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ABSTRACT
For a large number of data management problems, it would be very
useful to be able to obtain a few samples from a data set, and to
use the samples to guess the largest (or smallest) value in the en-
tire data set. Min/max online aggregation, top-k query processing,
outlier detection, and distance join are just a few possibleapplica-
tions. This paper details a statistically rigorous, Bayesian approach
to attacking this problem. Just as importantly, we demonstrate the
utility of our approach by showing how it can be applied to two
specific problems that arise in the context of data management.

1. INTRODUCTION
This paper deals with a ubiquitous problem in data management:

guessing the maximum/minimum value (or some other extreme
statistics) over a data set. Stated simply, we wish to guess thekth

largestf(d) value over alld ∈ D for a data setD. More for-
mally, given an arbitrary functionf(), our goal is to accurately
guess thekth largestf() value f(k) for all d ∈ D, such that
|{f(d) : f(d) > f(k) ∧ d ∈ D}| = k − 1.

This particular problem arises in many applications, for example:

• As pointed out by Donjerkovic and Ramakrishnan [6], in top-
k query processing knowing the cutoff value beforehand al-
lows the “top-k” portion of the query to be transformed into
a relational selection. The resulting query can then be pro-
cessed without modification to the database engine.

• In outlier detection for data mining, the state-of-the-artalgo-
rithm [2] prunes points from the outlier candidate set when it
has been determined that there are too many points that are
close to the candidate. If it were possible to accurately guess
the distance to a point’skth nearest neighbor, this pruning
could be done without actually finding those close-by points.

• In distance join processing [9, 18], the goal is to find thek
closest pairs over two different data sets. The fact thatk is
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supplied to the join (as opposed to a cutoff distance) makes
the query more useful, but it greatly complicates the compu-
tation. If the cutoff distance were known beforehand, then
the problem can be solved using any one of a large number
of efficient algorithms [1, 14, 5].

Many other applications exist, though space precludes listing
them all here.

Under certain circumstances, guessingf(k) is trivial. If f(d)
simply returns an attribute ofd, then the solution can be as easy as
pre-computing and storing the largestk attribute values from the
data set. However, the problem can become arbitrarily difficult de-
pending on the nature off(). In the general case,f() may encode
an unanticipated, arbitrary multi-attribute relational selection pred-
icate – that is,f(d) returns−∞ if some selection predicate does
not evaluate totrue. In other cases,f() may perform an arbitrary,
non-linear numerical computation over the attributes ofd that is
impossible to anticipate.

A Bayesian Approach
In this paper, we propose a novel approach to solving this problem.
Since we are trying to guess extreme values for any arbitraryand
unanticipated functionf(), we argue that it is impossible to solve
the problem by using a statistical synopsis to model the data. Mod-
els for the data are often useful for describing what is “typical”, but
the extreme value queries we are interested in specifically refer to
the outliers in the data. Thus, standard approaches are of limited
utility. For example, consider a 1% sample of a database having
100 million records where we are interested inf(10), but we have
no prior knowledge off() and so it is not possible to bias the sam-
ple to largerf() values. Since we have less than a 10% chance of
sampling any of the records resulting in one of the 10 largestf()
values, how can we guessf(10) with high accuracy?

Thus, rather than trying to guessf(k) by modeling the data, we
instead guessf(k) by watching and modeling the behavior of the
querieswe have seen.1

Some query aggregate functions may result inf() values that are
typically very small, with a few tremendous outliers that greatly
boost the value off(k). Some query aggregate functions may result
in f() values that are tightly, normally distributed around the mean
f() value, meaning thatf(k) is not too different from the typical
f() value. As queries are asked, our method watches and learns
what “typical” queries tend to look like. Then, when a new query
is asked, we look at the first fewf() values obtained and decide (in

1We will use the termqueryvery loosely in the paper, and its exact
meaning will depend upon the application.
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a statistically meaningful way) which type of the “typical”queries
we are experiencing.

Of course, we may be wrong when we guess what type of query
has been asked, and so there is a degree of uncertainty with our
belief. This uncertainty is incorporated into the probabilistic guar-
antee on the accuracy of our guessedf(k). In this way, our method
is an example of a so-calledBayesianstatistical technique, in that
we make use of a “prior” or guessed query distribution in order to
associate a belief with the type of query that has been issued.

Our Contributions
This paper has the following technical contributions:

• We propose a new method for guessing the answer to an ex-
treme value query over an arbitrary function. The method
is statistically rigorous and makes use of unique Bayesian
statistical techniques. Such techniques have been mostly ig-
nored in the data management literature to date.

• Along with the approximate answer, our method returns the
distribution associated with the guess’ error, and so it canbe
used to associate confidence bounds on the guess’ accuracy.

• We devise a method to learn the prior query distribution by
watching query results as they are produced. The learning
algorithm requires that for each query result, we compute
only three aggregate values. In this way, the learning method
is inexpensive, and can easily be incorporated into a DBMS
or a specific application with little or no cost.

• We argue for the utility of our approach by detailing two sep-
arate applications of our method to specific problems that oc-
cur when dealing with large databases.

2. PROBLEM DEFINITION
In this section, we formalize our problem and describe the solu-

tion that we study in the paper.

2.1 Estimating the Extreme Value
Our goal is to provide estimation algorithms that will support

processing for extreme value queries of the form:

SELECT g1(d1)
FROM D AS d1

WHERE g2(d1) AND k − 1 =(
SELECT COUNT(*)
FROM D AS d2

WHERE g2(d2) AND g1(d1) < g1(d2));

In the above query,g1() is an arbitrary function that maps a tuple
d to a real value2 andg2() is a relational selection predicate. This
query asks for thekth largestg1(d) value over all the database tu-
ples that satisfy the selection predicateg2(). If we change “g1(d1) <
g1(d2)” to “ g1(d1) > g1(d2)”, then the query is easily modified to
ask for thekth smallestg1(d) value when the selection predicate
defined byg2() is satisfied. For ease of exposition, in the remainder
of the paper we assume that the search is for a large value.

The fact that we have two separate functionsg1() andg2() com-
plicates things a bit, so we encode both individual functions within
a single functionf():

f(d) =


g1(d) if g2(d) is true
−∞ otherwise

2For ease of exposition, we assume that each tuple maps to a dis-
tinct real value.

We use the notationf(k) to denote the answer to the query.

2.2 A Natural Estimator
Assuming that there are no index structures to help us locatetu-

ples with specificf() values, an obvious solution to the problem is
to sequentially scan the database once and evaluatef() over each
tuple. Then we can return thekth largestf() value encountered.
However, this algorithm may be too slow if the database is large,
or if f(k) must be evaluated repeatedly for different functions (as in
the application to outlier detection that we will consider).

The fundamental idea in this paper is that, in order to obtaina
sub-linear-speed algorithm to computef(k), one can use a simple
random sample (without replacement) from the database. By exam-
ining thef() values in this sample, it may be possible to estimate
thekth largest/smallest value in the query result set.3 The estima-
tor that we study works as follows. Suppose that we have access
to n samples from a database of sizeN . Then a natural estimator
for thekth largest value in the query is the(k′)th largest value in
the sample, wherek

′

n
= k

N
. Since to make use of this estimator,k′

must be an integer, we usek′ =
˚

n
N

× k
ˇ
. In the remainder of the

paper, we usedf(k) to denote the(k′)th largest value in the sample.
For example, suppose that we wish to guess the largest value in a

database of size 15. Applyingf() to each tuple, we obtain the set:

{1, 2,−∞, 4, 5,−∞, 7, 8, 9,−∞, 11,−∞,−∞, 14, 15}

Thus,f(1) = 15. Now, we take a five-item sample from this set,
which happens to be:

{11,−∞, 4, 1,−∞}

Then our estimatordf(1) is 11, wherek′ =
˚

5
15

× 1
ˇ
.

Characterizing the accuracy of this estimator is far from trivial.
The fundamental question we ask in this paper is:

How does the estimator df(k) relate to the true f(k)?

Given a rigorous characterization of this relationship, itis possible
to both correctdf(k) to obtain an even better estimate, and to char-
acterize the accuracy of the estimator. Since the difference between
df(k) andf(k) is affected by the scale of the values under consider-

ation, this paper studies the behavior of the ratio
f(k)

df(k)
as a way to

characterize the accuracy of the estimator. In particular,we are in-
terested in characterizing thedistributionof this ratio, because this
distribution facilitates the use ofdf(k) to produce confidence bounds
on f(k). For example, if we know that there is a90% chance that
the ratio is betweenl andh, then there is a90% chance thatf(k) is

betweenl × df(k) andh× df(k).

3. OVERVIEW OF OUR APPROACH
This section gives an overview of the approach that we use to

characterize the ratio
f(k)

df(k)
. First, we discuss the statistical property

of the database most relevant to the characterization: the shape of
the right tail of the distribution off() values. Then we give an
overview of a unique Bayesian approach to dealing with the impor-
tance of the tail’s shape.

3Although we consider the case where a single sample is used for a
single estimate, the technique developed in this paper can easily be
extended to deal with the online case, where the entire randomized
database will be scanned. At each instant during the scan, the set
of tuples retrieved thus far is a sample of the database.
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Figure 1: The histograms of four different query result sets
with different domains(scales). (a) and (c) have long tailsto the
right. (b) and (d) have no tails to the right.

3.1 Importance of the Query Shape
Unlike many other estimation problems, characterizing thees-

timator df(k) is extremely challenging, because unlike classical es-
timation problems where simple statistical properties such as the
distribution’s variance are important, the actual shape ofthe query
result set’s distribution is most closely related to the accuracy of the
estimator. This is best illustrated by an example.

Figure 1 depicts a set of histograms showing the distributions
of four synthetic query result sets. Each query result set contains
10,000 values. Now, imagine that we wish to use a sample of size
100 to computedf(1), and we ask: How accurate isdf(1) as an es-
timate forf(1)? To answer this question, we re-sample (without

replacement) 100 times to produce 100 differentdf(1) values, and

compute the median for
f(1)

df(1)
over each data set. The median val-

ues recorded are 3.07, 1.06, 4.45 and 1.01 for (a), (b), (c), and (d),
respectively.

The relative magnitudes of these four values can be explained by
examining Figure 1. The distributions corresponding to queries (a)
and (c) have long tails to the right, so one has only a small chance
of sampling any values close to the tip of the right tail wheref(1)
is located. Therefore, we observe a large ratio between the true
answer and the estimator. In contrast, the shapes of query (b) and
(d) have no tail to the right, so one would expect that a samplehas
an excellent chance of including values close tof(1). As a result,
we observe a ratio close to one for these two queries.

3.2 Basics of the Bayesian Approach
Since the query shape is so important when evaluating the accu-

racy of df(k), it must be incorporated into the process of characteriz-

ing the ratio
f(k)

df(k)
. Our basic approach is to assume that there exists

a large number of possible query shapes: from “easy” shapes with
no skew to very “hard” shapes with a heavy right skew. Each shape
has a weight or probability associated with it that specifiesthe ex-
tent to which we think this is the current shape we are experiencing
– representing such a belief with a probability is the hallmark of the
so-called “Bayesian” statistical approach [13].

The initial set of weights that we start out with before any data
have been encountered are known using Bayesian terminologyas
theprior distribution. While there are many ways to develop a rea-
sonable prior distribution, we choose to learn the prior from the

historical query workload. Then, as data from a particular query
are encountered, the weights are updated in a statisticallyrigorous
fashion to take into account the new data. In Bayesian terminology,
the updated weights represent theposterior distribution. These up-
dated weights are then used to produce confidence bounds. For
example, if a database sample of reasonable size is obtainedthat is
consistent with a query having a heavy rightward skew, the updated
weights will tend to favor query shapes with corresponding right-
ward skew, and the confidence bounds for the accuracy ofdf(k) that
we report will be suitably wide.

The “Dangers” of the Bayesian Approach
At first glance, assuming the existence of a prior distribution may
seem dangerous. Since we will learn our prior from the previously
observed queries, we are assuming that a new query will neverbe
totally different from all of the queries in the training workload. In
the case where we see a “new” query, the shape corresponding to
the new query will necessarily have a zero prior weight, since the
query was totally unanticipated. If the new query has a tail that
is far nastier than anything else we have ever seen, then we may
be too aggressive with our confidence bounds – this is the danger
inherent in the Bayesian approach.

In fact, related dangers are inherent inall estimation techniques
that do not have access to all of the data, including classic methods
that are widely used in the data management literature. For ex-
ample, consider the classical, sampling-based estimator for aSUM
SQL query [8, 7]: first a1/α sample of the database is taken, then
the query is applied to the sample and the result is scaled up by a
factor ofα. It is an often-ignored fact that in order to bound the
accuracy of such an estimate in the classical fashion,the variance
of the estimator is also estimated from the same sample. If the
variance estimate is too low (which may be the case if there isone
particularly high-value record that did not appear in the sample)
then any resulting confidence bounds are worthless. The implicit
assumption underlying the classic method is that the database char-
acteristic in question – the variance – can be estimated accurately
from the sample. In comparison, the Bayesian approach makesan
explicit assumption regarding the availability of a prior distribution.
In either case, the possibility of an error exists. In fact, astatisti-
cian from the so-called “Bayesian” school would argue that it is
better to make such assumptions explicit using a prior than to hide
behind arguments such as the unbiasedness of a variance estimate.
As we will show experimentally, our application of the Bayesian
approach is very robust to errors in the prior, and turns out to be
quite successful in practice.

3.3 Proposed Bayesian Inference Framework
Given this background, we now describe the three steps of our

Bayesian inference framework:

1. Thelearning phase uses statistical methods to build a prior
shape model composed of a number of candidate shape pat-
terns. Each shape pattern represents a class of queries. A
weight is assigned to each shape pattern, indicating how likely
a future query’s shape matches that shape pattern. Both the
weights and the shape patterns are learned offline, from the
historical query workload using an EM algorithm [4].

2. Thecharacterization phase derives an error distribution for
each learned shape pattern. Before we can use the learned
prior shape model to predict the behavior ofdf(k) on a real-life
query, as a preparation for the next phase we need to derive

the distribution of
f(k)

df(k)
for each learned shape pattern. This is
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Figure 2: The PDFs of four Gamma distributions with increas-
ing skew to the right from (a) to (d).

done using Monte Carlo methods [17], after the shape model
has been learned but before it is time to actually answer an
extreme-value query.

3. Theinference phase uses the results of the characterization
phase to produce the error distribution for an actual query.
The characterization phase applies only to the learned shape
patterns, and not to any real-life query. When it is time to ac-
tually answer a query online, the prior weights of the shape
model are updated based upon the observed samples to pro-
duce the posterior weights. Using the posterior weights and
the error distribution for each shape pattern, an error distri-

bution for the ratio
f(k)

df(k)
is obtained. Sincedf(k) can be com-

puted from the sample, confidence bounds onf(k) can easily
be derived from the resulting distribution.

The next three sections of the paper describe each of the three
phases in more detail. In these sections, we simplify the exposition
by assumingf() never returns−∞; that is, the size of the query
result set is the database size. In the Experiments Section where
the framework is actually applied to two specific problems, we will
discuss how to remove this assumption when necessary.

4. THE LEARNING PHASE
Any Bayesian method requires a generative, probabilistic model

for the data. The process should be both general (in the sensethat
it allows the production of any data set that might be observed) and
specific (in the sense that it produces all important properties of the
underlying data and is tailored for the specific problem at hand).

In our case, each individual “data point” that is produced bythe
generative process is a single query result set. Since (as described
in Section 3.1) the shape of the query result set is so important in
determining the quality of the estimatordf(k), the generative model
will pay special attention to how the shape is handled.

Informally, we assume the following generative process forpro-
ducing each query result set:

• First, a biased die is rolled to determine by which shape pat-
tern the query result set will be generated. We assume the
existence of some set ofc different shape patterns, and the
die roll selects one of them.

• Next, an arbitrary scale for the query is randomly selected.
This scale defines the magnitude of the items in the query

result set. In Figure 1, the scale determines how large the
labels are on theX-axis.

• Finally, the shape and scale are used as inputs to instanti-
ate a parametric model for the data. For reasons described
subsequently, we will make use of the Gamma distribution
from statistics as our parametric model. This distributionis
repeatedly sampled from to produce the query result set.

Given the intuitive process described above, the next step is to
formalize it. Mathematically, this is done by defining aprobability
density function(PDF) for the process. This is a function that takes
as an input a query result set, and returns how probable it is that this
query result set would be produced by the process. After defining
the PDF, we will then consider how to “learn” the model; that is,
we consider how to tailor the model to a specific query workload.

4.1 Choosing an Appropriate Parametric Model
It is first necessary to choose some parametric distributionto

model the query shape. Given the discussion of Section 3.1, there is
one overarching concern: our distribution must be able to model ar-
bitrarily long tails to the right. Modeling all of the dips and bumps
of a real-life distribution is not necessary, because we areconcerned
only with the relationship between the distribution’s tailand the rest
of its mass.

Given this consideration, the Gamma distribution family becomes
a natural choice, since it can produce a shape with arbitraryright-
leaning skew. Figure 2 shows the PDFs of four instances of the
Gamma family, each with increasing skew and longer tails to the
right. Figure 2(a) depicts a bell (normal) shape, which doesnot
have any skew to the right and only a very short tail relative to the
distribution’s variance, whereas Figure 2(d) is highly skewed to the
right with an exceedingly long tail.

We stress that though the Gamma distribution underlies our model,
we donot assume that thef() values in the database look anything
like a Gamma distribution. The Gamma distribution is used only
to model the relationship between the values in the far righttail of
the data distribution and the values that are more likely to be sam-
pled – those that are closer to the main body of the distribution.
The Gamma does this well because of its ability to take on shapes
having arbitrary skew. As we will show experimentally, using the
Gamma distribution, our method can handle data sets that could not
possibly have been sampled from a Gamma distribution, including
those with a left skew and those with multiple modes, including
very small modes or “bumps” far out in the right tail.

4.2 Deriving the PDF
We now turn our attention to deriving the PDF associated with

the resulting, three-step, generative process. Formally,the PDF of
the Gamma distribution can be expressed in terms of the Gamma
functionΓ4:

p(x|α, β) =
βα

Γ(α)
xα−1e−βx, x > 0 (1)

In Equation 1, the parameterα > 0 is known as theshape pa-
rameter, since it influences the shape or skew of the distribution,
while the parameterβ > 0 is called theinverse scale parameter,
since 1

β
influences the domain (scale) of the distribution.

Let −→y = 〈d1, . . . , dN〉 denote a query result set which hasN
matching tuples. Assuming that the tuples are independently drawn

4The Gamma function is defined asΓ(α) =
R

∞

0
tα−1e−tdt, where

α > 0.
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from a Gamma distribution, using Equation 1 the likelihood of ob-
serving a query−→y givenα andβ is:

p(−→y |α, β) =

NY

i=1

{
βα

Γ(α)
dα−1

i e−βdi}

=
βNα

ΓN (α)
Mα−1e−βS (2)

In Equation 2,M =
QN

i=1 di andS =
PN

i=1 di.
Since we are interested in characterizing a ratio, we are uninter-

ested in the scale parameter and do not want to bias our model to
any particular scale. Thus, we treat the inverse scale parameterβ as
a random variable that is uniformly chosen from(0, max), where
max is a huge number chosen to be large enough that it permits a
scale that is arbitrarily small. Then, the likelihood of observing a
query−→y given the shapeα and unknownβ is given by:

p(−→y |α) =

Z max

0

p(β) ×
βNα

ΓN (α)
Mα−1e−βSdβ

≈
1

max
×
Mα−1

ΓN(α)
S−Nα−1Γ(Nα+ 1) (3)

Equation 3 is the result of taking expectation of Equation 2 with
respect toβ. It shows that evaluating the likelihood of a given query
result set requires exactly three aggregate values:M , S andN ,
denoting the product and the sum of all the values in the query’s
result set and the size of the query, respectively. Consequently,
these three numbers are all that we need to collect with respect to
each query. Subsequently,−→y will refer to this triplet〈M,S,N〉.

Note that Equation 3 is valid for a given shape parameter. Since
our model assumes that a shape parameter is chosen at random from
a weighted set where the probability of choosing shapeαj is wj ,
the likelihood of observing an entire query set−→y is:

f∗(−→y |Θ) =
cX

j=1

wjp(
−→y |αj) (4)

In Equation 4, thewjs are each non-negative weights satisfy-
ing the constraint that

Pc

j=1 wj = 1. The complete set of model
parameters isΘ = {θ1, . . . , θc}, whereθj = {wj , αj}.

4.3 Learning the Parameters
Θ is unknown and must be learned from the historical workload.

To learnΘ, we follow the basic principle ofMaximum Likelihood
Estimation(MLE), whose goal is to find the parameter set most
likely to have produced the observed data.

Given a set of independent, historical queriesY = {−→y1 , . . .
−→yr},

applying Equation 4 the likelihood of observingY is:

L(Θ|Y ) =

rY

i=1

f∗(−→yi |Θ)

Often, it is preferable to work withlog(L(Θ|Y )) because the
product given above becomes a summation. That is, we wish to
find Θ∗ so that it maximizes:

Λ =
argmax log(L(Θ|Y ))

Θ

In order to optimize the objective functionΛ, we employ the
Expectation-Maximization (EM)framework [4] from statistics and
machine learning to iteratively maximize the log-likelihood.

The EM Algorithm
EM is used to solve MLE problems made difficult by the fact that
there are one or more “hidden” variables that cannot be observed
in the data. EM is an iterative method, whose basic outline isde-
scribed in Algorithm 1.

Algorithm 1 Basic EM algorithm
1: while The model continues to improvedo
2: LetΘ be the current “best guess” as to the optimal configu-

ration of the model
3: Let Θ̄ be the next “best guess” as to the optimal configura-

tion of the model
4: E-Step: ComputeQ, the expected value ofΛ with respect to

all possible values of the hidden variables. The probability
of observing each possible set of hidden values is computed
usingΘ.

5: M-Step: ChooseΘ̄ so as to maximize the value for Q.̄Θ
then becomes the new “best guess”.

6: end while

In our problem, the hidden variables are the identities of each
particular shape that was used to produce each training query. Since
the details of some derivations below are similar to the example in
[4], most of the resembling derivations are omitted. As a result of
theE-Step,we have:

Q(Θ, Θ̄) =
cX

j=1

rX

i=1

log(w̄j) × p(j|−→yi ,Θ) +

cX

j=1

rX

i=1

log(p(−→yi |ᾱj)) × p(j|−→yi ,Θ) (5)

In Equation 5,p(j|−→yi ,Θ) is the posterior probability of query−→yi

coming from thejth shape pattern’s distribution, and is given by:

p(j|−→yi ,Θ) =
wjp(

−→yi |αj)Pc

l=1 wlp(
−→yi |αl)

In the M-Step, we need to obtain the update equations for the
weightsw̄j and the shapes̄αj . To update the weights, we use a
Lagrange multiplier to maximizeQ with respect tow̄j . This gives
us the following update equation forwj :

w̄j =
1

r

rX

i=1

p(j|−→yi ,Θ)

Next we maximizeQwith respect to each̄αj by taking derivative
of Q and setting the result to zero. The part ofQ relevant toᾱj is:

Q2 =
cX

j=1

rX

i=1

log(p(−→yi |ᾱj)) × p(j|−→yi ,Θ)

Unfolding the log operation and taking the derivative with re-
spect toᾱj , we have:

∂Q2

∂ᾱj

=

rX

i=1

{logMi −Niψ(ᾱj) −Ni log Si +

Niψ(Niᾱj + 1)} × p(j|−→yi ,Θ) (6)

In Equation 6,ψ() is the Digamma function5. To updateᾱj we
set Equation 6 to zero and solve it by the bisection method [3].

5The Digamma function is defined asψ(z) = Γ′(z)
Γ(z)

.
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The EM algorithm repeatedly applies these update equationsin
an iterative fashion until the parameters begin to stabilize (this is
typically measured by an iteration-to-iteration fractional change in
Θ that is less than1%).

5. THE CHARACTERIZATION PHASE
The learning phase provides us with a set of weighted shape pat-

terns that describe the historical workload. As a preparation for the
inference phase to make use of these shapes, we need to derivethe
error distribution associated with each shape. In this section, we

show how to determine the distribution of the ratio
f(k)

df(k)
for a query

result set that we know has been generated by a shape parameter α
and a scale parameter1

β
. The extension to unknown parameters is

considered in the next section.
Since a query is treated as a sample from a parametric distribu-

tion, our estimatordf(k) and the final answerf(k) can be viewed as
a result of the following two-stage sampling process:

• Stage One. A query is produced by drawing a sample of size
N from the distribution Gamma(x|α, β). The kth largest
value in this sample isf(k).

• Stage Two. In order to estimatef(k), a subsample of sizen
is drawn without replacement from the sample obtained in
stage one. The(k′)th largest value in this subsample is our
estimatordf(k).

Given this process, it is clear thatf(k) and df(k) are correlated.
As a result, it is very hard to analytically obtain the distribution
of the ratio between them. Therefore, we resort to Monte Carlo
methods to obtain their ratio’s approximate distribution,expressed
in the form of the cumulative distribution function (CDF).

Algorithm 2 Naive Monte Carlo Sampling
Input: N , k, n, α, β, num
Output: the Monte Carlo sample arrayMC

1: LetMC = ∅
2: for i = 1 To num do
3: Stage 1: draw an i.i.d. sample of sizeN from the

Gamma(x|α, β) distribution, then findf(k) from it
4: Stage 2: draw a subsample of sizen from the

sample obtained in stage 1, then finddf(k) from it

5: MC = MC ∪ {
f(k)

df(k)
}

6: end for
7: ReturnMC

5.1 Naive Monte Carlo Sampling
In order to obtain the distribution of a statistic, the MonteCarlo

approach obtains a large number of independent samples of the
statistic directly from the underlying generative model. The sam-
ples can then be organized into a sorted list so that the approximate
CDF for the target distribution can be calculated by simply count-
ing the fraction of samples less than the CDF’s input variable.

It is not hard to imagine how a naive Monte Carlo algorithm for
obtaining our particular error distribution would work. The algo-
rithm would simply repeat the above two-stage processnum times
(wherenum is the number of Monte Carlo samples to produce),
and return the array ofnum ratios produced. The basic Monte
Carlo approach is given as Algorithm 2. The input parametersare
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Figure 3: Illustration of TKD sampling.

the database sizeN , the rank of the item to be estimatedk, the sam-
ple sizen, the two Gamma distribution’s parametersα andβ, and
the number of Monte Carlo samples to obtainnum, respectively.

Though simple, the naive algorithm is slow. The cost isO(N)
per Monte Carlo iteration, whereN is the database size. Since we
are sampling for an extreme value in order to avoid scanning the
entire data set (which is itself anO(N) operation), making use of
anO(num ×N) Monte Carlo algorithm is unacceptable.

5.2 Practical Monte Carlo Sampling
Fortunately, we can do much better by simulating the two stages

of the sampling process to produce a result that, statistically speak-
ing, is indistinguishable from an actual execution of the naive method.

To reduce the cost of obtaining one Monte Carlo sample, we need
to efficiently sample bothf(k) and df(k). It turns out to be easily
possible to sample the order statisticf(k) directly from its CDF
(the details of how to do this are deferred to Section 5.4). Thus, the
problem of sampling for the ratio

f(k)

df(k)
reduces to the problem of

sampling fordf(k) given a value off(k).
To solve this reduced problem, we devise a Monte Carlo method

called thetop-k dependent(TKD) sampling technique that can effi-
ciently producedf(k) givenf(k). The TKD method first determines
whether or not the subsample includesf(k) by means of a Bernoulli
trial. Depending upon the result, the TKD method then figuresout,
in a randomized fashion, the composition of thek′ largest items
in the subsample; the(k′)th largest is then returned. Algorithm
3 formally describes the TKD method. The input parameters are
identical to Algorithm 2, with the addition of the sampledf(k).

5.3 Example Use of the TKD Method
Since the TKD method has several different branches depend-

ing upon the results of the random samples obtained on lines (2),
(4), and (13) of Algorithm 3, it is useful to illustrate the possible
scenarios by means of an example.
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Algorithm 3 TKD Sampling

Input: N , k, n, α, β, a single sample fromf(k)

Output: a sample ofdf(k), corresponding to the inputf(k)

1: k′ =
˚

n
N

× k
ˇ

2: Letb ∼ Bernoulli(x| n
N

) /* b is the result of a Bernoulli trial */
3: if b==1 /* f(k) is included in the subsample */then
4: Letm ∼ Hypergeometric(x|N − 1, k − 1, n− 1)
5: if m+ 1 < k′ then
6: LetS ben−m− 1 samples from a Gamma(x|α, β) dis-

tribution, truncated above atf(k)

7: Return the(k′ −m− 1)th largest value inS
8: else
9: LetS bem samples from a Gamma(x|α, β) distribution,

truncated below atf(k)

10: Return the(k′)th largest value in{f(k)}
S
S

11: end if
12: else
13: Letm ∼ Hypergeometric(x|N − 1, k − 1, n)
14: if m < k′ then
15: LetS ben − m samples from a Gamma(x|α, β) distri-

bution, truncated above atf(k)

16: Return the(k′ −m)th largest value inS
17: else
18: LetS bem samples from a Gamma(x|α, β) distribution,

truncated below atf(k)

19: Return the(k′)th largest value inS
20: end if
21: end if

Using the previous section’s notation, suppose thatN = 10, k =
4, n = 4, k′ = 2 andf(4) = 7. Figure 3 illustrates the four possible
scenarios that TKD may encounter in processing these inputs. In
Figure 3, each three-bucket group represents the result of either a
Bernoulli or Hypergeometric trial. Balls represent samples, and the
top bucket in each group contains the entire sampled query result
set. The bottom-left bucket in each group contains the subsample,
and the bottom-right bucket contains the remainingN−n samples.
The black balls are the top-(k−1) largest values in the query result
set, and the shaded ball with a value label represents thekth largest
value over all.

The TKD method begins by first determining whether or not the
kth largest value appears in the subsample; this creates cases (1)
and (2) in Figure 3, and corresponds to line (2) of Algorithm 3.
In either case, it becomes necessary to determine the value of the
(k′)th largest value in the subsample. In our example, in the case
that the7 appears in the subsample, we need to determine how
many of the black (large-valued) balls also appear in the subsample.
This is done via a call to Hypergeometric(x|9, 3, 3) on line (4) of
Algorithm 3, which generates a Hypergeometric random variable
with the specified distribution.

In Figure 3(a), this random trial determines that none of the
black balls are retrieved by the subsample. Thus, the TKD method
concludes that only one of the top-k largest values are included
in the subsample, which is less thank′ = 2. Since we know
that all the other items (the three white balls) on this side must
be smaller thanf(k) = 7, in order to sample the second largest
value from the subsample, the TKD method returns the largest
of three samples from the truncated Gamma(x|α, β) distribution,
wherex ∈ (0, f(k) = 7). A “truncated” distribution is simply a
probability distribution with one of its tails chopped off.

However, this random trial could have determined that enough

black balls were contained in the subsample that the(k′)th largest
value in the subsample is from the topk overall (line (8) of Al-
gorithm 3). In Figure 3(b) the Hypergeometric(x|9, 3, 3) trial de-
termines that one of the black balls is retrieved by the subsam-
ple. Thus, the subsample contains two of the top-k values. The
TKD method determines the black ball’s value by drawing one
additional sample from the truncated Gamma(x|α, β) distribution,
wherex ∈ (f(k) = 7,∞). From this set of two top-k items, the
second largest value is returned to the caller.

Two analogous situations occur if the Bernoulli trial has deter-
mined that thekth largest overall doesnot appear in the subsample
(lines (12)-(21) of Algorithm 3). In Figure 3(c), few enoughblack
balls are included in the subsample that the(k′)th largest will come
from the Gamma distribution truncatedaboveat f(k) = 7; in Fig-
ure 3(d), enough black balls are included in the subsample that the
(k′)th largest will come from one of the black balls, which are
sampled from a Gamma distribution truncatedbelowatf(k) = 7.

5.4 Additional Technical Details
In this section, we address a few remaining technical issuesre-

garding the Monte Carlo sampling process.

5.4.1 Samplingf(k)

The process described above assumes that we have an efficient
method to sample a value forf(k) without having to generate the
entire data set. To samplef(k) efficiently, we can first obtain its
CDF, which is defined by the following lemma:

Lemma 1. Given a query sizeN , a rankk, a shape parameterα,
and a scale parameter1

β
, the CDFFf(k)

for f(k) is:

Ff(k)
(x) =

k−1X

i=0

„
N
i

«
[1 − FGamma(x)]i[FGamma(x)]N−i

whereFGamma(x) denotes the CDF for the Gamma(x|α, β) dis-
tribution.

Proof: Let Y be a random variable counting the number of values
in the query result set that are greater than or equal tox. Thus,Y
counts the size of the set{f(di) ≥ x} for i ≤ N . Since whether or
not eachf(di) ≥ x is an independent Bernoulli trial, we see that
Y follows the Binomial(N, 1 − FGamma(x)) distribution. Then:

Ff(k)
(x) = Pr[Y < k]

=
k−1X

i=0

„
N
i

«
[1 − FGamma(x)]i[FGamma(x)]N−i

�

Given the CDF off(k), it is easy to samplef(k) using the following
two-step process:

1. Sampleu from the Uniform(0, 1) distribution

2. f(k) = F−1
f(k)

(u)

Step two can be implemented by solving forx in the equation
u = Ff(k)

(x). Since a CDF must be monotonically increasing, we
can use binary search to obtain the solution. Note that the computa-
tion of Ff(k)(x) requiresO(k) time, which is fast sincek << N .

5.4.2 Sampling From a Truncated Gamma
The TKD procedure needs to be able to sample an order statistic

from a truncated Gamma, which ensures lines (6)∼(7), (9)∼(10),
(15)∼(16) and (18)∼(19) of TKD algorithm use onlyO(k′) time.
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If a CDF for the truncated Gamma can be obtained, sampling an
order statistic from the truncated Gamma can be implementedjust
as described by Lemma 1. Thus, it is suffices to provide the CDFs
for the required truncated Gamma distributions:

F (x) =

R x

0
Gamma(z|α, β)dz

R f(k)

0 Gamma(y|α, β)dy
, 0 < x < f(k) (7)

F (x) =

R x

f(k)
Gamma(z|α, β)dz

R
∞

f(k)
Gamma(y|α, β)dy

, x > f(k) (8)

5.4.3 A Note Regarding the Scale Parameter
The reader may notice that we have omitted any mention as to

how the inverse scale parameterβ is obtained or dealt with by the
Monte Carlo process. This may seem like a significant oversight,
sinceβ is not supplied. However, the “scale” is simply a multi-
plicative factor. Thus, since we are interested in theratio of two
values sampled from the same Gamma distribution, the scale is ir-
relevant. As a result, any of the Monte Carlo methods from this
section can be implemented by simply choosing an arbitrary scale
parameter larger than zero and using it consistently.

Algorithm 4 Approximating the Error Distribution

Input: pj for j ∈ {1, . . . , c},MCj for j ∈ {1, . . . , c}, num, x
Output: Fratio(x)

1: SortMC =
Sc

j=1MCj in ascending order.
2: For each entry inMC, if MC[i] came from shape patternj,

setMC[i].prob = pj/num.
3: i = 0; tot = 0;
4: while (the current sampleMC[i] is less thanx) do
5: tot+ = MC[i].prob
6: i+ +
7: end while
8: Return tot

6. THE INFERENCE PHASE
At this point, we have most of the tools necessary to completethe

framework. Assume that we have completed the learning and char-
acterization phases and have used a set of samples from a database

to calculatedf(k). We wish to characterize the distribution of
f(k)

df(k)
.

Recall that the prior shape model consists ofc weighted shape
patterns. Given the same samples used to computedf(k), we can
“update” those weights to incorporate the observed data using Bayes’
rule [13]. This is done by computing the posterior probability that
we are sampling from thejth shape pattern. In classic Bayesian
fashion, the updated weightpj is:

pj =
wjp(

−→q |αj)Pc

l=1 wlp(
−→q |αl)

Recall that−→q denotes the aggregate triplet〈M,S, n〉 correspond-
ing to our database sample,wj is the prior weight for shape pattern
j, andp(−→q |αj) is the PDF of shape patternj.

Once the posterior weights are known, the final step in com-

puting the distribution of the ratio
f(k)

df(k)
is to combine the poste-

rior weights with the Monte Carlo error distribution for each in-
dividual shape in order to compute a final, posterior distribution
for the ratio. This is formalized in Algorithm 4, which details
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Figure 4: The histograms for the six synthetic query distribu-
tions considered in the first set of experiments; they are ordered
from the easiest case to the hardest case.

how to use this information to compute the total probabilitythat
f(k)

df(k)
< x. The arguments to the algorithm are, in order: the set

of posterior weightsp1, p2, ..., pc, all of the Monte Carlo samples
MC1,MC2, ...,MCc (one set of samples for each shape pattern),
the number of Monte Carlo samples for each shape patternnum,
and finally the CDF input valuex.

In this algorithm, all of the Monte-Carlo samples are first ar-
ranged in a sorted order from smallest ratio value to largest. The
samples are then weighted according to the posterior weights. To

calculate the probability that the ratio
f(k)

df(k)
is less than an inputx,

we scan from the low end to the high end of the arrayMC and stop
once we find the current Monte Carlo sample is greater than thein-
put x. When we complete the scan, the sum of the probabilities

processed will closely approximate the probability that
f(k)

df(k)
< x.

Given the ability to compute this probability, it is then trivial to

associate bounds with the ratio
f(k)

df(k)
.

7. EXPERIMENTS
This section details three sets of experiments. We first perform a

set of experiments designed to test the accuracy and applicability of
the Bayesian approach to extreme value estimation. Then we test
application of the proposed Bayesian framework to two different,
specific problems in the data management domain: approximate
MAX (or top-k) aggregates and distance-based outlier detection.

7.1 Applicability of the Bayesian Approach
Goals: As discussed previously in the paper (particularly in Sec-
tions 3.2 and 4.1), there are some natural concerns regarding the
application of the Bayesian approach to the problem of extreme
value estimation. The experiments in this subsection are designed
to directly test whether or not these concerns are legitimate. Specif-
ically, we wish to answer two questions:

1. Since the shape model is derived from the Gamma distribu-
tion family, does our method actually work for query shapes
that look nothing like a Gamma distribution?

2. Second, since the prior shape model is learned from the his-
torical query workload, how will the Bayesian framework

478



Sample size= 50 Sample size= 150 Sample size= 300
Prior Weights k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20

Uniform 0.84 0.86 0.81 0.85 0.91 0.92 0.91 0.93 0.95 0.95 0.95 0.96
Geometric(0.1) 0.84 0.86 0.82 0.85 0.90 0.92 0.91 0.92 0.95 0.95 0.94 0.96
Geometric(0.2) 0.78 0.80 0.77 0.80 0.87 0.88 0.88 0.90 0.93 0.93 0.93 0.95
Geometric(0.4) 0.86 0.89 0.85 0.88 0.92 0.93 0.93 0.94 0.95 0.96 0.96 0.97
Geometric(0.8) 0.88 0.89 0.86 0.89 0.93 0.94 0.94 0.95 0.96 0.96 0.96 0.97

Table 1: Coverage rates for95% confidence bounds using sample size 50, 150, and 300, respectively.

function when the future query distribution has changed from
the historical query distribution?

Experimental Setup: When evaluating these questions, the rele-
vant metric is confidence bound coverage accuracy. That is, we
wish to be able to ensure that no matter what the data look likeand
what the prior is, if the user specifiesp% confidence bounds, that
the bounds we return are in factp% confidence bounds. To test
the method’s robustness, we use six strangely-shaped, non-Gamma
synthetic distributions to generate various query result sets. The
generative distributions are illustrated in Figure 4. Theyare con-
structed to be multimodal, exhibit left and right skew with differ-
ent degrees, and are discontinuous. Clearly, they bear little resem-
blance to the Gamma distribution. Using the discussion in Section

3.1, we order the shape patterns using the expected value of
f(k)

df(k)
.

The shape in Figure 4 (a) has the smallest expected value for this
ratio, while the one in Figure 4 (f) has the largest.

Given these ordered shapes, we run a series of five tests. For each
test, we begin by training our model using 500 randomly-generated
queries, each having 1000 tuples sampled from one of the distribu-
tions illustrated in Figure 4. In the first test, the trainingqueries are
sampled uniformly. In the second, they are sampled according to
a Geometric distribution with parameter 0.1, so that the first distri-
bution in the ordered shape set is most likely to be sampled and the
last one is least likely. In the third, fourth, and fifth, the Geometric
parameters are 0.2, 0.4, and 0.8, respectively.

For each learned model, we then run 500 test queries, each of
size 50000. The test queries are always sampleduniformly from
the generative model. In this way, we test the case where the query
generation is very different from the training distribution. For ex-
ample, with a Geometric parameter of 0.8, we are very unlikely to
see more than a few training queries from the last few distributions
in Figure 4, though we willtest quite often using those distribu-
tions (due to the uniform test generation). For each of the 500 test
queries, we obtain 95% confidence bounds for the actual queryan-
swer using sample sizes of 50, 150, and 300, and also using four
differentk values. For each sample size, we compute the fraction
of confidence intervals (coverage rate) that did, in fact, contain the
actual query answer. These accuracies are given in Table 1.

Discussion: In general, the results show the high reliability of the
Bayesian framework and clearly illustrate the robustness of the
shape model. Using 300 samples, Table 1 shows almost perfect
(95%) coverage in every case. There seems to be no dependence
on the Gamma distribution (since the test data were clearly not
Gamma-distributed) and very little (if any) dependence on the ac-
curacy of the prior weights, since with sample size 300, Table 1
shows nearly perfect coverage no matter what the training distribu-
tion is (recall that the test distribution is always uniform).

One other interesting finding is that thereis a dependence on
sample size, since Table 1 shows coverage accuracy that is some-
what less than the expected 95% for extremely small samples.This
is analogous to problems that occur when we have too few sam-

ples to obtain a good variance estimate using a classical estimation
regime (see Section 3.2). However, we note that once a sample
of size 300 has been obtained, the coverage is nearly perfect. We
stress that 300 is a relatively tiny sample from a real-life database
that may have billions of data points.

These findings are not surprising. Robustness to errors in the
prior with an adequate sample size is a widely recognized merit of
the Bayesian approach. As more and more samples are taken, the
posterior distribution that we use to generate the bounds becomes
less dependent on the prior distribution. It is generally acknowl-
edged that in most circumstances, after a few hundred samples the
prior carries little (if any) weight, and the sample is used almost ex-
clusively to compute the result. Our results verify this supposition.

7.2 Approximate MAX (or Top-k) Aggregates
The most straightforward application of our Bayesian framework

is using it to guess the largest value in a set. For example, one could
easily use our Bayesian inference framework to facilitate an online
answer to a top-k selection query with an arbitrary selection pred-
icate and aggregate function, along with accuracy guarantees. The
records in the data set would be scanned in a randomized fashion,
and at all times, the topk sampled records would be presented to
the user. In order to give the user some idea of the quality of the
answer set, the samples could be used to obtain confidence bounds
onf(k). By comparing thekth best record returned to the user with
the bounds forf(k), the user may be given an idea of the quality of
the answer set that has been obtained thus far.

Application Details
The Bayesian inference framework developed in this paper could
easily be used to provide the bounds onf(k). First, the previously
observed query result sets, each represented by an aggregate triplet,
would be used to train the prior shape model. During the training,
all data points not accepted by a given training query are ignored
when computing the query’s aggregate triplet. (that is, we ignore
all f() = −∞ values). Also, all values not equal to−∞ are shifted
so that their minimum value (the origin) is zero.

When it is time to evaluate a query, the samples from the new
query result set are used. Again, we ignore all−∞ values. Given
actual sample and database sizesn′ andN ′, for the purpose of our
Bayesian framework we usen = |{f(d) : f(d) 6= −∞ ∧ d ∈

DB sample}| andN = N′

n′
× n. That is, not only do we ignore

−∞ values, but we “scale down” the size of the database to account
for the expected number of−∞ values that cannot count towards
f(k). To be consistent with the training, we also shift all of the
sampled values so that the smallest value is also at the origin.

Next, df(k) is computed from the sample. As described in the
paper, the samples are also used to compute the posterior shape
model, which in turn is used to compute the CDFFratio for the

ratio
f(k)

df(k)
. Given a confidence levelp, boundslow andhigh are

then chosen so as to minimizehigh− low subject to the constraint
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Data set Continuous/Feature Size
Letter 16/17 20,000
CAHouse 7/9 20,640
El Nino 7/7 93,935
Cover Type 10/55 581,012
KDDCup99 34/41 4,898,430
Person90 12/13 5,000,000
Household90 7/11 5,523,522

Table 2: Data description. These data sets consist of both cat-
egorical and continuous features. Continuous/Feature denotes
the number of continuous features over the number of total fea-
tures.

thatFratio(high) − Fratio(low) = p. Finally, low × df(k) and

high× df(k) are given as level-p confidence bounds for the answer.

Experimental Evaluation

Goals: When evaluating the utility of applying our Bayesian frame-
work to this problem, there are two important questions to answer:

1. First, are the confidence bounds produced reliable for real-
life data distributions, arbitrary selection predicates and ag-
gregate functions, and various values ofk?

2. Second, how narrow are the bounds when a reasonably large
sample has been obtained? That is, are they narrow enough
to actually be useful?

Experimental Setup: To test these questions, we selected seven
real data sets, summarized in Table 26. They are publicly available
and span a range of problem domains with different characteristics.
For each data set, a “query” is generated as follows. First, atuple
t is randomly selected. Then a selectivitys is randomly chosen
from the range 5% to 20% and thes × (data set size) nearest
(Euclidean) neighbors oft are chosen as the actual query result set.
The query’s aggregate function is defined as the weighted sumof
three arbitrarily-chosen continuous attributes per query, where the
weights are uniformly chosen from zero to one. The query answer
is defined to be thekth largest value of the aggregate function, as
applied to tuples in the query result set.

For each data set, after training on 500 randomly selected queries
using 10 shapes, 500 test queries are generated, and a 10% sample
of the data set is used to provide 95% confidence bounds for thefi-
nal answer to each query (we also experimented with using only 50
training queries; the results were nearly identical and so are omit-
ted for brevity). Table 3 reports the observed coverage rates of the
reported confidence bounds for various values ofk.

In the second set of tests, we usek values of 1 and 10, respec-
tively, and vary the sample size from 5% to 20% of each data set.
We then compute the median relative confidence bound width at
95% (the relative confidence bound width is half the width of the
bounds divided by the query answer). Figure 5 gives the results.

Discussion:In general, the confidence bounds provided show high
reliability, which would seem to confirm the correctness of our
framework and the appropriateness of a Gamma prior distribution
for this problem, even for arbitrary, real-life data sets. There is
somevariation in coverage accuracy; for three of the seven data
sets, the bounds were too conservative (showing coverage that was

6The first five data sets are from the UCI Machine Learning Repos-
itory. The last two data sets are from http://usa.ipums.org.
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Figure 5: Median relative confidence bound width of 500 test
queries as a function of sample size.

Data set k = 1 k = 5 k = 10 k = 20
Letter 1.00 0.98 0.97 0.94
CAHouse 0.97 0.99 0.97 0.96
El Nino 1.00 1.00 0.99 0.99
Cover Type 1.00 1.00 0.99 0.99
KDDCup99 0.92 0.91 0.92 0.93
Person90 0.92 0.94 0.90 0.91
Household90 0.98 0.97 0.97 0.97

Table 3: Coverage rates for95% confidence bounds with vari-
ousk values using a10% sample.

significantly higher than 95%), and for the KDDCup99 and Per-
son90 data sets, the coverage accuracy was a bit lower than 95%.
However, the confidence bounds overall were remarkably accurate
given the difficulty of the problem. We feel that this is very strong
evidence that the bounds generated will be safe and accurategiven
an arbitrary, real-life data set and query distribution.

The results shown in Figure 5 also demonstrate that depending
on the data set in question, the bound width at 95% accuracy can
be quite narrow, even for a 10% sampling fraction. For five of the
seven data sets, a 10% sample provides for 95% bounds on the
maximum value in the data set whose range is±15% of the actual
query answer. Not surprisingly, this range generally shrinks ask
grows, since a larger value ofk means that we are trying to guess
values that lie further from the extreme right tail of the distribution.

7.3 Distance-Based Outlier Detection
More generally, our framework is applicable to any problem where

the goal is to find a few records in a set that are “close to” or “far
away from” all of the other records in the set. In particular,this
applies to distance-based outlier detection [11, 16, 2]. Given an
arbitrary distance functiondist (which may or may not be a met-
ric distance), the goal is to pick thet (t << N ) database points
whose distance to theirkth nearest neighbor (kth-NN) is largest.
The smallest distance in the result set is thecutoff distance.

Application Details
The state-of-the-art algorithm for outlier detection (dueto Bay and
Schwabacher [2]) is a nested loop algorithm (Algorithm 5). At all
times, Bay and Schwabacher’s (Bay’s) algorithm maintains aresult
set. For each point in the data set, the algorithm checks to see if
it can find more thank close-by points with respect to the current
cutoff distance value. As soon as the algorithm can find enough
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close points, the candidate outlier is pruned. Bay and Schwabacher
have shown that if the points examined during the pruning step are
considered in a randomized order, then excellent performance can
be achieved.

Algorithm 5 Bay and Schwabacher’s Nested Loop Algorithm

1: Initialize cutoff
2: LetOutliers = {}
3: for each pointp ∈ D do
4: LetcountClose = 0
5: for each pointq ∈ D, in a random orderdo
6: if dist(p, q) < cutoff then
7: countClose+ +
8: if countClose ≥ k then
9: break the inner for loop and continue to process next

p
10: end if
11: end if
12: end for
13: Addp toOutliers
14: if |Outliers| > t then
15: Remove the point fromOutliers having the smallest

kth-NN distance
16: Setcutoff to be the smallestkth-NN distance for any

point inOutliers
17: end if
18: end for

Our Bayesian framework can easily be used to reduce the num-
ber of distance computations required by this algorithm. Toapply
our framework, we view each database point as a query, and the
set of distances from the point to each of the other points in the
database is viewed as the point’s query result set. We randomly
select a few points from the database as a training set and compute
the distances from each training point to all of its neighbors. These
queries are used to train a shape model. This model can then be
used to speed Bay’s algorithm as follows:

1. First, we can carefully choose the order in which line (3) of
Algorithm 5 considers the database points. If we can guess
which points are outliers and consider them first, we will be
sure that the cutoff value will be very large early on. This
will increase the effectiveness of the algorithm’s pruning.

To choose such an advantageous ordering, we observe that
the set of distances computed for training from each database
point p to each of the training points is actually a sample of
all of p’s neighbor distances. This sample set can then be
reused to computedf(k) for p, as well as the distribution of

the ratio
f(k)

df(k)
for p.7 By computing the median valuex for

f(k)

df(k)
(that is, the pointx whereFratio(x) = .5), we can use

x × df(k) as a guess forp’s kth-NN distance, and order the
data set accordingly.

2. Second, we speed the algorithm by altering the loop of lines
(5) to (12) by adding a second, probabilistic pruning con-
dition after line (11). This additional pruning step is per-
formed periodically (for example, after iterations 10, 20,40,

7Note that in this application, because we are looking for nearest
neighbors,f(k) is used to denote thekth smallest value in the set.

Data set Speedup Overlap Error
Letter 2.61 25 0.02
CAHouse 3.22 28 0.00
El Nino 5.33 27 0.02
Cover Type 4.29 21 0.14
KDDCup99 3.92 24 0.02
Person90 5.28 24 0.07
Household90 4.29 28 0.00

Table 4: Result of making use of the Bayesian framework
within Bay and Schwabacher’s algorithm. For each data set,
the table shows the speedup resulting from the application of
the framework to the algorithm (Speedup), the size of the re-
sult set overlap between the “exact” version of the algorithm
and the approximate one (Overlap), and the average relative
error of the approximate version (Error).

80, 160, and so on). Given all of the sampled neighbor dis-
tances that have been computed in line (6) for the particu-
lar point p, we use the Bayesian framework and the trained
model toguessthe distance from the point to itskth-NN. If
this guess is less thancutoff , then we can prune the point
and still be reasonably sure that we have not pruned an out-
lier. In order to be “reasonably sure”, we should choose an
upper bound on thekth-NN distance that holds with high

probability. In our implementation, we choosex so that
f(k)

df(k)

is less thanx with 99% probability (that is, we choosex so
thatFratio(x) = 0.99), and our guess as to the upper bound
of kth-NN distance isx× df(k).

Experimental Evaluation
Goals: We wish to experimentally test whether our Bayesian frame-
work can be used to effectively speed Bay’s algorithm. Thereare
two primary questions that we wish to answer:

1. First, what sort of speedup compared to Bay’s original algo-
rithm can our framework help to provide?

2. Second, what exactly is the accuracy lost due to the proba-
bilistic pruning that our modified algorithm provides?

Experimental Setup: We began our experiments by running Bay’s
nested loop algorithm over the seven data sets from the previous
subsection to obtain the top 305th-NN outliers. We record the to-
tal number of distance computations required as well as the actual
answer set returned by Bay’s algorithm. Next, we run Bay’s algo-
rithm augmented with our Bayesian framework as described above
(making use of 80 training points and 10 shapes) and compute the
speedup of the augmented algorithm with respect to the number of
distance computations required. We also compute the overlap of
the result set with Bay’s result set, as well as the average relative
“error” of the augmented algorithm. For example, consider Figure
6, which shows the5th-NN distances for the top 30 outliers dis-
covered by both versions of Bay’s algorithm for the Cover Type
data set (this is the data set where the augmented version of the
algorithm returned the fewest “true” outliers). Letbi be the5th-
NN distance for theith outlier returned by Bay’s algorithm, and
let abi be the corresponding value for the augmented version of
Bay’s algorithm. Then the average relative error is computed asP30

i=1 |abi − ai|/
P30

i=1 ai. For each data set, the speedup, result
set overlap size, and the average relative error are given inTable 4.
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Figure 6: Comparison of5th-NN outlier distances for Bay and
Schwabacher’s original nested loops algorithm, and the modi-
fied version of Bay and Schwabacher’s algorithm.

Discussion:These experimental results show that by simply plug-
ging our Bayesian framework into Bay’s outlier detection algo-
rithm, one can generally obtain a factor of four improvementin
running time. Furthermore, this improvement is obtained virtually
for “free” and with almost no loss in result quality. In everyex-
periment, the modified version of Bay’s algorithm returned more
than 20 out of the 30 outliers that were returned by Bay’s original
algorithm, but even that statistic tends to under-state thequality of
the result. The actual difference in quality between the tworesult
sets is always quite small; in five of the seven cases the average
relative error is less than 2%. In the worst case (the Cover Type
data set), the error is 14%, but close examination of Figure 6shows
that nearly all of this error is due to the loss of outliers 10 through
15, when it is unclear how much of a problem the loss of those few
outliers might actually be.

8. RELATED WORK
Sampling and the use of other statistical methods have long been

popular methods in databases and data management [8, 15, 10].
However, to date, sampling for extreme values has mostly been ig-
nored as a data management research topic. The reason seems to be
the difficulty of the problem. Unlike other aggregate functions such
asCOUNT, AVERAGE, MEDIAN, and so on, no universal limiting
theorems such as the central limit theorem apply to extreme values.

Not surprisingly, statisticians have studied extreme values in de-
tail, and many results are widely known. The essential reference
book in this area is due to Leadbetter et al. [12]. At a high level,
it is known that all parametric distributions fall into one of four
classes with respect to the distribution of extreme values sampled
from them. The most important class is those distributions whose
largest values are distributed according to the Gumbel distribution.
The normal distribution is a classic example of such a distribu-
tion. However, despite the large body of knowledge on this area
in statistics, our work is quite different. Our goal was to develop
a single method that is applicable to any, user-specifiedk, while
most classical results from statistics (such as the Gumbel distribu-
tion) only apply to the max/min whenk = 1. Another advantage
of our method compared to straightforward application of classic
statistical theory is that since we make use of a ratio estimator, our
method is scale-agnostic. This means that our method can easily
handle data sets with very large values and very small valuesin a
single framework, without having to model each separately.

9. CONCLUSION
We have considered the problem of estimating the extreme val-

ues in a data set by looking at a small number of samples from it.

Because the relationship between the samples and the maximum
(or minimum) value in a data set is so dependent upon the distri-
butional properties of the data set in question, we have devised a
unique, Bayesian framework for this problem that uses previously-
observed queries to make a statistically rigorous guess as to the type
of query that is currently under consideration. Significantly, we
have given two examples of how this framework can be applied to
various data management problems. The applications detailed are
by no means exhaustive and it is far from clear that we have applied
our framework in the best way possible for each problem. However,
we believe our results conclusively show that this technique can be
applied successfully to many other problem domains.
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