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ABSTRACT supplied to the join (as opposed to a cutoff distance) makes

the query more useful, but it greatly complicates the compu-

tation. If the cutoff distance were known beforehand, then

the problem can be solved using any one of a large number
of efficient algorithms [1, 14, 5].

For a large number of data management problems, it wouldfye ve
useful to be able to obtain a few samples from a data set, and to
use the samples to guess the largest (or smallest) value ierth
tire data set. Min/max online aggregation, toguery processing,
outlier detection, and distance join are just a few possiplgica-
tions. This paper details a statistically rigorous, Bagresipproach Many other applications exist, though space precludemdist
to attacking this problem. Just as importantly, we demaiestihe them all here.
utility of our approach by showing how it can be applied to two ~ Under certain circumstances, guessifg, is trivial. If f(d)
specific problems that arise in the context of data managemen  simply returns an attribute af, then the solution can be as easy as
pre-computing and storing the largéstttribute values from the
1. INTRODUCTION data set. However, the problem can become arbitrarily diffabe-
pending on the nature ¢f(). In the general casg,() may encode
an unanticipated, arbitrary multi-attribute relationalestion pred-
icate — that is,f(d) returns—oo if some selection predicate does
not evaluate tagrue. In other casesf() may perform an arbitrary,
non-linear numerical computation over the attributesidhat is
impossible to anticipate.

This paper deals with a ubiquitous problem in data managemen
guessing the maximum/minimum value (or some other extreme
statistics) over a data set. Stated simply, we wish to giress't
largest f(d) value over alld € D for a data setD. More for-
mally, given an arbitrary functiory(), our goal is to accurately
guess thek*" largest f() value fuey for all d € D, such that

Hf(d): f(d) > fay Nd € DY =k — 1. .
This particular problem arises in many applications, faragle: A Bayesian Approach

In this paper, we propose a novel approach to solving thisleno.
e As pointed out by Donjerkovic and Ramakrishnan [6], intop-  Since we are trying to guess extreme values for any arbiaady

k query processing knowing the cutoff value beforehand al- ynanticipated functiorf(), we argue that it is impossible to solve

lows the “top-k” portion of the query to be transformed into  the problem by using a statistical synopsis to model the datal-

a relational selection. The resulting query can then be pro- g|s for the data are often useful for describing what is ‘tgpi, but

cessed without modification to the database engine. the extreme value queries we are interested in specificaféy to
the outliers in the data. Thus, standard approaches arenibédi
utility. For example, consider a 1% sample of a databasenbavi
100 million records where we are interestedfin,, but we have
no prior knowledge off () and so it is not possible to bias the sam-
ple to largerf() values. Since we have less than a 10% chance of
sampling any of the records resulting in one of the 10 largést
values, how can we guegs,,y with high accuracy?

e In distance join processing [9, 18], the goal is to find khe Thus, rather than trying to guegs,) by modeling the data, we
closest pairs over two different data sets. The fact khist instead guesg ;) by watching and modeling the behavior of the
querieswe have seeh.

Some query aggregate functions may resujt(inpvalues that are
typically very small, with a few tremendous outliers thaeafty
boost the value of ). Some query aggregate functions may result
Permission to copy without fee all or part of this materiajrianted provided in f() values that are tightly, normally distributed around theme
that the copies are not made or distributed for direct cornimeadvantage, f() value, meaning thaf, is not too different from the typical
the VLDB copyright notice and the title of the publicatiordsts date appear, f() value. As queries are asked, our method watches and learns
and notice is given that copying is by permission of the Veayde Data what “typical” queries tend to look like. Then, when a new ique

Base Endowment. To copy otherwise, or to republish, to posiesvers g asked, we look at the first feyi() values obtained and decide (in
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM. 1 B . .
VLDB ‘07, September 23-28, 2007, Vienna, Austria. We will use the terngqueryvery loosely in the paper, and its exact

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3g/ meaning will depend upon the application.

e In outlier detection for data mining, the state-of-theadgo-
rithm [2] prunes points from the outlier candidate set when i
has been determined that there are too many points that are
close to the candidate. If it were possible to accuratelysgue
the distance to a point’s*" nearest neighbor, this pruning
could be done without actually finding those close-by points

*Material in this paper is based upon research funded by the Na
tional Science Foundation under grant no. 0612170.
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a statistically meaningful way) which type of the “typicajleries
we are experiencing.

We use the notatiolfi ) to denote the answer to the query.

Of course, we may be wrong when we guess what type of query 2.2 A Natural Estimator

has been asked, and so there is a degree of uncertainty with ou

belief. This uncertainty is incorporated into the probiskit guar-
antee on the accuracy of our guesggd. In this way, our method
is an example of a so-calldshyesianstatistical technique, in that
we make use of a “prior” or guessed query distribution in otde
associate a belief with the type of query that has been issued

Our Contributions
This paper has the following technical contributions:

Assuming that there are no index structures to help us ldoate
ples with specificf () values, an obvious solution to the problem is
to sequentially scan the database once and evafyatever each
tuple. Then we can return the” largestf() value encountered.
However, this algorithm may be too slow if the database igdar
orif f(x) must be evaluated repeatedly for different functions (as in
the application to outlier detection that we will consider)

The fundamental idea in this paper is that, in order to okdain
sub-linear-speed algorithm to compufg,, one can use a simple

e We propose a new method for guessing the answer to an ex-random sample (without replacement) from the databasex&ye

treme value query over an arbitrary function. The method
is statistically rigorous and makes use of unique Bayesian
statistical techniques. Such techniques have been mgstly i
nored in the data management literature to date.

e Along with the approximate answer, our method returns the
distribution associated with the guess’ error, and so ittEn

used to associate confidence bounds on the guess’ accuracy.

e We devise a method to learn the prior query distribution by

ining the f() values in this sample, it may be possible to estimate
the k'" largest/smallest value in the query results@he estima-

tor that we study works as follows. Suppose that we have acces
to n samples from a database of si¥e Then a natural estimator
for the k" largest value in the query is th&')'" largest value in
the sample, wher&’ = £ . Since to make use of this estimatbf,
must be an integer, we ugé = [ 2 X k]|. In the remainder of the

paper, we usg@ to denote thek’)*" largest value in the sample.
For example, suppose that we wish to guess the largest vatue i

watching query results as they are produced. The learning database of size 15. Applying() to each tuple, we obtain the set:

algorithm requires that for each query result, we compute
only three aggregate values. In this way, the learning nietho
is inexpensive, and can easily be incorporated into a DBMS
or a specific application with little or no cost.

e We argue for the utility of our approach by detailing two sep-
arate applications of our method to specific problems that oc
cur when dealing with large databases.

PROBLEM DEFINITION
In this section, we formalize our problem and describe tte-so
tion that we study in the paper.
2.1 Estimating the Extreme Value

Our goal is to provide estimation algorithms that will sugpo
processing for extreme value queries of the form:

2.

SELECT g1 (d1)
FROM D AS d;
WHERE g2(d1) AND k — 1 =(
SELECT COUNT( *)
FROM D AS d,
VHERE g2(d2) AND g1(d1) < g1(d2)) ;

In the above queryy: () is an arbitrary function that maps a tuple
d to a real valug€ andg:() is a relational selection predicate. This
query asks for th&'" largestg, (d) value over all the database tu-
ples that satisfy the selection predicas€). If we change §1 (d1) <
g1(d2)"t0* g1(d1) > g1(d2)”, then the query is easily modified to
ask for thek'" smallestg: (d) value when the selection predicate
defined byg() is satisfied. For ease of exposition, in the remainder
of the paper we assume that the search is for a large value.

The fact that we have two separate functign§) andgz() com-
plicates things a bit, so we encode both individual functiasthin
a single functionf():

ra) = {0

— 00

if g2(d) is true
otherwise

{1,2, —00,4,5, —00,7,8,9, —00, 11, —00, —o0, 14, 15}

Thus, f1) = 15. Now, we take a five-item sample from this set,
which happens to be:

{11, —00,4,1, —0c0}

5

Then our estimatof,,) is 11, wheret’ = [ x 1].
Characterizing the accuracy of this estimator is far fromiat.
The fundamental question we ask in this paper is:

How does the estimator f(k\) relate to thetrue f(;)?

Given a rigorous characterization of this relationshijs ppossible

to both correctf(—,:) to obtain an even better estimate, and to char-
acterize the accuracy of the estimator. Since the differ&etween

f(;) and f) is affected by the scale of the values under consider-
ation, this paper studies the behavior of the r#@ as a way to

(k)
characterize the accuracy of the estimator. In particularare in-
terested in characterizing tlostribution of this ratio, because this

distribution facilitates the use (j/f; to produce confidence bounds
on fu. For example, if we know that there is9a% chance that
the ratio is betweehandh, then there is 80% chance thaf,, is

between x f(:) andh x f(—;

3. OVERVIEW OF OUR APPROACH

This section gives an overview of the approach that we use to
characterize the ratié(i—). First, we discuss the statistical property
of the database most(kr)elevant to the characterization: hiygesof
the right tail of the distribution off () values. Then we give an

overview of a unique Bayesian approach to dealing with thim
tance of the tail's shape.

3Although we consider the case where a single sample is used fo
single estimate, the technique developed in this paperasity de
extended to deal with the online case, where the entire rarzdol

2For ease of exposition, we assume that each tuple maps te a disdatabase will be scanned. At each instant during the scarseh

tinct real value.
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of tuples retrieved thus far is a sample of the database.
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Figure 1: The histograms of four different query result sets
with different domains(scales). (a) and (c) have long tailto the
right. (b) and (d) have no tails to the right.

3.1 Importance of the Query Shape

Unlike many other estimation problems, characterizingebe
timatorf/<k\) is extremely challenging, because unlike classical es-
timation problems where simple statistical propertieshsas the
distribution’s variance are important, the actual shapghefguery
result set’s distribution is most closely related to theusacy of the
estimator. This is best illustrated by an example.

Figure 1 depicts a set of histograms showing the distribstio
of four synthetic query result sets. Each query result setatas
10,000 values. Now imagine that we wish to use a sample of siz
100 to computef(l), and we ask: How accurate J$1) as an es-
timate for f;)? To answer this question, we re-sample (without

replacement) 100 times to produce 100 differ?n\l; values, and
compute the median foﬁé over each data set. The median val-

ues recorded are 3.07, 1 06 4.45 and 1.01 for (a), (b), iid)(@,
respectively.

The relative magnitudes of these four values can be expldipe
examining Figure 1. The distributions corresponding torigse(a)
and (c) have long tails to the right, so one has only a smatoha
of sampling any values close to the tip of the right tail whérg
is located. Therefore, we observe a large ratio betweenrtige t
answer and the estimator. In contrast, the shapes of quegan¢b
(d) have no tail to the right, so one would expect that a sainase
an excellent chance of including values closgftg. As a result,
we observe a ratio close to one for these two queries.

3.2 Basics of the Bayesian Approach
Since the query shape is so important when evaluating the acc
racy of f(x), it must be incorporated into the process of characteriz-

ing the rauoj:“”) Our basic approach is to assume that there exists

alarge numbe)r of possible query shapes: from “easy” shajihs w
no skew to very “hard” shapes with a heavy right skew. Eacpasha
has a weight or probability associated with it that specifiesex-
tent to which we think this is the current shape we are expeitig

— representing such a belief with a probability is the hatkad the
so-called “Bayesian” statistical approach [13].

The initial set of weights that we start out with before anyada
have been encountered are known using Bayesian terminalegy
theprior distribution. While there are many ways to develop a rea-
sonable prior distribution, we choose to learn the prionfrine
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historical query workload. Then, as data from a particulzerg
are encountered, the weights are updated in a statistitgdiyous
fashion to take into account the new data. In Bayesian teriay,
the updated weights represent fiasterior distribution These up-
dated weights are then used to produce confidence bounds.
example, if a database sample of reasonable size is obthiatis
consistent with a query having a heavy rightward skew, tiuaten
weights will tend to favor query shapes with correspondiigttr

ward skew, and the confidence bounds for the accura%)that
we report will be suitably wide.

For

The “Dangers” of the Bayesian Approach

At first glance, assuming the existence of a prior distrifoutnay
seem dangerous. Since we will learn our prior from the preslio
observed queries, we are assuming that a new query will reever
totally different from all of the queries in the training vidoad. In
the case where we see a “new” query, the shape corresporading t
the new query will necessarily have a zero prior weight, esithe
query was totally unanticipated. If the new query has a tait t
is far nastier than anything else we have ever seen, then we ma
be too aggressive with our confidence bounds — this is theedang
inherent in the Bayesian approach.

In fact, related dangers are inherengilhestimation techniques
that do not have access to all of the data, including claseibads
that are widely used in the data management literature. ¥or e
ample, consider the classical, sampling-based estimata 3$UM
SQL query [8, 7]: first al /o sample of the database is taken, then
the query is applied to the sample and the result is scaled/ap b
factor of .. It is an often-ignored fact that in order to bound the
accuracy of such an estimate in the classical fashfwyariance
of the estimator is also estimated from the same samffl¢he
variance estimate is too low (which may be the case if theomés
particularly high-value record that did not appear in themgke)
then any resulting confidence bounds are worthless. Thedinpl
assumption underlying the classic method is that the datatizar-
acteristic in question — the variance — can be estimatedatety
from the sample. In comparison, the Bayesian approach naakes
explicit assumption regarding the availability of a prigstdbution.

In either case, the possibility of an error exists. In facstatisti-

cian from the so-called “Bayesian” school would argue thas i
better to make such assumptions explicit using a prior thdmide

behind arguments such as the unbiasedness of a varianoatesti
As we will show experimentally, our application of the Baiges

approach is very robust to errors in the prior, and turns outet

quite successful in practice.

3.3 Proposed Bayesian Inference Framework

Given this background, we now describe the three steps of our
Bayesian inference framework:

1. Thelearning phase uses statistical methods to build a prior
shape model composed of a number of candidate shape pat-
terns. Each shape pattern represents a class of queries. A
weight is assigned to each shape pattern, indicating halylik
a future query’s shape matches that shape pattern. Both the
weights and the shape patterns are learned offline, from the
historical query workload using an EM algorithm [4].

. Thecharacterization phase derives an error distribution for
each learned shape pattern. Before we can use the learned
prior shape model to predict the behaviorfg?) on areal-life
query, as a preparation for the next phase we need to derive

the distribution off“‘) for each learned shape pattern. Thisis
T
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Figure 2: The PDFs of four Gamma distributions with increas-
ing skew to the right from (a) to (d).

done using Monte Carlo methods [17], after the shape model
has been learned but before it is time to actually answer an
extreme-value query.

. Theinference phase uses the results of the characterization
phase to produce the error distribution for an actual query.
The characterization phase applies only to the learnedeshap
patterns, and not to any real-life query. When it is time to ac
tually answer a query online, the prior weights of the shape
model are updated based upon the observed samples to pro
duce the posterior weights. Using the posterior weights and
the error distribution for each shape pattern, an erroridist

bution for the ratiojfjw") is obtained. Sincg(—,:) can be com-

(k)
puted from the sample, confidence boundsfgn can easily
be derived from the resulting distribution.

The next three sections of the paper describe each of the thre
phases in more detail. In these sections, we simplify thesikipn
by assumingf () never returns-oo; that is, the size of the query
result set is the database size. In the Experiments Sectienew
the framework is actually applied to two specific problems,will
discuss how to remove this assumption when necessary.

4. THE LEARNING PHASE

Any Bayesian method requires a generative, probabilistideh
for the data. The process should be both general (in the seate
it allows the production of any data set that might be obsbraed
specific (in the sense that it produces all important pragedf the
underlying data and is tailored for the specific problem aicha

In our case, each individual “data point” that is producedhsy
generative process is a single query result set. Since &zsilled
in Section 3.1) the shape of the query result set is so impbita
determining the quality of the estimatﬁrk\.), the generative model
will pay special attention to how the shape is handled.

Informally, we assume the following generative processfor
ducing each query result set:

e First, a biased die is rolled to determine by which shape pat-
tern the query result set will be generated. We assume the
existence of some set efdifferent shape patterns, and the
die roll selects one of them.

e Next, an arbitrary scale for the query is randomly selected.
This scale defines the magnitude of the items in the query
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result set. In Figure 1, the scale determines how large the
labels are on thé& -axis.

e Finally, the shape and scale are used as inputs to instanti-
ate a parametric model for the data. For reasons described
subsequently, we will make use of the Gamma distribution
from statistics as our parametric model. This distribui®n
repeatedly sampled from to produce the query result set.

Given the intuitive process described above, the next stép i
formalize it. Mathematically, this is done by definingebability
density functiofPDF) for the process. This is a function that takes
as an input a query result set, and returns how probablehiatghis
query result set would be produced by the process. Afteridgfin
the PDF, we will then consider how to “learn” the model; that i
we consider how to tailor the model to a specific query worttloa

4.1 Choosingan Appropriate Parametric Model

It is first necessary to choose some parametric distributtion
model the query shape. Given the discussion of Sectiontg(e ts
one overarching concern: our distribution must be able tdehar-
bitrarily long tails to the right. Modeling all of the dips @fmumps
of areal-life distribution is not necessary, because weamneerned
only with the relationship between the distribution’s taild the rest
of its mass.

Given this consideration, the Gamma distribution familgdraes
a natural choice, since it can produce a shape with arbitigy-
leaning skew. Figure 2 shows the PDFs of four instances of the

Gamma family, each with increasing skew and longer tailhéo t
right. Figure 2(a) depicts a bell (normal) shape, which doeis
have any skew to the right and only a very short tail relativéhe
distribution’s variance, whereas Figure 2(d) is highlyvegd to the
right with an exceedingly long tail.

We stress that though the Gamma distribution underlies oalefn
we donotassume that thé() values in the database look anything
like a Gamma distribution. The Gamma distribution is usely on
to model the relationship between the values in the far figihof
the data distribution and the values that are more likelyetgdm-
pled — those that are closer to the main body of the distobuti
The Gamma does this well because of its ability to take oneshap
having arbitrary skew. As we will show experimentally, sthe
Gamma distribution, our method can handle data sets thit oot
possibly have been sampled from a Gamma distribution, diiratu
those with a left skew and those with multiple modes, inaigdi
very small modes or “bumps” far out in the right tail.

4.2 Deriving the PDF

We now turn our attention to deriving the PDF associated with
the resulting, three-step, generative process. Fornta#yPDF of
the Gamma distribution can be expressed in terms of the Gamma
functionT*:;

/6@

a—1 —pBz

T ©

p(x|a, B) x>0 Q)

In Equation 1, the parameter > 0 is known as theshape pa-
rameter since it influences the shape or skew of the distribution,
while the parametef > 0 is called theinverse scale parameter

since% influences the domain (scale) of the distribution.

Let ¥ = (d1,...,dn) denote a query result set which ha's
matching tuples. Assuming that the tuples are independdraivn

*The Gamma function is defined Béo) = [~ t*'e~"dt, where
a > 0.



from a Gamma distribution, using Equation 1 the likelihodalo-
serving a queryy givena andg is:

H{

/BNa o
(o) M

alfﬁd}

16—63

@)

In Equation 20 =[], d; andS = >~ | d

Since we are interested in characterizing a ratio, we amgemi
ested in the scale parameter and do not want to bias our mmdel t
any particular scale. Thus, we treat the inverse scale paeshas
a random variable that is uniformly chosen fréf max), where
max IS a huge humber chosen to be large enough that it permits a
scale that is arbitrarily small. Then, the likelihood of ebhsng a
queryy given the shape and unknowns is given by:

max Na
p(Tle) = [ 08 ey M e
1 Mail —Na-1

Equation 3 is the result of taking expectation of Equationith w
respect tg3. It shows that evaluating the likelihood of a given query
result set requires exactly three aggregate valugs:S and N,
denoting the product and the sum of all the values in the duery
result set and the size of the query, respectively. Consdigue
these three numbers are all that we need to collect with cespe
each query. Subsequently, will refer to this triplet(M, S, N).

Note that Equation 3 is valid for a given shape parameteceSin
our model assumes that a shape parameter is chosen at ranotiom f
a weighted set where the probability of choosing shapés w;,
the likelihood of observing an entire query Sgtis:

> wip(¥ley)
j=1

In Equation 4, thew;s are each non-negative weights satisfy-
ing the constraint tha¥_, w; = 1. The complete set of model
parameters i® = {01,...,60.}, whered; = {w;,a;}.

f(vie 4)

4.3 Learning the Parameters

© is unknown and must be learned from the historical workload.
To learn®, we follow the basic principle ofaximum Likelihood
Estimation(MLE), whose goal is to find the parameter set most
likely to have produced the observed data.

Given a set of independent, historical quefiés= {y7,...y,},
applying Equation 4 the likelihood of observingis:

Hf (vil®)

Often, it is preferable to work withog(L(O|Y’)) because the
product given above becomes a summation. That is, we wish to
find ©* so that it maximizes:

L(O]Y)

argmax log(L(©]Y))

A )

In order to optimize the objective functiafi, we employ the
Expectation-Maximization (EMJamework [4] from statistics and
machine learning to iteratively maximize the log-likeldth
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The EM Algorithm

EM is used to solve MLE problems made difficult by the fact that
there are one or more “hidden” variables that cannot be vbder
in the data. EM is an iterative method, whose basic outlirdeis
scribed in Algorithm 1.

Algorithm 1 Basic EM algorithm
1: while The model continues to improvo

2. Let© be the current “best guess” as to the optimal configu-
ration of the model

3:  Let® be the next “best guess” as to the optimal configura-
tion of the model

4: E-Step: ComputeQ), the expected value df with respect to
all possible values of the hidden variables. The probabilit
of observing each possible set of hidden values is computed
using®.

5. M-Step: Choose® so as to maximize the value for @
then becomes the new “best guess”.

6: end while

In our problem, the hidden variables are the identities ahea
particular shape that was used to produce each training.oBieice
the details of some derivations below are similar to the gtarim
[4], most of the resembling derivations are omitted. As altesf
the E-Step,we have:

D> log(w;) x p(ilw,©) +

j=1i=1

> log(p(yilay)) x p(i|yi,©)  (5)
In Equation 5p(j|y:, ©) is the posterior probability of query;

coming from thejt" shape pattern’s distribution, and is given by:

-
w;p(yi|oy)
c —_—
>y wip(yiloa)

In the M-Step, we need to obtain the update equations for the
weightsw; and the shapes;. To update the weights, we use a
Lagrange multiplier to maximizé&) with respect tas;. This gives
us the following update equation far;:

1 e .
;Zp(al@’,@)
=1

Next we maximize) with respect to eacti; by taking derivative
of @ and setting the result to zero. The partpfelevant tog; is:

-3 testol

Jj=11i=1

o)

p(ilyi,

(vilew)) x p(ilvi, ©)
Unfolding thelog operation and taking the derivative with re-
spect toa;, we have:

0Q2 - _
e > {log M; — Nitp(c;) — Nilog S; +

Nip(Nicij + 1)} x p(jlyi, ©) (6)

In Equation 6/() is the Digamma functioh To updatet; we
set Equation 6 to zero and solve it by the bisection methad [3]

(=)

*The Digamma function is defined agz) = Ok




The EM algorithm repeatedly applies these update equaitions
an iterative fashion until the parameters begin to stabifthis is
typically measured by an iteration-to-iteration fracbnhange in
O that is less than%).

5. THE CHARACTERIZATION PHASE

The learning phase provides us with a set of weighted shape pa
terns that describe the historical workload. As a prepamdtr the
inference phase to make use of these shapes, we need totterive
error distribution associated with each shape. In thisi@ectve

show how to determine the distribution of the ra#& for a query
(k)

result set that we know has been generated by a shape paramete
and a scale paramet%r. The extension to unknown parameters is
considered in the next section.

Since a query is treated as a sample from a parametric distrib
tion, our estimatogf(-;; and the final answef(;, can be viewed as
a result of the following two-stage sampling process:

e Stage One. A query is produced by drawing a sample of size
N from the distribution Gamm(a|c, 3). The k'" largest
value in this sample ig .

e Stage Two. In order to estimaff,), a subsample of size
is drawn without replacement from the sample obtained in
stage one. Thék')" largest value in this subsample is our

estimatorf .

Given this process, it is clear thdy, andm are correlated.
As a result, it is very hard to analytically obtain the distition
of the ratio between them. Therefore, we resort to MontedCarl
methods to obtain their ratio’s approximate distributiexpressed
in the form of the cumulative distribution function (CDF).

Algorithm 2 Naive Monte Carlo Sampling
Input: N, k, n, a, 8, num
Output: the Monte Carlo sample array C'
C LetMC =10
: for ¢ = 1Tonum do
Stage 1: draw an i.i.d. sample of sixefrom the
Gammdz|a, () distribution, then findf ) from it
Stage 2: draw a subsample of sizérom the
sample obtained in stage 1, then fif@ from it
MC = MC U {12}

fik)
: end for
. ReturnM C

wWnN P

~N O

5.1 Naive Monte Carlo Sampling

In order to obtain the distribution of a statistic, the Mofterlo
approach obtains a large number of independent samplesof th
statistic directly from the underlying generative modeheTsam-
ples can then be organized into a sorted list so that the ippate
CDF for the target distribution can be calculated by simmlyrtt-
ing the fraction of samples less than the CDF’s input vaeabl

It is not hard to imagine how a naive Monte Carlo algorithm for
obtaining our particular error distribution would work. §llgo-
rithm would simply repeat the above two-stage procass: times
(wherenum is the number of Monte Carlo samples to produce),
and return the array ofum ratios produced. The basic Monte
Carlo approach is given as Algorithm 2. The input parametegs
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Figure 3: lllustration of TKD sampling.

the database sizZ¥, the rank of the item to be estimatedthe sam-
ple sizen, the two Gamma distribution’s parametersand 3, and
the number of Monte Carlo samples to obtaimn, respectively.
Though simple, the naive algorithm is slow. The cosDigV)
per Monte Carlo iteration, whe® is the database size. Since we
are sampling for an extreme value in order to avoid scanrieg t
entire data set (which is itself an(N') operation), making use of
anO(num x N) Monte Carlo algorithm is unacceptable.

5.2 Practical Monte Carlo Sampling

Fortunately, we can do much better by simulating the twoestag
of the sampling process to produce a result that, statilstispeak-
ing, is indistinguishable from an actual execution of the@anethod.

To reduce the cost of obtaining one Monte Carlo sample, we nee
to efficiently sample botly andf(.;;. It turns out to be easily
possible to sample the order statisfig, directly from its CDF
(the details of how to do this are deferred to Section 5.4usTthe

problem of sampling for the rati§<i—> reduces to the problem of
*)

sampling forf(k.\) given a value off ;).

To solve this reduced problem, we devise a Monte Carlo method
called thetop-k dependen(TKD) sampling technique that can effi-
ciently producef(k.\) given f(x). The TKD method first determines
whether or not the subsample includgg) by means of a Bernoulli
trial. Depending upon the result, the TKD method then figotgs
in a randomized fashion, the composition of t#felargest items
in the subsample; thék’)*" largest is then returned. Algorithm
3 formally describes the TKD method. The input parametees ar
identical to Algorithm 2, with the addition of the samplgg, .

5.3 Example Use of the TKD Method

Since the TKD method has several different branches depend-
ing upon the results of the random samples obtained on IR)es (
(4), and (13) of Algorithm 3, it is useful to illustrate the gsible
scenarios by means of an example.



Algorithm 3 TKD Sampling
Input: N, k, n, a, 3, a single sample fronfi
Output: a sample ofﬁ—,:), corresponding to the inpufy,
Lk =[2xk
2: Letb ~ Bernoulli(z| 5) /* bis the result of a Bernoulli trial */

3. if b==1/* f(x isincluded in the subsample tien
4: Letm ~ Hypergeometricz|N — 1,k —1,n — 1)

5 ifm+1<k then
6: LetS ben — m — 1 samples from a Gamn(a|«, §) dis-
tribution, truncated above gty
7: Return thgk’ — m — 1)*" largest value ir§
8: else
9: Let.S bem samples from a Gamnia|«, 3) distribution,
truncated below af ;)
10: Return thek')"" largest value if{ fx)} U S
11:  endif
12: else
13: Letm ~ Hypergeometritz|N — 1,k — 1,n)
14: if m < k' then
15: LetS ben — m samples from a Gamnia|«, 3) distri-
bution, truncated above d#ty,
16: Return thék’ — m)*" largest value ir§
17: else
18: LetS bem samples from a Gamna|«, 3) distribution,
truncated below af ;)
19: Return thek')" largest value ir§
20: endif
21: end if

Using the previous section’s notation, suppose Mat 10, k =
4,n =4,k" = 2andf4 = 7. Figure 3illustrates the four possible
scenarios that TKD may encounter in processing these inpuats
Figure 3, each three-bucket group represents the restithefr &
Bernoulli or Hypergeometric trial. Balls represent sarspind the
top bucket in each group contains the entire sampled qusnjtre
set. The bottom-left bucket in each group contains the supka
and the bottom-right bucket contains the remainiig- n samples.
The black balls are the tofl — 1) largest values in the query result
set, and the shaded ball with a value label represents thargest
value over all.

The TKD method begins by first determining whether or not the
k'™ largest value appears in the subsample; this creates chses (
and (2) in Figure 3, and corresponds to line (2) of Algorithm 3

In either case, it becomes necessary to determine the vathe o

black balls were contained in the subsample that #ig" largest
value in the subsample is from the tépoverall (line (8) of Al-
gorithm 3). In Figure 3(b) the Hypergeomettig9, 3, 3) trial de-
termines that one of the black balls is retrieved by the subsa
ple. Thus, the subsample contains two of the kogalues. The
TKD method determines the black ball's value by drawing one
additional sample from the truncated Gan{mia;, 3) distribution,
wherez € (fxy = 7,00). From this set of two top-k items, the
second largest value is returned to the caller.

Two analogous situations occur if the Bernoulli trial hasede
mined that the:*" largest overall doesot appear in the subsample
(lines (12)-(21) of Algorithm 3). In Figure 3(c), few enouglack
balls are included in the subsample thatthg*" largest will come
from the Gamma distribution truncatetboveat f(;) = 7; in Fig-
ure 3(d), enough black balls are included in the subsampletie
(K")t" largest will come from one of the black balls, which are
sampled from a Gamma distribution truncatedowat fz) = 7.

5.4 Additional Technical Details

In this section, we address a few remaining technical isseles
garding the Monte Carlo sampling process.

5.4.1 Sampling,

The process described above assumes that we have an efficient

method to sample a value fgf,) without having to generate the
entire data set. To samplg,, efficiently, we can first obtain its
CDF, which is defined by the following lemma:

Lemma 1. Given a query siz&V, a rankk, a shape parametet,
and a scale paramete};, the CDFFy ,, for fx) is:

Frin@ =3 (F ) 1 = Foumne(@)] (Fomma (@)

i=

where Faamma () denotes the CDF for the Gamifaga, 3) dis-
tribution.

Proof: LetY be a random variable counting the number of values
in the query result set that are greater than or equal t®hus,Y
counts the size of the s€f(d;) > =} for i < N. Since whether or
not eachf(d;) > x is an independent Bernoulli trial, we see that
Y follows the Binomia{ N, 1 — Fgamma(z)) distribution. Then:

Fy () = Pr[Y <k

- ki < ]j ) [1 = Foamma (@) [Faamma ()]

=0

(k")t" largest value in the subsample. In our example, in the case ®

that the7 appears in the subsample, we need to determine how

many of the black (large-valued) balls also appear in theauiple.
This is done via a call to Hypergeomettid9, 3, 3) on line (4) of
Algorithm 3, which generates a Hypergeometric random tdeia
with the specified distribution.

In Figure 3(a), this random trial determines that none of the

black balls are retrieved by the subsample. Thus, the TKhatet
concludes that only one of the tdplargest values are included
in the subsample, which is less thah = 2. Since we know

that all the other items (the three white balls) on this sidestm

Given the CDF offy,, itis easy to samplg ) using the following
two-step process:

1. Sampleu from the Uniform(0, 1) distribution
2. f(k) = Fﬁ;) (u)

Step two can be implemented by solving foiin the equation
u = Fy,, (z). Since a CDF must be monotonically increasing, we
can use E)inary search to obtain the solution. Note that thpata-

be smaller thary(,) = 7, in order to sample the second largest tion of F(z) requiresO(k) time, which is fast sincé << N.

value from the subsample, the TKD method returns the largest

of three samples from the truncated Ganfma, 3) distribution,
wherez € (0, fi) = 7). A “truncated” distribution is simply a
probability distribution with one of its tails chopped off.

5.4.2 Sampling From a Truncated Gamma
The TKD procedure needs to be able to sample an order statisti

from a truncated Gamma, which ensures lines«(8), (9)~(10),

However, this random trial could have determined that ehoug (15)~(16) and (18)-(19) of TKD algorithm use onlyD(k’) time.
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If a CDF for the truncated Gamma can be obtained, samplin
order statistic from the truncated Gamma can be implemguo
as described by Lemma 1. Thus, it is suffices to provide the<
for the required truncated Gamma distributions:

B Jy Gammal(z|a, 8)dz

F = 7
@ JJ® Gammal(yla, 8)dy "

, 0<o < fipy

’ d
ff(k) Gamma(z|a, B)dz
ff(k)

5.4.3 A Note Regarding the Scale Parameter

The reader may notice that we have omitted any mention «
how the inverse scale parameteis obtained or dealt with by th
Monte Carlo process. This may seem like a significant ovets
since 3 is not supplied. However, the “scale” is simply a multi-
plicative factor. Thus, since we are interested in idwo of two
values sampled from the same Gamma distribution, the ssate i
relevant. As a result, any of the Monte Carlo methods frora thi
section can be implemented by simply choosing an arbitreaies
parameter larger than zero and using it consistently.

®)

F(l’) = x > f(k)

Gammal(y|a, B)dy’

Algorithm 4 Approximating the Error Distribution
Input: p;forje{1,...,¢c}, MC;forje{l,...
Output: Fratio(x)

1: SortMC = |J;_, MCj in ascending order.

,ch, num, T

2: For each entry il C, if MC[i] came from shape pattefn
setM C|i].prob = p;/num.

3. 1 =0; tot = 0;

4: while (the current sampl@/C:] is less tharx) do

5:  tot+ = MCi].prob

6: i+ +

7: end while

8: Return tot

6. THE INFERENCE PHASE

At this point, we have most of the tools necessary to comihete
framework. Assume that we have completed the learning aad ch
acterization phases and have used a set of samples frombasiata

to calculatef(k) We wish to characterize the dlstrlbutlon%&

Recall that the prior shape model consnsts:twelghted shape
patterns. Given the same samples used to comﬁm ewe can
“update” those weights to incorporate the observed datayBayes’
rule [13]. This is done by computing the posterior prob&pithat
we are sampling from thg*" shape pattern. In classic Bayesian

fashion, the updated weigh is:

w;p(q]ay)
> wip(qlou)

Recall thafg denotes the aggregate trip(ét/, S, n) correspond-
ing to our database sample; is the prior weight for shape pattern
4, andp(¢ |a;) is the PDF of shape pattegn

Once the posterior weights are known, the final step in com-
puting the distribution of the ratléﬁi\ is to combine the poste-
rior weights with the Monte Carlo error distribution for éam-

dividual shape in order to compute a final, posterior digtiin
for the ratio. This is formalized in Algorithm 4, which ddtai
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Figure 4: The histograms for the six synthetic query distriku-
tions considered in the first set of experiments; they are ordred
from the easiest case to the hardest case.

how to use this information to compute the total probabithgt
?T’“) < z. The arguments to the algorithm are, in order: the set

k
01(‘ p))osterior weight®1, po, ..., pc, all of the Monte Carlo samples
MCyi,MCs, ..., MC. (one set of samples for each shape pattern),
the number of Monte Carlo samples for each shape paitern,
and finally the CDF input value.

In this algorithm, all of the Monte-Carlo samples are first ar
ranged in a sorted order from smallest ratio value to largése

samples are then weighted according to the posterior weigfd
calculate the probability that the rat'/ﬁ’i—) is less than an input,

(k)
we scan from the low end to the high end of the ait&¢’ and stop
once we find the current Monte Carlo sample is greater thaimthe
put z. When we complete the scan, the sum of the probabilities

processed will closely approximate the probability tié&% < z.
(k)
Given the ability to compute this probability, it is thenvidl to

associate bounds with the raﬁ&:
F(k)

7. EXPERIMENTS

This section details three sets of experiments. We firsbpera
set of experiments designed to test the accuracy and apititicaf
the Bayesian approach to extreme value estimation. Thereste t
application of the proposed Bayesian framework to two ckife,
specific problems in the data management domain: approgimat
MAX (or top-k) aggregates and distance-based outlier detectio

7.1 Applicability of the Bayesian Approach

Goals: As discussed previously in the paper (particularly in Sec-
tions 3.2 and 4.1), there are some natural concerns regatiokn
application of the Bayesian approach to the problem of exre
value estimation. The experiments in this subsection asggyded

to directly test whether or not these concerns are legit@rapecif-
ically, we wish to answer two questions:

1. Since the shape model is derived from the Gamma distribu-
tion family, does our method actually work for query shapes
that look nothing like a Gamma distribution?

2. Second, since the prior shape model is learned from the his
torical query workload, how will the Bayesian framework
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Sample size- 50 Sample size= 150 Sample size- 300
PriorWeights | k=1 | k=5 | k=10 | k=20 k=1|k=5|k=10 | k=20 k=1|k=5|k=10| k=20
Uniform 0.84 0.86 0.81 0.85 0.91 0.92 0.91 0.93 0.95 0.95 0.95 0.96
Geometric(0.1)] 0.84 0.86 0.82 0.85 0.90 0.92 0.91 0.92 0.95 0.95 0.94 0.96
Geometric(0.2)) 0.78 | 0.80 0.77 0.80 0.87 | 0.88 0.88 0.90 0.93 | 0.93 0.93 0.95
Geometric(0.4)) 0.86 | 0.89 0.85 0.88 0.92 | 0.93 0.93 0.94 0.95 | 0.96 0.96 0.97
Geometric(0.8)] 0.88 0.89 0.86 0.89 0.93 0.94 0.94 0.95 0.96 0.96 0.96 0.97

Table 1: Coverage rates for95% confidence bounds

function when the future query distribution has changethfro
the historical query distribution?

Experimental Setup: When evaluating these questions, the rele-
vant metric is confidence bound coverage accuracy. Thatds, w
wish to be able to ensure that no matter what the data loolalike
what the prior is, if the user specifi@§o confidence bounds, that
the bounds we return are in fag¥ confidence bounds. To test
the method’s robustness, we use six strangely-shapedsaoma
synthetic distributions to generate various query reset.s The
generative distributions are illustrated in Figure 4. Theg con-
structed to be multimodal, exhibit left and right skew witiffet-

ent degrees, and are discontinuous. Clearly, they bearrigsem-
blance to the Gamma distribution. Using the discussion ttiGe

3.1, we order the shape patterns using the expected valééélof
)

The shape in Figure 4 (a) has the smallest expected valuaifor t
ratio, while the one in Figure 4 (f) has the largest.

Given these ordered shapes, we run a series of five testsaétor e
test, we begin by training our model using 500 randomly-getieel
queries, each having 1000 tuples sampled from one of thedxist
tions illustrated in Figure 4. In the first test, the trainongeries are
sampled uniformly. In the second, they are sampled acogriin
a Geometric distribution with parameter 0.1, so that the diistri-
bution in the ordered shape set is most likely to be samplddian
last one is least likely. In the third, fourth, and fifth, thed@netric
parameters are 0.2, 0.4, and 0.8, respectively.

using sample size 50, 150, and 300, resjwety.

ples to obtain a good variance estimate using a classidalagin
regime (see Section 3.2). However, we note that once a sample
of size 300 has been obtained, the coverage is nearly pekiéet
stress that 300 is a relatively tiny sample from a real-ldg¢atbase
that may have billions of data points.

These findings are not surprising. Robustness to errorsein th
prior with an adequate sample size is a widely recognizedt iwfer
the Bayesian approach. As more and more samples are taken, th
posterior distribution that we use to generate the boundsrbes
less dependent on the prior distribution. It is generallynagvl-
edged that in most circumstances, after a few hundred sartipe
prior carries little (if any) weight, and the sample is usbdast ex-
clusively to compute the result. Our results verify thissogition.

7.2 Approximate vax (or Top-k) Aggregates

The most straightforward application of our Bayesian framri
is using it to guess the largest value in a set. For exampéecould
easily use our Bayesian inference framework to facilitatemline
answer to a togk selection query with an arbitrary selection pred-
icate and aggregate function, along with accuracy guagantehe
records in the data set would be scanned in a randomizedfashi
and at all times, the top sampled records would be presented to
the user. In order to give the user some idea of the qualithef t
answer set, the samples could be used to obtain confidencedou
on f(x. By comparing the:*" best record returned to the user with
the bounds forf ., the user may be given an idea of the quality of

For each learned model, we then run 500 test queries, each ofthe answer set that has been obtained thus far.

size 50000. The test queries are always samplatbrmly from

the generative model. In this way, we test the case whereube/ q
generation is very different from the training distributioFor ex-
ample, with a Geometric parameter of 0.8, we are very unlit@|
see more than a few training queries from the last few digtiobs

in Figure 4, though we wiltest quite often using those distribu-
tions (due to the uniform test generation). For each of th@etéét
queries, we obtain 95% confidence bounds for the actual query
swer using sample sizes of 50, 150, and 300, and also usimg fou
different k values. For each sample size, we compute the fraction
of confidence intervals (coverage rate) that did, in fachtaio the
actual query answer. These accuracies are given in Table 1.

Discussion:In general, the results show the high reliability of the
Bayesian framework and clearly illustrate the robustnesthe

shape model. Using 300 samples, Table 1 shows almost perfectpp sqmple}| and N =

Application Details

The Bayesian inference framework developed in this papeidco
easily be used to provide the bounds fop,. First, the previously
observed query result sets, each represented by an aggneglat,
would be used to train the prior shape model. During theitmgin
all data points not accepted by a given training query arerigph
when computing the query’s aggregate triplet. (that is, gr®ie
all f() = —oo values). Also, all values not equaltex are shifted
so that their minimum value (the origin) is zero.

When it is time to evaluate a query, the samples from the new
query result set are used. Again, we ignore-atb values. Given
actual sample and database sizéand N, for the purpose of our
Bayesian framework we use = [{f(d) : f(d) # —oo A d €
N % n. Thatis, not only do we ignore

n’

(95%) coverage in every case. There seems to be no dependence. , yalues, but we “scale down” the size of the database to atcoun

on the Gamma distribution (since the test data were cleaity n
Gamma-distributed) and very little (if any) dependencelmndc-
curacy of the prior weights, since with sample size 300, §4dbl
shows nearly perfect coverage no matter what the trainistgiloli-
tion is (recall that the test distribution is always unifgrm

One other interesting finding is that theeea dependence on
sample size, since Table 1 shows coverage accuracy thahis so
what less than the expected 95% for extremely small samples.
is analogous to problems that occur when we have too few sam-
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for the expected number 6fco values that cannot count towards
fwey- To be consistent with the training, we also shift all of the
sampled values so that the smallest value is also at thenorigi

Next, f(;) is computed from the sample. As described in the
paper, the samples are also used to compute the posterige sha
model, which in turn is used to compute the CBF,.;, for the

ratio 22 . Given a confidence level, boundslow and high are

)
then chosen so as to minimizeégh — low subject to the constraint



0.4 T T
Data set Continuous/Feature Size & Cover Type 025 -5 Cover Type
Letter 16/17 20,000 0.39 ~~El Nino 03 ~-El Nino
CAHouse 719 20,640 o Dot I B
El Nino 717 93,935 S Kddcup99 5 0.25 Kddcup99
Cover Type 10/55 581,012 S e Pt
KDDCup99 34/41 4,898,430 N g™
Person90 12/13 5,000,000 5 \\\ B o1
Household90 7/11 5,523,522 g 0-15\\§ &
Table 2: Data description. These data sets consist of both €a ' ’\é\e\: \A\N°
egorical and continuous features. Continuous/Feature destes 005 °'°5>\9\9\f
the number of continuous features over the number of total fa-

o 9

% 10% 15% 20% % 0% 15% 20%
tures. Sample size (percentage of DB size) Sample size (percentage of DB size)
(a) k=1 (b) k=10

that Fratio(high) — Fratio(low) = p. Finally, low x f() and Figure 5: Median relative confidence bound width of 500 test
high x f, are given as levegh-confidence bounds for the answer.  queries as a function of sample size.

Experimental Evaluation Data set P B P P o By — T
Goals: When evaluating the utility of applying our Bayesian frame- Letter 1.00 | 098 | 0.97 0.94
work to this problem, there are two important questions &waa: CAHouse 097 | 099 | 0.97 0.96
El Nino 1.00 1.00 0.99 0.99

1. First, are the confidence bounds produced reliable fdr rea Cover Type | 1.00 | 1.00 | 0.99 0.99
life data distributions, arbitrary selection predicates ag- KDDCup99 | 0.92 | 091 | 0.92 0.93
gregate functions, and various valuesk@f Person90 0.92 | 0.94 | 0.90 0.91
Household90| 0.98 | 0.97 0.97 0.97

2. Second, how narrow are the bounds when a reasonably large
sample has been obtained? That is, are they narrow enoughTable 3: Coverage rates for95% confidence bounds with vari-
to actually be useful? ousk values using al0% sample.

Experimental Setup: To test these questions, we selected seven
real data sets, summarized in Table They are publicly available
and span a range of problem domains with different chariatites.

For each data set, a “query” is generated as follows. Firstple

t is randomly selected. Then a selectivityis randomly chosen
from the range 5% to 20% and thex (data set size) nearest
(Euclidean) neighbors dfare chosen as the actual query result set.
The query’'s aggregate function is defined as the weightedafum
three arbitrarily-chosen continuous attributes per quehere the
weights are uniformly chosen from zero to one. The query answ
is defined to be thé*" largest value of the aggregate function, as
applied to tuples in the query result set.

For each data set, after training on 500 randomly selectedas.
using 10 shapes, 500 test queries are generated, and a 1@fle sam
of the data set is used to provide 95% confidence bounds fdithe
naI_ answer to ea.u:h query (we also experiment_ed with usir;g&_ﬁhl 7.3 Distance-Based Outlier Detection
training queries; the results were nearly identical andremanit- . .
ted for brevity). Table 3 reports the observed coverages @ft¢he More generally, our framework is applicable to any probleneve
reported confidence bounds for various valuek.of the goal is to find a few records in a_set that are “close_ to” ar “f

In the second set of tests, we usealues of 1 and 10, respec- away from” all of the other records in the set. In particuliis
tively, and vary the sample size from 5% to 20% of each data set @PPlies to distance-based outlier detection [11, 16, 2lveian
We then compute the median relative confidence bound width at &rPitrary distance functiodist (which may or may not be a met-
95% (the relative confidence bound width is half the widthref t ~ 1C distance), the goal is to pick the(t << N) database points

bounds divided by the query answer). Figure 5 gives thet®sul whose distance to thei_"th nearest ”Eigthfkfh'NN) is largest.
The smallest distance in the result set is¢heoff distance.

significantly higher than 95%), and for the KDDCup99 and Per-
son90 data sets, the coverage accuracy was a bit lower tBan 95
However, the confidence bounds overall were remarkablyrateu
given the difficulty of the problem. We feel that this is vetyosg
evidence that the bounds generated will be safe and acaivate

an arbitrary, real-life data set and query distribution.

The results shown in Figure 5 also demonstrate that depgndin
on the data set in question, the bound width at 95% accuraty ca
be quite narrow, even for a 10% sampling fraction. For fivehef t
seven data sets, a 10% sample provides for 95% bounds on the
maximum value in the data set whose range1$% of the actual
query answer. Not surprisingly, this range generally $tsriask
grows, since a larger value éfmeans that we are trying to guess
values that lie further from the extreme right tail of thetdmmution.

Discussion:In general, the confidence bounds provided show high
reliability, which would seem to confirm the correctness af o Application Details
framework and the appropriateness of a Gamma prior disiwibu
for this problem, even for arbitrary, real-life data setshefe is
somevariation in coverage accuracy; for three of the seven data
sets, the bounds were too conservative (showing coveragevts

The state-of-the-art algorithm for outlier detection (do®ay and
Schwabacher [2]) is a nested loop algorithm (Algorithm 5).af
times, Bay and Schwabacher’s (Bay’s) algorithm maintairesalt
set. For each point in the data set, the algorithm checksetdfse

5The first five data sets are from the UCI Machine Learning Repos it can find more thark close-by points with respect to the current
itory. The last two data sets are from http://usa.ipums.org cutoff distance value. As soon as the algorithm can find emoug
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close points, the candidate outlier is pruned. Bay and Schulzer
have shown that if the points examined during the pruning ate
considered in a randomized order, then excellent perfocmaan
be achieved.

Algorithm 5 Bay and Schwabacher’s Nested Loop Algorithm

1: Initialize cutof f
2: LetOutliers = {}
3: for each poinp € D do

4: LetcountClose =0
5:  for each poiniy € D, in arandom ordedo
6: if dist(p,q) < cutof f then
7: countClose + +
8: if countClose > k then
9: break the inner for loop and continue to process next
p
10: end if
11: end if
12:  end for
13:  Addp to Outliers
14: if |Outliers| > t then
15: Remove the point fronDutliers having the smallest
k"-NN distance
16: Setcutof f to be the smallest?”-NN distance for any
point in Outliers
17: endif
18: end for

Our Bayesian framework can easily be used to reduce the num-
ber of distance computations required by this algorithmapply

Data set Speedup| Overlap | Error
Letter 2.61 25 0.02
CAHouse 3.22 28 0.00
El Nino 5.33 27 0.02
Cover Type 4.29 21 0.14
KDDCup99 3.92 24 0.02
Person90 5.28 24 0.07
Household90| 4.29 28 0.00

Table 4: Result of making use of the Bayesian framework
within Bay and Schwabacher’s algorithm. For each data set,
the table shows the speedup resulting from the applicationfo
the framework to the algorithm (Speedup), the size of the re-
sult set overlap between the “exact” version of the algoritim
and the approximate one (Overlap), and the average relative
error of the approximate version (Error).

80, 160, and so on). Given all of the sampled neighbor dis-
tances that have been computed in line (6) for the particu-
lar pointp, we use the Bayesian framework and the trained
model toguessthe distance from the point to if€"-NN. If

this guess is less thantof f, then we can prune the point
and still be reasonably sure that we have not pruned an out-
lier. In order to be “reasonably sure”, we should choose an
upper bound on thé**-NN distance that holds with high
probability. In our implementation, we chooseso that%

(k)
is less thanc with 99% probability (that is, we chooseso

that Frqti0 () = 0.99), and our guess as to the upper bound
of k*"-NN distance isc x f(x).

our framework, we view each database point as a query, and the

set of distances from the point to each of the other pointhién t
database is viewed as the point’'s query result set. We ralgdom
select a few points from the database as a training set andutem
the distances from each training point to all of its neiglsbdthese

Experimental Evaluation

Goals: We wish to experimentally test whether our Bayesian frame-
work can be used to effectively speed Bay's algorithm. Tlaeee
two primary questions that we wish to answer:

queries are used to train a shape model. This model can then be

used to speed Bay'’s algorithm as follows:

1. First, we can carefully choose the order in which line {3) o
Algorithm 5 considers the database points. If we can guess
which points are outliers and consider them first, we will be
sure that the cutoff value will be very large early on. This
will increase the effectiveness of the algorithm’s pruning

1. First, what sort of speedup compared to Bay'’s originabalg
rithm can our framework help to provide?

2. Second, what exactly is the accuracy lost due to the proba-
bilistic pruning that our modified algorithm provides?

Experimental Setup: We began our experiments by running Bay’s

To choose such an advantageous ordering, we observe thanested loop algorithm over the seven data sets from thequevi
the set of distances computed for training from each dagabas Subsection to obtain the top 30"-NN outliers. We record the to-
point p to each of the training points is actually a sample of tal number of distance computations required as well asthab
all of p's neighbor distances. This sample set can then be answer set returned by Bay's algorithm. Next, we run Baygoal
reused to comput% for p, as well as the distribution of nthm_augmented W|th_ our Ba)_/e5|an framework as describedeb
) 7 . . (making use of 80 training points and 10 shapes) and compate t
the ranoi for p.” By computing the median value for speedup of the augmented algorithm with respect to the nuaibe
distance computations required. We also compute the qvefla
the result set with Bay's result set, as well as the averagdive
“error” of the augmented algorithm. For example, considgure
6, which shows th&'"-NN distances for the top 30 outliers dis-
covered by both versions of Bay's algorithm for the Cover &yp
data set (this is the data set where the augmented versidre of t
algorithm returned the fewest “true” outliers). Lgtbe the5'"-
NN distance for the*® outlier returned by Bay's algorithm, and
let ab; be the corresponding value for the augmented version of
Bay’'s algorithm. Then the average relative error is compute

10 (that is, the point: where Fqs:(z) = .5), we can use
(k)
x X fu) as a guess fop's E*"-NN distance, and order the

data set accordingly.

. Second, we speed the algorithm by altering the loop ofline
(5) to (12) by adding a second, probabilistic pruning con-
dition after line (11). This additional pruning step is per-
formed periodically (for example, after iterations 10, 20,

"Note that in this application, because we are looking foremta
neighbors £y is used to denote the" smallest value in the set.
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320 Jabs — ai|/ 352, a;. For each data set, the speedup, result
set overlap size, and the average relative error are giv&alile 4.
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Figure 6: Comparison of 5'"-NN outlier distances for Bay and
Schwabacher’s original nested loops algorithm, and the mae
fied version of Bay and Schwabacher’s algorithm.

Discussion: These experimental results show that by simply plug-
ging our Bayesian framework into Bay’s outlier detectiogaal
rithm, one can generally obtain a factor of four improvemient
running time. Furthermore, this improvement is obtainetusily

for “free” and with almost no loss in result quality. In evesx-
periment, the modified version of Bay’s algorithm returnedren
than 20 out of the 30 outliers that were returned by Bay’sioaig
algorithm, but even that statistic tends to under-stateytiaity of
the result. The actual difference in quality between the tesult
sets is always quite small; in five of the seven cases the geera
relative error is less than 2%. In the worst case (the CoveeTy
data set), the error is 14%, but close examination of Figusteovs
that nearly all of this error is due to the loss of outliers Afbtigh
15, when it is unclear how much of a problem the loss of those fe
outliers might actually be.

8. RELATED WORK

Sampling and the use of other statistical methods have leag b

Because the relationship between the samples and the maximu
(or minimum) value in a data set is so dependent upon the-distr
butional properties of the data set in question, we havesdeva
unique, Bayesian framework for this problem that uses presly-
observed queries to make a statistically rigorous guessths type

of query that is currently under consideration. Signifibanive
have given two examples of how this framework can be apptied t
various data management problems. The applications eétaik

by no means exhaustive and it is far from clear that we havkeabp
our framework in the best way possible for each problem. Hewe
we believe our results conclusively show that this techaican be
applied successfully to many other problem domains.
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