
Mining Approximate TopK Subspace Anomalies in
MultiDimensional TimeSeries Data∗

Xiaolei Li Jiawei Han

University of Illinois at UrbanaChampaign, Urbana, IL 61801 USA

ABSTRACT

Market analysis is a representative data analysis process
with many applications. In such an analysis, critical nu-
merical measures, such as profit and sales, fluctuate over
time and form time-series data. Moreover, the time series
data correspond to market segments, which are described by
a set of attributes, such as age, gender, education, income
level, and product-category, that form a multi-dimensional
structure. To better understand market dynamics and pre-
dict future trends, it is crucial to study the dynamics of
time-series in multi-dimensional market segments. This is a
topic that has been largely ignored in time series and data
cube research.

In this study, we examine the issues of anomaly detection
in multi-dimensional time-series data. We propose time-
series data cube to capture the multi-dimensional space formed
by the attribute structure. This facilitates the detection
of anomalies based on expected values derived from higher
level, “more general” time-series. Anomaly detection in a
time-series data cube poses computational challenges, espe-
cially for high-dimensional, large data sets. To this end, we
also propose an efficient search algorithm to iteratively select
subspaces in the original high-dimensional space and detect
anomalies within each one. Our experiments with both syn-
thetic and real-world data demonstrate the effectiveness and
efficiency of the proposed solution.

1. INTRODUCTION
Time series is the topic of study in numerous disciplines

because it is the source of information in many applications.
For example, temperature recordings on the space shuttle
inform scientists of potential problems, stock value fluctu-
ations notify financial analysts of potential gains or losses,

∗The work was supported in part by the U.S. National Sci-
ence Foundation NSF IIS-05-13678/06-42771 and NSF BDI-
05-15813. Any opinions, findings, and conclusions or recom-
mendations expressed here are those of the authors and do
not necessarily reflect the views of the funding agencies.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 2328, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 9781595936493/07/09.

and product purchase amounts disclose complex market dy-
namics. With such data, many interesting problems and
solutions have been proposed, such as time-series indexing,
periodicity detection, clustering, classification, and similar-
ity search [13, 10, 14, 25].

An important problem in decision support is anomaly de-
tection, which aims to find time series that are “unusual”
within some population. While there have been studies on
this topic [14], they often pose the input data as a flat set
of time series. That is, abnormality of a single time series
is defined in relation to others without much background
knowledge. However, in many applications, there are de-
scriptive attributes associated with the data.

Example 1. Figure 1 shows historical stock performances
of Intel, Apple, and the NASDAQ Computers Index (an “av-
erage” of Intel, Apple and 557 other computer companies).
All three stocks have “Computer” in their “Sector” attribute
and the Index is an aggregate of all “Computer” stocks. We
observe that Apple’s stock had a significant upward trend
for the second half of 2005 while the other two stayed flat.
And from 2006 until the present, Intel’s gains are always a
constant lower than the index.

200

100

0

200720062005

S
to

c
k
 P

e
rf

o
rm

a
n

c
e

 %

Time

Apple
Intel

NASDAQ Computers

Figure 1: Stock price time series

Example 1 illustrates two anomaly types: trend and mag-
nitude. More are formally defined later. It also shows how
attributes attached to the time series can guide the com-
parison process. In this instance, the computer sector has
been outperformed by one of its members (Apple) by a large
margin. If the NASDAQ Computer Index were further di-
vided into software, hardware, services, etc., one can further
analyze comparisons with them. Example 2 shows a similar
problem in a different domain.

Example 2. A marketing analyst is examining sales data
from a store like WalMart. For every sale in the past 5
years, segment data on both the product and the purchaser

447

have been recorded. For the product, information such as
category, store location, and price are available internally.
For the purchaser, information such as age, gender, race,
and income are obtained from store membership cards or
credit cards. Within this vast amount of data, the analyst is
searching for market segments (covering both customer and
product dimensions) that have abnormal behavior. Suppose
the analyst is particularly interested in males in the 18–35
age group. It is desirable that this search can automatically
find anomalies like: the sales of sports apparel in the past
year to one subgroup, males in the same age group who are
married and have at least 1 child, have been declining even
though overall group sales have been increasing.

The above example shows a typical market analysis prob-
lem: Find anomalies in the market time-series data, associ-
ated with a set of attributes (i.e., a market segment). Such
a problem can be modeled by an OLAP (On Line Analytical
Processing) framework [24]. One or a set of sales transac-
tions sharing the same interested set of dimensions can be
represented as a tuple in a multi-dimensional fact table,
with the sales time series as a measure. A data cube can
be constructed from the fact table by computing all the pos-
sible market segments and their aggregate sales time series.
Then the question becomes how to find nontrivial anomalies
in such a market time-series data cube.

This paper aims to discover nontrivial anomalies in a time-
series data cube given some query. A brute force solution
can be realized if the number of attributes (dimensions) is
small. However, this would encounter major challenges in
many real-world problems, where the data is high dimen-
sional (such as ∼100). It is impossible to materialize a full
cube in a high-dimensional space. Moreover, because anom-
aly in general does not have monotonic property [2], pruning
in this large space is difficult. Further, if the time series in
the data are of long sequences, computation over all of them
in a cube would be expensive, too.

In this paper, we address this difficult problem via a divide-
and-conquer approach. We make two main contributions.
First, the high-dimensional data is partitioned automati-
cally to discover interesting subsets of dimensions and tu-
ples. Each subset forms a time-series data cube in itself, and
we further propose an efficient top-k cube anomaly mining
algorithm. The combination of these two techniques leads
to an efficient discovery of the global top-k cube anomalies.

More specifically, this paper proposes an iterative sub-
space search algorithm named SUITS (Subspace Iterative
Time-Series Anomaly Search) to mine top-k anomaly cells.
Given a query probe cell in a data cube, one would expect
that a descendant cell, which is a subset, should roughly
follow a similar evolutionary behavior. This leads to the
computation of an expected time series and also the anom-
aly measure, which measures the difference between the ex-
pected and observed time series. Descendant cells of the
probe cell are partitioned by their anomaly type and amount.
For each partition, a correlated subspace data cube in the
original high-dimensional space is extracted, and efficient
top-k anomaly mining is performed on it. This process iter-
ates for all partitions. Each partition produces a local top-k,
and they merge to form an approximation of the global top-
k.

The rest of the paper is organized as follows. Section 2
defines the problem. Section 3 introduces the algorithm.
Experiments are shown in Section 4. Related work is con-

sidered in Section 5 and the study concludes in Section 6.

2. PROBLEM DEFINITION

2.1 Preliminaries
Time Series. A time series s(t) is a sequence or function
which maps time values, t, to numerical values. The range of
t is usually restricted to some interval, and they are typically
discrete values. A time series can represent any type of tem-
poral data. For instance, the sequence s(t) = 〈5, 10, 13, 7, 2〉
could represent the daily sales of televisions at a store over
a 5-day interval: t = [0, 5].

Data Cube. Given a relation R, a data cube (denoted as
CR) is the set of aggregates from all possible group-by’s on
R. In an n-dimensional data cube, a cell c = (a1, a2, . . . , an :
m) (where m is the cube measure) is called a k-dimensional
group-by cell (i.e., a cell in a k-dimensional cuboid) if and
only if there are k (k ≤ n) values among (a1, a2, . . . , an)
which are not ∗ (i.e., all). Given two cells c1 and c2, let V1

and V2 represent the set of values among their respective
(a1, a2, . . . , an) which are not ∗. c1 is the ancestor of c2 and
c2 is a descendant of c1 if V1 ⊂ V2. c1 is the parent of c2

and c2 is a child of c1 if V1 ⊂ V2 and |V1| = |V2| − 1. These
relationships also extend to cuboids and form a structure
called the cuboid lattice. An example is shown in Figure 2.
The “All” or apex cuboid holds a single cell where all its
values among (a1, a2, . . . , an) are ∗. On the other extreme,
the base cuboid at the top holds cells where none of its
(a1, a2, . . . , an) values is ∗.

ABC

A B C

AB

All

BCAC

Figure 2: Cuboid lattice

Input Data. Consider a relation R with n attributes A1,
A2, . . . , An. Each attribute Ai contains discrete values.
Let there be t tuples in this relation with transaction IDs
of tid1, tid2, . . . , tidt. Let there also be a set of time series
S = {s1, s2, . . . , st} where si is associated with tuple tidi.

Gender Education Income Product Profit Count

Female Highschool 35k–45k Food s1 u1

Female Highschool 45k–60k Apparel s2 u2

Female College 35k–45k Apparel s3 u3

Female College 35k–45k Book s4 u4

Female College 45k–60k Apparel s5 u5

Female Graduate 45k–60k Apparel s6 u6

Male Highschool 35k–45k Apparel s7 u7

Male College 35k–45k Food s8 u8

Table 1: Input market segment data

A market analysis sample data is shown in Table 1. Each
of the four Ai’s represents an attribute on either the cus-
tomer or the product. Each tuple in this relation corre-
sponds to a market segment, and the associated time series

448

measures the “Profit” over time. For all si in S, the period
and sampling rate are assumed to be the same (otherwise,
preprocessing and normalization can be performed). In ad-
dition, count ui is associated with each market segment. It
records the number of records (i.e., people) in that segment,
and its value is initialized to 1 by default if the field was
originally nonexistent.

2.2 The Anomaly Search Problem
The problem to be studied is as presented in Example 2.

That is, given a relation R and its associated time-series set
S, a probe cell p ∈ CR, and an anomaly function g, find
the anomaly cells among descendants of p in CR as
measured by g. To search all data and perform a global
analysis, one can simply set p to empty; the rest of the
algorithm remains unchanged.

To make the algorithm more practical, we add three extra
conditions: (1) each abnormal cell must satisfy a minimum
count (support) threshold, which eliminates trivially small
market segments, (2) anomalies do not have to hold for the
entire time series, i.e., g can be applied to sub-sequences,
and (3) only the top k anomaly cells as ranked by g
are returned. These conditions better match usage habits
of analysts but are not critical to the core algorithm. For
example, instead of condition (3), one may ask for all the
anomalies larger than a fixed threshold.

Notice that although p is a cube cell, its description is like
a selection query. In Example 2, p = (Gender = “Male”, Age
= “18–35”) and all other dimensions are set to ∗. This can
be treated as a selection query, σp(R), i.e., select exactly the
set of tuples in R which satisfy p in CR.

For each cell c in CR, there is an associated time series,
denoted as sc, and called an observed time series. In the
context of a query probe p, sc is computed by aggregating
time series from S whose corresponding tid’s are in σp(R)
and also c.

sc =
X

tidi∈ c ∩ σp(R)

si (1)

In market analysis, S is typically a numerical measure, such
as sales or profit. The aggregation function can be either
SUM or AVG, depending on the application semantics. Here
we take SUM by default. In general, any distributive or
algebraic aggregation function may be substituted.

At each cell, we will also calculate an expected time
series, denoted by ŝc. The measure of anomaly will be
a function on the observed and expected time series, i.e.,
g(sc, ŝc) → R.

2.3 Expected Time Series
Semantically, each cell in the data cube is a market seg-

ment, and so is the probe cell or probe segment p. Since
the query seeks anomalies in p’s descendant cells (which are
sub-segments inside the probe segment), the expected time
series of any descendant cell of p is computed from the probe
cell p. A simple example below gives the intuition.

Example 3. Let R be the relation shown in Table 1, and
p be (Gender = “Female”, Product = “Apparel”, Education
= ∗, Income = ∗). Table 2 shows p and all of p’s descendant
cells. Notice that the Gender and Product dimensions have
been dropped since they are the same for all tuples. The
Count attribute has been filled with the sample values.

c sc |c|
Education Income Profit (time-series) Count

∗ ∗ s2 + s3 + s5 + s6 1000
Highschool ∗ s2 150
College ∗ s3 + s5 800
Graduate ∗ s6 50
∗ 35k–45k s3 200
∗ 45k–60k s2 + s5 + s6 800
Highschool 45k–60k s2 150
College 35k–45k s3 200
College 45k–60k s5 600
Graduate 45k–60k s6 50

Table 2: p = (“Female”, “Apparel”)

Every cell in the data cube has an associated measure
and count. At the probe cell, we will term them the probe
measure and the probe count, denoted by sp and |p|. In
this example, sp = s2 + s3 + s5 + s6 and |p| = 150 + 200 +
600 + 50 = 1000.

One of the descendant cells of p is (Education = “College”,
Income = ∗), which has an observed time series of (s3 + s5)
and count of 800. In a market where a segment behaves
proportionally to its size, one would expect this segment to
be responsible for 80% (800/1000) of the probe profit. In
other words, 0.8 × sp. Similarly, the expected time series of
(Education = “College”, Income = “45k − 60k”) would be
60% of the probe profit.

Let c be a cell in a data cube, and |c| be the count of c
within segment p. |c| is computed by aggregating the counts
of tuples in σp(R) that contribute to c:

|c| =
X

tidi∈ c ∩ σp(R)

ui (2)

In general, ui, |c|, and |p| could also be time series since
counts can also change over time. The expected time
series, ŝc, is defined as:

ŝc =

„

|c|

|p|

«

sp (3)

Intuitively, the expected time series makes the assumption
that a market segment behaves proportionally to the probe
segment according to its size.

2.4 Anomaly Definition
As mentioned previously, g(sc, ŝc) or simply g measures

the anomaly at each cell. A basic g could be the Euclidean
distance between sc and ŝc. However, this is rather unin-
formative to analysts. In market analysis, there are usually
semantics associated with behavioral anomalies. Below, we
list four primary types although they can be extended and
refined based on the application. Figure 3 shows sample
illustrations where dotted lines are expectations and solid
lines are observations.

1. Trend: A trend anomaly occurs when the expected
overall trend of a segment is different from the observed.

2. Magnitude: A magnitude anomaly occurs when a seg-
ment’s measure is significantly more or less than ex-
pected but the overall trend is the same.

449

3. Phase: A phase anomaly occurs when a segment’s ob-
served behavior is significantly ahead of or behind the
expected behavior in terms of time. The trend and mag-
nitude are similar though.

4. Misc: Miscellaneous anomalies are the ones which do
not match any of the three above.

M
e

a
s
u

re

Time

(a) Trend Anomaly

M
e

a
s
u

re

Time

(b) Magnitude Anomaly

M
e

a
s
u

re

Time

(c) Phase Anomaly

M
e

a
s
u

re

Time

(d) Miscellaneous Anomaly

Figure 3: Anomaly types

2.4.1 Linear Regression

To represent and detect anomalies, we will use the first-
order linear regression. Although simple, it is very ef-
fective at catching the big anomalies. Because of its limited
representative power, small local anomalies are smoothed
over and only the major trends are left. Alternatively, higher
order regression or more sophisticated methods [14, 13] may
be substituted to catch more subtle anomalies. Further,
many business applications have natural partitionings of
time series so our comparative analysis will be on the general
trend of sub-sequences. As a result, the regression will only
be performed on relatively short time series (i.e., piece-wise
regression). Lastly, as we will show later, aggregation in the
data cube can rely exclusively on the regression parameters
and bypass the original bulky time-series data [8].

An l-th order polynomial fit for a time series of n observa-
tions: 〈z(t0), z(t1), . . . , z(tn)〉, where z(t) is the underlying
function, is an l-th order polynomial estimation function:

ẑ(t) = a0 + a1 t + a2 t2 + . . . + ak tl (4)

where ẑ(t) is the estimated value of z(t). If we set l = 1,
ẑ(t) is then a line of the form a0 +a1 t where a0 is commonly
known as the y-intercept and a1 as the slope. a0 and a1 can
be calculated directly via the least squares error fitting.

2.4.2 Measuring Trend Anomaly

A trend anomaly indicates a difference in general market
trends, as shown in Figure 3(a). The slope of the regression

line naturally captures this. Let a1 be the slope of the ob-
served time series and â1 be the slope of the expected time
series. The difference between a1 and â1 then measures the
trend anomaly.

gtrend(sc, ŝc) = a1 − â1

2.4.3 Measuring Magnitude Anomaly

A magnitude anomaly indicates a difference in the amount
of the measure, as shown in Figure 3(b). The y-intercept of
the regression line is a fitting representative of this. Let a0

and â0 be the y-intercepts of the observed and expected time
series respectively. The difference between them measures
the magnitude anomaly; though when the trend anomaly
is triggered, magnitude is ignored.

gmagnitude(sc, ŝc) = a0 − â0

2.4.4 Measuring Phase Anomaly

A phase anomaly indicates a lag or shift in time of the
measure, as shown in Figure 3(c). The x-intercept of the
regression line is able to capture this with some care. First,
we check that trend anomaly is not triggered. Then, we no-
tice that a difference in x-intercept is always paired with a
difference in y-syintercept, and vice-versa. In order to deter-
mine the anomaly type, we rely on the original data. Given
the choice of magnitude or phase anomaly, we shift the ob-
served time series either vertically or horizontally to offset
the anomaly difference. Then, whichever shift produces the
most similarity between the expected and observed time se-
ries is the answer. If neither produces sufficient similarity,
we mark it as misc. anomaly. The exact parameters depend
on the application. We implemented this mechanism for a
major industry partner, with satisfactory performance. Let
b0 and b1 be the x-intercepts of the observed and expected
time series after regression respectively.

gphase(sc, ŝc) = b0 − b̂0

2.4.5 Measuring Miscellaneous Anomaly

To measure miscellaneous anomalies, as shown in Fig-
ure 3(d), we use the Euclidean distance between sc and ŝc,
denoted as d(sc, ŝc). Though some preprocessing might be
required to align sc and ŝc correctly. In order to reduce
redundancies with the other anomaly types, miscellaneous
anomaly is only applicable when the other three types are
not triggered.

gmisc(sc, ŝc) = d(sc, ŝc)

2.5 Ranking Anomalies in Data Cube
With g defined for the anomaly types, we can rank all

descendant cells of p in descending order according to their
absolute g values. In all four types, a larger absolute g value
indicates a more substantial anomaly. The original query
would then return the top-k market segments in this rank-
ing. However, because the four types of g’s are incompatible,
it may not make sense to rank them together. Rather, it is
more sensible to have a separate ranking for each distinct g.
As a result, the top-k would be on individual types. With
four types of anomalies defined, the final result would consist
of 4k market segments.

Table 3 shows a summary of g on all the anomaly types.
An additional normalization or adjustment process is often

450

needed to add weighting factors to g depending on the ap-
plications. For example, one may like to use average instead
of sum in comparison, which will need to divide the value
by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOPK ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in order
to produce the final answer. This effectively prohibits full
materialization of Cp for a medium n even if σp(R) does
not contain many tuples. To solve this problem, we pro-
pose a new algorithm SUITS, which iteratively select sub-
spaces with the most potential of containing a top-k anom-
aly. Anomaly detection over a subspace tends to be very
efficient since a subspace has typically a small number of at-
tributes (dimensions). Fortunately, because anomalies are
rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

A natural question is then, “which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Subspaces

Cube

Series

Time

Cube

Series

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Top−K

Cube Outliers

...

1A A 2

1
t

t
2

...

...

Candidate

Time

Figure 4: SUITS Framework

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The in-
tersection of all such tid lists is exactly σp(R). This process
is efficient no matter how many dimensions there are in R.
Additionally, if p overlaps with some multi-dimensional shell
fragments, efficiency will be vastly improved since those in-
tersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;

451

for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of com-
mon abnormal ancestors should also exhibit similar anom-
alies. Specifically, tuples in σp(R) that share a common
abnormal ancestor cell, which would also be a descendant
cell of p, are likely to exhibit similar anomalies.

SUITS exploits this notion by grouping the tuples in σp(R)
based on their anomaly types and values. For a set of tu-
ples in σp(R) to be in the same group, they must have (1)
the same anomaly type, (2) similar anomaly scores (e.g.,
±δ range), and (3) same time span. Roughly, tuples within
a group are base-level descendants of a single anomaly in
a (possibly high level) descendant of the probe cell. At
each iteration, the largest group is extracted and the most
promising attribute values within it form the candidate sub-
space. This process starts with the construction of a Time
Anomaly Matrix.

The Time Anomaly Matrix has size T × Q, where T is
the number of tuples in σp(R) and Q is the number of sub-
sequences SUITS will examine within S. Partitioning the
time series satisfies the condition that anomalies will be
found in sub-sequences. In business and many other ap-
plications, how to partition the si’s is often natural, e.g.,
every financial quarter.

Each entry (i, j) in the matrix corresponds to the jth time
series sub-sequence of the ith tuple in σp(R), and the value
stored in the entry is the anomaly type and anomaly value
of the corresponding sub-sequence. Formally, let s[j]ci

rep-
resent the jth sub-sequence of sci

where ci is the ith cell or
tuple in σp(R). Then, the (i, j) entry in the matrix contains
the output of g(s[j]ci

, ŝ[j]ci
).

Example 4 (Time Anomaly Matrix). Using R from
Table 1, let p be (Gender = “Female”, Product = “Ap-
parel”). The last 4 rows in Table 2 show σp(R). For each
tuple’s si, we divide it into three pieces. Table 4 shows the
results. Under each piece is the anomaly type; we have omit-
ted the score for simplicity.

The Time Anomaly Matrix merely calculates anomalies in
the base cuboid. Our overall goal is to find anomalies in pos-
sibly high-level cube cells. To enumerate all possible cube
cells is cumbersome; instead we iteratively select potential
subspaces. This process starts with the grouping of cells
in the matrix. We use a simple method of hashing entries
in the matrix into buckets by their anomaly type, anom-
aly score, and time. Each bucket will only hold one type,
a small range of scores, and consecutive time spans. We
then greedily select the largest such group by choosing the
largest bucket. In Table 4, the six entries with Magnitude
anomaly (in bold) form the largest group.

The next step is to find a useful subspace associated with
this group. To exhaustively search for this is prohibitive. In
many high-dimensional problems, greedy/heuristic methods
are used to “bypass” the curse of dimensionality. For exam-
ple, decision trees use an information-theoretic heuristic to
greedily choose the decision nodes independently. CLIQUE
[3] uses a coverage measure to select clusters in subspaces
and greedily grow them to form bigger clusters. [2] uses an
evolutionary algorithm to detect outliers in high-dimensional
data. In SUITS, we take a similar approach by evaluating
the attribute values individually in a statistical test to de-
termine how well alone it correlates with the anomaly group.
We term the score of this test the Anomaly Likelihood

(AL) score. The few top-scoring values then form the cor-
related subspace. To measure the AL score of an attribute-
value pair (ai = vj), the purity of attribute ai is calculated
first via entropy.

Entropy(ai) = −
X

vj∈ai

p(vj) log2 p(vj) (5)

A “pure” attribute, that is an attribute whose values are
homogeneous, would have low entropy; while an “impure”
attribute whose values are uniformly distributed would have
high entropy. If an attribute is pure, it is more likely to
be correlated with the group than one that is impure. To
give a trivial example, consider the Gender attribute for p
in Example 4. It is 100% pure because all its values are
“Female” and is trivially correlated with any anomaly. The
equation below shows the AL score formula.

AL(ai = vj) = Frequency(ai = vj) × Entropy(ai)
−1 (6)

For each value vj , it is also weighed by its frequency within
the group. One can see that attribute values that occur very
frequently and within a homogeneous attribute will have
high AL scores.

Example 5 (AL Scores). Table 5 shows results from
the Magnitude anomaly group in Table 4. Within the In-
come attribute, the value “45k–60k” appears 3 times and no
other value appears. The Income attribute is pure and thus
scores an infinity for the AL score. Within the Education
attribute, 3 different values appear uniformly, which maxi-
mizes entropy. In this case, Income = “45k–60k” is clearly
correlated with the anomaly while Education is not. The AL
score reflects this notion.

Attribute Value Frequency AL Score

Income = 45k–60k 3 ∞
Education = Highschool 1 1.58
Education = College 1 1.58
Education = Graduate 1 1.58

Table 5: Attribute value AL scores

In practice, Table 5 would be much bigger and the dif-
ferences within it would not be as clear-cut. We select the
top few scoring (5–7) attribute-value pairs to be candidate
attribute values. The subspace formed by these values is
the candidate subspace.

3.3 Discovering TopK Anomaly Cells
The set of candidate attribute values describes a subspace

within the original high-dimensional space. Its correlation to
anomalies has only been suggested via simple entropy analy-
sis. In this section, more exact cubing analysis is performed
and the top-k cells in the subspace are found.

Let the set of candidate attribute values be B. A straight-
forward solution is to materialize the data cube CB , rank all
cells by g, and return the top k. Note that the dimension-
ality of CB is not necessarily equal to |B|. In Table 5 for
example, even if all four attribute values are added to B,
dimensionality is still just two. Second, to compute CB , all
tuples in σp(R) are used, not just the candidate group. This
ensures the detected top-k patterns apply globally. Though
to ensure sub-sequences are searched, CB only includes the
time span of the found group.

452

Education Income S[1] S[2] S[3]

M
e

a
s
u

re

Time

M
e

a
s
u

re

Time

M
e

a
s
u

re

Time

Highschool 45k–60k None Magnitude Magnitude

M
e

a
s
u

re

Time

M
e

a
s
u

re

Time

M
e

a
s
u

re

Time

College 35k–45k Phase None Misc

M
e

a
s
u

re

Time

M
e

a
s
u

re

Time

M
e

a
s
u

re

Time

College 45k–60k Phase Magnitude Magnitude

M
e

a
s
u

re

Time

M
e

a
s
u

re

Time

M
e

a
s
u

re

Time

Graduate 45k–60k None Magnitude Magnitude

Table 4: Time Anomaly Matrix

This solution is definitely viable since CB is relatively
small. But we make two modifications in order to improve
its efficiency. First, the number of times regression needs
to be performed can be reduced through a property of the
least-square error fitting. Second, branches in CB can be
pruned from the top-k search via an upper bound on g. We
explain both of these modifications below.

3.3.1 Cube Aggregation

Recall linear regression is used to represent sc and ŝc. To
compute the regression parameters from the raw data at
each cell in the cube can be costly: At each cell, one has
to aggregate all the time series from its child cells and then
find the least-square fit. Fortunately, it turns out that there
is a shortcut.

Theorem 1 (Regression Aggregation). Let there be
l time series (sc1, sc2, . . . , scl) with their respective regres-
sion y-intercepts and slopes. The y-intercept is the sum of
the l individual y-intercepts: aaggregate

0 =
Pl

i=1 ai
0, and the

slope of the l time series’ aggregate is sum of the l individual
slopes: aaggregate

1 =
Pl

i=1 ai
1.

A proper proof is given in [8]. Theorem 1 means that for
all non-base cuboid cells in the data cube, regression can be
calculated via aggregation of regression parameters of their
child cuboids as opposed to from the raw time series data.
This alternative calculation is lossless with respect to the
least-square fit. Since we are using first order linear regres-
sion, there would be only two parameters that each child
cuboid has to pass up to their parent during aggregation.
Comparing this with full aggregation of the raw time series,
which could have hundreds of values in just one series, the
improvement in efficiency is obvious.

Example 6 (Regression Aggregation). Let cz be a
high-level cell and cx and cy be its only two descendant cells.
After regression on cx and cy, let ax

0 and ax
1 be the regression

parameters for cx and ax
0 and ay

1 be the same for cy. By
Theorem 1, the regression parameters for cz, az

0 and az
1, are

equal to the sums of the regression parameters at cx and cy.
In other words, az

0 = ax
0 + ay

0 and az
1 = ax

1 + ay
1 .

3.3.2 TopK Pruning

Theorem 1 improves the speed of cubing but does not
change the landscape of search. In order to reduce the search

space, pruning during cubing is necessary. In SUITS, com-
puting CB occurs in a bottom-up fashion [5] and is shown
in Figure 5. That is, cubing starts at the apex and moves
onto higher dimensional cells. Bottom-up cube computation
has two advantages. First, it facilitates iceberg pruning: If
a cell does not satisfy the minimum support condition, none
of its descendants does and thus can all be pruned. Second,
it starts at the most general cells, which, if g is weighted by
Count, are more likely to be the most abnormal cells.

As it turns out, at each cell, one can also calculate an
upper bound on the g scores of all descendant cells. This
upper bound can be used to facilitate more efficient top-k
calculation. For example, suppose the lowest anomaly score
in the top-k seen so far in cubing is x. If the upper bound
at a certain branch of the cube is strictly less than x, the
entire branch can be pruned.

The calculation of upper bound is dependent on anomaly
types. For Miscellaneous anomalies, the Euclidean distance
has a natural upper bound by the triangle inequality: At
any cell, the sum of the individual Euclidean distances of all
cells which contribute to it is the upper bound. For Trend
and Magnitude anomalies, we have the following Lemma.

Lemma 1 (Trend/Magnitude Bound). At any cell c
in a data cube, let A be the set of anomaly values calculated
by either gtrend or gmagnitude for all the tuples which con-
tribute to c. Let P be the set of positive values in A and N
be the set of negative values. A = P ∪ N ∪ {0}. Also let P
be the sum of values in P and N be the sum of values in N .
Then, max(|P |, |N |) is the absolute upper bound on g for all
descendants of c.

Proof : First, by the definitions of gtrend and gmagnitude and
Theorem 1, g at cell c can be calculated by simply adding up
the individual values in A. This holds because gtrend and
gmagnitude are differences of sums of regression variables,
which Theorem 1 shows can be aggregated losslessly. Sec-
ond, let c′ be any descendant of c and let A′ be the set of
anomaly values calculated by g for tuples which contribute
to c′. By definition of a data cube, tuples belonging to c′

are a subset of tuples belonging to c. Thus, A′ ⊂ A. P and
N represent the maximum positive and negative aggregates
in A. Thus any A′ could never aggregate to an absolute g
value higher than max(|P |, |N |).

For the Phase anomaly, the upper bound is slightly trick-
ier because the x-intercept is a fraction of regression val-

453

ues (x-intercept = −slope/y-intercept). In this case, one
can derive a looser upper bound using similar ideas from
Lemma 1 except by setting the denominator in P and N to
the smallest value.

As an example, suppose there are three dimensions in a se-
lected subspace. Here, we want to compute the top-3 trend
anomaly cells in a 3D data cube. Table 6 shows the base
cuboid. Sample differences between the observed and ex-
pected time series are shown. a1 is the observed slope and
â1 is the expected slope. The difference is a trend anomaly.
Cubing starts at the apex and proceeds bottom-up; Figure
5 shows the ordering. The algorithm records a “current-
best” top-k, denoted by K, which records the top-k seen so
far during cubing. It is initialized to an empty set. While
|K| < k or the upper bound value at any cell is larger than
the smallest anomaly in K, the algorithm proceeds to com-
pute the data cube.

Age Sex Height a1 â1 a1 − â1

5 M Short 1 0 1
5 M Tall 0 0 0
5 F Tall −3 −3 0
10 F Tall 1 3 −2
10 F Short 2 −3 5

Table 6: Sample base cuboid

*

Age

Age,Sex

Age,Sex,Height

Sex,Height

HeightSex

Age,Height

Figure 5: Bottom-Up Cube Computation

After calculating the apex cell, K = {(∗, ∗, ∗) : 4}. Next,
cuboid Age is calculated. The first two rows in Table 7 show
cells in Age. For example, a1 of (5, ∗, ∗) is calculated from
1 + 0 − 3. Because |K| < 3 at this point, both (5, ∗, ∗) : 1
and (10, ∗, ∗) : 3 are added to K. Next, cuboid (Age, Sex)
is calculated. Rows 3–5 in Table 7 show the cells. The last
column shows the upper bound. At (10, F, ∗), the upper
bound is 5, because 5 is the only positive anomaly value in
Table 6 for (10, F, ∗) and the negative value has a smaller
absolute value (| − 2| < |5|). At (5, M, ∗) and (5, F, ∗), the
upper bounds are less than or equal to the smallest anom-
aly in K. Thus, their descendants, e.g., (5, M, Short), are
pruned from future search. (10, F, ∗) is added to K and
search recurses on its descendants.

Age Sex Height a1 â1 a1 − â1 (a1 − â1).ub

5 ∗ ∗ −2 −3 1 1
10 ∗ ∗ 3 0 3 5
5 M ∗ 1 0 1 1
5 F ∗ −3 −3 0 0
10 F ∗ 3 0 3 5

Table 7: Cuboids Age and (Age, Sex)

Correctness: We argue the correctness of the algorithm via
contradiction. Suppose a cell c’s anomaly score V is larger

than the smallest value in the final top-k, but somehow c
was pruned and thus not included in the top-k. Suppose
the pruning occurred at an ancestor cell c0 whose anomaly
upper bound was V0. By Lemma 1, V0 ≥ V . There are
two possible cases. First, if V is larger than the smallest
value in the top-k, V0 must be as well. Thus the pruning
could not have happened. Second, if V0 is less than the
smallest value in the top-k, then pruning c was the correct
decision, but c should not be in the top-k. Both cases result
in contradictions.

3.4 Iterative Search
After discovering the local top-k cells in a subspace, they

are merged into a global top-k. Entries from the original
group are removed from the Time Anomaly Matrix. The
whole process repeats until the Time Anomaly Matrix is
empty. In the example of Table 4, the first iteration finds
the rule: “Income = 45k–60k → Magnitude Anomaly : S[2–
3]”. In the next iteration, the entries with phase anomaly
are selected and produce the following rule: “Education =
College → Phase Anomaly : S[1]”. Algorithm 2 shows a
high-level summary of SUITS.

Algorithm 2 SUITS

Input & Output: Same as Algorithm 1

1. Retrieve data for σp(R)
2. Repeat until global answer set contains global top-k
3. B ← candidate attribute values from {A1, . . . An}
4. Retrieve top k anomaly cells from CB using g and m
5. Add top k cells to global answer set
6. Remove discovered anomalies from input
7. Return top k cells in global answer set

3.5 Discussion
Top-K Approximation. SUITS combines local top-k’s to
form the global top-k. This is different from Algorithm 1
where the global top-k is computed directly. Though theo-
retically these methods could produce different answers, we
argue that it is unlikely and the benefits of SUITS outweighs
the risks by far. Consider Algorithm 1 for a relative small
30-dimensional problem. It has to compute 230 cuboids!
This is simply impractical. SUITS, on the other hand, can
handle it easily by partitioning the data.

Next, we examine the likelihood of SUITS producing a
different answer set than Algorithm 1. Every anomaly in
the data must be correlated with a subspace; in the case
of top-k anomalies, the correlation should be rather obvious
and thus easily detectable by the AL scores. As a result,
they will likely become candidate subspaces for SUITS. After
the candidate subspace is chosen, the rest of the calculation
(cubing and top-k pruning) is lossless. The source of error is
when a subspace is never chosen by SUITS. This could occur
if a “bad” attribute somehow has a very low AL score; but
in testing, we found this to be rare. In the next section, we
show empirically that SUITS usually produces the true top-
k. Further, it does it within a fraction of the time required
by the näıve algorithm.

Pruning. The top-k pruning mechanism relies on the sat-
isfaction of Lemma 1. In the case of regression and our defi-

454

nitions of anomaly, this is possible because the anomaly val-
ues are aggregated via SUM. The anomaly values themselves
might not increase or decrease monotonically, but the upper
bounds do. If Lemma 1 is not satisfied (i.e., non-monotonic
measure), one will not be able to prune in cube computa-
tion. However, this only affects individual partitions of the
algorithm. The overall divide-and-conquer search still ap-
plies. Further, because the dimensionality of each partition
is relatively low, full cube computation could be tolerated.

Optimizations. There are many tricks one can play to
speedup computation. First, if the AL score of some at-
tribute value is infinity, it means that value is trivially cor-
related with the anomaly. Thus, it can be output directly
without cubing. Second, in [5], dimensions are sorted in de-
scending order of cardinality in order to maximize the chance
of early pruning. The same can be applied here. By sorting
dimensions in ascending order of upper bound values, the
chance of pruning should be greater.

4. EXPERIMENTS
To show the effectiveness of SUITS, we experimented with

both synthetic and real world data. SUITS was implemented
in C++ and compiled with GCC. All experiments were per-
formed on a Linux machine with an Intel Core2 E6600 CPU
and 2GB of memory.

4.1 Real World Data
We obtained real sales data from a Fortune 500 company.

For confidentiality reasons, the name of the company, the
names of products, or actual sales numbers cannot be re-
vealed. The data include records from 1999 to 2005 and
contains over 925,000 sales and nearly 600 dimensions. The
measure in the cube is number of sales. g was computed for
the entire time span and not sub-sequences.

4.1.1 Sample Queries

To perform some sample queries, we restricted ourselves to
30 of the 600 dimensions. They included age, gender, mar-
ital status, household size, occupation, employment, race,
and more. Construction of 1D shell fragments around this
data took approximately 8 seconds. For the first query,
the probe cell was set to (Gender = “Male”, Marital =
“Single”, Product = a luxury item). Of its descendants,
(Generation = “Post-Boomer”) had the largest magnitude
anomaly (Figure 6); it was significantly less than the ex-
pected. This matches our intuitions because post-boomers
are those under age 35 and probably do not have enough
financial resources to purchase the luxury item. The sec-
ond and third largest abnormal descendants were (Occupa-
tion = “Manager/Professional”) and (Occupation = “Man-
ager/Professional”, Number of Children Under 16 = 0).
Both of these segments have significantly more sales than
the expected, and that makes sense because they have high-
paying jobs and more disposable income.

For the second query, the probe cell was set to (Gender
= “Female”, Education = “Post-Graduate”, Product = a
cheap item). Of its descendants, (Employment = “Full-
Time”) had the largest trend anomaly; its trend was declin-
ing while the expected trend was relatively flat. This makes
sense because presumably a full-time employee with a post-
graduate degree should have relatively good financial stand-
ing such that she will purchase more expensive alternatives.
The other anomalies in the top-10 had similar results (e.g.,

 1999 2000 2001 2002 2003 2004 2005

S
a

le
s

Time

Expected
Observed

Figure 6: Gender = “Male”, Marital = “Single”,
Product = a luxury item, Generation = “Post-
Boomer”

Occupation = “Manager/Professional”). But the third largest
anomaly in the top-10 was a little intriguing.

With (Number of Children Under 16 = 0), the observed
trend was higher than expected: The expected trend was 8
while the observed was 14. Figure 7 shows the data along
with their least-square fit lines. One explanation could be
that females who do not have children in the household
tend to be relative young and thus have not had time to
accumulate enough financial resources to purchase more ex-
pensive alternatives. The age dimension did not show up
as anomaly here, because its values were not grouped in
ranges and probably were too small individually to register
in the top-k. We did partially verify the explanation by set-
ting the probe to (Gender = “Female”, Education = “Post-
Graduate”, Product = a cheap item, Number of Children
Under 16 = 0). In the top-10 anomaly of this query, the only
anomaly whose trend was unexpectedly higher was (Gen-
eration = “Post-Boomer” (i.e., young)) (Figure 8). This
partially corroborates our age conjecture.

 1999 2000 2001 2002 2003 2004 2005

S
a

le
s

Time

Expected
Observed

Figure 7: Gender = “Female”, Education = “Post-
Graduate”, Product = a cheap item, Number of
Children Under 16 = 0

 1999 2000 2001 2002 2003 2004 2005

S
a

le
s

Time

Expected
Observed

Figure 8: Gender = “Female”, Education = “Post-
Graduate”, Product = a cheap item, Number of
Children Under 16 = 0, Generation = “Post-
Boomer”

These two sample queries show typical market analysis

455

Probe |R| Näıve SUITS0 SUITS Common Top-10
Time Time % Improve Time % Improve

Male, Single 10 14 5.9 58% 5.4 61% 9
Male, Married 10 299 95 68% 60 80% 10
Male, Divorced 10 3.6 2.8 22% 2.8 22% 10
Female, Single 10 15 8.2 46% 7.0 53% 9
Female, Married 10 114 31.0 73% 23.0 80% 8
Female, Divorced 10 5.5 3.8 31% 3.7 33% 10
Post-Boomer, Children=0 11 68.8 39.6 43% 32.1 53% 10
Post-Boomer, Children=1 11 16.8 5.4 68% 4.8 71% 10
Post-Boomer, Children=2 11 15.5 7.8 50% 6.7 57% 10
Boomer, Children=0 11 108.9 75.7 30% 52.4 52% 10
Boomer, Children=1 11 120.3 68.9 43% 58.0 52% 10
Boomer, Children=2 11 46.6 27.2 42% 23.6 49% 10

Average 48% 55% 9.6

Table 8: Run times of trend anomaly query with low dimensional data (10 ≤ |R| ≤ 11)

queries and how their results can either be confirmed by in-
tuition or shed light on some unexpected behavior. The for-
mer case offers assurance to the analyst that common-sense
marketing tactics will work and the latter offers a chance to
enter an un-tapped market. One may remark that the dif-
ferences in trend are rather small in the examples we have
shown. But the truth is, in real world market data, there are
no “nice” anomalies where the trends are completely oppo-
site. A difference in slope of just 1 or 2 is already significant.

4.1.2 Query Efficiency

In Table 8, we show efficiency results of many trend anom-
aly queries. For each query, we processed it in three differ-
ent ways. First, we used the Näıve algorithm as described
in Algorithm 1. Second, we used SUITS0, which is SUITS

without the top-k pruning. That is, it uses the iterative
subspace search but local candidate cubes are fully materi-
alized. And lastly, we used SUITS as described in the paper.
Table 9 shows a similar experiment with magnitude anomaly
queries except without SUITS0. In both tables, |R| shows
the total number of dimensions in the data; we chose a rela-
tively small number because for even slightly larger datasets,
Näıve is orders of magnitudes slower.

Probe |R| Näıve SUITS Common
Male, Single 10 13.4 8.2 38% 10
Male, Married 10 182.4 46.9 74% 10
Male, Divorced 10 4.1 3.1 24% 10
Female, Single 10 15.4 7.7 50% 10
Female, Married 10 85.5 17.4 80% 9
Female, Divorced 10 6.5 4.1 37% 10
High School 11 92.5 22.9 75% 10
College 11 382.4 35.5 91% 10
Post-Graduate 11 110.7 34.9 68% 10

Average 60% 9.9

Table 9: Magnitude anomaly query run times

In both tables, we notice that SUITS is, on average, over
50% faster than the Näıve algorithm. This is especially true
for the large queries, either by a large number of dimensions
or a large number of tuples. This is not surprising because
SUITS breaks a very large problem into more manageable
parts. Figure 9 shows a closer look at a single query as the

number of dimensions increase from 7 to 14. At 7, the Näıve
algorithm is faster than SUITS, because the data cube is rel-
atively small and SUITS has additional overhead. However,
as dimensionality increases, the trends of Näıve and SUITS

are very different. Näıve shows the expected curse of dimen-
sionality; in fact, with |R| = 12, Näıve ran out of memory for
full cube materialization. With SUITS, we observe a more
or less linear or even sub-linear behavior. This is because
SUITS is more dictated by the anomalies inside the data
rather than the external size of the data.

 0

 50000

 100000

 150000

 200000

 250000

 7 8 9 10 11 12 13 14

Q
u
e
ry

 R
u
n
ti
m

e
 (

m
s
)

Number of Dimensions

Naive
SUITS

Figure 9: Running time vs. number of dimensions

As mentioned previously, the top-k produced by SUITS is
not guaranteed to be the same as the true top-k. This could
occur if particular attributes or combinations of attributes
are not examined within a single iteration of SUITS. In prac-
tice, we noticed that this sometimes happens with dimen-
sions of high cardinality (e.g., zip code, state). The reason
is that high-cardinality dimensions often have high entropy
just by definition and thus low AL scores. And so they some-
times are not picked as candidates. An easy way to fix this
would be to normalize entropy based on the cardinality of
the dimension. However, this scenario is usually the excep-
tion rather than the rule. The last columns of Tables 8 and
9 show the number of items in the top-10 that is common
between the SUITS top-10 and the true top-10. As shown,
SUITS usually produces the same top-10 as the true top-10.

4.2 Synthetic Data
To test SUITS in a more controlled environment, we also

generated our own data. Each data set consisted of 95% nor-
mal, background “noise” and 5% abnormal patterns. For the
normal portion, each value under each dimension was picked

456

uniformly and independently between 1 and 5. Each value
inside the count and time series measure was also picked
uniformly and independently between 0 and 5. For the ab-
normal portion, 10 abnormal patterns were generated. Each
pattern consists of 1–3 dimensions and a randomly chosen
count/measure pattern. These 10 patterns are randomly in-
serted into the data 5% of the time. For all queries in the
rest of this section, p was set to a random 2-dimension query.
Each experiment was repeated 10 times to get an average.

Figure 10 shows running times in a 10-D data set as the
number of tuples increases with everything else fixed. Both
SUITS and Näıve exhibit linear complexity; even though
SUITS is iterative. This is expected because the size of the
Time Anomaly Matrix grows linearly with data size and so
does the number of iterations needed to cover it.

 0

 5000

 10000

 15000

 20000

 100 150 200 250 300 350 400 450 500

Q
u
e
ry

 R
u
n
ti
m

e
 (

m
s
)

Number of Tuples (1000s)

Naive
SUITS

Figure 10: Running time vs. number of tuples

Curse of dimensionality is a well-known problem in data
cubing and other multi-dimensional analysis. In SUITS, be-
cause bulk of the analysis is spent on subspaces, the over-
all dimensionality should not affect running time too much.
Figure 11 shows running time as dimensionality increases
from 6 to 16 but everything else remained the same. The
number of tuples was 250,000. With the Näıve method, the
running time quickly runs out of control. With SUITS how-
ever, we observe a relatively linear or flat curve. The flat
portion is explained by the sparsity of the high dimensional
data. In these cases, SUITS may only run a couple of itera-
tions because anomalies are so easy to find.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 6 8 10 12 14 16

Q
u
e
ry

 R
u
n
ti
m

e
 (

m
s
)

Number of Dimensions

Naive
SUITS

Figure 11: Running time vs. number of dimensions

One of the reasons we chose regression as the method of
representation for time series data was that it allows aggre-
gation from intermediate results as opposed to from scratch.
Figure 12 corroborates this assertion. The data had 8 di-
mensions and 250,000 tuples. As the length of the time
series increases from 20 to 100 with everything else fixed,
one observes a linear increase for the Näıve method. This is
expected because there are just more numbers to aggregate.
For SUITS, the increase is much flatter since the length of

time series does not affect aggregation of regression parame-
ters. The minor increase is probably due to the increase in
time to compute the least-square fit.

 0

 5000

 10000

 15000

 20000

 20 30 40 50 60 70 80 90 100

Q
u
e
ry

 R
u
n
ti
m

e
 (

m
s
)

Length of Time Series

Naive
SUITS

Figure 12: Running time vs. length of time series

5. RELATED WORK
Anomaly detection in data cubes or Exploratory Data

Analysis [11] in not a new problem. [24] developed a model
of OLAP discovery guided by anomalies. Their definition
of anomaly is measured on an anticipated value, which is
computed from all related group-by’s in the cube. This
necessitates full materialization of the data cube, which is
prohibitive in high dimensional cases. Further, the mode of
computation is interactive, whereas our work is automated
search. [4] uses the median polish to fit additive models in a
data cube. This facilitates approximate exploratory analysis
and also reduces I/O in the process; however, it does not ad-
dress the high-dimensionality problem. [17] is another work
which provides approximate answers to queries and finds
interesting cells in a data cube. Principles from maximum
entropy are used to compress the data; however, calculating
the marginals still has exponential complexity with respect
to the number of dimensions.

[12] and [9] consider the cubegrade problem in association
patterns and also data cubes. A cube cell is marked as in-
teresting if the ratio between its measure and the measure
of another cell exceeds some threshold. A major restric-
tion of these proposals is that the measures used have to
satisfy certain anti-monotonic property, which enables prun-
ing. Our work does not make this assumption. Lastly, in
all these works including [24], the data cube measures are
scalars while SUITS focuses on data with time series.

[8] from the time series field also addresses a similar prob-
lem, but there are two major differences. First, SUITS’s
search is automated while [8] requires user-guidance. Sec-
ond, SUITS works for high-dimensional data while [8] is only
suitable for low-dimensional data (< 10). In [8], the user is
expected to define the observation/minimum layers and pop-
ular paths. After these restrictions and pre-computations,
the leftover space is assumed to be small enough to be com-
puted by a traditional cubing method (e.g., H-cubing in [8]).
If the leftover space still has more than 10 dimensions, H-

cubing will have a difficult time computing the exceptions.
In SUITS, no domain knowledge is required, and the original
high-dimensional cuboid space is automatically partitioned
(both along dimension lines and tuple lines) into more man-
ageable parts.

General OLAP research has produced many data cubing
algorithms [5, 15, 16]. More advanced cubing techniques can
be incorporated into SUITS to enhance the efficiency, but the

457

overall goal of SUITS is different from cube materialization
or summarization.

Outlier detection in multi-dimensional data contains much
work [21, 18, 22]. [21] clusters the data into partitions and
processes them separately much like SUITS. The idea is that
the kth nearest neighbors lie close and would be in the same
partition. However, SUITS takes this one step further by ex-
amining the subspaces of the partitions. Also of interest are
high-dimensional cases. [2] uses an evolutionary algorithm
to avoid the curse of dimensionality. [7] uses the K-d tree
to store points, which reduces complexity to linear with re-
gards to dimensionality. However, the data model in general
outlier detection is completely different. Between any two
points, it measures anomaly on the distance between their
dimensional values (e.g., Euclidean). In the OLAP model,
there is no such distance between cube cells. Anomaly is de-
fined on the time-series measures associated with the points.
Also, aggregation and expectation introduce new challenges
that require new solutions.

Subspace clustering [19] detects clusters in subspaces of a
high-dimensional space via either top-down [1] or bottom-up
[3] exploration. SUITS contains a similar spirit though the
method by which subspaces are selected is quite different.
Instead of adding or removing dimensions at each iteration,
a completely different set is chosen that is based on the na-
ture of the data. But more importantly, subspace clustering,
like outlier detection, measures anomaly on the points, not
the OLAP measures, aggregates, and expectations.

SUITS uses piecewise linear regression to represent time
series and compute anomalies. Work in time series, specifi-
cally similarity search, addresses similar issues. Robust so-
lutions [20, 13, 23, 25, 10] are able to find similar shapes
invariant to many transformations. [14] finds the most un-
usual sub-sequence within a set. Work in data streams [27,
6] also provides tools for finding surprises in time series-like
data. We believe these algorithms are orthogonal to ours
in that we are more focused on the OLAP aspects. A typi-
cal time-series problem is conducted over a flat set (or pre-
defined aggregate functions) while ours is over a structured
high-dimensional space that can be arbitrarily aggregated.

6. CONCLUSIONS AND FUTURE WORK
Anomaly detection in multi-dimensional time series is clearly

an important problem with many applications. Market analy-
sis is just one of many. While much work has been devoted
to OLAP and time series, little attention has been paid to
the combination of the two. In real world applications, the
combination is often exactly where the useful answers lie.
In this paper, a solution, SUITS, is proposed to find top-k
anomalies within a high dimensional time series data cube.
SUITS avoids the curse of dimensionality by examining only
the most promising subspaces in an iterative manner. In
experiments with real world sales data, this was shown to
be both effective and efficient.

In our future work, we plan to address two issues. First,
semantic compression and closed computations [26] could
be useful in the real world because many patterns differ
only slightly and offer little incremental information gain.
Numerous techniques have been proposed and it would be
interesting to apply them here. Second, in Section 3.5, it was
mentioned that other time-series similarity measures maybe
adopted if they satisfy some properties. In this paper, the
simplest anomaly measures were used, which, by no means,

represent the best time-series research has to offer. It would
be very useful to incorporate some of the more powerful
similarity measures into SUITS.

7. REFERENCES
[1] C. C. Aggarwal and P. S. Yu. Finding generalized projected

clusters in high dimensional spaces. In SIGMOD’00.
[2] C. C. Aggarwal and P. S. Yu. Outlier detection for high

dimensional data. In SIGMOD’01.
[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.

Automatic subspace clustering of high dimensional data for
data mining applications. In SIGMOD’98.

[4] D. Barbará and X. Wu. Using approximations to scale
exploratory data analysis in data cubes. In KDD’99.

[5] K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes. In SIGMOD’99.

[6] A. Bulut and A.K. Singh. A unified framework for
monitoring data streams in real time. In ICDE’05.

[7] A. Chaudhary, A. S. Szalay, and A. W. Moore. Very fast
outlier detection in large multidimensional data sets. In
DMKD’02.

[8] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang.
Multi-dimensional regression analysis of time-series data
streams. In VLDB’02.

[9] G. Dong, J. Han, J. Lam, J. Pei, K. Wang, and W. Zou.
Mining constrained gradients in multi-dimensional
databases. In TKDE’04.

[10] A. W. Fu, Eamonn Keogh, Leo Yung Hang Lau, and
Chotirat Ann Ratanamahatana. Scaling and time warping
in time series querying. In VLDB’05.

[11] D. C. Hoaglin, F. Mosteller, and J. W. Tukey.
Understanding Robust and Explorartory Data Analysis.
Wiley, 1986.

[12] T. Imielinski, L. Khachiyan, and A. Abdulghani.
Cubegrades: Generalizing association rules. In DMKD’02.

[13] E. Keogh and S. Kasetty. On the need for time series data
mining benchmarks: A survey and empirical
demonstration. In KDD’02.

[14] E. Keogh, J. Lin, and A. Fu. Hot sax: Efficiently finding
the most unusual time series subsequence. In ICDM’05.

[15] X. Li, J. Han, and H. Gonzalez. High-dimensional OLAP:
A minimal cubing approach. In VLDB’04.

[16] K. Morfonios and Y. E. Ioannidis. Cure for cubes: Cubing
using a rolap engine. In VLDB’06.

[17] T. Palpanas and N. Koudas. Entropy based approximate
querying and exploration of data cubes. In SSDBM’01.

[18] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and
C. Faloutsos. LOCI: Fast outlier detection using the local
correlation integral. In ICDE’03.

[19] L. Parsons, E. Haque, and H. Liu. Subspace clustering for
high dimensional data: A review. SIGKDD Explorations,
6:90–105, 2004.

[20] I. Popivanov and R. J. Miller. Similarity search over
time-series data using wavelets. In ICDE’02.

[21] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient
algorithms for mining outliers from large data sets. In
SIGMOD’00.

[22] P. J. Rousseeuw and A. M. Leroy. Robust Regression and
Outlier Detection. John Wiley & Sons, Inc., 2002.

[23] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. Ftw: fast
similarity search under the time warping distance. In
PODS’05. 2003.

[24] S. Sarawagi and G. Sathe. Intelligent, interactive
investigation of OLAP data cubes. In SIGMOD’00.

[25] H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang, H. Shirato,
and D. R. Kaeli. Subsequence matching on structured time
series data. In SIGMOD’05.

[26] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed
frequent-pattern sets. In VLDB’05.

[27] Y. Zhu and D. Shasha. Efficient elastic burst detection in
data streams. In SIGMOD’03.

458

