
EntityRank: Searching Entities Directly and Holistically∗

Tao Cheng, Xifeng Yan, Kevin Chen-Chuan Chang

Computer Science Department, University of Illinois at Urbana-Champaign
{tcheng3, xyan, kcchang }@uiuc.edu

ABSTRACT
As the Web has evolved into a data-rich repository, with the stan-
dard “page view,” current search engines are becoming increasingly
inadequate for a wide range of query tasks. While we often search
for various data “entities” (e.g., phone number, paper PDF, date),
today’s engines only take us indirectly to pages. While entities
appear in many pages, current engines only find each page individ-
ually. Toward searching directly and holistically for finding infor-
mation of finer granularity, we study the problem of entity search, a
significant departure from traditional document retrieval. We focus
on the core challenge of ranking entities, by distilling its underlying
conceptual model Impression Model and developing a probabilistic
ranking framework, EntityRank, that is able to seamlessly integrate
both local and global information in ranking. We evaluate our on-
line prototype over a 2TB Web corpus, and show that EntityRank
performs effectively.
1. INTRODUCTION

The immense scale and wide spread of the Web has rendered
it as an ultimate information repository– as not only the sources
where we find but also the destinations where we publish our in-
formation. These dual forces have enriched the Web with all kinds
of data, much beyond the conventional page view of the Web as a
corpus of HTML pages, or “documents.” Consequently, the Web
is now a collection of data-rich pages, on the “surface Web” of
static URLs (e.g., personal homepages) as well as the “deep Web”
of database-backed contents (e.g., flights from aa.com), as Figure 1
shows. While the richness of data represents a promising opportu-
nity, it challenges us for effectively finding information we need.

With the Web’s sheer size, our ability to find “stuff” we want
mainly relies on how search engines respond to our queries. As
current engines search the Web inherently with the conventional
page view, they are becoming increasingly inadequate for a wide
range of queries. To focus on the “stuff” we want, or data “entities”,
this paper studies the entity search problem, formulates the search
framework, and in particular addresses the central issue of entity
ranking.

∗This material is based on work partially supported by NSF Grants
IIS-0133199, IIS-0313260, the 2004, 2005 IBM Faculty Awards.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Cars.com

Amazon.com

AA.com

BN.com

Figure 1: The Current Web: Proliferation of Data-Rich Pages

Motivating Scenarios: The Barriers
To begin with, we reflect: As users, what have we been looking
for on the Web? The richness of data has tempted us to search for
various ”stuff”– Let us consider a few scenarios, for user Amy:
Scenario 1: Amy wants to call Amazon.com for her online pur-
chase; how can she find the “phone number” of their customer ser-
vice? To begin with, what should be the right keywords for find-
ing pages with such numbers? Query “amazon customer service
phone” may not work, as often a phone is simply shown with-
out keyword “phone” (e.g., customer service: (800) 717-6688).
Or, “amazon customer service” could be too broad to return many
pages. Amy must sift through the returned pages to dig for the
phone number. This task can be time consuming, since some ven-
dors may “hide” their service numbers (to reduce their workload).
Fortunately, such information might reside in other probably less
authoritative (or lower ranked) pages, e.g., user forums, business
reviews, and blogs.

�
Scenario 2: Amy wants to apply for graduate schools; how can
she find the list of “professors” in the database area? She might
have to go through all the CS department homepages (in the hope
that there is a page that lists professors by research areas), or look
through faculty homepages one by one. This could be a very labo-
rious process.

�
Scenario 3: As a graduate student, Amy needs to prepare a seminar
presentation for her choice of some recent papers; how can she
find papers that come readily with presentations, i.e., a “PDF file”
together with a “PPT file,” say from SIGMOD 2006?

�
Scenario 4: Done with the presentation, now Amy wants to buy
a copy of Shakespeare’s Hamlet to read; how can she find the
“prices” and “cover images” of available choices from, say, Bor-
ders.com and BN.com (She has seen the copy she likes before, so
the cover page will be helpful to find out). She would have to look
at the results from multiple online bookstores one by one and com-
pare the listed price of each.

�
In these scenarios, like every user in many similar situations,

Amy is looking for particular types of information, which we call

387

entities, e.g., a phone number, a book cover image, a PDF, a PPT, a
name, a date, an email address, etc. She is not, we stress, looking
for pages as “relevant documents” to read, but entities as data for
her subsequent tasks (to contact, to apply, to present, to buy, etc.).

However, the current search systems, with their inherent page
view of the Web, are inadequate for the task of finding data entities,
the focus of this paper. There are two major barriers:

First, in terms of the input and output, current engines are search-
ing indirectly. 1) Users cannot directly describe what they want.
Amy has to formulate her needs indirectly as keyword queries, of-
ten in a non-trivial and non-intuitive way, with a hope to hit “rel-
evant pages” that may or may not contain target entities. For Sce-
nario 1, will “amazon customer service phone” work? (A good
page may simply list the phone number, without the word “phone.”)
2) Users cannot directly get what they want. The engine will only
take Amy to a list of pages, and she must scrutinize them to find
the phone number. Can we help Amy to search directly in both
describing and getting what they want?

Second, in terms of the matching mechanism, current search en-
gines are finding each page individually. The target entities are
often available in multiple pages. In Scenario 1, the same phone
number of Amazon.com may appear in the company’s Web site,
online user forums, or even blogs. In this case, we should collect,
for each phone, all its occurrences from multiple pages as support-
ing evidences of matching. In Scenario 2, the list of professors
probably cannot be found in any single page. In this case, again,
we must look at many pages to come up with the list of promising
names (and similar to Scenario 1, each name may appear in multi-
ple pages). Can we help users to search holistically for matching
entities across the Web corpus as a whole, instead of individual
pages?

Our Proposal: Entity Search
Toward searching directly and holistically, for finding specific types
of information, we propose to support entity search.

First, as input, users formulate queries to directly describe what
they are looking for: She can simply specify what her target enti-
ties are, and what keywords may appear in the context with a right
answer. To distinguish between entities to look for and keywords
in the context, we use a prefix #, e.g., #phone for the phone entity.
Our scenarios will naturally lead to the following queries:

Query Q1: ow (amazon customer service #phone)
Query Q2: (#professor #university #research=”database”)
Query Q3: ow (sigmod 2006 #pdf file #ppt file)
Query Q4: (#title=”hamlet” #image #price)
In these queries, there are two components: (1) Context pattern,

how will the target entities appear? Q1 says that the entity #phone
will appear with these keywords in the pattern of ow or “ordered-
window”, i.e., in that order and as close in a window as possible.
We may also omit the pattern, e.g., Q2 and Q4, in which case the
implicit default uw or “unordered-window” is used (which means
proximity– the closer in a window, the better). (The exact patterns
depend on implementations. Section 4 will discuss the notion of
such “recognition models.”) (2) Content restriction: A target entity
will match any instances of that entity type, subject to option re-
striction on their content values– e.g., Q1 will match every phone
instance, while Q2 will only match research area “database.” (In
addition to equality “=”, other restriction operators are possible,
such as “contain.”)

Second, as output, users will directly get the entities that they are
looking for. That is, as a query specifies what entity types are the
targets, its results are those entity instances (or literal values) that
match the query, in a ranked order by their matching scores. (We

…………

hp.com0.2206-346-29924

xyz.com0.6 800-342-52833

Dell.com/supportors0.8800-988-08862

amazon.com/support.htm
myblog.org/shopping

0.9800-201-75751

urlsscorephone numberrank

……………

ms.com0.7surajit21.pptsurajit21.pdf2

db.com,sigmod.com0.8sigmod6.pptsigmod6.pdf1

urlsscorePPTPDFrank

Figure 2: Query Results of Q1 and Q3

will discuss this matching next.) Figure 2 shows some example
results for Q1 and Q3.

Third, as search mechanism, entity search will find matching en-
tities holistically, where an instance will be found and matched in
all the pages where it occurs. For instance, a #phone 800-201-
7575 may occur at multiple URLs as Figure 2 shows. For each
instance, all its matching occurrences will be aggregated to form
the final ranking– e.g., a phone number occurs more frequently at
where “amazon customer service” is mentioned may rank higher
than those less frequent ones. (This ranking is our focus– See next.)
Thus, while our search target is entities, as supporting “evidences,”
entity search will also return where each entity is found. Users can
examine these snippets for details.

We note that, the usefulness of entity search is three-fold, as the
sample results in Figure 2 illustrate. First, it returns relevant an-
swers at top rank places, greatly saving search time and allowing
users or applications to focus on top results. Second, it collects all
the evidences regarding the query in the form of listing supporting
pages for every answer, enabling results validation (by users) or
program-based post-processing (by applications). Third, by target-
ing at typed entities, such an engine is data-aware and can be inte-
grated with DBMS for building novel information systems– imag-
ine the results of Q1 to Q4 are connected with SQL-based data.

Core Challenge: Ranking Entities
Toward building an entity search engine, we believe the core chal-
lenge lies in the entity ranking model– Obviously, while promis-
ing, such a system is only useful if good entity results can be found
at the top ranks, much like today’s search engines that strive to
achieve the central mission of ranking relevant pages high.

As our discussion has hinted, there are several unique require-
ments of entity search. Entity search is 1) contextual, as it is mainly
matching by the surrounding context; 2) holistic, entities must be
matched across their multiple occurrences over different pages; 3)
uncertain, since entity extraction is imperfect in nature; 4) asso-
ciative, entities can be associated in pairs, e.g., #phone and #email
and it is important to tell true association from accidental; and 5)
discriminative, as entities can come from different pages, and not
all such “sources” are equivalent.

With these requirements, this paper focuses on entity ranking:
We build our foundation by proposing the impression model, an
“ideal” conceptual framework. With the conceptual guidance, we
build the EntityRank scheme, taking a principled probabilistic view
for scoring and ranking: We conceptualize the matching of a result
as to estimate the probability how the entity instances are associ-
ated as a tuple, and compare it to a null hypothesis to discriminate
accidental associations. With a local recognition layer for quan-
tifying each instance occurrence, a global access layer for aggre-
gating across pages, and a validation layer for hypothesis testing,
EntityRank materializes the conceptual impression model.

Our results show that EntityRank is effective: In our prototype

388

indexing 2 TB of real Web corpus, for Scenario 1, it consistently
finds the right matches at top-3, for a sample of Fortune 500 compa-
nies, and similarly for a systematic querying of SIGMOD 2007 PC
members. Section 6 will demonstrate the results for all four scenar-
ios. We validate the seamless integration of local recognition and
global access models– without either, the results are significantly
degraded– as well as the need for hypothesis testing.

We start in Section 2 to formalize entity search. Section 3 presents
the ideal conceptual model and Section 4 materializes it into the
EntityRank scheme. We relate to existing studies in Section 5, and
Section 6 reports our prototype system and experiments.

Contributions
1. We study and define the characteristics and requirements of

entity search as the guideline for supporting effective ranking.
2. We distill the conceptual model Impression Model, and develop

a concrete EntityRank framework for ranking entities.
3. We have implemented an online prototype with real Web cor-

pus, and demonstrated the effectiveness of entity search.

2. THE PROBLEM: ENTITY SEARCH
To support entity-based querying, the system must be fundamen-

tally entity-aware: That is, while current search engines are built
around the notion of pages and keywords, we must generalize them
to support entity as a first-class concept. With this awareness, as our
data model, we will move from the current page view, i.e., the Web
as a document collection, to the new entity view, i.e., the Web as an
entity repository. Upon this foundation, we develop entity search,
where users specify what they are looking for with keywords and
target entities, as Q1 – Q4 illustrated. We have introduced our data
model and formalized the problem of entity search in [12]. We
now briefly describe these notions.

2.1 Data Model: Entity View
How should we view the Web as our database to search over? In

the standard page view, the Web is a set of documents (or pages)
D = {d1, . . . , dn}. We assume flat set for discussion here; Sec-
tion 4 will specialize D as a set of linked documents.

In our data model, we take an entity view: We consider the Web
as primarily a repository of entities (in addition to the notions of
pages): E = {E1, E2, . . . , En}, where each Ei is an entity type.
For instance, to support Scenario 1 (Section 1), the system might
be constructed with entities E = {E1 : #phone, E2 : #email}.
Further, each entity type Ei is a set of entity instances that are ex-
tracted from the corpus, i.e., literal values of entity type Ei that
occur somewhere in some d ∈ D. We use ei to denote an entity in-
stance of entity type Ei. In the example of phone-number patterns,
we may extract #phone = {“800-201-7575”, “244-2919”, “(217)
344-9788, . . .}

In this work, we consider only entities that can be recognized
offline before query-time, and the extracted instances will be in-
dexed for efficient query processing. The extraction can be done
using simple pattern matching or state-of-the-art entity extractors.
This paper focuses on the ranking model. More detailed informa-
tion could be found in our system description [13]. To facilitate
query matching, we will record the “features” of each occurrence
ei– These local occurrence features will facilitate our local model
(Section 4.2) to quantify the strength of local matchings.

• Position ei.pos: the document id and word offset of this instance
occurrence, e.g., instance e1 may occur at (d2, 23).

• Confidence ei.conf : the probability estimation that indicates
how this occurrence is regarded as an instance of Ei.

Entity-Search Query.

• Given: Entity collection E = {E1, . . . , EN}, over

Document collection D = {d1, . . . , dn}.

• Input: Query q(〈E1, . . . , Em〉) = α(E1, . . . , Em, k1, . . ., kl),

where α is a tuple pattern, Ei ∈ E , and kj a keyword.

• Output: Ranked list of t = 〈e1, . . ., em〉, where ei ∈ Ei,

sorted by Score(q(t)), the query score of t.

Figure 3: The Entity Search Problem
With entities extracted and indexed, we transform the page view

into our entity view. Note that the set of supported entity types
must be determined, depending on the actual application setting,
much like the “schema” of the system. In our system evaluation
(Section 6) we demonstrate several application scenarios with the
respective entities extracted and indexed offline.

We stress that each of these entities are independently extracted
from the corpus, and are only associated by ad-hoc queries at query
time. Thus, users may ask #phone with “ibm thinkpad” or “bill
gates”, or they ask to pair #phone with, say, #email for “white
house”. Supporting such online matching and association is ex-
actly the challenge (and usefulness) of entity search.

2.2 Search Problem: Finding Entity Instances
We now state our entity search problem, as Figure 3 summa-

rizes. First, for input, as queries, our entity search system lets users
search for entities by specifying target entity types and keywords
together in a tuple pattern α, which indicates users’ intention of
what the desired entities are, and how they may appear in D by
certain patterns. We note that, as Section 1 motivated, entity search
is essentially search by context over the document collection: As
α intends to capture, our desired data often appear in some context
patterns with other keywords or entities, indicating how they to-
gether combine into a desired tuple by their textual occurrences. A
system will support, as its implementation decisions, a set of such
patterns, e.g., doc (the same document), ow (ordered window), uw
(unordered window), and phrase (exact matching) (Section 4). A
query can either explicitly specify a pattern (e.g., Q1 and Q3) or
implicitly assume the system default pattern (e.g., Q2 and Q4).

Second, for output, the results are a ranked list of m-ary entity
tuples, each of the form t = 〈e1, . . ., em〉, i.e., a combined instance
of each ei as an instance of entity Ei desired in the query. A re-
sult tuple t will be ranked higher, if it matches the query better.
We denote this measure of how well t matches q by a query score
Score(q(t)), which should capture how t appears, by the desired
tuple pattern α, across every document dj in D, i.e.,

Score(q(t)) = Score(α(e1, . . . , em, k1, . . . , kl)).

We stress that, since the assessment of the query score defines
the ranked list, it is the central function of an entity search system.
The objective of entity search is thus to find from the space of t ∈
E1 × . . . × Em, the matching tuples in ranked order by how well
they match q, i.e., how well entity instances and keywords in tuple
t associate in the desired tuple pattern. As the focus of this paper,
we will develop this scoring and ranking in Section 3 and 4.

2.3 Entity Ranking: Requirements
For effective entity ranking, it is crucial to capture the unique

characteristics of entity search. Let’s examine a sample query: find
the phone number of “Amazon Customer Service”; q = (Amazon
Customer Service #phone).

For each query, conceptually, an entity search system should an-
alyze all pages available on the Web that contain the keywords
“Amazon Customer Service” and a #phone instance. Figure 4 is

389

e1

e6

e10

(o1, o2, o3, o4)

Figure 4: Example Page: Amazon Customer Service #phone

a text snippet from an example webpage that contains keywords
“Amazon Customer Service” and #phone instances. There could
be many such pages. The first step, for such a page, is to match
the keywords “Amazon Customer Service” and identify the entity
instances desired (#phone). Next, we must rank these entity in-
stances since there might be multiple phone numbers co-located
with “Amazon Customer Service” in webpages. The ranking func-
tion eventually will single out which phone number is associated
with “Amazon Customer Service” more strongly. An entity search
system needs to take into account the following major factors (as
Section 1 briefly mentioned).
• R-Contextual: The probability of association between keywords

and entity instances in various contexts might be different. There
are mainly two factors to consider:

a) Pattern: The association of keywords and entity instances some-
times formulates a regular pattern; e.g., a company’s name of-
ten appears before its phone number is mentioned. Given a
text snippet ”Amazon 1-800-201-7575 eBay,” the phone num-
ber is more likely to associate with “Amazon” than “eBay”.

b) Proximity: The association between the keywords and the
entity instances is not equally probable with respect to how
“tightly” they appear in the web page. Often, the association
is stronger when the occurrences are closer. Use Figure 4 as
an example. Phone number e1 1-800-201-7575 is more likely
associated with Amazon than phone number e6 408-376-7400
as e1 appears in closer proximity to keywords “Amazon Cus-
tomer Service” than e6.

• R-Holistic: As a specific phone number instance may occur with
“Amazon Customer Service” multiple times in many pages, all
such matchings must be aggregated for estimating their associa-
tion probability.

• R-Uncertainty: Entity extraction is always not perfect, and its
extraction confidence probability must be captured.

• R-Associative: We must carefully distinguish true associations
from accidental. Again use Figure 4 as an example. Phone num-
ber e10 1-800-555-1212 might occur very frequently with “Ama-
zon Customer Service”. However, this is just by random associ-
ation since this phone number, being the general toll free number
for US, also appears with other companies frequently. It is thus
important to make “calibration” to purify the association we get.

• R-Discriminative: Intuitively, entity instances matched on more
popular pages should receive higher scores than entity instances
from less popular pages. This characteristic is especially useful
when the document collection is of varying quality, such as the
Web.

3. CONCEPTUALLY: IMPRESSION MODEL
Toward a principled ranking model, we start with developing the

insights– What is the conceptual model that captures the “ideal”
behavior of entity search?

< amazon customer service, >: ??

...
< amazon customer service, >: ??

...

Figure 5: Impression Model: Conceptual Illustration

The Observer’s Impression Model: Conceptual Execution of Entity Search.

Given: E = {E1, . . . , EN} over D = {d1, . . . , dn}. Let E = E1×. . .×Em.

Input: q = α(E1, . . . , Em, k1, . . ., kl).

0: τ = 1; /* time tick.

1: while (τ = τ + 1 and τ ≤ T):

3: dτ = access document from D; /* access layer.

4: ∀t ∈ E: Score(q(t)|dτ) = recognize p(q(t)|dτ); /* recognizition layer.

5: ∀t ∈ E: output Score(q(t)) =

∑
T

τ=1
Score(q(t)|dτ

)

T
; /* average impression.

Figure 6: Impression Model: Basic Framework.

3.1 Impression Model
To begin with, assuming no resource or time constraints, we

speculate, what is an ideal realization of entity search, over the
Web as D? To be concrete, consider query Q1 for finding tuple
〈“amazon customer service”, #phone〉. As most users will proba-
bly do, we can access “amazon”-related pages (say, from a search
engine), browse their contents, and follow links to read more, until
we are satisfied (or give up), and returning our overall findings of
promising #phone numbers.

Let’s cast this process into an ideal execution, a conceptual model
which we call the Impression Model, as Figure 5 shows. With un-
limited time and resource, we dispatch an observer to repeatedly
access the Web D and collect every evidence for substantiating any
potential answer. This observer will visit as many documents and
for as many times as he wishes. He will examine each such doc-
ument d for any #phone that matches Q1 (i.e., following and near
“amazon customer service”) and form his judgement of how good
the matches are. With an unlimited memory, he will remember all
his judgements– i.e., his impression. The observer will stop when
he has sufficient impression, according to which he will score and
rank each phone entity instance that occurs in D.

To formalize this impression model, we take a probabilistic view
to capture the observer’s “impression.” For a query q, given en-
tity collection E over document collection D, Figure 6 sketches
the impression framework. To execute entity search, at time τ , the
observer accesses a document, which we denote dτ , from D– Let’s
abstract this mechanism as the access layer of the observer. Exam-
ining this dτ , he will recognize if any potential tuple t occurs there.
Let’s abstract this assessment function as the observer’s recognition
layer. Formally, this assessment results in the association proba-
bility p(q(t)|dτ)– i.e., how likely tuple q(t) holds true given the
“evidence” of dτ .

Eventually, at some time τ = T , the observer may have suffi-
cient “trials” of this repeated document visits, at which point his
impression stabilizes (i.e., with sufficient sampling from D). To
capture this convergence statistically, let’s characterize the access
layer by p(d), the access probability of document d, i.e., how likely
d may be drawn in each trial. Thus, over T trials, d will appear
T × p(d) times. If T is sufficiently large, the average impression
(i.e., statistical mean) will converge– which we similarly refer to as
the association probability of q(t) over D.:

p(q(t)|D) = lim
T→∞

� T

τ=1 p(q(t)|dτ)

T
= �

d∈D

p(d) · p(q(t)|d) (1)

390

As this association probability characterizes how likely t forms
a tuple matching q(t), when given the entire collection D as evi-
dence, it is the “query score” we are seeking. While we will (in
Section 4) further enhance it (with hypothesis testing), for now, we
can view it as the final query score, i.e.,

Score(q(t)) = p(q(t)|D).

The impression model provides a conceptual guideline for the
entity search task, by a tireless observer to explore the collection
for all potential entity tuples. While the framework is conceptually
ideal, all the key component layers remain open. We start with a
“naive” materialization to motivate our full design.

3.2 Baseline: Naive Observer
As a first proposal, we develop the impression model with a sim-

ple but intuitive observer behavior, which uniformly treats every
document in D and check if all entities and keywords are present.
The final score is the aggregation of this simple behavior.
• Access Layer: The observer views every document equally, with
a uniform probability p(d) = 1

n
, ∀d ∈ D (recall that |D| = n).

• Recognition Layer: The observer assesses p(q(t)|d) simply by
the document “co-occurrence” of all the entity instances ei and
keywords kj specified in q(t): p(q(t)|d) = 1 if they all occur in
d; otherwise 0.
• Overall: Filling the details into Eq. 1, we derive the score, or the
expected impression, of a candidate tuple t as follows:

Score(q(t)) = �
d∈D

1

n
· � 1 if q(t) ∈ d

0 otherwise =
1

n
C(q(t)), (2)

where C(q(t)) is the document co-occurrence frequency of q(t),
i.e., the number of documents d in D such that q(t) ⊆ d.

The naive impression model, while simple, intuitively captures
the spirits of entity search– that of identifying entities from each
documents locally, by the recognition layer, and aggregates across
the entire collection globally, by the access layer. Overall, the naive
approach results in using co-occurrence frequency of entities and
terms as the query score of tuple t– a simple but reasonable first
attempt.

As a starting point, to build upon the naive observer for a full
realization of the ideal impression model, we ask: What are its lim-
itations? As our checklist, we examine the five requirements as
outlined in Section 2. The naive observer does meet the holistic re-
quirement, as it aggregates the impressions across all documents–
which is the essence of the impression model (and thus every ma-
terialization will satisfy). Systematically over the requirement list,
we identify three limitations.
Limitation 1: The access layer does not discriminate sources. As
R-Discriminative states, not all documents, as sources of informa-
tion, are equal. However, with a uniformly-picking access layer,
the naive observer bypasses R-Discriminative. It will thus not be
able to leverage many document collections where intrinsic (e.g.,
link or citation structure) or extrinsic structures (e.g., user rating
and tagging) exist to discriminate documents as sources of infor-
mation. How to enhance the access layer, so that documents are
properly discriminated?
Limitation 2: The recognition layer is not aware of entity uncer-
tainty and conceptual patterns. As R-Uncertain and R-Contextual
mandate, entity instances are not perfectly extracted, and their match-
ing with the query depends on keywords and other entities in the
surrounding context. However, with an occurrence-only recogni-
tion layer, the naive observer does not respect either requirements.
How to enhance the recognition layer, so that the tuple probabilities
at each document are effectively assessed?

Global Access Layer

Local Recognition Layer

Global Access Layer

Local Recognition Layer

Validation Layer

Collection E over D Virtual Collection E’ over D’

...

< amazon customer service, >: ??
< amazon customer service, >: ??

...

< amazon customer service, >: ??
< amazon customer service, >: ??

...

< amazon customer service, >: ??
< amazon customer service, >: ??

randomize

Figure 7: Impression Model: Complete Framework
Limitation 3: A validation layer is lacking. As R-Associative
states, our search should distinguish “intended” association of tu-
ples from those “accidental” ones. The naive observer, however,
believes in whatever “impression” he saw from the documents, and
thus can be fragile regarding R-Associative. As we take a statistical
view of the impression, we should equip the observer with statis-
tical validation of his impression– or his “hypothesis”– and assess
its significance. Our impression model, and therefore the naive ob-
server, is missing such a critical validation layer.
4. CONCRETELY: EntityRank

Upon the basic impression model (and the naive materialization),
we now fully develop our entity-search scheme: EntityRank.

Motivated by the limitations of the basic model, we begin with
presenting the complete impression model as Figure 7 shows. The
full model completes the initial sketch in Figure 5 in two aspects:
First, we add a “virtual observer” (at the right side), who will per-
form the same observation job, but now over a “virtual” collection
D’ as a randomized version of D. Second, we add a new valida-
tion layer to validate the impression of the real observer (over D)
by comparing it with that of the virtual observer (over D’). Overall,
our impression model consists of three layers:
• (Section 4.1) As Limitation 1 motivated, the access layer defines

how the observer picks documents, and is thus responsible for
globally aggregating tuple scores across the entire collection.

• (Section 4.2) As Limitation 2 motivated, the recognition layer
defines how the observer examines a document, and thus consid-
ers locally assessing tuple probabilities in each document visited.

• (Section 4.3) As Limitation 3 motivated, the validation layer sta-
tistically validates the significance of the ‘impression” by com-
paring it with the null hypothesis from the virtual observer.

This section will concretely materialize the three layers, to de-
velop our EntityRank scheme. Figure 8 summarizes EntityRank.
Overall, Equation (1) gives Score(q(t)), the scoring function of
how tuple t matches query q. Refer to our search task as Figure 3
defines, this scoring function determines the results of entity search.
While we will develop step by step, as a road map, our objective is
to, first, derive p(q(t)|D) by materializing Eq. 1– which requires
that we concretely define p(d) and p(q(t)|d). Sections 4.1 and 4.2
will develop these two parts respectively, which will together com-
bine into p(q(t)|D) given in Figure 8; we call this the observed
probability, or po for short. Section 4.3 will similarly derive the
same probability for the random collection, which we call the ran-
dom probability and denote pr. Second, the final score Score(q(t))
is determined by comparing po and pr, in terms of hypothesis test-
ing, which Section 4.3 will study.

While the EntityRank scheme satisfies all our “semantic” re-
quirements of entity search– Is it admissible to efficient imple-

391

• Query: q(〈E1, . . . , Em〉) = α(E1, . . . , Em, k1, . . ., kl) over D

• Result: ∀ t ∈ E1 × · · ·Em: Rank all t by computing Score(q(t)) as follows.

(1) Score(q(t)) = po · log
po

pr

,where

(2) po ≡ p(q(t)|D) =
∑

d∈D

PR[d] × max
γ

(
∏

ei∈γ

ei.conf × αB(γ) × p(s|γ))

(3) pr ≡ p(q(t)|D′) =

m∏

j=1

(
∑

ej∈d,d∈D

p(d)) ×

l∏

i=1

(
∑

ki∈d,d∈D

p(d)) ×

m∏

j=1

ej .conf ×

∑
s p(q(t)|s)

|s|

Figure 8: EntityRank: The Scoring Function

mentation? After all, we are pursuing entity search in the con-
text of building a novel search engine, and efficiency is crucial for
any online interactive search. Although query optimization tech-
niques are beyond the focus of this paper, we summarize our over-
all EntityRank algorithm and its implementation strategies in Sec-
tion 4.4.

4.1 Access Layer: Global Aggregation
The access layer defines how the observer selects documents,

and is thus responsible for globally aggregating tuple scores across
the entire collection. This layer must determine p(d)– how likely
each document d will be seen by the observer (and thus how d

will contribute to the global aggregation). As its objective (by R-
Discriminative), this probability should discriminate documents by
their “quality” as a source of information. The specific choice of
an effective discriminative measure of quality depends on the doc-
ument collection– what intrinsic structure or extrinsic meta data is
available to characterize the desired notion of quality.

In the context of the Web, which is our focus, as a design choice,
we decide to adopt the common notion of popularity as a metric
for such quality. As the Web is a hyperlinked graph, the popularity
of a page can be captured as how a page will be visited by users
traversing the graph. Upon this view, we can materialize the access
layer by the random walk model, where p(d) can be interpreted
as the probability of visiting a certain page d in the whole random
walk process. With its clear success in capturing page popularity,
PageRank [6] is a reasonable choice for calculating p(d) over the
Web. That is, computing PR as the PageRank vector, as the overall
result of the access layer, we have

p(d) = PR[d]. (3)

For this choice, we make two remarks: First, like in a typical
search engine setting, this page discriminative metric can be com-
puted offline. Second, unlike in a typical search engine, we are
not using PR to directly rank result “objects” by their popularity.
Instead, we are using these popularity values as a discriminative
measure to distinguish each page as a source of information– For a
tuple t, its score will aggregate, by the impression model (Eq. 1),
over all the pages di it occurs, each weighted by this p(di) value.

We stress that, while we implement the access layer with “pop-
ularity” and in particular adopt PageRank, there are many other
possibilities. Recall that our essentially objective is to achieve
source discrimination– so that “good” pages are emphasized. First,
such discrimination is not limited to link-based popularity– e.g.,
user or editorial rating, tagging and bookmarking (say, del.icio.us),
and query log analysis. Second, such discrimination may even be
query-specific and controlled by users– say, to focus entity search
on a subset of pages. For instance, we may restrict query Q2 and
Q3 to only pages within the .edu domain; or, we may want to exe-
cute Q4 only for pages from amazon.com and bn.com. Such cor-
pus restriction– with its access focus, not only speeds up search but
also isolate potential noises that may interfere with the results. In
general, our notion of the global access layer is to capture all these

different senses of source discrimination.

4.2 Recognition Layer: Local Assessment
The recognition layer defines how the observer examines a doc-

ument d, and thus accounts for locally assessing tuple probabilities
in each document visited. Given a document d, we are to assess
how a particular tuple t=〈e1, · · · , em〉 matches the query q(〈E1,
. . . , Em〉) = α(E1, . . . , Em, k1, . . ., kl). That is, this layer is
to determine p(q(t)| d), i.e., how likely tuple q(t), in the form of
α(e1, . . . , em, k1, . . ., kl), holds true, given d as evidence. Con-
sider Q1: Given d as the snippet in Figure 4, for t=〈e1=“800-201-
7575”〉, the question becomes asking: p(Q1(t)|d) = p(ow(amazon
customer service e1) | d)=?

To begin with, we note that a query tuple q(t) = α(e1, . . . , em,
k1, . . ., kl) may appear in d in multiple occurrences, because each
ei or kj can appear multiple times. For instance, in Figure 4, while
e1=“800-201-7575” occurs only once, “amazon customer service”
appears two times– so they combine into two occurrences. Let’s
denote such an occurrence of (e1, . . . , em, k1, . . ., kl) in document
d as γ = (o1, . . . , on), where n = m + l; each oi is an object
occurrence, i.e., a specific occurrence of entity instance ei or key-
word instance kj in d. E.g., Figure 4 shows (o1, . . ., o4) as one
occurrence for the above example.

For each potential tuple t, the recognition of the association prob-
ability p(q(t)|d) must evaluate all its occurrences, and “aggregate”
their probabilities– because each one contributes to supporting t as
a desired tuple. For this aggregation, we take the maximum across
all occurrences of t as its overall probability, i.e.,

p(q(t)|d) = max
γ is a tuple occurrence of q(t)

p(α(γ)) (4)

With this aggregation in place, we now focus on the assessment
of each occurrence γ = {o1, . . ., on} for p(α(γ))– i.e., how this
tuple occurrence matches the desired context pattern. This task
involves two largely orthogonal considerations:

• Extraction uncertainty: For each oi that represents an entity in-
stance ei– Is it indeed an instance of type Ei? As Section 2 dis-
cussed, after performing extraction on D to prepare our “entity
view” E, this probability p(ej ∈ Ej |d) is recoded in ei.conf .

• Association context: Do the occurrences of o1, . . ., on together
match the pattern α that suggests their association as a desired
tuple for query q?

With the two orthogonal factors, given ei.conf , we can readily
factor out the extraction uncertainty, and focus on the remaining
issue: defining pcontext– how t matches q in the context of d.

p(α(γ)) = (�
ei∈γ

ei.conf) × pcontext(α(γ))

To determine pcontext, this contextual analysis primarily con-
sists of two parts, boolean pattern analysis and fuzzy proximity
analysis, as we motivated in Section 2. Boolean pattern analysis
serves the purpose of instantiating tuples, after which fuzzy prox-
imity analysis serves the purpose of estimating in-document asso-
ciation strength of tuples.

Context Operators α. We are to evaluate pcontext(α(γ)), to see
how γ occurs in a way matching α, in terms of the surrounding
context. Recall that, as Section 2 defined, in entity search, a query
q specifies a context operator α, which suggests how the desired
tuple instances may appear in Web pages.

As a remark, we contrast our usage of patterns in entity search
with its counterparts in document search (e.g, current search en-
gines). On the one hand, such pattern restriction is not unique

392

in entity search. In typical document search, it is also commonly
used– e.g., a user can put “” around keywords to specify matching
these keywords as a phrase. However, on the other hand, our entity
search uses textual patterns in a rather different way– a tuple pattern
α describes the possible appearance of the surrounding context of
a desired tuple. In contrast, keyword patterns in document search
are intended for the content within a desired document.

In this study, we treat a Web page as a linear sequence of words.
As Section 2 mentioned, in the entity view, each entity or keyword
occurrence oi is extracted with its positions at oi .pos . An operator
shall match on the order or proximity of objects: Each operator α

applies to match an occurrence γ, i.e., of the form α(o1, . . ., om).
We will explain a few operators: doc, phrase, uw, ow.

We stress that, the context matching operator is for users (end-
users or applications) to specify how the desired tuple may appear
in documents. As in any query language, it also involves the trade-
off of simplicity (or ease of use) and expressiveness. We believe
the exact balance of such tradeoff must depend on the actual appli-
cation settings– Note that, while we develop it as a generic system,
the entity search system can be deployed in a wide range of set-
tings, such as a general search engine for end users or a specialized
vertical application, as Section 1 motivated.

Therefore, we advocate a two-fold strategy to balance the trade-
off, with a set of system built-in operators: On the one hand, for
simplicity, while users may specify explicitly an α operator, the
system must support a default when omitted (i.e., order in our cur-
rent system), as Section 1 shows (e.g., ,Q1). On the other hand, for
expressiveness, while an application may choose to use our sup-
ported operators, the system must support a plug-in framework for
applications to define their own specific context patterns.

In what follows, we explain some supported operators, each in
the form of α(o1, . . ., om). Our purpose is to demonstrate how
an operator is defined, in order to be plugged into the recognition
layer. Each operator consists of two parts (as R-Contextual states),
i.e., the pattern constraint αB and proximity function αP . Thus,
we can further define our context probability (of Eq. 5) as

pcontext(α(γ)) ≡ αB(o1, . . . , om) × αP (o1, . . . , om).

1. Boolean Pattern Qualification. As the first step, α will qualify,
by a constraint αB that returns 1 or 0 (true or false), whether some
pattern constraint on the order and adjacency of oi is satisfied.

• doc(o1, . . ., om): objects oi must all occur in the same document.
• phrase(o1, . . ., om): objects oi must all occur in exactly the same

sequence (i.e., order and adjacency) as specified.
• uw(n)(o1, . . ., om): objects oi must all occur in a window of no

more than n words; n default as the document length.
• ow(n)(o1, . . ., om): in addition to uw, oi must all occur in the

order.

2. Probabilistic Proximity Quantification. As the second step,
the operator α will quantify, by a probability function αP , how
well the proximity between objects match the desired tuple– i.e.,
how the objects’ positions indicate their association as a tuple, once
they are qualified (above). Essentially, each operator will thus de-
fine a probabilistic distribution that assesses such association prob-
abilities given object positions.

We propose an intuitive and practical model, the span proxim-
ity model, to capture our basic intuition that the closer they ap-
pear to each other, the more likely they are associated with each
other. While our system currently only supports the span proximity
model, our experimental results show that it is effective for a wide
range of scenarios.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Span

P
ro

ba
bi

lit
y

Span Probability Estimation

Raw Span Prob
Fitted Span Prob

Figure 9: The Span Proximity Model
In the span model, we characterize the proximity strength of a

tuple occurrence γ = (o1, . . . , om) as depending on its span length–
the shortest window that covers the entire occurrence, denoted by
s. We define the context association probability of γ, i.e., how ei

and kj associate into a tuple, as solely determined by span.

αP (γ) ≡ p(γ is a tuple|s), or simply p(γ |s).

Finally, we must estimate the distribution p(γ|s). We can “learn”
this distribution by collecting some true tuples (as our “labelled
data”)– i.e., γ’s that are really tuples. With sufficient examples, we
can obtain an empirical distribution of, for real tuples, how their
spans vary, i.e., p(s|γ). In our current implementation, we obtain
our span distribution as Figure 9 shows, using labelled tuples that
are company names and their phone numbers (e.g., “IBM”, “877-
426-2223”) from the Web corpus. Finally, by Bayes’ theorem,

p(γ |s) =
p(γ)

p(s)
p(s|γ) ∝ p(s|γ),

where we remove the prior probabilities p(γ) and p(s): Note that,
for practical implementation, as the priors are hard to measure, we
assume they are the same, for all different γ and s. Thus, these
constant priors will not affect ranking of entities.

Putting together the derivations so far back to where we started,
i.e., Eq. 4, as the overall result of the recognition layer, we obtain:

p(q(t)|d) = max
γ

�
ei∈γ

ei.conf × αB(γ) × p(s|γ) (5)

As a related approach, Chakrabarti et al. [11] propose a dis-
criminative model to measure the association between an entity in-
stance and keywords within a document. Our span proximity model
is probabilistic– it bridges the proximity between objects to their
probability of associating into a tuple. By relating each span with a
probability, we can thus integrate our local recognition model with
the global access model in a probabilistic framework seamlessly.

Ideally, it would be best to learn such a span model for each kind
of query– because different types tuples may vary in their spans.
However, it is impractical to do so due to the unpredictable and
large number of different queries. It is possible to classify queries
into different categories and learn a approximate span model for
each category. In this paper, we approximate this by using the one
span model we learned in Figure 9. Although our “span” model
may not be as accurate as other more sophisticated local models,
such as the one presented in [11], we believe it still captures the
basic insights of a local recognition model.

We stress that our recognition layer is a general framework that
can plug-in any pattern and proximity models. Our current choice
of basic patterns and the span model is just one reasonable possi-
bility. They are robust and easy to apply, which gives us fast online
processing.

4.3 Validation Layer: Hypothesis Testing

393

As a new layer, the validation layer statistically validates the
significance of the “impression.” Our approach is by comparing
it with the null hypothesis– simulating an observer over a virtual
collection. We note that the construction of a random collection D’
is only conceptual– it will derive a formula that can be efficiently
computed (Section 4.4) without materializing D’.

Since our impression model dispatches the observer (Figure 7)
to collect his impression of entity associations, we must ask– Are
these associations significant? Recall from Eq. 1 that p(q(t)|D) is
an average impression, i.e., the statistical mean, over D. By taking
a probabilistic view, we are now equipped with principled statistical
tools to “validate” if the impression of association, as our hypoth-
esis to test, is significant. As the null hypothesis, we suppose the
associations are “unintended”– i.e., as the result of randomly as-
sociating entities and keywords in a randomized collection D’. By
contrasting observed probability po with random probability pr, we
will obtain a final score Score(q(t)) that captures the significance
of our hypothesis– i.e., intended tuple association.

Null Hypothesis: Randomized Associations. As our null hypoth-
esis, we suppose that the association of t = (e1, . . . , em, k1, . . ., kl)
is simply accidental– instead of semantically intended as a tuple.
To simulate the outcome of the null hypothesis, we must create D’
as a randomized version of D. In comparison, D’ should resemble
D as much as possible, except that in D’ the associations of key-
words and entities are purely random. The creation of a random
document d′ in D’ is as follows:

First, we will randomly draw entities and keywords into d′. Each
ei or kj will be drawn independently, with a probability the same
as that of appearing in any document of D. We thus preserve the in-
dividual entity/keyword probabilities from D, but randomize their
associations. This probability can be derived as below, which en-
sures that the probability of observing a keyword/entity instance in
the process of visiting the D’ through a uniform access layer will
be the same as observing it in the original D.

p(ei ∈ d′) =
�

ei∈d,d∈D
p(d); p(kj ∈ d′) =

�
kj∈d,d∈D

p(d)

Further, if a keyword/entity instance is drawn to appear in virtual
document d′, its position in the document will also be randomly
chosen. We also preserve the entity extraction probability of entity
instances, by using the average extraction probability ej .conf (the
average over all the extraction probabilities of all the occurrences
of entity instance ej in D) of entity instance ej as the extraction
probability of all the occurrences of entity instance ej in D′.

Supposing we construct D’ with all such random documents d′,
we ask: What will be the “average impression” that our observer
will perceive in this random collection? By Eq. 1, this average
impression is the summation over all documents. We can simplify it
by noting that 1) if q(t) does not even appear in d′, then p(q(t)|d′)
= 0, 2) otherwise, p(q(t)|d′) has the same value– since we create
all d′ in exactly the same way. Consequently, we get:

p(q(t)|D′) =
�

d′∈D′and q(t)∈d′ p(d′) × p(q(t)|d′)

= p(q(t)|d′) ×
�

d′∈D′and q(t)∈d′ p(d′)

= p(q(t)|d′) × p(q(t) ∈ d′). (6)

Here, p(q(t) ∈ d′) is the probability of t appearing in some d′.
As keywords and entity instances are drawn independently into d′,
this probability is simply the product of the probabilities of each
keyword and entity instances appearing in d′, i.e.,

p(q(t) ∈ d′) = � m

j=1 p(ej ∈ d′) � l

i=1 p(ki ∈ d′)

Next, we derive the random association probability, p(q(t)|d′),

of tuple t in document d′. As we discussed in Section 4.2, it is the
product of entity probability and contextual probability:

p(q(t)|d′) = (� m

j=1 ej .conf) × pcontext(q(t)|d
′).

The contextual probability pcontext(q(t)|d
′) is dependent on the

span of tuple t, as Section 4.2 discussed. As keywords and entity in-
stances appear randomly in d′, the possible spans of tuple t should
also appear randomly. This means different span values are equally
likely. Thus, we can use the average of all the span probabilities
(e.g., as Figure 9 shows) for this probability estimation:

pcontext(q(t)|d
′) = p(q(t)|s) = � s p(q(t)|s)

|s|
,

where |s| refers to the number of distinct span values.
Putting together these derivations back to Eq. 6, we will obtain

p(q(t)|D′), which Figure 8 shows as the random probability pr.

Hypothesis Testing: G-Test. To judge if the association of t is
statistically significant, we should compare the observed po versus
the random pr, which we have both derived in Figure 8. We can
use standard statistics testing, such as mutual information, χ2, G-
test [16], etc.. Our implementation adopts G-test to check whether
po indicates random association or not,

Score(q(t)) = 2(polog
po

pr

+ (1 − po)log
1 − po

1 − pr

) (7)

To interpret, we note that the higher the G-test score is, the more
likely entity instances t together with keywords k are truly associ-
ated. We take this score for the final ranking of the tuples. In prac-
tice, given a large web page collection containing many keywords
and entity instances, the chance that an entity instance occurs in the
collection is extremely small. Hence, po, pr � 1, Eq. (7) can be
simplified as:

Score(q(t)) ∝ po · log
po

pr

(8)

4.4 EntityRank: Implementation Sketch
We have developed EntityRank, as a concrete materialization of

the impression model, and it satisfies all our requirements (Sec-
tion 2) of entity search– but, can it be efficiently implemented for
online interactive search– at a speed comparable to current page-
oriented search engines? Our analysis of the scheme (Figure 8)
shows that, in fact, the EntityRank framework can be easily built
upon current engines, thus immediately leveraging the impressive
infrastructure and scalable efficiency already in place. While this
paper focuses on the ranking scheme, and not query processing, we
show how EntityRank can be efficiently realized.

Why Feasible? Let’s examine how we may realize EntityRank. In
Figure 8, Score(q(t)) has two components, po and pr:

First, pr can mostly be pre-computed off-line (before query), and
thus its cost is negligible. There are four factors: Factors 1 and 2
are the “document frequencies” of entities ej and keywords ki. We
can pre-compute them for every term; when the query arrives, we
simply lookup in a table. We can similarly handle factors 3 and 4.

Second, po boils down to “pattern matching,” which is a major
function of today’s page-based search engine. The first factor re-
quires PageRank, which can be done off-line. The second factor re-
quires matching specific tuple occurrences γ (Section 4.2), which
can only be executed when the query terms (e.g., “amazon” and
#phone) and patterns (e.g., ow) are specified. Nevertheless, such
pattern matching is well supported in current engines, by using in-
verted lists– our realization can build upon similar techniques.

394

Possible Implementation. To begin with, we assume that a docu-
ment collection D has been transformed by way of entity extraction
into an entity collection E with entities {E1, E2, . . . , En}.

• Indexing: To support entity as a first-class concept in search, we
index entities in the same way as indexing keywords.

2d 71d12 6d 17 50

...

35

6d >< 8.0,123,23

...Amazon

#phone 59d... ...

Figure 10: A Snippet of Index.
We use the standard inverted index for indexing keywords. We

index the extracted entities similar to keywords. To index an entity
type Ei, our system will produce a list containing all the infor-
mation regarding the extracted instances of Ei. Specifically, the
list records for each occurrence of entity instance ei, the position
ei.pos of the extraction in the documents, e.g. position 23 at docu-
ment d6, the entity instance ID ei.id, e.g. ID 123 for representing
phone number “805-213-4545”, and the confidence of extraction
ei.conf , e.g. 0.8. All the occurrence information of entity instances
of a certain entity type is stored in an ordered list according to doc-
ument number as shown in Figure 10.

• Search: Figure 11 shows the pseudo code of our EntityRank al-
gorithm for supporting entity search.

Let’s walk through the algorithm for query “ow(amazon #phone)”
upon the index in Figure 10. We first load the inverted list for key-
word “Amazon” and entity type “#phone” (line 0). Then we iterate
through the two lists in parallel , checking the intersection of docu-
ments (line 1). In this example, the algorithm will first report d6 as
the intersecting document. Then the algorithm will further check
the postings of keywords and entity types to see if the specified
query pattern “ow” is satisfied in d6 (line 2). In this case, entity
instance with ID “123” at position 23 is matched with keyword
“Amazon” at position 17 (not position 50). A tuple of entity in-
stance with ID “123” is therefore instantiated, and its local associa-
tion probability will be calculated according to the local recognition
layer 4.2 (line 3 and 4). All the instantiated tuples and their local
scores are stored for later on aggregation and validation purposes.
Once the parallel scan of lists ends, we can sum up all the local
scores (multiplied by the popularity of document) into forming the
observed average association probability for each tuple t (line 6).
As just discussed, the cost of pr is negligible.

Observe that the core of our EntityRank algorithm (line 1-4)
is essentially sort-merge-join of ordered lists. This only requires
scanning through all the lists once, in parallel. Therefore, the algo-
rithm is linear in nature and could be run very efficiently. Moreover,
this sort-merge-join operates on a document basis. This implies that
this procedure (line 1-4) can be fully parallelized, by partitioning
the collection into sub-collections. This parallelism allows the pos-
sibility of realizing entity search in very large-scale, supported by
a cluster of nodes. Our prototype system, to be discussed in Sec-
tion 6.3, leverages such parallelism on a cluster of 34 nodes.
5. RELATED WORK

The objective of our system is to build an effective and efficient
entity-aware search framework, with a principled underlying rank-
ing model, to better support many possible search and mining ap-
plications. Our previous work [12] formulates the problem of en-
tity search and emphasize its application on information integra-
tion (i.e., Scenario 4 in Section 6.2), while this work focuses on
the core entity ranking problem. To the best of our knowledge, we
did not witness any similar exploration of combining local analysis,
global aggregation and result verification in a principled way, espe-
cially over a network of documents of varying quality. Our work

The EntityRank Algorithm: Actual Execution of Entity Search.

Given: L(Ei), L(kj): Ordered lists for all the entity and keywords.

Input: q = α(E1, . . . , Em, k1, . . ., kl).

0: Load inverted lists: L(E1), . . . , L(Em), L(k1), . . . , L(kl) ;

/* intersecting lists by document number

1: For each doc d in the intersection of all lists

2: Use pattern α to instantiate tuples; /* matching

3: For each instantiated tuple t in document d

4: Calculate p(q(t)|d) ; /* Section 4.2

5: For each instantiated tuple t in the whole process

6: calculate p(q(t)|D) =
∑

d p(q(t)|d)p(d); /* observed probability

7: output Score(q(t)) = p(q(t)|D) log p(q(t)|D)
p(q(t)|D′) ; /* Section 4.3

Figure 11: The EntityRank Execution Framework.

is related with the existing literature in three major categories: in-
formation extraction (i.e., IE), question answering (i.e., QA) and
emerging trend on utilizing entity and relation for various search
tasks. We now study these categories one by one.

First, our system on one hand relies on IE techniques to ex-
tract entities; on the other hand, our system could be regarded as
online relation extraction based on association. There have been
many comprehensive IE overviews recently ([14], [15], [4]) sum-
marizing the state of the art. On the special Web domain, there
have been many excellent IE works (e.g., SemTag [17], Know-
ItAll [18], AVATAR [19]) Furthermore, many open source frame-
works that support IE (e.g., GATES [1], UIMA [2]) are readily
available. While most IE techniques extract information from sin-
gle documents, our system discovers the meaningful association of
entities holistically over the whole collection.

Second, our system can be used as a core component to sup-
port QA more directly and efficiently. Unlike most QA works (e.g.,
[3], [5], [21], [22]), which retrieve relevant documents first and
then extract answers, our work directly builds the concept of en-
tity into the search framework. While many QA systems’ focus
is on developing interesting QA system framework, most of them
have adopted simple measures for ranking and lack a principled
conceptual model and a systematic study of the underlying rank-
ing problem. The SMART IR system [3] and the AskMSR QA
system [5] mainly use the entity occurrence frequency for ranking.
The Mulder system [21] ranks answer candidates mainly according
to their closeness to keywords, strengthened by clustering similar
candidates for voting. The Aranea system [22] mainly uses the fre-
quency of answer candidates weighted by idf of keywords in the
candidates as the scoring function.

Finally, we are recently witnessing an emerging research trend
towards searching with entity and relationship over unstructured
text collection (such as [10] and [24] advocate).

Towards enriching keyword query with more semantics, AVATAR
[20] semantic search tries to interpret keyword queries for the in-
tended entities and utilize such entities in finding documents.

Towards searching over fully extracted entities and relationships
from the Web, ExDB [8] supports expressive SQL-like query lan-
guage over an extracted database of singular objects and binary
predicates, of the Web; Libra [23] studies the problem of searching
web objects as records with attributes. Due to the different focus
on information granularity, its language retrieval model is very dif-
ferent from ours. While these approaches rely on effective entity
and relationship extraction for populating an extraction database,
our approach only assumes entity level extraction and replies on
large-scale analysis in the ranking process.

Towards searching over typed entities in or related with text doc-

395

uments, BE [7] develops a search engine based on linguistic phrase
patterns and utilizes a special index for efficient processing. It lacks
overall system support for general entity search with a principled
ranking model. Its special index, “neighborhood index”, and query
language, “interleaved phrase” query, are limited to phrase queries
only; Chakrabarti et al. [11] introduce a class of text proximity
queries and study scoring function and index structure optimization
for such queries. Its scoring function primarily uses local proximity
information, whereas we investigate effective global aggregation
and validation methods, which we believe are indispensable for ro-
bust and effective ranking in addition to local analysis. Our query
primitive is also more flexible in allowing expressive patterns and
multiple entities in one query; ObjectFinder [9] views an “object”
as the collection of documents that are related with it and there-
fore scores an “object” by performing aggregation over document
scores. In contrast, our approach views an entity tuple as all its oc-
currences over the collection. Therefore, its score aggregates over
all its occurrences, where we consider uncertain, contextual factors
other than the document score.
6. PROTOTYPE AND EXPERIMENTS

This section first discusses the prototype system we built for sup-
porting entity search. Then we describe a few applications that
could be easily built upon on system, which clearly show the use-
fulness of entity search qualitatively. Finally, we use our large-scale
experiment to quantitatively verify the effectiveness of our ranking
algorithm EntityRank, as compared to other ranking schemes.

6.1 System Prototype
We build our entity search system upon the Lemur IR Toolkit.

We mainly morphed the indexing module of the Lemur Toolkit to
be able to index entities in addition to keywords and implemented
our own query modules for supporting EntityRank.

For getting data from the Web, we obtained our corpus from the
Stanford WebBase Project, as our “virtual” Web Crawler.

For entity extraction, we have implemented two types of entity
extractors. First, our rule-driven extractor tags entities with reg-
ular patterns– e.g., #phone entity and #email entity, etc. Second,
our dictionary-driven extractor works for entities whose domains,
or dictionaries are enumerated– e.g., #university entity, #professor
entity, #research entity(as areas in CS), etc.

For more details regarding the system, please refer to our work [13]
on the overall system architecture for entity search.

6.2 Qualitative Analysis: Case Studies
This subsection studies some of the possible applications that

could be built upon entity search to show its promise qualitatively.

Question Answering: Scenario 1
Entity search could be a good candidate as the core search com-

ponent for supporting question answering tasks. By using exist-
ing techniques, such as removing stop words, identifying the entity
type for the question, we could effectively turn a lot of questions
into entity search queries supported by our system.

Towards this goal, we built a yellowpage application with the
following setting:
• Entity collection: E = {#phone, #email}
• Document collection: D = the Web

Such a system addresses our motivating query Q1, finding the
Costumer Service number of Amazon, in Section 1.

Relation Discovery: Scenario 2&3
Our query primitive and ranking algorithm for entity search could

afford more than one entity at a time. Such queries, containing mul-
tiple entities, could be viewed as relational discovery queries.

Chris Clifton Purdue Univ Data Mining
Sunil Prabhakar Purdue Univ Database Systems
Jiawei Han UIUC Data Mining
David J. Dewitt Univ of Wisc Database Systems

Table 1: Profs in DB-related Areas (Partial)
sigmod04-040611.pdf sigmod04-040617.ppt
URL: http://www.cs.ucsb.edu/∼su/tutorials/sigmod2004.html
publications/tr-db-01-02.pdf publications/sigmod2001.ppt
URL: http://www.ics.uci.edu/∼iosif/index.html

Table 2: Pairs of PDF and PPT Files for SIGMOD (Partial)

Towards this goal, we built an application on Computer Science
domain with the following setting:
• E = {#professor, #research, #university, #pdf file, #ppt file,#phone,

#email}

• D = a collection of computer science related webpages
This application could answer user queries Q2 and Q3 we raised

in scenario 2 and 3 in Section 1. Partial results are shown in Table 1
for query Q2 and in Table 2 for query Q3 respectively.

Information Integration: Scenario 4
Entity search could also be a good candidate for supporting ad-

hoc on-the-fly information integration, whose goal is to assemble
different attributes (entities) together into one relation.

Towards this goal we built an online book shopping application
based on the query results returned from multiple deep web sources
in the Book Domain.

Figure 12: Images of Books with “Hamlet” in Title (Partial)

• E = {#title, #author #date, #price, #image}
• D = result pages returned from deep Web sources regarding

book queries
Users can ask queries regarding possible combinations of key-

words and the entity types. Figure 12 shows the result for a query
that tries to find images of books with keyword “Hamlet” in title,
motivated by query Q4 we discussed in Section 1.

For all the four scenarios, we have built applications with differ-
ent datasets and witnessed great usefulness of entity search in all of
them. In particular, we will systematically evaluate Scenario 1 be-
cause it has a large realistic corpus. For all other scenarios, the re-
sults were also clearly promising: For instance, for queries finding
relations 〈professor, research〉 and 〈professor, email〉, when
counting the top-match research area and email for each professor,
the result achieves between 80% - 90% precision and recall.

6.3 Quantitative Systematic Evaluation
In order to demonstrate the effectiveness of our ranking algo-

rithm EntityRank for supporting entity search, we have build a large

396

scale, distributed system on a real Web corpus. In this subsection,
we will first briefly discuss the setup of our system. Then, we will
use typical query sets to show the accuracy of our ranking model
over other ranking schemes.

6.3.1 Experiment Setup
To empirically verify that our ranking model is effective for sup-

porting entity search, we decide to use the Web, the ultimate infor-
mation source, as our corpus. Our corpus, a general Web crawl in
Aug, 2006, is obtained from the WebBase Project. The total size is
around 2TB, containing 48974 websites and 93 million pages.

To process such terabyte-sized data set, we ran our indexing and
query processing modules on a cluster of 34 machines, each with
Celeron 2.80GHz CPU, 1 GB memory and 160 GB of disk. We
evenly distribute the whole corpus across these nodes.

On this corpus, we target at two entity types: phone and email.
They are extracted based on a set of regular expression rules. We
extracted around 8.8 million distinctive phone entity instances and
around 4.6 million distinctive email entity instances.

6.3.2 Accuracy Comparison
To get a first feeling of our ranking model, we tested a few

finding-phone-number and finding-email-address queries, that are
similar to our motivating scenario 1 in Section 1.

In addition to analyzing the results returned by EntityRank, we
also try to compare our results with the following five approaches:
• N (Naive Approach): Tuples are ranked according to the percent-

age of documents in which they are matched.
• L (Local Model Only Approach): Tuples are solely ranked using

their highest observed local association probability.
• G (Global Aggregation Only Approach): Tuples are ranked ac-

cording to the summation of the score of documents in which
they are matched. Pagerank score is used as the document score.

• C (Combination of Local Model and Global Aggregation Ap-
proach): Tuples are ranked according to the summation of the
local association probabilities from matched documents.

• W (EntityRank Without G-test): Tuples are ranked according to
their observed association probability, without performing the G-
test for validation. The purpose of testing this approach is to see
the effect of hypothesis test in the ranking framework.

Query Telephone ER L N G C W

Citibank Customer Service 800-967-2400 1 4 7 43 1 1

New York DMV 800-342-5368 2 2 213 882 5 3

Amazon Customer Service 800-201-7575 1 1 52 83 1 1

Ebay Customer Service 888-749-3229 1 7 859 118 2 13

Thinkpad Customer Service 877-338-4465 5 12 249 127 19 4

Illinois IRS 800-829-3676 1 1 157 697 3 2

Barnes & Noble Customer Service 800-422-7717 1 2 2158 1141 7 1

Figure 13: Telephone Number Queries
The results of executing motivating queries using different rank-

ing models are shown in Figure 13 and 14. The first column lists
keywords used in the query. The second column lists the correct en-
tity instance returned for each query (manually verified). The third,
fourth, fifth, sixth and seventh columns list the rank of the correct
phone number in results by the various approaches described above
respectively.

As we can see, EntityRank (ER) consistently outperforms other
ranking methods. Almost all the right answers are returned within
top 3 for finding phone numbers and more than half of the right
answers are returned within top 4 for finding email addresses.

Query Email ER L N G C W

Bill Gates bgates@microsoft.com 4 44 2502 376 21 23

Oprah Winfrey oprah@aol.com 2 6 745 80 4 3

Elvis Presley elvis@icomm.com 5 56 1106 267 20 8

Larry Page larrypage@google.com 8 24 9968 26932 12 11

Arnold Schwarzenegger governor@governor.ca.gov 4 45 165 169 5 6

Figure 14: Email Queries

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

P
er

ce
nt

ag
e

EntityRank
N
L
G
C
W

(a) Query Type I

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

P
er

ce
nt

ag
e

EntityRank
N
L
G
C
W

(b) Query Type II

Figure 15: Satisfied Query Percentage under Various Ranks

To study the performance of our method in a more systematical
way, we use the following ways to come up with typical queries for
each query types. Query Type I (phone): We use the names of top
30 companies in Fortune 500, 2006 as part of our query, together
with phone entity type in the query. Query Type II (email): We
use the names of 88 PC members of SIGMOD 2007 as part of our
query, together with email entity type in the query. 37 out of the
88 names that don’t have any hit with any email entity instance are
excluded. This is due to the reason that our corpus is not complete
(2TB is only a small proportion of the whole Web).

To measure the performance, we use the mean reciprocal rank
(MRR) as our measure. This measure essentially calculates the
mean of the inverse ranks of the first relevant answer according
to queries. The value of this measure lies between 0 and 1, and
the higher the better. As it is time consuming to manually check
all the returned results to identify the first relevant tuple in each
result, especially given the fact that in lots of the results the first
related entity tuple appears very high in rank. We come up with the
following two approximate methods for estimating the rank where
the first related entity tuple is returned.

In evaluation method 1, we first manually go through the re-
sult returned by our EntityRank algorithm, finding the first related
tuple (usually within top 5). Then, we look up the place where
this tuple appears using other ranking algorithms. Although this
method is biased towards our EntityRank algorithm, it still makes
sense as intuitively the related tuple (manually verified) returned
by EntityRank should also be ranked high using other methods. At
minimum, this evaluation method gives a meaningful lower bound
of the MRR, referred as bMRRc, of the first relevant tuple.

Evaluation method 2 is a much more conservative evaluation
method. We manually check the top 10 entries of the results re-
turned by each ranking algorithm. If a relevant tuple is found within
top 10 entries, we will record the rank, otherwise, we will just use
rank 10. The intuition of using this method is that normally the
top 10 results (in the first pages) are most important for users. This
evaluation method gives a meaningful higher bound of the MRR,
referred as dMRRe, of the first relevant tuple.

Figure 15 shows the percentage of queries returning relevant an-
swers within various top K ranks for the two query types respec-
tively. The x axis represents various top K ranks, ranging from 1 to

397

1600 in log scale. The y axis reports the percentage of the tested
queries returning relevant answers under a certain rank. Evaluation
method 1 is used for getting the rank of relevant answers of queries.

Table 3 and 4 give comparison of the six ranking algorithm, on
Query Type I and II respectively using bMRRc and dMRRe.

Measure EntityRank L N G C W
bMRRc 0.648 0.047 0.037 0.050 0.266 0.379
dMRRe 0.648 0.125 0.106 0.138 0.316 0.387

Table 3: Query Type I MRR Comparison

Measure EntityRank L N G C W
bMRRc 0.659 0.112 0.451 0.053 0.573 0.509
dMRRe 0.660 0.168 0.454 0.119 0.578 0.520

Table 4: Query Type II MRR Comparison
As we can see from all the results, our EntityRank algorithm

is highly effective with MRR around 0.65, outperforming all the
other algorithms. “Ordered Window” pattern “ow” is used in our
EntityRank algorithm for evaluating those queries.

Although the focus of this paper is on the effectiveness of entity
search, we have also carried out some preliminary study on the
efficiency of our system, in terms of space and time.

First, in terms of space consideration, supporting entity search
only incurs minimal index overhead. Our current entity search sys-
tem, by indexing email and phone entities, only incurs less than
0.1% overall space overhead in the size of indices.

Second, in terms of time consideration, our system adds negli-
gible overhead in offline indexing time and performs online entity
search rather efficiently. Indexing entities could be done at the same
time as we index keywords. Similar to the space overhead it cre-
ates, the time overhead in indexing entities in addition to keywords
is almost negligible. For online query processing, as the nature of
the query processing is linear as discussed in Section 4.4, query
processing is rather efficient. For our examples queries listed in
Figure 13 and 14, the average query response time is 2.45 sec-
onds.

6.3.3 Observations and Discussions
We now analyze why the other five approaches perform not as

well as our EntityRank algorithm.
In the local model only approach (L), as long as there is some

false association where keywords and entities appear very close to
each other, the tuple will be ranked high. Our global aggregation
of the local scores is more robust, as the results are collective from
many sources across the web and such false association is not likely
to appear in lots of web pages. The results for the local model only
approach may get improved by having more accurate local models,
however, it doesn’t solve the problem from the root as we analyzed.
It is necessary to conduct global aggregation upon local analysis.

On the other extreme, using pure global aggregation without any
local constraint, e.g. the N and G ranking methods, performs poorly
as our result shows. This is because without local constraint, lots of
false associations will be returned, which leads to the aggregation
of false information. Local model helps in reducing such noises,
generating high quality information for later on aggregation.

Experiments show that both a simple combination of the local
scores with global aggregation and performing EntityRank without
hypothesis testing perform worse than EntityRank. This validates
our analysis on the important factors for entity search in that the
lacking of any factor, in this case the discriminative and associative
factors, would result in significant reduction in effectiveness.

Finally, we would like to point out an intriguing merit of EntityRank
in that it performs holistic analysis , by leveraging the scale of the
corpus, together with effective local analysis. Therefore, the larger
the corpus size, the more information (evidence) we can aggregate,
and therefore the more effective the ranking. Other simple meth-
ods, especially the local model only approach, may suffer from
such situations as the larger the corpus the more the noise.

7. CONCLUSIONS
In this paper, we propose the notion of entity search. Toward

building such a system, we address the central challenge of entity
ranking. Our solution, the EntityRank model, seamlessly integrate
local recognition and global access information into a probabilis-
tic view of estimating tuple likelihood of results. Our experiments
show that the concept of entity search is useful, and the EntityRank
model is effective for finding good results in top ranks.

8. REFERENCES
[1] Gate - general architecture for text engineering,.
[2] Unstructured information management architecture.
[3] S. Abney, M. Collins, and A. Singhal. Answer extraction. In ANLP,

2000.
[4] E. Agichtein and S. Sarawagi. Scalable information extraction and

integration (tutorial). In SIGKDD, 2006.
[5] E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr

question-answering system. In EMNLP, 2002.
[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual web

search engine. In WWW, pages 107–117, 1998.
[7] M. Cafarella and O. Etzioni. A search engine for large-corpus

language applications. In WWW, 2005.
[8] M. Cafarella, C. Re, D. Suciu, and O. Etzioni. Structured querying of

web text data: A technical challenge. In CIDR, 2007.
[9] K. Chakrabarti, V. Ganti, J. Han, and D. Xin. Ranking objects based

on relationships. In SIGMOD, 2006.
[10] S. Chakrabarti. Breaking through the syntax barrier: Searching with

entities and relations. In ECML, pages 9–16, 2004.
[11] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing scoring

functions and indexes for proximity search in type-annotated
corpora. In WWW, pages 717–726, 2006.

[12] T. Cheng and K. C.-C. Chang. Entity search engine: Towards agile
best-effort information integration over the web. In CIDR, pages
108–113, 2007.

[13] T. Cheng, X. Yan, and K. C.-C. Chang. Supporting entity search: A
large-scale prototype search system. In SIGMOD, 2007.

[14] W. Cohen. Information extraction (tutorial). In SIGKDD, 2003.
[15] A. Doan, R. Ramakrishnan, and S. Vaithyanathan. Managing

information extraction: state of the art and research directions
(tutorial). In SIGMOD, 2006.

[16] T. Dunning. Accurate methods for the statistics of surprise and
coincidence. Computational Linguistics, 19, 1994.

[17] S. D. et al. SemTag and Seeker: Bootstrapping the semantic web via
automated semantic annotation. In WWW, 2003.

[18] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates. Web-scale
information extraction in knowitall. In WWW, 2004.

[19] T. S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu. Avatar information extraction system. IEEE Data Eng. Bull.,
29(1):40–48, 2006.

[20] E. Kandogan, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu. Avatar semantic search: a database approach to information
retrieval. In SIGMOD, pages 790–792, 2006.

[21] C. C. T. Kwok, O. Etzioni, and D. S. Weld. Scaling question
answering to the web. In WWW, pages 150–161, 2001.

[22] J. J. Lin and B. Katz. Question answering from the web using
knowledge annotation and knowledge mining techniques. In CIKM,
pages 116–123, 2003.

[23] Z. Nie, Y. Ma, S. Shi, J.-R. Wen, and W.-Y. Ma. Web object retrieval.
In WWW, 2007.

[24] G. Weikum. DB&IR: both sides now. In SIGMOD, 2007.

398

