
Building Structured Web Community Portals:
A TopDown, Compositional, and Incremental Approach

Pedro DeRose1, Warren Shen1, Fei Chen1, AnHai Doan1, Raghu Ramakrishnan2

1University of Wisconsin-Madison, 2Yahoo! Research

ABSTRACT

Structured community portals extract and integrate infor-
mation from raw Web pages to present a unified view of en-
tities and relationships in the community. In this paper we
argue that to build such portals, a top-down, compositional,
and incremental approach is a good way to proceed. Com-
pared to current approaches that employ complex mono-
lithic techniques, this approach is easier to develop, under-
stand, debug, and optimize. In this approach, we first se-
lect a small set of important community sources. Next, we
compose plans that extract and integrate data from these
sources, using a set of extraction/integration operators. Ex-
ecuting these plans yields an initial structured portal. We
then incrementally expand this portal by monitoring the
evolution of current data sources, to detect and add new
data sources. We describe our initial solutions to the above
steps, and a case study of employing these solutions to build
DBLife, a portal for the database community. We found that
DBLife could be built quickly and achieve high accuracy us-
ing simple extraction/integration operators, and that it can
be maintained and expanded with little human effort. The
initial solutions together with the case study demonstrate
the feasibility and potential of our approach.

1. INTRODUCTION
The World-Wide Web hosts numerous communities, each

focusing on a particular topic, such as database research,
movies, digital cameras, and bioinformatics. As such com-
munities proliferate, so do efforts to build community por-
tals. Such a portal collects and integrates relevant commu-
nity data, so that its members can better discover, search,
query, and track interesting community activities.

Most current portals display community data according
to topic taxonomies. Recently, however, there has been a
growing effort to build structured data portals. Such por-
tals extract and integrate information from raw Web data,
to present a unified view of entities and relationships in the
community. For example, the Citeseer portal extracts and

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 2328, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 9781595936493/07/09.

integrates publications to create an entity-relationship (ER)
graph that captures citations. As another example, the In-
ternet Movie Database (IMDB) extracts and integrates ac-
tor and movie information to create an ER graph that cap-
tures relationships among these entities.

In general, structured portals are appealing because they
can provide users with powerful capabilities for searching,
querying, aggregating, browsing, and monitoring commu-
nity information. They can be valuable for communities in
a wide variety of domains, ranging from scientific data man-
agement, government agencies, and enterprise intranets, to
business and end-user communities on the Web.

Unfortunately, despite the growing importance of such
structured portals, today there is still no general consen-
sus on how best to build them. In commercial domains,
many structured portals have been developed, such as Ya-

hoo! Finance, Froogle, EngineSpec, Zoominfo, and IMDB.
Little, however, has been published on their development.
Our private communications suggest that they often employ
a combination of manual and automatic techniques, which
is developed specifically for the target domain and hence
difficult to port.

In the research community, several semi-automatic solu-
tions have been developed to build structured portals. No-
table examples include Citeseer, Cora [29], Deadliner [26],
Rexa, and Libra [30]. Most of these works take a “shot-
gun” approach. They start by discovering all Web sources
deemed relevant, in an attempt to maximize coverage. Next,
they apply sophisticated extraction and integration tech-
niques (e.g., HMM [29], CRF [31]), often uniformly to all
data sources. Finally, they expand the portal by periodi-
cally re-running the source discovery step. These solutions
achieve good coverage and incur relatively little human ef-
fort. However, they are often difficult to develop, under-
stand, and debug (e.g., they require builders to be well-
versed in complex learning technologies). Given the mono-
lithic nature of the employed techniques, it is also often dif-
ficult to optimize the run-time and accuracy of these solu-
tions.

Given the limitations of current approaches, in this paper
we argue that building structured portals using a top-down,
compositional, and incremental approach is a good way to
proceed. In this approach, we first select a small set of
important community sources. Next, we create plans that
extract and integrate data from these sources to generate
entities and relationships. These plans, however, are not
monolithic “blackboxes” that generate all entities and rela-
tionships from all data sources. Instead, each plan focuses

399

on particular entities and relationships using a composition
of extraction and integration operators. In creating each
plan, we decide which operators to use, in which order, and
on which sources. Executing these plans yields an initial
structured portal. We then incrementally expand this por-
tal by monitoring certain current sources for mentions of new
sources. The following example illustrates our approach.

Example 1. Consider building a structured portal for the
database research community. Toward this goal, current ap-
proaches often start by finding as many relevant data sources
as possible. This can include those that are well-known (e.g.,
DBLP, DBworld), those that are linked to by well-known
sources, and those that are suggested by search engines (e.g.,
in response to database related keyword queries). In con-
trast, our approach starts with a small set of relevant data
sources, such as DBworld, the homepages of the 300 most
productive database researchers, seminar pages at the top
200 CS departments, etc.

Next, in the extraction and integration step, prior ap-
proaches often apply some monolithic solution to extract all
structures from all data pages, then integrate them to form
entities and relations in a bottom-up fashion. Our approach,
however, is top-down and compositional. It starts with an
entity or relation type X (e.g., serve-on-PC), then considers
where to get most instances of X most reliably. Suppose it
decides DBworld. Then it creates a plan to find instances
of X from only DBworld pages (not from any other pages,
even if they contain serve-on-PC information). In creating
this plan, our approach employs a set of extraction and inte-
gration operators. For instance, an operator may extract all
person mentions from the raw data, then another operator
matches these mentions to create person entities. Similarly,
another set of operators create conference entities. Then a
final set of operators discover serve-on-PC relations between
these person and conference entities.

Finally, to expand, current approaches often probe the
structure of the Web (e.g., using focused crawling [6, 8])
to find and add new data sources. In contrast, we observe
that most new relevant data sources will eventually be men-
tioned within community sources. Hence, instead of focused
crawling the Web, we monitor certain dynamic community
sources (e.g., DBworld, researcher blogs, conference pages)
to find mentions of new data sources (e.g., the URL of an
upcoming workshop).

We argue that the above approach to building structured
portals is a good way to proceed for several important rea-
sons. First, since we start with a small set of high-quality
sources, and incrementally expand (rather than gathering
all potentially relevant data sources at once, to build the
initial portal, as in current approaches), we can control the
quality of the sources admitted to the system, thereby main-
taining system accuracy. Second, since we compose plans
from modular extraction/integration operators, such plans
are often easier to develop, understand, debug, and modify
than monolithic and complex plans in current approaches.
Third, the compositional nature of our approach also makes
it highly amenable to optimization efforts, as we will briefly
discuss. Finally, and somewhat surprisingly, we found that
in our approach, even plans with relatively simple extrac-
tion/integration operators can already achieve high accu-
racy. The following example illustrates this point.

Example 2. Continuing with the above example, consider

the problem of matching researcher mentions (i.e., decid-
ing if “David DeWitt” and “D. DeWitt” refer to the same
real-world entity). Numerous complex and powerful solu-
tions have been developed for this problem [25]. In our ap-
proach, however, we found that the simple plan of matching
mentions if they share similar names already achieves a high
accuracy of 98% F1 (see Section 6). This is because in many
Web communities, people intentionally use as distinct names
as possible to minimize confusion. As another example, con-
sider finding the relation give-talk(person,dept). Prior ap-
proaches may write a powerful plan for this relation, then
apply it to all data pages. In our approach, we start by de-
ciding that we can obtain most “giving talk” instances from
seminar pages. We then monitor the 200 seminar pages in
the system. If a person name A occurs in the seminar page
of a department B and is not preceded by the word “host”,
then we conclude that A gives a talk at B. This plan is sim-
ple to write, and can already achieve a high accuracy of 88%
F1 (see Section 6).

In the rest of the paper we elaborate on the above reasons.
We start by considering the problem of selecting an initial
set of data sources. Given the large number of data sources
potentially relevant to a community, selecting a good initial
set is often difficult. To assist the builder in this task, we
develop a solution that automatically ranks a large set of
data sources in decreasing order of relevance to the commu-
nity. To compute source relevance, our solution exploits the
content of sources, as well as “virtual links” across sources
as implied by the presence of domain entities (Section 2).

Given an initial set of sources, we then consider the prob-
lem of creating extraction/integration plans that, when ap-
plied to these sources, produce a desired ER graph. We de-
scribe in detail a methodology to create such plans incremen-
tally, piece by piece, using a set of extraction/integration op-
erators. Further, we show how relatively simple plans can
be constructed using simple implementations of these oper-
ators (Section 3). Then, to wrap up the description of our
approach, we show how to maintain the initial portal, and
expand it over time by monitoring selected current sources
to detect new data sources (Section 4).

Finally, we describe Cimple, a workbench that we have
been developing at Wisconsin and Yahoo! Research (Sec-
tion 5). By “workbench”, we mean a set of tools that
developers can use to quickly build structured community
portals in our approach. As a case study, we have em-
ployed this workbench to build DBLife, a structured portal
for the database community. We found that DBLife could
be built quickly with high accuracy using simple extrac-
tion/integration operators, and that it can be maintained
and expanded with little human effort (Section 6).

To summarize, in this paper we make the following con-
tributions:

• We show that a top-down, compositional, and incremen-
tal approach is a good way to build structured commu-
nity portals, as it is relatively easy to develop, under-
stand, debug, and optimize.

• We describe an end-to-end methodology for selecting
data sources, creating plans that generate an initial struc-
tured portal (in form of an ER graph) from these sources,
and evolving the portal over time. We show how these
plans can be composed from modular extraction and in-
tegration operators.

400

• We describe an implementation of the above approach
in the Cimple workbench, and a case study with DBLife,
a portal built using this workbench. The case study
demonstrates that our approach can already achieve high
accuracy with relatively simple extraction/integration
operators, while incurring little human effort in portal
maintenance and expansion.

For space reasons, in what follows we will focus only on the
key ideas of our approach, and refer the readers to the full
paper [13] for a complete description.

2. SELECTING INITIAL DATA SOURCES
To build a community portal in our approach, the builder

starts by collecting an initial set of data sources that are
highly relevant to the community. We now describe how to
collect such data sources. The next section describes how to
create an initial portal in the form of an ER data graph from
these sources. Section 4 then describes how to maintain and
evolve this initial portal.

To select initial sources, we observe that the 80-20 phe-
nomenon often applies to Web community data sources, i.e.,
20% of sources cover 80% of interesting community activi-
ties. Thus, a builder B can start by selecting as much of this
core 20% as possible, subject to his or her time constraints.

To illustrate, for the database research community, B can
select home pages of top conferences (e.g., SIGMOD, PODS,
VLDB, ICDE) and the most active researchers (e.g., PC
members of top conferences, or those with many citations),
the DBworld mailing list, and so on. As another example,
for the digital camera community, B can select home pages
of top manufacturers (e.g., Sony, Nikon, Olympus), top re-
view websites (e.g., dpreview.com, cnet.com), and camera
sections of top retailers (e.g., bestbuy.com, amazon.com).

In many cases, B is a domain expert and already knows
many of these prominent data sources. Still, it can be diffi-
cult even for a domain expert to select more relevant sources
beyond this set of prominent ones. Hence, we have devel-
oped RankSource, a tool that helps B select data sources. To
use RankSource, B first collects as many community sources
as possible, using methods commonly employed by current
portal building approaches (e.g., focused crawling, querying
search engines, etc. [6]). Next, B applies RankSource to
rank these sources in decreasing order of relevance to the
community. Finally, B examines the ranked list, starting
from the top, and selects the truly relevant data sources.
We now describe three versions of RankSource that we have
developed, in increasing degree of effectiveness.

PageRank-only: Let S be the set of sources collected by
B. To rank sources in S, this RankSource version exploits the
intuition that (a) community sources often link to highly rel-
evant sources, and (b) sources linked to by relevant sources
are more likely to be relevant. This is the same intuition
used in algorithms such as PageRank [5] to evaluate the rel-
evance of Web pages. Hence, we apply PageRank to rank
our sources. To do so, we first crawl Web pages in each
source s ∈ S to a pre-specified depth. Then, we build a
graph G over S by creating a node for each s ∈ S, and an
edge u→v if a page in source u links to a page in source v.

Next, we calculate the PageRank for each node u ∈ G.
Assume that nodes v1, . . . , vn link to u and u itself links to
c(u) nodes. Then we compute the PageRank of u as

P (u) = (1 − d) + d

n
X

i=1

P (vi)/c(vi)

where d is a pre-specified damping factor. Finally, we return
the sources (i.e., nodes of G) in decreasing order of their
PageRank to the builder B.

We found that this RankSource version achieves limited ac-
curacy because some highly relevant sources are not linked
to often. For example, in the database domain, few sources
link to individual conference pages, even though these pages
are highly relevant. Thus, we extend PageRank-only to con-
sider both link structure and source content.

PageRank + Virtual Links: Much community informa-
tion involves entities. Thus, if a highly relevant source dis-
cusses an entity, it intuitively follows that other sources that
discuss this entity may also be highly relevant. To leverage
this idea, we extend PageRank-only as follows. First, we col-
lect as many entity names as we can within the community.
Such collections of names are often readily available with
just a little manual scraping of certain Web sources. Next,
we find occurrences of these entity names in the sources of
S (by applying the mention extraction operator ExtractM-

byName described in Section 3.1.1). We say a source s men-
tions an entity e if e’s name (modulo a name-specific trans-
formation) occurs in a page crawled from s. Next, we cre-
ate graph G, as in PageRank-only, then add virtual links
between sources that mention overlapping entities. Specifi-
cally, if sources s and t mention entity e, we add links s→t
and t→s. Finally, we compute PageRank as before.

Somewhat surprisingly, our experiments showed that these
virtual links actually reduced accuracy. We discovered that
this is because we link sources even if they only share enti-
ties that are not their main focus. Thus, most virtual links
are noise, reducing accuracy. We address this problem by
considering only entities highly relevant to each source, as
the next RankSource version discusses.

PageRank + Virtual Links + TF-IDF: To avoid noise,
we want to add a virtual link between sources only if they
share an entity that is highly relevant to both. Intuitively,
an entity e is relevant to source s if it appears often in s,
but in few other sources. We quantify this using TF-IDF
[33] (term frequency-inverse document frequency), a popular
metric for measuring the relevance of terms in documents.

Let E be the collection of entities we have found so far.
We first calculate the TF-IDF score for each entity e ∈ E
mentioned in each source s ∈ S. This score is the product
of the term frequency (i.e., how often e appears in s) and
the inverse document frequency (i.e., how rarely e appears
in S). Formally, let Es be the entities mentioned in s. For
each entity e ∈ Es, let c(e) be the number of times e appears
in s. Then, we compute the term frequency of e as

TF(e, s) =
c(e)

P

f∈Es

c(f)
,

the inverse document frequency of e in S as

IDF(e, S) = log
|S|

|{t ∈ S : e ∈ Et}|
,

and the TF-IDF score of e in s given S as

TF-IDF(e, s, S) = TF(e, s) · IDF(e, S).

401

Web pages

* *
*

*

* * *
*
*

Jim Gray

SIGMOD-04SIGMOD-04

**

*

*** giving-talk

Jim Gray

(a) (b) (c)

ER schema G

Figure 1: Workflow of Pday for the database domain

Next, for each source s ∈ S, we filter out any entity e ∈ Es

where TF-IDF(e, s, S) < θ for some threshold θ. Finally, we
apply PageRank + Virtual Links as before. Section 6 show
that, compared to the above two RankSource versions, this
version dramatically improves accuracy. Hence, it is the
version we currently use in our approach.

3. CONSTRUCTING THE ER GRAPH
Let T be the initial set of data sources selected by builder

B. We now describe how to extract and integrate data to
construct an ER graph over T . Toward this goal, builder B
begins by defining an ER schema G that captures entities
and relations of interest to the community. G consists of
multiple types of entities (e.g., person, paper) and relations
(e.g., write-paper, co-author), each of which is associated
with a set of attributes (e.g., name, email).

Next, builder B applies a crawling program to the sources
in T at regular intervals to retrieve Web pages. The crawling
interval is domain-specific, but for simplicity, in this paper
we will assume daily crawling. For any source s ∈ T , if
s comprises standard Web pages without forms, then we
crawl s and retrieve all pages up to a pre-specified depth.
Otherwise s is accessible only via a form interface, in which
case we execute a set of queries (pre-specified by the builder)
over s, to retrieve a set of Web pages.

Let W1 be the first-day snapshot, i.e., all Web pages re-
trieved in the first day. Then, B creates and applies a plan
Pday to W1 to generate a daily ER graph D1. On the second
day, B crawls the data sources to retrieve W2, then applies
Pday to W2 to generate the daily ER graph D2, and so on.

Let D1, . . . , Dn be the daily ER graphs generated from
snapshots W1, . . . , Wn, respectively. Builder B then creates
and applies a plan Pglobal to these daily ER graphs to cre-
ate a global ER graph Dglobal that spans all the days that
the portal has been in use. B can then offer a variety of
user services over Dglobal (e.g., browsing, keyword search,
querying, etc., not discussed in this paper).

In the rest of this section we will describe how B creates
the daily plan Pday and the global plan Pglobal.

3.1 Create the Daily Plan Pday

The daily plan Pday takes as input a daily snapshot W and
the ER schema G, then produces as output a daily ER graph
D. Builder B creates Pday as follows. First, for each entity
type e ∈ G, B creates a plan Pe that discovers all entities
of type e from W . For example, given the ER schema G
and the set of Web pages in Figure 1.a, a plan Pe for entity
type “person” may find person instances such as Jim Gray,
and a plan for entity type “conference” may find conference

Union

ExtractM

MatchM

CreateE

s1 sn…

CreateE

MatchMStrict

R

ExtractMbyName

MatchMbyName

Union

{s1 … sn} DBLP\

ExtractMbyName

DBLP

(a) (b)

Figure 2: Plans for extracting and matching mentions

instances such as SIGMOD-04, as shown in Figure 1.b.
Next, for each relation type r, B creates a plan Pr that

discovers all instances of relation r that “connect” the enti-
ties discovered in the first step. For example, a plan Pr for
relation “giving-talk” may discover an instance of this rela-
tion between entities Jim Gray and SIGMOD-04, as shown
in Figure 1.c (with an edge between the two entities).

Finally, B merges plans Pe and Pr to form the daily plan
Pday. In what follows, we describe how to create plans Pe

and Pr (merging them to form Pday is straightforward).

3.1.1 Create Plans to Discover Entities

A Default Plan: Figure 2.a shows Pdefault, perhaps the
simplest plan that builder B can apply to find entities of
type e. This plan first unions all Web pages retrieved from
all data sources s1, . . . , sn to create the snapshot W .

Next, it applies an operator ExtractM to find all mentions
of type e in Web pages of W (e.g., person mentions like “Jim
Gray”, “J. Gray”, “Dr. Gray”, etc.). Then, the plan applies
an operator MatchM to find matching mentions, i.e., those
referring to the same real-world entity. This in effect parti-
tions the mentions into groups g1, . . . , gk, where all mentions
in a group gi refer to the same real-world entity.

Finally, plan Pdefault applies an operator CreateE to cre-
ate an entity ei for each group of mentions gi. Creating ei

means assigning values to its attributes using the mentions
in gi. For example, if gi = {“Jim Gray”, “J. N. Gray”, “Dr.
Gray”}, then CreateE may create an entity ei with name
“Jim N. Gray” and title “Dr.”.

The problem of extracting and matching mentions, as
encapsulated in operators ExtractM and MatchM, is well-
known to be difficult. Variations of matching mentions, for
example, are also known as record linkage, entity matching,
reference reconciliation, deduplication, and fuzzy matching.
Numerous solutions have been developed for these problems,
ranging from relatively simple rule-based methods to sophis-
ticated learning-based techniques (e.g., [25]). Virtually any
of these solutions can be implemented for the above opera-
tors.

In the context of Web community portals, however, we
found that relatively simple solutions can already work quite
well. Specifically:

• For extracting mentions, we have implemented ExtractM-

byName, a simple dictionary-based solution that “matches”
a collection of entity names N against the pages in W
to find mentions. Specifically, ExtractMbyName first
creates variations for each entity name n ∈ N by ap-
plying type-specific perturbation rules to n (e.g., given
the person name “John Kyle Smith”, it creates vari-
ations “John Smith”, “Smith, J. K.”, etc.). Then, it

402

finds all occurrences of these variations in W , applies
some simple filters to exclude overlapping occurrences,
and returns the remaining occurrences as mentions.

• For matching mentions, we have implemented MatchM-

byName, which matches mentions if they are similar
modulo a type-specific transformation (e.g., it may de-
clare that “John Kyle Smith”, “John Smith”, and “J.
Smith” all match, because they are similar modulo a
name-specific transformation).

Now let Pname be the Pdefault plan that employs ExtractM-

byName and MatchMbyName. We found that Pname already
works quite well for DBLife, achieving an average F1 of 98%
for persons, papers, and organizations (see Section 6). This
is because in the database domain, as well as in many Web
communities, entity names are often intentionally designed
to be as distinct as possible, to minimize confusion for com-
munity members. Hence, Pname may already work well in
such cases. Pname is also broadly applicable, because builder
B often can quickly compile relatively comprehensive collec-
tions of entity names with minimal manual effort (e.g., by
screen scraping from well-known data sources).

Hence, in our approach B will apply plan Pname, whenever
applicable, to find entities.

A Source-Aware Plan: Pname is not perfect, however. It
sometimes matches mentions poorly in ambiguous sources,
e.g., those that also contain data from external communities.
For instance, in the database domain, DBLP is ambiguous
because it contains data from non-database communities.
Hence, it may contain a mention “Chen Li” of a database
researcher as well as another mention “Chen Li” of an HCI
researcher. MatchMbyName cannot tell such mentions apart,
thus reducing the accuracy of Pname.

In such cases, we propose that builder B examine the
output of Pname to identify the set of ambiguous sources
A ⊆ {s1, . . . , sn} that cause low accuracy. Then, instead
of Pname, B should employ a “stricter” plan Pstrict. This
plan first applies ExtractMbyName and MatchMbyName to
the set of unambiguous sources S A to produce a result R,
then applies a stricter matching operator MatchMStrict to
the union of R and the set of ambiguous sources A. The
following example illustrates this plan.

Example 3. Figure 2.b shows a plan Pstrict that finds
person entities in the database domain. At first, Pstrict op-
erates exactly like Pname over all non-DBLP data sources. It
produces a result R specifying all mention groups g1, . . . , gk

over these sources. Next, Pstrict unions R with all mentions
extracted from only DBLP using ExtractMbyName obtaining
a result U . Then, it applies an operator MatchMStrict to U .

MatchMStrict is stricter than MatchMbyName in that it
matches mentions in U using not just their names, but also
their contexts in the form of related persons. Specifically,
MatchMStrict first creates for each person mention p ∈ U a
set of related persons r(p), e.g., by adding to r(p) all per-
son mentions found within a k-word distance of p. Next,
it “enriches” the mentions: for any two mentions p and q
matched in R (i.e., belonging to the same group gi in result
R), it adds r(p) to r(q) and vice-versa. Finally, MatchM-

Strict declares two mentions in U matched only if they have
similar names and share at least one related person.

If necessary, B can repeat the above steps, using progres-
sively stricter matchers over increasingly ambiguous sources,

ComputeCoStrength

CreateR

person

entities

org

entities

Union

s1 sn…

×

Select(strength >
�
)

person

entities

conference

entities

main pages

ExtractLabel

c(person, label)

CreateR

person

entities

org

entities

seminar

pages

c(person, neighborhood)

CreateR

(a) (b) (c)

Figure 3: Plans for finding relations

until Pstrict is sufficiently accurate (see [34] for an initial
solution on how to semi-automatically find a good Pstrict,
given a set of matchers and a set of data sources).

3.1.2 Create Plans to Find Relations

In the next step, B creates plans to find relations among
the discovered entities. Since relations can differ signifi-
cantly in their natures, a single plan template is unlikely
to work well for all relation types. Hence, our strategy is to
identify types of relations that commonly occur in Web com-
munities, then create plan templates for each of these types.
In this paper, we focus on three such types: co-occurrence,
label, and neighborhood relations.

Co-occurrence Relations: Such a relation r(e, f) causes
entities e and f to frequently co-occur in close proximity
on data pages. Examples include affiliation(person,org), co-
author(person,person), and write-paper(person,paper).

To find such relations, we have implemented an operator
ComputeCoStrength, which inputs an entity pair (e, f), then
outputs a number that quantifies how often and closely men-
tions of e and f co-occur. Specifically, let P be the set of
all pages containing mentions of both e and f . We quantify
the co-occurrence strength as s(e, f) =

P

p∈P
1/d(e, f, p)α,

where d(e, f, p) is the shortest distance (in words) between a
mention of e and a mention of f in page p ∈ P , and α is pre-
specified. While more sophisticated ways to measure s(e, f)
exist, we found that this simple measure already works well
in our experimental domains (see Section 6).

Builder B can now create a plan Pr that establishes rela-
tion r between any entity pair (e, f) where s(e, f), as com-
puted by ComputeCoStrength over a set of data sources F ,
exceeds a threshold θ. B may have to experiment with dif-
ferent F and θ until reaching a desired accuracy.

Example 4. Figure 3.a shows DBLife’s Paffil plan. This
self-explanatory plan discovers all pairs (e, f) where person
e is affiliated with organization f . Note that it operates over
the data of all sources in T . Here, operator CreateR creates
a relation instance in a fashion similar to that of CreateE.

Label Relations: The notion of a label is inherently sub-
jective, but, briefly, it refers to titles, headlines, subject
lines, section names, certain bold text, and so on within
a data page. For instance, in a conference call for paper,
example labels might include header text “Objectives of the
Conference”, and bold text “Important Dates”, “PC Mem-
bers”, etc. Such labels can help us discover a variety of
relations. For example, if we find a mention m of a person
e in a page for a conference c, and if a label immediately
preceding m contains the phrase “PC Members”, then it is
very likely that e is serving on the PC of c.

To find such relations, we have implemented an operator
ExtractLabel, which inputs a set of pages P and outputs all
labels found in P (see [13] for a detailed description). B can

403

F11 F12

D1

F22F21

D2

Dglobal

Snapshot W1 Snapshot W2

Figure 4: Merging graph fragments into daily ER

graphs, and then into a global ER graph

then employ this operator to construct plans that find label
relations, as the following example illustrates.

Example 5. Figure 3.b shows DBLife’s Pserved plan. This
plan inputs a set of persons and conferences. Then, for each
conference c, it applies ExtractLabel to find all labels in the
main pages of c (these are pages that have been specified
to belong to c, e.g., c’s homepage, using an attribute main-

pages). Next, it finds all pairs (p, c) such that (a) a mention
m of person p occurs in a main page of c, (b) there exists
a label l immediately before m (i.e., there is no other label
in between), and (c) l contains the text “PC” or “Program
Committee”. Finally, for each found pair (p, c), the plan
creates a relation indicating that p serves on the PC of c.

Neighborhood Relations: Such relations are similar in
spirit to label relations, but require that, instead of labels,
the immediate neighborhood (e.g., a window of k words on
both sides) of a mention should satisfy some condition. B
can easily construct plans for such relations, as the following
example illustrates.

Example 6. Figure 3.c shows DBLife’s Ptalk plan. The
plan finds all pairs (p, o) such that (a) a mention m of per-
son p appears in a seminar page of organization o, and (b)
the word “host” does not appear within a 3-word window
preceding m. For each found pair (p, o), the plan creates a
relation indicating that p gives a talk at o.

Discussion: When B judges a relation to be of one of the
above co-occurrence, label, or neighborhood relation types,
B can use the above plan templates. Otherwise, B creates
a domain-specific plan. We found that the above three rela-
tion types are pervasive (e.g., constituting 75% of relations
in the current DBLife).

3.2 Decompose the Creation of Daily Plan
So far we have assumed that B will create a single uni-

fied daily plan Pday, covering all entity and relation types
in the community ER schema G, “in one shot”. In reality,
it is difficult to create such a plan, for the following reasons.
(1) The ER schema G can be large (tens or hundreds of en-
tity and relation types), and creating a large Pday for such
schemas can be overwhelming. (2) B often want to spread
the workload of plan creation over several persons (e.g., vol-
unteers) by asking each of them to build a plan for a part
of G. (3) Schema G often evolves over time, as community
needs or B’s idea of what the portal should contain change.
Thus, if we add an extension G′ to the current schema G,
we may not want to re-create a plan for G∪G′ from scratch.
Rather, we may want to create a plan for G′, then merge
this plan with the plan for G.

For these reasons, we allow builder B to decompose schema
G into smaller pieces G1, . . . , Gn, then create a plan Pi for
each piece Gi using the methods described above in Sec-
tion 3.1. Given a snapshot Wk of day k, B then applies
plans P1, . . . , Pn to Wk to create ER fragments Fk1, . . . , Fkn.
Finally, B merges these ER fragments to obtain the daily
ER graph Dk. Figure 4 illustrates how two ER fragments
F11 and F12 are merged to create the ER graph D1 for day
1. It shows a similar process that creates D2.

To merge ER fragments, B first uses one of these frag-
ments as the initial daily graph. He or she then merges
the remaining ER fragments into the daily graph using two
operators: MatchE and EnrichE. Briefly, MatchE(Di, Fij)
finds all matching nodes (i.e., entities) between Di and Fij .
EnrichE(Di, Fij) then “enriches” Di, by transferring certain
information from entities in Fij to matching entities in Di

(see [13] for more details on MatchE and EnrichE). For ex-
ample, suppose that a paper entity p in Fij has attribute
num-citations = 50, and that p matches a paper entity q in
Di. Then EnrichE may set num-citations of q to 50, or create
this attribute for q if it does not yet exist. Thus, in a sense,
the daily ER graph Di functions as a “daily data warehouse”
that “siphons” data from the individual ER fragments Fij .

3.3 Create the Global Plan Pglobal

Let D1, . . . , Dn be the daily ER graphs generated from
snapshots W1, . . . , Wn, respectively. Builder B then merges
them to create a global ER graph Dglobal that spans all the
days that the portal has been in use. Figure 4 illustrates
the above process for Day 1 and Day 2.

As can be seen, this process is similar to merging ER
fragments to create a daily ER graph, and thus employs
the same operators MatchE and EnrichE. However, in this
context, we can design a very simple MatchE by exploit-
ing the observation that an entity’s mentions usually do
not change much from one day to the other. Let e be
an entity in Dk, and Mk(e) be the set of mentions of e
found in Day k. Likewise, let f be an entity in Dglobal,
and Mk−1(f) be the set of mentions of f found in Day
k − 1. Then we compute the Jaccard similarity measure
J(e, f) = |Mk(e) ∩ Mk−1(f)|/|Mk(e) ∪ Mk−1(f)|, and de-
clares e and f matched if J(e, f) exceeds a threshold θ. As
far as we can tell, this simple MatchE achieves perfect accu-
racy in the current DBLife system.

We note that, in a sense, Dglobal functions as a “global
data warehouse” that “siphons” data from the individual
daily ER graphs Di (just like Di functions as a “daily data
warehouse” siphoning data from individual ER fragments).

4. MAINTAINING & EXPANDING
We now describe how to maintain the initial portal and

expand it over time. Maintaining an initial portal means en-
suring that, as time passes, its data sources stay up-to-date.
For example, if the initial DBLife operates over the 400 most
productive researchers, the top 10 database conferences, and
all their home pages, then we must maintain this coverage
over time. Our current assumption is that this maintenance
can be executed periodically, with relatively little manual
work, because in most Web communities, the relevancy of
data sources changes slowly over time. Section 6, for exam-
ple, shows that we have maintained DBLife with only about
1 hour per month for the past 2 years.

404

Maintenance & expansion

User services

- keyword search

- query

- browse

- mine …

Select

data

sources

(1)

(3)

(4)

(5)

& integrate

Extract(2)

Mass collaboration

Figure 5: The five stages of building a portal with Cimple

Expanding an initial portal then means adding new rel-
evant data sources, e.g., the homepages of new conferences
and workshops beyond the top 10 conferences. (We can also
add new entities, e.g., to the collection of entity names of
ExtractMbyName, but we do not consider such scenarios in
this paper.) A popular solution to expansion has been fo-
cused crawling: crawl the Web starting from a set of seed
sources (e.g., those of the initial portal) in a focused fash-
ion (e.g., follow only “highly promising” links) to find new
relevant data sources [6, 8].

Focused crawling is certainly applicable to our context.
However it is relatively complex to deploy and difficult to
tune for a desired accuracy. Hence, for now we explore a
complementary and simple strategy that exploits an impor-
tant characteristic of Web communities. Specifically, we ob-
serve that most new important data sources will eventually
be mentioned within the community in certain data sources
U (as “advertisements” from some community members to
the others). Hence, we simply monitor sources U , and write
plans to extract mentions of new data sources. Since these
plans are specific to U , they often are simple to write.

For example, to detect new database conferences and work-
shops, we monitor DBworld. If a DBworld message is of the
type “conference announcement”, then we parse the first few
lines of the messages to extract a conference abbreviation X
and a URL Y (if any). Y then becomes a new data source
associated with conference X. If applied to all data sources,
this simple method achieves only 50% precision in recogniz-
ing conference abbreviations. However, since we apply it
only to DBworld messages, it achieves 97% precision.

Depending on the particular setting, builder B may decide
to add newly found data sources automatically into the ex-
traction/integration plans discussed in Section 3, or to “vet”
them before adding. To “vet” them, B can employ the al-
gorithm RankSource (Section 2) to evaluate their relevance.

5. THE CIMPLE WORKBENCH
We are now in a position to describe the Cimple workbench

currently under development. Below we first describe how a
builder B would use the workbench components, then how
common characteristics of Web communities have influenced
our development of these components.

5.1 Components of the Workbench
The workbench consists of an initial portal “shell” (with

many built-in administrative supports), a methodology on
populating the shell, a set of operator implementations, and
a set of plan optimizers.

Portal Shell with Built-in Supports: To develop a
community portal, a builder B starts with the “empty” por-
tal shell provided by the workbench. This shell already has
built-in supports for many “administrative” tasks, such as

generic crawling, archiving and retrieving crawled data over
time, identity generation and management, configuration file
management, and result visualization, among others. These
tasks, if implemented from the scratch, can easily consume
a few man months of development effort.

Methodologies: Builder B then follows a specification in
the workbench, which shows how decompose the problem of
building a community portal into stages. Figure 5 shows this
decomposition. To construct a portal, (1) builder B starts
by selecting a set of initial relevant data sources. (2) Next,
B constructs plans that crawl, extract, and integrates data
from the sources, to form a global ER graph. (3) Over time,
B must maintain and further evolve the initial portal, and
(4) provide a variety of user services over the extracted and
integrated data. (5) Finally, B can leverage the multitude
of users in the community - in a mass collaboration fashion
- to assist in all of the above tasks.

In this paper we have focused on Stages 1-3 (see [12] for
our ongoing work for Stages 4-5). For Stages 1-3, the spec-
ification has identified a set of operators (e.g., ExtractM,
MatchM, CreateE, ComputeCoStrength, ExtractLabel, MatchE,
EnrichE, etc.), and show how to employ these operators to
construct extraction/integration plans, as described in Sec-
tion 3. A builder B can then either follow these guidelines,
or modify them to suit a particular context.

Operator Implementations: To construct plans using
the above generic operators, the current workbench already
contains a set of operator implementations, e.g., ExtractM-

byName for ExtractM. These implementations are relatively
simple, but can already be highly effective in building por-
tals (see Section 6).

Optimizers: Since the space of possible extraction and
integration plans is often large, finding a good plan can be
difficult. Hence, we have also been working on developing
optimizers that builder B can use to (semi)automatically
find good plans. For example, in [34] we describe an initial
solution that semi-automatically finds a plan that discovers
entities with high accuracy, given a set of mention match-
ers and data sources. In [35] we describe a solution that
automatically finds a plan that minimizes the time to dis-
cover certain relations. We are currently “packaging” such
optimizer solutions to be a part of the Cimple workbench.

5.2 Exploiting Community Characteristics
Throughout the paper, we have briefly touched on how

common Web community characteristics have influenced our
design decisions. We now summarize and expand upon these
points. We note that builder B can also leverage these char-
acteristics to build simple yet effective plans.

(1) Web communities often exhibit 80-20 phenomena. Hence,
we adopted an incremental approach, in which we start with
just the 20% most prominent data sources, because these
sources often already cover 80% of interesting community ac-
tivities. As another example, when collecting entity names
for an entity type e (e.g., for dictionary-based methods),
we can stop after collecting just the 20% most prominent
names, because these names often are already involved in
80% of interesting activities related to e.

(2) Within a Web community, significant collections of
entity/relation names are often available with just a little
manual scraping of certain Web sources, hence our emphasis

405

2 days, 2 personsCore Entities (489): researchers (365), department/organizations (94), conferences (30)

Relation Plans (8): authored, co-author, affiliated with, gave talk, gave tutorial, in panel, served in, related topic

Operators: DBLife-specific implementation of MatchMStrict

Data Sources (846): researcher homepages (365), department/organization homepages (94), conference homepages (30),
faculty hubs (63), group pages (48), project pages (187), colloquia pages (50), event pages (8), DBWorld (1), DBLP (1)

Initial DBLife (May 31, 2005)

2 days, 2 persons

1 day, 1 person

2 days, 2 persons

Time

Data Source Maintenance: adding new sources, updating relocated pages, updating source metadata

Maintenance and Expansion

1 hour/month, 1 person

Time

Relation Instances (63,923): authored (18,776), co-author (24,709), affiliated with (1,359), served in (5,922), gave talk (1,178), gave tutorial (119),
in panel (135), related topic (11,725)

Entities (16,674): researchers (5,767), departments/organizations (162), conferences (232), publications (9,837), topics (676)

Mentions (324,188): researchers (125,013), departments/organizations (30,742), conferences (723), publication: (55,242), topics (112,468)

Data Sources (1,075): researcher homepages (463), department/organization homepages (103), conference homepages (54), faculty hubs (99),
group pages (56), project pages (203), colloquia pages (85), event pages (11), DBWorld (1), DBLP (1)

Current DBLife (Mar 21, 2007)

Figure 6: Activities and time to build, maintain, and expand DBLife

on starting with dictionary-based extraction operators such
as ExtractMbyName. Even when this is not so, such collec-
tions can often be extracted relatively easily from some data
sources (e.g., database conferences from DBworld), hence
our emphasis on looking for such sources, then writing sim-
ple extraction plans tailored specifically to those sources.

(3) Entity names are often intentionally designed to be
distinct, to avoid confusion by community members. Even
when names clash, most such clashes are often limited to
just a small percentage of names (again, the 80-20 phe-
nomenon). Hence, we advocate using very simple name
disambiguation methods (e.g., MatchMbyName) to correctly
match most names, then applying “patches” (e.g., MatchM-

Strict) to handle the remaining hard-to-match names.
(4) Most new and interesting sources/entities/relations

will eventually be mentioned within the community as a
form of “advertisement” from one member to the others,
hence our decision to expand via monitoring current sources.

(5) We can often solicit help from community members,
in a mass collaboration fashion [17]. Hence, we can focus on
acquiring the “short but prominent head”, i.e., the relatively
small number of prominent data sources, entities, relations,
etc. We then design the portal so that community members
can easily add the “long tail” (e.g., data sources that are
related but not heavily used by most members). See [12] for
our initial work on this topic.

6. CASE STUDY: DBLIFE
As a proof of concept, we conducted a preliminary case

study by applying our Cimple workbench to build DBLife, a
structured portal for the database community. Our goal is to
illustrate how portals in our approach can be built quickly,
maintained and expanded with relatively little effort, and
already reach high accuracy with the current set of relatively
simple operators.

6.1 Develop & Maintain DBLife

Manual Effort: Two developers (graduate students) spent
roughly 4 months in 2005 to develop the Cimple workbench
described in Section 5. Then, to build the initial DBLife

portal, we first manually compiled a list of 846 prominent
data sources and the names of 489 prominent entities (see
“Initial DBLife” in Figure 6). Next, we implemented a strict
matcher (MatchMStrict described in Section 3.1.1), specifi-
cally for DBLife, to match mentions from DBLP. Finally, we
implemented 8 DBLife-specific plans to find relations. With

64.077.080.080.0PageRank + Virtual Links +TF-IDF

38.0

30.0

200

32.026.040.0PageRank + Virtual Links

37.044.050.0PageRank-only

1005010
Precision At

Method

Figure 7: Evaluation of RankSource variations

this, we were able to launch the initial DBLife in May 2005
after a week of manual work by 2 developers.

Since deployment, DBLife has required very little manual
maintenance: adding new data sources, updating relocated
pages, and updating certain metadata requires only about
an hour per month (see “Maintenance and Expansion” in
Figure 6).

By March 2007, DBLife has added 229 more data sources
via expansion. It now processes 1,075 data sources daily,
extracts roughly 324,000 mentions of nearly 16,700 entities,
and has discovered nearly 64,000 relation instances between
these entities (see “Current DBLife” in Figure 6).

Ease of Development: By March 2007, the code of
DBLife has been deployed and extended by at least 13 in-
dividual developers in four different locations (CS depart-
ments at Illinois and Wisconsin, Biochemistry department
at Wisconsin, and Yahoo Research). In all cases, the code
(comprising 40,000 lines) was successfully deployed and de-
velopment efforts started in a few days, using a simple user
manual and a few hours of Q&A with us. We found that de-
velopers could quickly grasp the compositional nature of the
system, and zoom in on target components. Since most such
components (extractors, matchers, relation finders, etc.) are
of “plug-and-play” nature and relatively simple, developers
could quickly replace or tune them.

6.2 Accuracy of DBLife
We now evaluate the accuracy of the current DBLife. Our

goal is to demonstrate that using the current set of relatively
simple operators, DBLife already achieves high accuracy in
selecting data sources, constructing ER graphs, and expand-
ing to new data sources.

Selecting Data Sources: To evaluate the accuracy of
RankSource (see Section 2), we first collected a large set of
database-related data sources. Due to its 2 years of expan-
sion, DBLife now crawls a relatively complete set of com-
munity sources. Hence, we took these 1,075 sources, then

406

R P F1

Daniel S. Weld 0.99 1.00 0.99

Richard T. Snodgrass 0.99 1.00 1.00

Roger King 1.00 0.88 0.93

Klaus R. Dittrich 1.00 1.00 1.00

Alon Y. Halevy 1.00 1.00 1.00

Mehul A. Shah 0.98 0.96 0.97

Panos K. Chrysanthis 1.00 1.00 1.00

Raghu Ramakrishnan 1.00 1.00 1.00

Jian Pei 1.00 1.00 1.00

Kevin Chen-Chuan Chang 0.99 0.95 0.97

Susan B. Davidson 1.00 0.99 0.99

Feifei Li 0.97 0.94 0.95

Feng Tian 1.00 1.00 1.00

Walid G. Aref 0.99 1.00 0.99

Torsten Grust 1.00 1.00 1.00

Jayavel Shanmugasundaram 1.00 1.00 1.00

Kyuseok Shim 0.97 1.00 0.99

Wolfgang Lindner 1.00 1.00 1.00

Nuwee Wiwatwattana 1.00 1.00 1.00

Ming-Syan Chen 1.00 0.84 0.91

Average 0.99 0.98 0.98

Researchers
ExtractMbyName

Figure 8: Accuracy of extracting mentions

added sources linked to from these sources, to obtain a set
S of almost 10,000 data sources.

Next, we used RankSource to rank sources in S in decreas-
ing order of relevance. (Recall from Section 2 that virtual-
links versions of RankSource utilize a list of entity names.
This experiment used the list of roughly 6,000 names of re-
searchers and organizations in the current DBLife, see the
second line under “Current DBLife” in Figure 6.)

To evaluate such rankings, in the next step we compiled
a set of highly relevant data sources, called the gold set.
This set contains (a) DBLP and DBworld main pages, (b)
homepages of database researchers with 200+ citations, and
(c) main pages, database group pages, event pages, the fac-
ulty hubs, and database project pages of 25 top database
research organizations. In addition, since recent conferences
often receive significant attention and hence can be consid-
ered highly relevant, we also added to the gold set the main
pages of the three top database conferences in 2003–2006,
resulting in a set of 371 data sources.

Since a builder B would typically examine the top k sources
in such a ranking to find highly relevant sources, we report
precision at k, i.e., the fraction of sources in the top k that
are in the gold set (and thus considered highly relevant).
Figure 7 shows precision at 10, 50, 100, and 200 for all three
RankSource methods. (Note that since the initial sources
builder B assembles need not contain all highly relevant data
sources, we do not report the recall of RankSource.)

The results show that a direct application of PageRank
(the first line) achieves low precisions (e.g., 30% at top-200).
Interestingly, adding virtual links (the second line) actually
reduced precisions in many cases. Adding a TF-IDF evalua-
tion of the virtual links (the 3rd line) helps remove noisy vir-
tual links, and dramatically increases precision. Overall, the
complete RankSource (in the third line) achieves high preci-
sions, ranging from 80% at top-10 to 64% at top-200. This
suggests that RankSource can effectively help the builder se-
lect highly relevant sources.

Constructing the ER Graph: Next, we evaluate DBLife’s
accuracy in constructing the ER graph. Ideally, we would
like to compute this accuracy over all decisions that DBLife

has made in extracting, matching, relation finding, etc. How-
ever, this is clearly impossible. Hence, we decided instead
to evaluate DBLife’s accuracy over a random sample of 20

R P F1 R P F1

Daniel S. Weld 1.00 1.00 1.00 0.99 1.00 0.99

Richard T. Snodgrass 1.00 1.00 1.00 0.99 1.00 1.00

Roger King 1.00 0.97 0.99 0.79 0.97 0.87

Klaus R. Dittrich 1.00 1.00 1.00 0.84 1.00 0.91

Alon Y. Halevy 1.00 1.00 1.00 1.00 1.00 1.00

Mehul A. Shah 1.00 0.94 0.97 1.00 0.94 0.97

Panos K. Chrysanthis 1.00 1.00 1.00 1.00 1.00 1.00

Raghu Ramakrishnan 1.00 1.00 1.00 0.99 1.00 1.00

Jian Pei 1.00 1.00 1.00 1.00 1.00 1.00

Kevin Chen-Chuan Chang 1.00 1.00 1.00 1.00 1.00 1.00

Susan B. Davidson 1.00 1.00 1.00 0.94 1.00 0.97

Feifei Li 1.00 0.97 0.99 1.00 0.97 0.99

Feng Tian 1.00 0.54 0.70 1.00 0.90 0.95

Walid G. Aref 1.00 1.00 1.00 0.99 1.00 1.00

Torsten Grust 1.00 1.00 1.00 1.00 1.00 1.00

Jayavel Shanmugasundaram 1.00 1.00 1.00 1.00 1.00 1.00

Kyuseok Shim 1.00 1.00 1.00 1.00 1.00 1.00

Wolfgang Lindner 1.00 0.88 0.94 0.97 1.00 0.99

Nuwee Wiwatwattana 1.00 1.00 1.00 1.00 1.00 1.00

Ming-Syan Chen 1.00 0.97 0.99 0.90 0.97 0.93

Average 1.00 0.96 0.98 0.97 0.99 0.98

Researchers
Pname Pstrict

Figure 9: Accuracy of discovering entities

researchers (see the first column of Figure 8). We chose
researchers because DBLife infers more information about
researchers than any other entity type, and we selected only
20 researchers because even computing accuracies on this
sample already took several days of manual effort. By accu-
racy, we mean the standard measures of precision P , recall
R, and F1 = 2PR/(P + R).

Extracting mentions: To find researcher mentions, the cur-
rent DBLife applies operator MatchMbyName (with a collec-
tion of names extracted from DBLP using a simple wrap-
per). Figure 8 shows the accuracies of this operator over
the 20-researcher sample. To compute these accuracies, for
each researcher X, we first found the set A of all mentions
of X in all pages (of a daily snapshot). Suppose then that
MatchMbyName found the set B of mentions of X. Then we
computed P = |A ∩ B|/|B| and R = |A ∩ B|/|A|.

The results show that this simple operator already achieves
very high accuracy: precision of 84–88% in two cases and
94–100% in the rest, recall of 97–100%, and F1 of 91–100%.

Discovering entities: Next, we evaluated DBLife’s accuracy
in discovering entities. Since the key step in this process
is matching mentions (once this has been done, creating
entities is straightforward), we evaluated the accuracy of
this key step, with respect to each researcher. Specifically,
for each researcher X in the sample, let FX be the set of
mentions of X found by DBLife (using MatchMbyName, as
discussed earlier). Now suppose after matching mentions,
DBLife assigned a set AX of mentions to X. Then we com-
pute P = |FX∩AX |/|AX | and R = |FX∩AX |/|FX |. Figure 9
shows the results over the 20-researcher sample.

The figure shows that when matching mentions by just
name similarity (using plan Pname described in Section 3.1.1),
DBLife already achieves high accuracy of 94–100% F1 in
19 out of 20 cases. In the case of Feng Tian, however, it
achieves F1 of only 70%, due to a precision of 54%. In this
case, DBLP contains many names that share the same first
initial “F” and last name “Tian”, but belong to different re-
searchers. Hence, the name-based matcher MatchMbyName

performed poorly. And a low precision of 54% makes infor-
mation collected about Feng Tian practically unusable.

Plan Pstrict (described in Section 3.1.1) then “patches” up
this case by employing a stricter matcher MatchMStrict over

407

R P F1 R P F1 R P F1 R P F1 R P F1 R P F1

Daniel S. Weld 0.70 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

Richard T. Snodgrass 0.84 1.00 0.91 1.00 1.00 1.00 0.83 1.00 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Roger King 0.78 1.00 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Klaus R. Dittrich 0.81 1.00 0.89 1.00 1.00 1.00 0.75 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Alon Y. Halevy 0.49 1.00 0.66 0.00 0.00 0.00 0.70 0.88 0.78 0.75 1.00 0.86 1.00 1.00 1.00 0.40 1.00 0.57

Mehul A. Shah 0.91 1.00 0.95 0.00 0.00 0.00 0.67 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panos K. Chrysanthis 0.59 1.00 0.74 1.00 1.00 1.00 0.86 0.86 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Raghu Ramakrishnan 0.98 1.00 0.99 1.00 0.50 0.67 0.90 0.95 0.92 0.63 1.00 0.77 1.00 1.00 1.00 0.50 1.00 0.67

Jian Pei 0.92 1.00 0.96 1.00 0.50 0.67 0.71 0.92 0.80 1.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00

Kevin Chen-Chuan Chang 0.81 1.00 0.89 1.00 1.00 1.00 0.93 0.87 0.90 0.00 1.00 0.00 0.50 1.00 0.67 1.00 0.33 0.50

Susan B. Davidson 0.54 1.00 0.70 1.00 1.00 1.00 1.00 0.67 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Feifei Li 0.80 1.00 0.89 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Feng Tian 0.67 0.50 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Walid G. Aref 0.99 1.00 0.99 1.00 1.00 1.00 0.80 0.92 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Torsten Grust 0.65 1.00 0.79 1.00 1.00 1.00 0.50 0.75 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Jayavel Shanmugasundaram 0.84 1.00 0.91 1.00 0.50 0.67 0.75 0.67 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Kyuseok Shim 0.96 1.00 0.98 1.00 1.00 1.00 0.70 0.93 0.80 1.00 1.00 1.00 0.50 1.00 0.67 1.00 1.00 1.00

Wolfgang Lindner 0.64 1.00 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Nuwee Wiwatwattana 0.67 1.00 0.80 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ming-Syan Chen 0.58 1.00 0.73 0.00 1.00 0.00 0.73 0.89 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.76 0.98 0.84 0.85 0.83 0.80 0.84 0.81 0.77 0.87 1.00 0.88 0.90 1.00 0.92 0.95 0.92 0.89

gave talk gave tutorial in panel
Researchers

authored affiliated with served in

Figure 10: Accuracy of finding relations

DBLP (see Figure 2.b). It dramatically improves precision
from 54% to 90% for Feng Tian, while keeping recall at
100%. Pstrict reduces the accuracy of some of the remaining
cases, e.g., Roger King and Klaus R. Dittrich. These names
are not ambiguous in DBLP and MatchMStrict proves to
be “too strict”. Thus, F1 scores for these cases drop from
99–100% to 87–91%, but still remain at a usable level.

These results therefore suggest that in Web communities,
it may be a good idea to employ a relatively simple mention
matching method to cover the vast majority of cases, then
employ “patches” of stricter matching methods to cover the
relatively fewer problematic cases. This would be in sharp
contrast to current practice, where, typically, a single com-
plex matching method is employed and tuned to maximize
the overall accuracy [25].

Discovering relations: Next, we evaluate DBLife’s accuracy
in finding relations. Figure 10 shows the results for 6 re-
searcher relations discovered by DBLife (results for the re-
maining relations are similar). Here DBLife discovered in-
stances of authored using a plan tailored to DBLP, affiliated-

with using ComputeCoStrength, and the remaining 4 rela-
tions using label-based plans (see Section 3.1.2). We com-
pute precisions and recalls in a manner similar to the case
of extracting mentions.

The results show that DBLife discovers relations with high
accuracy: 77–92% F1 on average (see last line of Figure 10).
In affiliated-with, for example, DBLife finds the correct orga-
nizations (in the top-2) in 17 out of 20 cases. In only one case
(Alon Y. Halevy) does DBLife not provide an organization.
Furthermore, whenever DBLife provides an incorrect orga-
nization, the researcher has moved from that organization
relatively recently. In served-in, the relatively low average
F1 of 77% is caused by just two cases, Feifei Li and Nuwee
Wiwatwattana, where there are no true services and DBLife

misidentifies a single service for each.

Expanding to New Data Sources: DBLife currently
monitors DBworld to detect and add new conference data
sources. If a DBworld message m is of type “conference
announcement”, then DBLife judges m to be a database
conference announcement only if m mentions more than k

researchers who are already in DBLife (where k is a pre-
specified threshold). DBLife then extracts any URLs in m
as new data sources.

This method currently finds database conferences with
65% recall, 66% precision, and 66% F1. By increasing k, we
can achieve 83% precision, at a lower recall of 45%. Thus,
the method has proven quite effective as a way to gather
many database conferences quickly, with little effort.

Providing More Context using Current Portals: Even
if DBLife achieves 91% F1 in finding a relation, some may
not consider this a high accuracy if current state-of-the-art
portals already achieve, for example, 97%. Consequently,
we examine the accuracy of several current portals to place
DBLife’s accuracies in a broader context.

We examine DBLife in the context of two academic com-
munity portals: Rexa (http://rexa.info) and Deadliner [26].
Rexa crawls the Web, then employs sophisticated learning
techniques to extract and integrate information about re-
searchers and papers [31, 40]. Figure 11 shows DBLife’s
accuracy in the context of Rexa’s accuracy, again for the
20-researcher sample. Columns 2–3 of the figure show pre-
cisions in discovering entities, i.e., matching mentions cor-
rectly to each researcher. Columns 4–5 show the precision
of finding authored instances, and Columns 6–7 show the
precisions of finding affiliated-with instances. Note that we
cannot report recall because we do not have access to Rexa’s
code, and hence do not know the corpus it processes.

The figure shows that DBLife does achieve high accuracies
for these tasks when placed in the context of Rexa’s accura-
cies. Note that these accuracies are not directly comparable
because the two systems operate on different data corpora.
A direct comparison is also not fair in that Rexa attempts
to cover the entire CS community, not just the database
one. Hence, Rexa must deal with a far larger amount of
noise, leading to lower precisions. But this observation also
raises an interesting future research question: to cover the
entire CS community, can we just build many smaller com-
munities, such as DBLife, AILife, SELife, etc.? If the total
manual effort of building and maintaining these communi-
ties remains manageable, then this may be a good way to

408

Daniel S. Weld 0.99 1.00 0.33 0.82 1.00 1.00

Richard T. Snodgrass 0.99 1.00 0.67 0.91 0.00 1.00

Roger King 0.53 0.97 0.84 0.87 0.00 1.00

Klaus R. Dittrich 0.95 1.00 0.77 0.89 1.00 1.00

Alon Y. Halevy 0.95 1.00 0.34 0.66 0.00 0.00

Mehul A. Shah 0.72 0.94 0.91 0.95 0.00 0.00

Panos K. Chrysanthis 1.00 1.00 0.55 0.74 1.00 1.00

Raghu Ramakrishnan 0.99 1.00 0.68 0.99 0.00 0.67

Jian Pei 0.93 1.00 0.57 0.96 0.00 0.67

Kevin Chen-Chuan Chang 0.54 1.00 0.50 0.89 0.00 1.00

Susan B. Davidson 1.00 1.00 0.49 0.70 1.00 1.00

Feifei Li 1.00 0.97 0.30 0.89 1.00 1.00

Feng Tian 0.20 0.90 0.67 0.57 1.00 1.00

Walid G. Aref 1.00 1.00 0.71 0.99 0.00 1.00

Torsten Grust 1.00 1.00 0.30 0.79 1.00 1.00

Jayavel Shanmugasundaram 1.00 1.00 0.57 0.91 0.00 0.67

Kyuseok Shim 0.94 1.00 0.75 0.98 0.00 1.00

Wolfgang Lindner 0.38 1.00 0.41 0.78 0.00 1.00

Nuwee Wiwatwattana 1.00 1.00 0.50 0.80 0.00 1.00

Ming-Syan Chen 0.99 0.97 0.45 0.73 0.00 0.00

Average 0.86 0.99 0.57 0.84 0.35 0.80

DBLife

Find

Pubs F1

Rexa

Find

Orgs F1

DBLife

Find

Orgs F1

Researchers

Rexa

Match

Mentions P

DBLife

Match

Mentions P

Rexa

Find

Pubs F1

Figure 11: Accuracies of DBLife in the broader context

provided by Rexa

cover the broader CS community with high accuracy.
Deadliner [26] is a niche portal that extracts conference

information (e.g., titles, deadlines, PC members) from a va-
riety of data sources. It employs a combination of hand-
crafted extractors and learning methods to combine the ex-
tractors. We evaluate Deadliner in terms of discovering in-
stances of served-in (this is the only kind of data that both
Deadliner and DBLife find). Deadliner discovers served-in in-
stances from DBworld messages with 86% recall, 86% pre-
cision, and 86% F1. In this context, DBLife achieves high
accuracies of 98% recall, 97% precision, and 98% F1, also
for served-in over DBworld messages.

7. RELATED WORK

Information Extraction & Integration: Information
extraction (IE) dates back to the early 80’s, and has received
much attention in the AI, KDD, Web, and database commu-
nities (see [1, 9, 18] for recent tutorials). The vast majority
of works improve IE accuracy (e.g., with novel techniques
such as HMM and CRF [9]), while some recent pioneering
works improve IE time (e.g. [7, 24]). Most works develop
basic IE solutions to extract a single type of entity (e.g.,
person names) or relation (e.g., advising). IE developers
then commonly combine these solutions — often as off-the-
shelf IE “blackboxes” — with additional procedural code
into larger IE programs. Since such programs are rather
difficult to develop, understand, and debug, recent works
have developed compositional or declarative IE frameworks,
such as UIMA, GATE [21, 11], Xlog [35], and others [38, 32].
An emerging direction then focuses on building such frame-
works and providing end-to-end management of a multitude
of IE “blackboxes” in large-scale IE applications [18].

Information integration (II) is also a long-standing prob-
lem that has received much attention from the database, AI,
and Web communities [23]. Much of early work focused on
developing II architectures and languages, identifying key
problems, and addressing II in various application domains.
A recent trend started developing compositional solutions
for certain II problems (e.g., schema matching and mention
matching [34, 38]). Another emerging trend focuses on best-
effort, approximate II (e.g., [23, 16]) (in addition to precise

II commonly studied so far, e.g., in business applications).
Our work here builds on these emerging IE and II trends.

We also advocate a compositional, best-effort approach to
extracting and integrating data. In contrast to these prior
works, however, we consider a tight combination of IE and
II, within the context of Web communities.

The rise of the World-Wide Web in the past decade has
also added new directions to IE and II research. One direc-
tion develops IE and II techniques to turn the whole Web
(or a significant portion of it) into a structured database.
Recent examples include KnowItAll [19], SemTag [15], and
WebFountain [22]. These works have either focused on scal-
ing to Web scale, or relied heavily on the redundancy of the
Web, which is not always available in a Web community. An-
other important direction leverages the Web to assist with
IE and II tasks, e.g., by querying search engines to discover
relations between certain entities [28, 19]. Such techniques
can potentially be applicable to Web community contexts.

Developing Structured Portals: This topic has also re-
ceived much attention in the AI, database, Semantic Web,
Web, and KDD communities. Recent examples include Li-

bra [30], Rexa, DBLife [14], Citeseer, KA2 [4], OntoWeb [36],
Flink, BlogScope [3], Strudel [20], and [27]. These works ad-
dress two main issues: how to acquire structures and how
to exploit structures.

In this work, we focus on how to acquire structures. A
common solution is to apply IE and II techniques to ac-
quire structures from raw community data pages, as we do
here. Many works in the AI/Web communities (e.g., Cite-

seer, Rexa, Libra) develop such solutions, often using sophis-
ticated learning techniques [9]. Similar works in the Seman-
tic Web community include KA2 [4], SEAL (which is used
to build OntoWeb) [37], and [10]. Several works (e.g., [28])
also leverage search engines for these purposes (as described
earlier).

Only a few of these works (e.g., [30, 10]) have discussed a
methodology to build structured portals. Even so, they have
not addressed all salient aspects (e.g., matching mentions,
matching entities across different days, and expanding por-
tals), as we do here. In addition, as far as we know, none of
these works has considered how to exploit common charac-
teristics of Web communities in the portal building process.

Besides extracting and integrating from raw data pages,
another major direction to acquiring structures is to man-
ually provide them, either from a small set of builders, or
from the multitude of users. Examples include Friend-of-a-
Friend (foaf-project.org); MathNet, a portal for sharing math
research and knowledge; and WebODE [2], a workbench for
creating ontology-driven knowledge portals. Some recent
works [39] build wiki portals, then allow community users
to supply structured data, using an extension of the stan-
dard wiki language.

Clearly, the combination of automatically extracting and
manually specifying structures can provide a powerful hy-
brid approach to developing structured portals. In [12] we
provide an initial solution in this direction.

Community Information Management: Our work here
is done in the context of community information manage-
ment (CIM). CIM studies how to effectively support infor-
mation needs of a community by managing both the com-
munity data and users in a synergistic fashion, using IE,
II, and mass collaboration techniques. We have provided

409

some initial discussion of CIM and DBLife in [17, 14]. This,
however, is the first work to study in depth the problem of
building structured portals, an important aspect of CIM.

8. CONCLUSION & FUTURE WORK
In this paper, we have argued that a top-down, compo-

sitional, and incremental approach is a good way to build
structured Web community portals. We described Cimple,
a workbench implementation of this approach, and DBLife,
a portal built using this workbench. Our experience with
DBLife suggests that our approach can effectively exploit
common characteristics of Web communities to build portals
quickly and accurately using simple extraction/integration
operators, and to evolve them over time efficiently with little
human effort.

Our work has only scratched the surface of research prob-
lems in this direction. Interesting problems include: How
to develop a better compositional framework? How to make
such a framework as declarative as possible? What tech-
nologies (e.g., XML, relational) should be used to store and
manipulate the portal data? How to optimize both run-time
and accuracy of data processing in portal construction? How
to effectively process a large amount of portal data in a dis-
tributed fashion? How can users interact with the portal
or mass collaborate to further evolve the portal? How to
build effective user services that exploit the (extracted and
integrated) structured data? How to apply Semantic Web
technologies to capture and reason with community knowl-
edge? And how to build a practical integrated development
environment for portal developers? It is our hope that the
initial work here will inspire other researchers to join us in
addressing these questions.

9. REFERENCES
[1] E. Agichtein and S. Sarawagi. Scalable information extraction

and integration (tutorial). In KDD-06.

[2] J. C. Arprez, O. Corcho, M. Fernández-López, and
A. Gómez-P’erez. WebODE in a nutshell. AI Magazine, 24,
2003.

[3] N. Bansal, F. Chiang, N. Koudas, and F. W. Tompa. Seeking
stable clusters in the Blogosphere. VLDB-07.

[4] V. R. Benjamins, D. Fensel, S. Decker, and A. G. Perez. (KA)2:
Building ontologies for the Internet: a mid term report.
IJHCS-99, 51.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks, 30:107, 1998.

[6] S. Chakrabarti, K. Punera, and M. Subramanyam. Accelerated
focused crawling through online relevance feedback. WWW-02.

[7] A. Chandel, P. C. Nagesh, and S. Sarawagi. Efficient batch
top-k search for dictionary-based entity recognition. ICDE-06.

[8] P.-A. Chirita, D. Olmedilla, and W. Nejdl. Finding related
pages using the link structure of the WWW. Web
Intelligence-04.

[9] W. Cohen and A. McCallum. Information extraction from the
World Wide Web (tutorial). In KDD-03.

[10] J. Contreras, V. R. Benjamins, M. Blázquez, S. Losada,
R. Salla, J. L. Sevillano, J. R. Navarro, J. Casillas, A. Momp,
D. Patón, O. Corcho, P. Tena, and I. Martoyo. A semantic
portal for the international affairs sector. EKAW-04.

[11] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
GATE: A framework and graphical development environment
for robust NLP tools and applications. ACL-02.

[12] P. DeRose, X. Chai, B. J. Gao, W. Shen, A. Doan,
P. Bohannon, and J. Zhu. Building community wikipedias: A
machine-human partnership approach. Technical report,
UW-Madison, 2007.

[13] P. DeRose, W. Shen, F. Chen, A. Doan, and R. Ramakrishnan.
Building structured Web community portals: A top-down,
compositional, and incremental approach. Technical report,
UW-Madison, 2007.

[14] P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. Doan,
and R. Ramakrishnan. DBLife: A community information

management platform for the database research community
[demo]. CIDR-06.

[15] S. Dill, N. Eiron, D. Gibson, D. Gruhl, and R. Guha. SemTag
and Seeker: Bootstrapping the semantic Web via automated
semantic annotation. WWW-03.

[16] A. Doan. Best-effort data integration. NSF Workshiop on
Data Integration, 2006.

[17] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee,
R. McCann, M. Sayyadian, and W. Shen. Community
information management. IEEE Data Engineering Bulletin,
29(1), 2006.

[18] A. Doan, R. Ramakrishnan, and S. Vaithyanathan. Managing
information extraction: state of the art and research directions
(tutorial). In SIGMOD-06.

[19] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Unsupervised named-entity extraction from the web: An
experimental study. Artificial Intelligence, 165(1), 2005.

[20] M. F. Fernández, D. Florescu, A. Y. Levy, and D. Suciu.
Declarative specification of Web sites with Strudel. VLDB J.,
9(1), 2000.

[21] D. Ferrucci and A. Lally. UIMA: An architectural approach to
unstructured information processing in the corporate research
environment. Nat. Lang. Eng., 10(3-4), 2004.

[22] D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak,
A. Tomkins, and J. Zien. How to build a WebFountain: An
architecture for very large-scale text analytics. IBM Systems
Journal, 43(1), 2004.

[23] A. Halevy, A. Rajaraman, and J. Ordille. Data integration: the
teenage years. VLDB-06.

[24] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. To
search or to crawl?: towards a query optimizer for text-centric
tasks. SIGMOD-06.

[25] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms (tutorial). In SIGMOD-06.

[26] A. Kruger, C. L. Giles, F. Coetzee, E. Glover, G. Flake,
S. Lawrence, and C. Omlin. DEADLINER: Building a new
niche search engine. CIKM-00.

[27] R. Lara, S. H. Han, H. Lausen, M. T. Stollberg, Y. Ding, and
D. Fensel. An evaluation of Semantic Web portals. IADIS-04.

[28] Y. Matsuo, J. Mori, M. Hamasaki, K. Ishida, T. Nishimura,
H. Takeda, K. Hasida, and M. Ishizuka. POLYPHONET: an
advanced social network extraction system from the web.
WWW-06.

[29] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A
machine learning approach to building domain-specific search
engines. IJCAI-99.

[30] Z. Nie, J.-R. Wen, and W.-Y. Ma. Object-level vertical search.
CIDR-07.

[31] F. Peng and A. McCallum. Accurate information extraction
from research papers using conditional random fields.
HLT-NAACL-04.

[32] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and
S. Vaithyanathan. An algebraic approach to rule-based
information extraction. Technical report, IBM Almaden, 2007.

[33] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Commun. ACM, 18(11), 1975.

[34] W. Shen, P. DeRose, L. Vu, A. Doan, and R. Ramakrishnan.
Source-aware entity matching: A compositional approach.
ICDE-07.

[35] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative information extraction using datalog with
embedded extraction predicates. VLDB-07.

[36] P. Spyns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure,
R. Studer, and R. Meersman. OntoWeb - a Semantic Web
community portal. PAKM-02.

[37] N. Stojanovic, A. Maedche, S. Staab, R. Studer, and Y. Sure.
SEAL: a framework for developing SEmantic PortALs.
K-CAP-01.

[38] A. Thor and E. Rahm. MOMA - a mapping-based object
matching system. CIDR-07.

[39] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and
R. Studer. Semantic Wikipedia. WWW-06.

[40] B. Wellner, A. McCallum, F. Peng, and M. Hay. An integrated,
conditional model of information extraction and coreference
with application to citation matching. UAI-04.

410

