical slices 
we ensure that no overflow happens for each slice of a group. We 
stop filling a slice when the next value v would cause it to 
overflow. In such a case, we try to place v in the next slice (to the 
right). This continues until v cannot be placed in any slice which 
means that the group is full. When a group is full, a new one is 
created. Thus this approach has less overhead on ciphertext size 
and is more efficient in I/O. In the toy example of Figure 3, in the 
plaintext (left side), the (18, 15, 10, 22) row vector is what we 
maintain on the side when we encrypt values. Suppose the capacity 
of each of the four positions is 25, and the next value to insert is 8. 
Then the first vertical slice would overflow (18+8 > 25) if we put 
the new value there. Hence we put the new value into the second 
slice and the partial sum row vector becomes (18, 23, 10, 22). 

 

 

 

 

 

 

 

 

 

We note that the overflow handling technique introduced in this 
section applies to the general cases discussed in the following 
sections as well. We do not explicitly show it in the algorithms for 
simplicity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3  An Extension of Algorithm 1 
A typical query will select a subset of the rows of a table and then 
aggregates over that subset. Therefore, in this context some values 
in a block have no contribution to the sum. Moreover, in many 
columns, some values may appear many times and a compression 
method, such as Run Length Encoding, makes it easy to know the 
number of repetitions. We can capture this by associating an 
integer weight with each value to be summed. We extend 
Algorithm 1 and add a “weight matrix”, as shown in Figure 5. Each 
value in the plaintext blocks has a weight specified by an integer at 
the corresponding position in the weight matrix, and we want to 
compute the weighted sum, i.e., the sum of each value multiplied 
by its weight. Interestingly, this small extension works for 
predicates in queries as we will discuss in Section 3.4 and for 
compressed data. The following algorithm describes the extension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2. 

Input:  (for i=1,…,n), each of which is the encryption of a 
block of k values  (for j=1,…,k) of the same bit 

length, decryption key K, and the weight matrix  w

ic

ijv

ij 
(for i=1,…,n, j=1,…,k). 

Output: The weighted sum of all  values: kn ⋅ ij
ji

ij wv ⋅∑
,

 

(1) sum = 0 
(2) For each vertical slice j = 1 to k, do 

(3) Compute .  Note that in the 

generalized Paillier cryptosystem, these are modular 
multiplications and exponentiations. 

∏
=

=
n

i

w
i

ijcc
1

(4) Compute ),( cKdecs = , the decryption of c using 
key K. 

(5) Split s into k values of equal bit length s )1( ki

The complication here is that each of the k values in an encryption 
block in general has different weights, thus we cannot simply raise 
the ciphertext block to a power of a uniform weight. Instead, we do 
it in k loops, and the j’th loop takes the j’th value in “s” and 
discards the rest. In the toy example of Figure 3, suppose the 1st 
column of the weight matrix is 2, 0, 1, the 2nd column is 1, 3, 0, the 
3rd is 1, 2, 5, and the last column is 6, 0, 1. Let the three blocks 
(rows) of ciphertext be c1, c2, and c3. Then Algorithm 2 proceeds in 
four loops (one for each vertical slice). In the 1st loop, we compute 

1, decrypt it, and then only take the value in the 
1

3
0

2
2

1 )()()( cccc =
st position (i.e., s1 in step 5 and 6 of the algorithm). As we will 

show in Theorem 2, indeed , the weighted 
sum of the first vertical slice of the plaintext in Figure 3. In the 
same manner, the 2

141409251 =×+×+×=s

nd loop starts by computing , 
and so on. After four loops, we get the weighted sum of the 12 
values. 

0
3

3
2

1
1 )()()( cccc =

k positions 

Group 1: b blocks 

Group 1 partial sums 

S1 Sk

Group 2 

Group 2 partial sums 

i ≤≤ , 
i.e., s ksssFigure 4: Organizing encryption blocks into groups. ooo ...21= . 

(6)  
jssumsum +=

(7) End For loop. 
(8) Output sum. 

32K’th  
block 

encrypt 

C1 

C2 

C32K

1st block 

2nd block 
V65

V1 V2 V64

V128

+  ×  

Weight Matrix

)3(

)8(

)1(

sum product 

Figure 5: Illustrating Alg. 2, computing the 1st vertical slice.
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Theorem 2:  Assume there’s no “overflow” when adding up a 
vertical “slice” to get ∑  (for ). That is, ∑  

does not exceed the space for each value in the plaintext encryption 
block (See Figure 5). Algorithm 2 correctly computes the weighted 
sum . 

=

⋅
n

i
ijij wv

1

kj ≤≤1
=

⋅
n

i
ijij wv

1

ij
ji

ij wv ⋅∑
,

Proof Idea:  The idea of this proof is similar to that of Theorem 1, 
so we omit the details. One additional point is that the 
homomorphic property states that )()()( bencaencbaenc ×=+ , it 

follows , where the modular exponentiation 
operates on the ciphertext. Algorithm 2 has k loops (outer loop), 
and each loop computes a partial weighted sum of a vertical slice in 
Figure 5. Thus, the j’th loop takes the j’th value in “s” and discards 
the rest.                                                                                  ■ 

waencwaenc ))(()( =×

Note that compared to encryption or decryption, modular 
multiplication is much cheaper. We will discuss the performance 
improvement in Section 4. Also note that when we implement 
Algorithm 2, we can carry out the k loops in parallel, i.e., 
incrementally compute the k products at the same time block by 
block. Thus we only need to read the ciphertext from the disk once. 

3.4  Handling Predicates 
We discuss how to use Algorithm 2 to handle predicates in the 
query. We classify predicates into two categories: (1) those that do 
not reference a sensitive, encrypted column and (2) those that do. 

Example 2. Suppose we have a schema: Employees (name 
VARCHAR(50), age INT, salary INT ENCRYPTED, company 
VARCHAR(50)), where only the “salary” column is encrypted. 
Consider these queries: 

Q1: SELECT AVG(salary) FROM employees WHERE 
 age > 35 AND company = ‘SUN’ 

Q2: SELECT AVG(salary) FROM employees WHERE 
 salary > 60000 AND company =’MICROSOFT’ 

Using our classification, Q1’s predicates are in the first category, 
while Q2 has a predicate in the second category.                   ■ 

We first consider the case in which all predicates are in the first 
category. Many DBMS’s support bitmap indices. Evaluating a 
predicate on a column with a bitmap index results in a bit-string, in 
which each bit indicates whether a row in the table is qualified (1 
indicates the record is qualified, and 0 otherwise). Then this bit-
string is used to “mask” the aggregated column (salary), and the 
resulting aggregate is computed over the masked rows. It is easy to 
see how we can derive this bit-string with other forms of index as 
well. In our context, this bit-string is essentially a one-dimensional 
form of the “weight matrix” in Algorithm 2 (treating each bit value 
0/1 as the weight of the attribute value). That is, we have 1’s and 
0’s in the weight matrix. It is easy to verify that Algorithm 2 indeed 
computes the correct SUM (likewise, AVG) of the qualified 
records. Note that the weight matrix of Algorithm 2 does not 
necessarily require extra space overhead since it is simply the bit-
string that the DBMS (e.g., C-Store) would compute anyway as a 
result of predicate evaluation. 

In the toy example of Figure 3, we have 12 attribute values, thus 12 
records in the table. Suppose the first 4 records use the 1st 
encryption block to store salary, the next 4 records use the 2nd 
encryption block, and so on. Suppose evaluating a predicate results 

in a 12-bit bit-string 1001,0110,1000, indicating that records 1, 4, 
6, 7, and 9 satisfy the predicate. Then the weight matrix derived 
from the bit-string, in row major form, is (1,0,0,1; 0,1,1,0; 1,0,0,0). 

For a query that has a predicate of category 2 (such as Q2 of 
Example 2), the encrypted column in the predicate may or may not 
be the column being aggregated. Like a plaintext column, an index 
can be built on the encrypted column using a scheme that handles 
indexing on ciphertext (discussed in Section 1.3). Note that if the 
column in the predicate is also the one being aggregated (such as 
Q2), the sensitive column is encrypted differently for SUM/AVG 
(using a homomorphic scheme) than in the index. Now the 
predicate can be evaluated efficiently without decryption, resulting 
in a bit-string just as a category 1 predicate does. Then we proceed 
using Algorithm 2 to compute the SUM/AVG. We will discuss 
issues such as storage and updates in Section 6.2. 

Let us illustrate this through Q2 of Example 2. We build an index 
on the salary column. In the index, values are encrypted using 
OPES [2]. There is also an index on the plaintext company column. 
The salary column is also encrypted using a homomorphic scheme 
as described. Using the 1st index to evaluate the predicate 
salary>60000 results in a bit-string B1 indicating which records 
satisfy this predicate. Similarly, using the 2nd index for company 
=’MICROSOFT’ will result in a bit-string B2. Let B be the bitwise 
AND of B1 and B2. Then we treat B as the weight matrix and 
proceed using Algorithm 2. 

Since the index is directly built on the ciphertext and searching it 
does not involve decryption, searching an index on ciphertext has 
the same cost as searching a plaintext index. Therefore, the query 
performance is exactly the same as a query with a category 1 
predicate with the same selectivity. 

For a group-by query: 

SELECT AVG(salary) FROM employees GROUP BY company 

We can use the index on company to get a bit-string for each 
distinct company value. Again we use each of those bit-strings to 
compute the AVG of a group. Now, suppose the query also has a 
HAVING clause: 

SELECT AVG(salary) FROM employees GROUP BY company 
             HAVING AVG(salary) > 60000 

Then the index on ciphertext would not help us on the HAVING 
clause here. What the database server gets from a homomorphic 
scheme is simply a ciphertext AVG value for each company. For 
such a query, we have to resort to a post-processing step at the Key 
Holder to filter out some groups after decryption. We assume, 
however, that the number of possible groups is manageable. 

3.5  Allowing Compression 
A sensitive column can be first compressed by any encoding type 
supported by C-Store, and then encrypted using a homomorphic 
scheme; we show how we can still use Algorithm 2 to compute 
SUM or AVG efficiently. Thus we save both I/O costs (by 
compression) and CPU costs (by avoiding decompression and by 
minimizing the number of decryptions). 

In Section 2.1, we mentioned the three compression methods that 
C-Store supports. We first consider a sorted column encrypted after 
being RLE compressed. Recall that the RLE compression produces 
pairs (v, n), where v is the data value, and n is the number of 
repetitions. We put all v values from the pairs in the encryption 
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blocks and encrypt them separately as described earlier using a 
homomorphic scheme. The n values go into the weight matrix and 
are either encrypted separately, or are left in the clear, depending 
on the security requirement of the application. It is clear that 
Algorithm 2 gives the correct result. Note that the weight matrix of 
Algorithm 2 does not have extra space overhead here as well, as it 
is part of the representation of compressed data. 

A similar approach also applies to Bitmap encoding (which has a 
value part and bitmap). We encrypt the value parts together in 
blocks, and by simply counting the set-bits in the bitmaps we get 
the weights. 

Delta encoding is a little different. In Delta encoding, we have a 
sequence of values (base, inc1, inc2,…, incn) corresponding to the 
n+1 actual values in the column: base, (base+inc1), 
(base+inc1+inc2),…, and (base+inc1+ …+incn). Their sum is 

. Therefore, we can 
simply put (base, inc

1...)1()1( 21 ×++−×+×++× nincnincnincnbase
1, inc2,…, incn) sequences in encryption 

blocks, and n+1, n, n-1, …, 1 in the weight matrix. Figure 6 
illustrates this. 

 

 

 

 

 

Finally, we can combine the discussions in Section 3.4 and 3.5.   
We allow data to be compressed and encrypted, and queries to have 
predicates. It is analogous to the case of having predicates with 
uncompressed data that we discussed in Section 3.4: some of the 
weight values resulting from compression are reduced (possibly not 
all the way to 0), as some records are filtered out by the predicates. 

Note that in the system model of Section 1, the database server 
passes a constant number (k) of ciphertext blocks to the secure 
agent (Key Holder), which does the final decryption and addition. 

4.  A RANDOMIZED ALGORITHM TO   
FURTHER IMPROVE PERFORMANCE 

We introduce and analyze a randomized technique to further 
improve the performance of Algorithm 2. 

4.1  The Randomized Algorithm 
Recall what happens in Algorithm 2. We have k rounds (where k is 
the number of column values in an encryption block), and in each 
round we essentially compute a partial sum over a vertical slice of 
the plaintext values. For simplicity of presentation, we show the 
algorithm for uncompressed columns and with predicates in the 
query. This can be easily extended to include compression types. 

The cost of Algorithm 2 is: a constant number (k) of decryptions 
plus  modular multiplications, where n is the number of 
encryption blocks, and p is the combined selectivity of the 
predicates. We can see that, as the number of records in the table 
grows, n grows, hence the cost of the modular multiplications 
grows linearly, whereas the cost of the decryptions stays constant. 
Therefore, a mechanism to further lower the cost of the modular 
multiplications would give us additional benefit. Our randomized 
algorithm does just that by exploiting pre-computation and sharing 

of intermediate results among sub-tasks. In Section 4.2, we present 
a probabilistic analysis of this algorithm. 

pkn ⋅⋅

The high level idea is that we divide the encryption blocks into 
groups each of size s (encryption blocks). We call each of these 
groups a segment. The computation of all k vertical slices is carried 
out in parallel one segment after another. For each segment, using 
the same amount of space as the original ciphertext (s blocks), we 
pre-compute and store s modular multiplications of uniformly 
random subsets of the s blocks (i.e., s product values out of the 

values in total). Accordingly, for each product, we store an s-bit 
value identifying the subset (a “1” in i’th bit indicates the i’th block 
of the segment gets selected to be in the subset and included in the 
precomputed product). The computation of each vertical slice 
within a segment tries to use both the pre-computed values, and the 
results of already computed vertical slices within the segment. Note 
that as in Algorithm 2, a slice corresponds to a slice of “weights”, 
or in the plaintext world, a slice of values to be summed. In the 
ciphertext world, the multiplication is always carried out on the 
whole “wide” ciphertext blocks. Figure 7 shows pictorially how the 
computation of k vertical slices proceeds in a parallel manner. The 
algorithm follows. 

s2

base inc1 inc2
 

base base+inc1 base+ inc1 +inc2  Segment 1

 base x 3 inc1 x 2 inc2 x 1 
 

Segment 2Figure 6:  Using Alg. 2 for encrypted and Delta-encoded data. 
 

 

 

 

 
Figure 7:  Illustrating parallel computation of vertical slices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3. 

For each segment, 
    For i from 0 to k-1, (each vertical slice) 
        From the 0/1 weight matrix in Alg.2, extract an s-bit 
             value t (i.e., the actual subset to be multiplied)  
             corresponding to this segment and vertical slice. 
       Consider s+i (s-bit) values b  which  )10( −+≤≤ isjj

             are the s values identifying the pre-computed subsets 
             and i values identifying the actual subsets computed 
             for previous slices (in previous i loops).  Find one 
             value b  with minimum Hamming distance with t. *

        From the product value identified by b , which is  *

             either pre-computed or computed in previous i loops,  
             derive the needed product identified by t.   
             Specifically, if b  and t  match exactly, nothing  *

             needs to be done. Else, for a bit change 0 1 from  
             *b  to t, we multiply some ciphertext block value; 
             for a bit change 1  0, we multiply the (modular)  
             inverse of some value (which is also pre-computed). 
    End for i loop. 
    Accumulate k product values (one for each vertical slice)  
    across segments (by doing multiplications). 
 
End for each segment. 
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In Algorithm 3, to compute a product block value corresponding to 
some vertical slice, we look at two sources for speedups: 

1. s pre-computed product values for the segment 
2. i product values just computed for previous slices of the 

same segment (in previous loops; i is the loop index). 

We look for the “closest” match from these two sources by 
comparing the identifying bitmaps to find the minimum Hamming 
distance. For a bit difference, we either need to do a modular 
multiplication (for a 0 1 change) or a modular division (i.e., 
multiplying the inverse, for a 1 0 change). 

We show a toy example. Let k=4, as the example in Figure 3. But 
unlike Figure 3, we have many more blocks, and let the segment 
size s=4. Consider the 1st segment. Let the four blocks of ciphertext 
in this segment be c1, c2, c3, and c4. Let the first four rows of weight 
matrix in Algorithm 2 or 3 (corresponding to this segment) be 

0101
0111
1010
1101 .  Let  be the pre-computed modular products of 

uniformly random subsets of the 4 ciphertext blocks. The 1
32

41

321

42

cc
cc
ccc

cc

st 
column of the weight matrix indicates we need to compute c1c3c4. 
By seeking the minimum Hamming distance, we know we can use 
the pre-computed c1c4 and multiply it by c3. The 2nd column of the 
weight matrix requires computing c2c3 and that is immediately 
available from the same pre-computation. The 3rd column requires 
computing c1c3c4 again and that is available as we just got it for the 
1st column (i.e., in a previous i loop of algorithm 3). The 4th column 
requires computing c1c2 and we obtain it from (c1c2c3)/c3. Likewise, 
Algorithm 3 then proceeds to the next segment for the k products. 

4.2  The Analysis 
We next analyze the cost of Algorithm 3. We first compute the 
expected number of modular multiplications M  that it needs to 
perform per segment. Let 

iM  denote the number of multiplications 
performed for vertical slice i of the segment. We have, 
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0
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i
 is a discrete random variable with non-negative values, we 

have (from [15])
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Let random variables  denote the Hamming distance between 

the s-bit value t (identifying the i’th vertical slice) and value 
 as described in Algorithm 3. Thus from 

Algorithm 3, we have 
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where the last equality follows from the fact that the s pre-
computed subset products are chosen uniformly at random, and we 
assume the subset identifiers of already computed vertical slices are 
also uniformly random. As we’ll discuss later, we may make them 

                                                 
1 Intuitively, for r from 1 upwards, accumulatively,  is the 

probability that we add 1 to the expectation. 
)(Pr rMi ≥

correlated to further enhance performance, but that can only reduce 
the total number of multiplications. 

To compute ], imagine that we fix the s-bit value t 

(identifying the i’th vertical slice), and enumerate the cases that the 
uniformly random value  differs from t.  Thus, 
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Finally, combining (1) to (4), we have, 
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From (5), we can compute the expected number of multiplications 
within a segment, given k, s values. Now suppose the previous 
Algorithm 2 were used, it is easy to see that the number of 
multiplications within a segment would be psk ⋅⋅ , where p is the 
combined selectivity of all predicates on other columns. Likewise, 
for Algorithm 3, from (5), we can further compute a “percentage” 
value 

sk
ME
⋅

)( , and compare it with p. Actually, to be precise, we also 

need to count the cumulative multiplications “across” segment 
boundaries. For an upper bound, we simply assume every vertical 
slice of a segment is a non-empty subset (product). Hence the 
additional percentage due to this is no more than 

sksn
kn 1

=
⋅⋅
⋅ , 

where n is the total number of segments. Therefore, the 
multiplication percentage of Algorithm 3, , satisfies *p

 
ssk

MEpE 1)()( * +
⋅

≤  

For a given k value, we can determine the optimal s value (segment 
size) that minimizes the  value bound (A simple program will 
do). For example, if k=64, the best upper bound is 0.27 when s=7. 
Therefore, on average, when the combined selectivity of predicates 
on other columns is greater than 0.27, Algorithm 3 performs better 
than Algorithm 2. The nice thing about it is that regardless of how 
close the selectivity is to 1, Algorithm 3 “stabilizes” the number of 
multiplications, as if the selectivity were staying at 0.27. In 
contrast, Algorithm 2 will proportionally perform a lot more 
multiplications as the selectivity increases. 

*p

Algorithm 3 typically reads a subset of pre-computed s products, 
and a small fraction (

sk
M
⋅

, which has expected value 0.12 in the 

example of k=64 and s=7) of the original ciphertext block values 
(or the inverse). At run time, according to the actual selectivity of 
the predicates, we can compare the costs and decide whether to 
kick off Algorithm 3 for a segment, or just use Algorithm 2. For 
example, when the selectivity is very low, Algorithm 2 performs 
fewer multiplications and is chosen. 

Note that we could further improve Algorithm 3 using other 
techniques. For instance, if we know a predicate is most likely on 
some column, we can organize encrypted column values in the 
vertical slices by clustering on the “predicate column”. This way, 
even though the bit vectors of the vertical slices are not uniformly 
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random, “reuses” of product values are much more likely because 
the k target subset identifiers probably have either all 1’s, or all 0’s 
(due to the clustering). 

5.  ON FLOATING-POINT NUMBERS 
Observant readers may notice that the techniques we introduced of 
using homomorphic encryption to do SUM and AVG only work 
with integer types (For negative integers, one can use a “bias” to 
reduce to the non-negative value case). For REAL or DOUBLE, 
this is inherently much harder, due to the separation of the 
“exponent” and the “significant” part of a number. Given that 
floating point numbers are often a requirement, we now show how 
the homomorphic approach can also be made to work on floating-
point numbers. 

5.1  Some Observations and the Basic Idea 
The IEEE 754 floating-point standard has single precision and 
double precision number formats. Throughout this section, we 
illustrate the ideas on single precision floating point numbers. With 
straightforward changes they work with double precision as well. 
The actual value of a single precision number is 

, where the significant and 
exponent parts are 23 and 8 bits, respectively. 

(exp 127 )( 1) (1 ) 2s onentsignificant −− + ×

Observation 1:  If we add two numbers that differ by at least 24 in 
their exponents, the result is simply the bigger of the two numbers. 
This is because when we shift the significant part of the number 
with a smaller exponent to the right during the normalization step 
of the addition, all significant bits are shifted out. For example, 

 plus  is simply , as their exponents 
(15 and –9) differ by 24. 

1522763.1 × 9218.1 −× 1522763.1 ×

Observation 2:  SQL does not restrict the order of the numbers 
upon which SUM or AVG is applied. In particular, if we knew the 
maximum exponent in the list of numbers we are aggregating, we 
would only need to consider the subset of numbers whose 
exponents differ by no more than 23 from the maximum exponent. 

This is interesting in two ways: 
• It makes SUM and AVG faster and more efficient, if 

significantly fewer numbers need to be summed due to this. 
• As we describe next, it enables the homomorphic encryption 

technique. 

Note that computing SUM or AVG on the same set of numbers, but 
in a different order, we may get a result of different precision.  But 
there is no requirement on how an order should be selected, and 
even if we could determine an order, it might be impossible or very 
inefficient to enforce it. We also note that in practical applications 
an attribute with values whose exponents differ by 24 or more is 
arguably rare. However we still need to be able to handle this case 
for completeness. 

For the sake of simplicity, we assume, for now, that the exponents 
are almost uniformly distributed in [0, 255] (i.e. [-127, 128] after 
subtracting the bias). Also, for now, we just consider positive 
numbers (s=0). The idea is that we still use groups of encryption 
blocks, similar to what we do to handle overflows in Section 3. 

Let us consider one example of grouping. We may divide the 
encrypted blocks into 32 groups (G0, …, G31), each covering 8 
values of the exponent range [0, 255] (say, G0 covers [248, 255], 
G1 covers [240, 247], and so on). Imagine that a predicate on 
another column selects a subset of the encrypted column values to 

be summed. The maximum exponent in this subset of values falls 
in one of the groups, say Gi, according to the 8-value range that it 
covers. Once we can determine that, we use only group Gi to 
compute the sum using the algorithms we presented earlier. This is 
shown in Figure 8. Thus there are two key questions: 

1. What values are encrypted in each group? 
2. How can one determine which group to use at run-time to 
process a query given that values are encrypted? 

 

 

 

 

 

 

 

 

……

G0 (for max. exp. 
in [248,255])

G1 (for max. exp. 
in  [240,247]) 

G31 (for max. 
exp. in [0,7]) 

Figure 8:  Illustrating groups of encryption blocks for 
floating-point numbers. 

5.2  What Values Are in Each Group? 
We start by answering the first question above. Let us consider 
group Gi covering maximum exponent range [e, e+7]. From 
Observation 2, in order for a set of numbers whose maximum 
exponent is in [e, e+7] to use encrypted values in group Gi only, Gi 
needs to contain all numbers whose exponents are in [e-23, e+7]. 
We encrypt the 24-bit significant part (the default leading bit “1” 
and 23-bit significant part as in the IEEE 754 floating-point 
standard) of these numbers normalized to having exponent e. That 
is to say, 

1. For a number whose exponent is exactly e, we encrypt its 
24-bit significant as it is. 
2. For a number with exponent )71( ≤≤+ jje , its 24-bit 
significant part is shifted left j bits (i.e., multiplied by 2j) and 
then encrypted. Thus, we encrypt 24 + j bits. 
3. For a number with exponent )231( ≤≤− jje , its 24-bit 
significant part is shifted right j bits (i.e., divided by 2j) and 
then encrypted. Thus, we encrypt 24 - j bits. 

For example, consider G0, which covers maximum exponent range 
[248, 255]. For numbers with significant part S and with exponent 
248, we simply put “ ” (24 bits) into a plaintext block for 
encryption. (Note that the small circle denotes concatenation.)  But 
for numbers with exponent 249, 250, … and 255, we shift “ ” 
left 1, 2, … and 7 bits, respectively; and for numbers with exponent 
225, 226, … and 247, we shift “ ” right 23, 22, … and 1 bit(s), 
respectively. We then put the “normalized” significant part into 
plaintext blocks for encryption.  

So1

So1

So1

Consider a list of floating-point numbers we want to sum. The 
maximum exponent must fall in one of the groups. Once we can 
discover the group, we can use that group only to compute the 
significant value of the sum (with normalized exponent e), applying 
our algorithms for summing integers. For example, suppose our list 
of numbers to sum is 9 , , and . We first 
determine that the maximum exponent (12) falls in group G

225.1 × 1225.1 × 62375.1 ×
14. 

From the group partition we also know we need to normalize the 
numbers to have exponent 9 before we add them up, by shifting the 
significant part of the 2nd number left 3 bits and by shifting the 
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significant part of the 3rd number right 3 bits. We then encrypt the 
normalized significant parts of group G14 using a homomorphic 
scheme as described earlier (clearly we need to note the bit position 
that separates the integer and fractional parts of the numbers). 

Note that this process discards the numbers (if any) whose 
exponents are too small to contribute to the sum. 

5.3  Which Group to Use for a Query? 
Now we tackle the second question in Section 5.1. First we must 
realize that the trivial solution of storing the exponent of each value 
and finding the maximum among the set of records being summed 
is not secure because we cannot expose value range information. 
Also decrypting each exponent at run-time would be too costly. 

In the following, we use bitmaps and talk about them in terms of 
the set of records that they represent. We will use set operators on 
bitmaps. For example, U  would correspond to bitwise OR. We use 
[0] to denote a bitmap of all zeros. 

Bitmaps are compact and their operations (such as bitwise AND) 
are fast given today’s hardware.  Suppose that we have a bitmap 

 for each encryption group  indicating which records are in 
that group’s maximum exponent range (i.e.,  contains records 
whose values’ exponents are in [e

iM iG

iM
i, ei+7]). Further, suppose that P 

is the bitmap produced by evaluating a given query predicate. We 
look for the smallest i, such that (Mi ∩ P) ≠ [0]. Recall that a 
smaller index i corresponds to a group with higher exponent range. 

To be more efficient, we use a binary search. Let the number of 
groups be n. We define  bitmaps , , 

. Note that . The 
algorithm is as follows. We invoke it with parameters (0, n-1). 

n 0 0S M= 1 0S M M= U 1

11 0 1n nS M M M− −= ...U U U 110 ... −⊆⊆⊆ nSSS

 

 

 

 

 

 

 

 

 

Once we determine which group to use, we need to determine all 
the values in the group that are also in P . For this we need another 
bitmap T  for each group G . T  contains the record positions of all 
values in G  that we need to consider (with exponents in [e

i i i

i i-23, 
ei+7], and not just [ei, ei+7] as in M ). Therefore, AND’ing T  with 

i i

P  gives a bitmap of all the values that we should sum. 

 
6.  DISCUSSION 
6.1  Other Operations 
So far we only deal with SUM and AVG on a single (encrypted) 
column. There are situations in which an application may require 

an aggregate over a more complex expression. Consider the 
following two queries: 

Q1: SELECT SUM ( 2 ) FROM employees salary*
Q2: SELECT SUM ( ) FROM products quantityprice*

For Q2, suppose the price column is encrypted, while the quantity 
column is not. In many (though not all) cases, we can still apply 
our techniques. For example, if the sum of an expression can be 
converted to an equivalent expression on the sum of the column 
(such as in Q1), then we can still use the techniques we introduced 
to first compute the sum of the column. For Q2, if the quantity 
column is of integer type, then we put it into the “weight matrix” of 
Algorithm 3. Not all expressions can be handled this way. For 
instance, suppose the quantity column were also encrypted, then 
Q2 could not be processed using our algorithms. 

For JOIN (which is beyond the scope of this paper), there are two 
cases. If the join predicate is on a sensitive, encrypted column, then 
handling this is an open question. As far as we know, none of the 
existing solutions can completely handle this without decryption 
(even with OPES). If the join predicate is not on a sensitive column 
and the result set contains a column encrypted with a homomorphic 
scheme, the database server may have to put “pointers” in the result 
set, pointing to values at specific positions in ciphertext blocks 
passed to the Key Holder (as a ciphertext block contains multiple 
values). 

6.2  Update and Storage 
In the scheme we described, updates on individual values would 
require a whole encryption block to be re-encrypted. The increased 
cost does not include much I/O (as an encryption block is still 
typically much smaller than a page), but consists mostly of re-
encrypting a block typically larger than an individual value (CPU 
cost). However, this is not a serious issue for many OLAP 
applications. Recall that data warehouse systems (e.g., C-Store) are 
read-optimized. Analytical processing in decision support differs 
from online transaction processing in that it involves very complex 
queries (often with aggregates) and few or no updates [26]. Also, 
updates in a system like C-Store are performed in large batches [4, 
26]. Thus, individual updates are not a concern. 

Algorithm BinaryFindGroup (low, high). 
Input: P , , … . 

0S 1−nS
Output: The group to use for SUM or AVG. 

      If low , RETURN low. high≥
      Let 

⎥⎦
⎥

⎢⎣
⎢ +

=
2

highlowi
 

      If P  AND Si ≠ [0], 
           Then RETURN BinaryFindGroup (low, i). 
           Else RETURN BinaryFindGroup (i+1, high). 
      End. 

As discussed in Section 3.4, if the predicate in an aggregate query 
is on the column being aggregated, we need to build an index on 
that column which is encrypted with OPES. In this case the column 
is encrypted in two ways. This does not affect query performance 
(compared to a query with a predicate on a plaintext column), but 
takes more disk space. It does not seem to be a serious issue as the 
cost of disk space has been falling rapidly in recent years, and the 
trend continues. In addition, the aggressive compression techniques 
in C-Store allow us to support storing columns in different ways 
(e.g., in different sort-orders) without an explosion in space [25]. 
However, if space is really an issue, we can resort to a sparse B+ 
tree index. C-Store organizes columns into projections (sets of 
columns) and each projection has a sort-key [25]. We can sort the 
sensitive aggregate column before applying homomorphic 
encryption and then build a sparse page-level index over the 
encrypted column. The first plaintext value of each page is also 
OPES encrypted and the sparse index is built using those values as 
keys. It is then clear how we can perform a range query with such 
an index, and compute SUM or AVG afterwards. For example, 
consider a range query such as “SELECT AVG(salary) FROM t1 
WHERE salary > 60,000 AND salary < 500,000”. The initial 
answer will be imprecise because the first and last pages used may 
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contain values outside the range. The database server must pass 
these first and last pages to the Key Holder (as well as the total 
number of values used for the tentative AVG result) for post-
processing to make the final result accurate. 

6.3  Usage in Row Store Systems 
Although we conducted the work in a column-oriented database 
system, the same techniques can be applied to a row store system. 
In a row store, the homomorphic encryption ciphertext would be 
stored “outside” the table, much like an “index”, except that it is 
for the computation of SUM and AVG, not for search. 

 

7.  EXPERIMENTS 
7.1  Setup 
Our experiments were conducted using C-Store on Debian Linux. 
We implemented the generalized Paillier system using the GMP 
library [28] (edition 4.2). We enhanced the C-Store code to support 
encryption with different schemes, such as DES and generalized 
Paillier. We also changed C-Store’s code for aggregates and 
implemented and evaluated Algorithm 1, 2, and 3 as described in 
the paper. The algorithms were implemented in C++. The 
experiments were run on a Linux workstation with an AMD 
Athlon-64 2Ghz processor and 512 MB memory. 

The goal of the experiments is to verify the viability of the solution 
in terms of performance (Certainly we have also verified that the 
computation result is actually correct, i.e., consistent with that of 
plaintext). To the best of our knowledge, using a homomorphic 
scheme seems to be the only solution so far to securely compute 
SUM and AVG without having access to the decryption key and 
the plaintext. Yet it is still necessary to verify that the performance 
of such a solution is acceptable. 

7.2  Experiment 1 
In this experiment, we evaluated the performance of an AVG query 
on different database sizes but with fixed selectivity (25%) using 
homomorphic encryption and Algorithm 2, with overflow handling 
as described in Section 3.2. We compared its performance with the 
C-Store system using both DES encryption and no encryption at 
all. The plaintext of salary is generated uniformly at random in the 
range of 20,000 to 200,000 (As the bulk of the computation is on 
ciphertext, the performance does not have much dependency on the 
actual plaintext values). We experimented on a category (1) query 
SELECT AVG(salary) FROM employees WHERE age > ?, as 
well as a category (2) query SELECT AVG(salary) FROM 
employees WHERE salary > ?. The selectivity of the predicates in 
both queries is fixed at 25%. The two categories are described in 
Section 3.4 (i.e., based on whether it references an encrypted 
column). One index is built on the plaintext age and another is built 
on the salary column encrypted using an order-preserving scheme 
[2]. As we discussed in Section 3.4, their query running times are 
about the same since the selectivity is the same. Hence we only plot 
one set of curves. 

Figure 9 shows the result. We can see that, with a state-of-the-art 
homomorphic encryption scheme (generalized Paillier), C-Store 
runs slightly faster than using DES for encryption. This is due to 
the saving in the decryption cost during execution. We see that the 
cost of using homomorphic encryption, albeit lower than using 
DES, is still much higher than that of the plaintext (i.e., when the 
column is not encrypted at all). The reason is that although the 

decryption cost is now constant, there is a cost of modular 
multiplications, which is proportional to the number of records. 
Dense packing of values in encryption blocks reduces the number 
of modular multiplications. As expected, we find that the cost of 
final decryption and addition at the Key Holder is negligible 
compared to the whole cost. Thus we do not plot it separately. 

7.3  Experiment 2 
In contrast to the first experiment, we now fix the data size to be 
50M records, but vary the selectivity of the predicates from 5% up 
to 65% and compare the query run time using Algorithm 2 to that 
of DES. The first two bars in each group of three bars in Figure 10 
show the result. 

We find that the performance difference (ratio) between DES and 
generalized Paillier (using Algorithm 2) is quite consistent across 
different selectivities. The reason is that with Algorithm 2, while 
the decryption cost is constant, the modular multiplication cost is 
proportional to the number of qualified records selected by the 
predicates and is the dominant part of the CPU cost when the 
number of records is large. With DES encryption, the CPU cost, 
dominated by decryption, is also roughly proportional to the 
number of qualified records. 

7.4  Experiment 3 
Experiment 3 is the same as the previous experiment, except that 
we change Algorithm 2 to Algorithm 3 and look at the 
improvement under different selectivities of the predicate (with the 
same data size). Figure 10 also shows this result. 

When the selectivity is low (25% or below), Algorithm 3 is no 
better than Algorithm 2. In fact, the execution engine should revert 
to Algorithm 2 when the resulting number of modular 
multiplications from using Algorithm 3 is no smaller, as we 
discussed in Section 4.2. When the selectivity is high (in our 
experiment, 35% or more), Algorithm 3 begins to dominate, and we 
can see that performance roughly “stabilizes” as the selectivity 
goes up, whereas with Algorithm 2, the run time is proportional to 
selectivity. This is the power of using randomness in Algorithm 3, 
which we also mathematically analyzed in Section 4.2. 

7.5  Experiment 4 
We now try to evaluate the different choices of “segment” size in 
Algorithm 3, in the same setting as experiment 3 with the 
selectivity fixed to 50%. From Figure 11, we see that within the 
range from 5 to 16 (for parameter s), the performance of Algorithm 
3 is relatively insensitive to the segment size and is in the optimal 
range. This matches our analysis in Section 4.2 (where we 
computed that the optimal segment size to be 7). 

7.6  Some Comments 
Homomorphic encryption is still a very promising area in 
cryptography. As cryptography advances, we expect to see more 
advanced homomorphic schemes that are not only provably secure, 
but also are faster than today’s schemes. 

The speed of our algorithms crucially depends on the efficiency of 
the underlying implementation of the big number arithmetic 
library. In our case, we use the GMP library (edition 4.2), which is 
generally believed to be fast. However, there is one potential 
optimization on a large number of modular multiplications by using 
the Montgomery algorithm [16], which is currently not done in 
GMP. As GMP improves, we expect the performance of our 
algorithms will improve accordingly. 
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Our encryption techniques are unique in their ability to compute 
SUM and AVG at the server without needing to decrypt the 
ciphertext. Without this ability, in the secure system model, we 
would have to compute the SUM and AVG at the Key Holder, 
which is in general infeasible due to the communication cost and 
the computing resource constraints at the Key Holder. In order to 
make this technique viable in practice, we need only show that the 
performance of our algorithms is competitive with previous 
approaches. The experiments clearly indicate that this is the case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
8.  CONCLUSIONS 
In this paper, we first discuss the choices of deploying encryption 
in a consolidated environment of applications and databases. We 

then point out a secure system model compliant to the 
acknowledged security principles, including separation of duty. In 
such an un-trusted server environment, we give a comprehensive 
study for computing SUM and AVG using a secure modern 
homomorphic scheme that operates in big blocks. Combining this 
with other schemes that handle comparison and indexing (for other 
query types), we approach a nearly complete solution. 
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