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ABSTRACT

Low-latency and high-throughput processing are key re-
quirements of data stream management systems (DSMSs).
Hence, multi-core processors that provide high aggregate
processing capacity are ideal matches for executing costly
DSMS operators. The recently developed Cell processor is
a good example of a heterogeneous multi-core architecture
and provides a powerful platform for executing data stream
operators with high-performance. On the down side, ex-
ploiting the full potential of a multi-core processor like Cell
is often challenging, mainly due to the heterogeneous na-
ture of the processing elements, the software managed local
memory at the co-processor side, and the unconventional
programming model in general.

In this paper, we study the problem of scalable execution
of windowed stream join operators on multi-core processors,
and specifically on the Cell processor. By examining various
aspects of join execution flow, we determine the right set of
techniques to apply in order to minimize the sequential seg-
ments and maximize parallelism. Concretely, we show that
basic windows coupled with low-overhead pointer-shifting
techniques can be used to achieve efficient join window par-
titioning, column-oriented join window organization can be
used to minimize scattered data transfers, delay-optimized
double buffering can be used for effective pipelining, rate-
aware batching can be used to balance join throughput and
tuple delay, and finally SIMD (single-instruction multiple-
data) optimized operator code can be used to exploit data
parallelism. Our experimental results show that, following
the design guidelines and implementation techniques out-
lined in this paper, windowed stream joins can achieve high
scalability (linear in the number of co-processors) by making
efficient use of the extensive hardware parallelism provided
by the Cell processor (reaching data processing rates of ≈ 13
GB/sec) and significantly surpass the performance obtained
form conventional high-end processors (supporting a com-
bined input stream rate of 2000 tuples/sec using 15 minutes
windows and without dropping any tuples, resulting in ≈ 8.3
times higher output rate compared to an SSE implementa-
tion on dual 3.2Ghz Intel Xeon).

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1. INTRODUCTION
Many of today’s data processing tasks, such as e-business

process management, systems and network monitoring, fi-
nancial analysis, and security surveillance, need to handle
large volumes of events or readings that come in the form
of data streams and produce results with low-latency. This
entails a shift away from the “store and then process” model
of DBMSs, towards the “on-the-fly processing” model of
emerging data stream management systems (DSMSs) [1, 5,
7, 31]. The ability to sustain fast response time in the face
of large volumes of streaming data is an important scalabil-
ity consideration for DSMSs, since stream rates are unpre-
dictable and may soar at peak times.

In this paper, we study the use of heterogeneous multi-
core processors for achieving high-throughput and low-
latency in windowed data stream operators. We particularly
focus on windowed stream joins, which are fundamental and
costly operations in DSMSs, and are representative of the
general class of windowed operators. They form the crux
of many DSMS applications, such as object tracking [18],
video correlation [17], and news item matching [12]. Win-
dowed stream joins are heavily employed in DAC [34], one of
the reference applications we are building on top of System
S [22]. DAC is a disaster assistance claim processing ap-
plication, and uses stream joins in several occasions to find
matching items in different but time-correlated streams.

Our discussion is based on the Cell processor [19] −
a state-of-the-art heterogeneous multi-core processor. Al-
though the Cell processor was initially intended for game
consoles and multimedia rich consumer devices, the major
advances it brought in terms of performance have resulted in
a much broader interest and use. High-end Cell blade servers
for general computing are commercially available [25], and
research on porting various algorithms to Cell are under way
in many application domains [4, 27].

A heterogeneous multi-core architecture is often charac-
terized by a main processing element accompanied by a
number of co-processors. For instance, the Cell proces-
sor consists of the PPE (PowerPC Processing Element)
which serves as the main processing element, and the eight
SPEs (Synergistic Processing Elements) which are the co-
processors providing the bulk of the processing power. SPEs
do not have conventional caches, but instead are equipped
with local stores, where the transfers between the main
memory and the local stores are managed explicitly by the
application software. This is a common characteristic of
heterogeneous multi-core processors, such as network pro-
cessors [21] (see Section 2.2 for differences).

A major challenge in making stream joins truly scalable
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is to fully analyze the execution flow, identify the poten-
tial bottlenecks, and devise solutions to remove these bot-
tlenecks. We identify four major problems in scalable and
high-performance execution of stream joins on heteroge-
neous multi-core processors like Cell:

P1) We need load balancing mechanisms to evenly dis-
tribute the load among the SPEs, in the presence of changes
in input stream rates and system load. Unfortunately, the
basic approach of evenly distributing incoming tuples among
SPEs does not scale due to memory bandwidth bottlenecks
(see Section 3), even though it trivially balances the load.
As a result, more elaborate dynamic window partitioning
schemes are needed.

P2) We need to organize the data structures maintained
by the join operator (such as join windows and input
batches) to facilitate low-overhead movement of data be-
tween the PPE and the SPEs. This includes minimizing the
number of direct memory transfers (DMAs) used.

P3) We need techniques to mask the memory transfer de-
lays associated with the data movements between the PPE
and the SPEs. This includes overlapping processing with
asynchronous data transfers, as much as possible.

P4) We need to optimize the core join code to take full
advantage of data and instruction-level parallelism of SPEs.

Our work makes the following four contributions toward
addressing these problems, in order to accelerate windowed
stream joins using a heterogeneous multi-core processor:

S1) We provide a lightweight dynamic window partition-
ing mechanism to distribute the load among the eight SPEs.
This is particularly important, since as the join windows
continue to slide and tuples arrive and leave the windows at
potentially varying rates, the segments of the join windows
assigned to an SPE can change in terms of both content
and size. The unique properties of our solution to this prob-
lem are two fold. First, we use basic windows to reduce
the frequency of changes in the assignments of join window
segments to different SPEs. Second, we develop an efficient
pointer-shifting technique to quickly and incrementally ad-
just the SPE assignments when they change.

S2) We describe a column-oriented memory organization
for maintaining the join windows. This organization mini-
mizes the amount of data that needs to be fetched by the
SPEs. More importantly, it locates the same attributes of
successive tuples on contiguous regions of the memory, en-
abling SPEs to take full advantage of the SIMD (single-
instruction multiple-data) instructions, without the over-
head of data re-organization or scattered DMA transfers.

S3) We employ double-buffering techniques at the gran-
ularity of individual basic windows to mask data transfer
delays. We analytically study the optimal configuration of
basic window sizes to maximize the join throughput. We
also develop a rate-aware dynamic tuple batching technique
to balance tuple delay and join throughput.

S4) We provide optimizations at the SPE-side, targeted
toward increasing the performance of the join by making use
of the vectorized SIMD operations (data parallelism) and
double-issued instructions (instruction-level parallelism).

Our experimental results show that, following the design
guidelines and implementation techniques outlined in this
paper, windowed stream joins can (i) achieve high scalabil-
ity: linear in the number of SPEs used, (ii) make efficient use
of the extensive hardware parallelism provided by the Cell
processor: reaching data processing rates of 13.4 GB/sec

at combined input stream rate of 2000 tuples/sec using 15
minutes windows and without dropping any tuples, and (iii)
significantly surpass the performance obtained form conven-
tional high-end processors: ≈ 8.3 times that of an SSE im-
plementation on dual 3.2 Ghz Intel Xeon processor.

2. PRELIMINARIES
In this section, we provide basic information about win-

dowed stream joins and present relevant details of the Cell
processor architecture.

2.1 Windowed Stream Joins Overview
Since data streams are potentially unbounded, stream

joins are performed over windows defined over input
streams. The windows maintained over data streams can
be count-based, such as the last 1000 tuples; or time-based,
such as tuples from the last 10 minutes. In the case of time-
based windows, size of a join window in terms of tuples is
also dependent on the rates of the streams. The stream rates
may not be stable and can change as a function of time. In
the rest of the paper, we use time-based windows without
loss of generality. Our main discussion is on nested loop-
based join processing (NLJ), although we describe straight-
forward extensions to hash-based equi-joins as well as to the
general case of multi-way (m-way) joins (see Section 7). To
illustrate some of the more interesting SIMDization scenar-
ios, we use band-joins [10]. Otherwise, our approach applies
to all join conditions.

Here we summarize the operation of a windowed stream
join. Let us denote the ith stream as Si and a tuple from
Si as ti. Streams can be viewed as unbounded sets of times-
tamp ordered tuples. Each stream has a specific schema.
We denote the join window on Si as Wi and the length of
the join window in time units as wi. The window lengths
are parameters of the windowed join operator. We denote
the timestamp of a tuple t by τ(t) and current time as τ(T ).
A join window keeps the tuples fetched from its associated
input stream until they expire. A tuple ti is considered as
expired if and only if it is at least wi time units old, that is
τ(ti) ≤ τ(T )−wi. The join window Wi on Si is maintained
such that we have ∀ti ∈ Wi, τ(T ) > τ(ti) > τ(T ) − wi. In
other words, we have a sliding window Wi of size wi time
units over the stream Si.

When a tuple ti is fetched from stream Si, it is compared
against the tuples resident in the window of the opposing
stream, say Wj , and join results are generated for matching
tuples. After the result processing is complete, ti is inserted
into Wi and join windows are checked for expired tuples. If
found, expired tuples are removed from the join windows.
The join is performed both ways in alternating fashion, that
is Si ⊲⊳ Wj is performed for a newly fetched tuple ti and
Sj ⊲⊳ Wi is performed for a newly fetched tuple tj . The
particular join type we consider in this paper is the band-
join, where we have one or more join conditions in the form
of Xl ≤ ti.A − tj .B ≤ Xu. In other words, tuples ti and tj

match if and only if the difference between attribute A of ti

and B of tj is within the interval [Xl, Xu]. The band join
interval can be set to [0, 0] in order to represent equi-joins.

2.2 Cell Processor Overview
The Cell processor is a single-chip multiprocessor with

nine processing elements (one PPE and eight SPEs) operat-
ing on a shared, coherent memory. The PPE is a general-
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Figure 1: Architecture of the Cell processor.

purpose, dual-threaded, 64-bit RISC processor and runs the
system software. Each SPE on the other hand, is a 128-bit
RISC processor specialized for data-rich, compute-intensive
SIMD applications. Besides data parallelism from rich set of
SIMD instructions, SPEs also provide instruction-level par-
allelism in the form of dual pipelines, where certain types
of instructions can be dual-issued to improve the average
Cycles-Per-Instruction (CPI) of an application. Each SPE
has full access to coherent shared memory and the memory-
mapped I/O space.

A significant difference between the SPEs and the PPE is
how they access the main memory. Unlike the PPE, which is
connected to the main memory through two level of caches,
SPEs access the main memory with direct memory access
(DMA) commands. Instead of caches, each SPE has a 256
KB private local store. The local store is used to hold both
instructions and data. The load and store instructions on
the SPE go between the register file (128 x 128-bit) and the
local store. Transfers between the main memory and the lo-
cal store are performed through asynchronous DMA trans-
fers. This is a radical design compared to conventional archi-
tectures and programming models, because it explicitly par-
allelizes the computation and transfer of data, thus avoiding
the Von Neumann Bottleneck [3]. On the down side, it is
programmers’ task to manage such transfers and take ad-
vantage of the high aggregate bandwidth made available by
the Cell architecture [26]. Moreover, SPEs lack branch pre-
diction hardware and hence conditionals should be avoided
as much as possible to keep the pipeline utilization high.
Figure 1 gives a basic view of the Cell architecture.

For a typical application, the relationship between the
PPE and the SPEs can be summarized as follows. The SPEs
depend on the PPE to run the operating system and in most
of the cases the top-level control logic of the application. On
the other hand, the PPE depends on the SPEs to provide
the bulk of the application performance. The PPE can take
advantage of this computational power by spawning SPE
threads. Such threads are not fully preemptable. In addition
to coherent access to the main memory, there are several
other ways for the PPE and the SPEs to communicate with
each other, such as mailboxes and signals.

In brief, we want to exploit the following hardware par-
allelisms available on the Cell processor to scale windowed
data stream processing operators, such as stream joins:

• The computational power from the eight synergistic
precessing elements (SPEs) and the PPE

• Asynchronous and parallel DMAs available for high-
bandwidth memory transfer

. . .SPEs

PPE

Wi
time τ(T) time τ(T)-wi

Si

Sj

tj

re
su

lt
s

Wj

Figure 2: Illustration of program structure for a bi-
nary windowed stream join. The join processing is
shown for the direction Sj ⊲⊳ Wi.

• Vectorized operations and the dual-issued instructions
on the SPEs

3. STREAM JOINS ON THE CELL - DE-

SIGN CHOICES
In this section, we describe the design choices made in

implementing stream joins on the Cell processor. These
choices relate to three important aspects of any program
that runs on a high-performance heterogeneous multi-core
processor: (i) How do we partition the work between the
processing elements to maximize the effectiveness of paral-
lelism?; (ii) How do we organize the memory to facilitate
efficient transfers?; and (iii) How do we take advantage of
the SIMD instructions?

3.1 Join Program Structure
Before discussing the fundamental issue of partitioning the

join processing among the 8 SPEs, we first describe where
the join windows are stored and managed in the system.

We choose to manage the join windows on the PPE-side
and store them in the main memory. This is mainly because
the local stores of the SPEs are limited in size (256 KB each),
and not all SPEs may be available during runtime. Manag-
ing the join windows on the SPE-side will significantly limit
the maximum window size that can be supported. Moreover,
since stream rates may not be stable, no guarantees can be
given that a given window size in terms of time length can be
supported. Even though the local store sizes may increase
in the future versions of the Cell processor, maintaining the
join windows in the main memory is more scalable. This
is because the join state is not stored on the SPE-side and
thus the number of SPEs used can be dynamically changed
in an SPE-transparent manner. As a result, in our design
the PPE is responsible for managing the join windows. This
is a lightweight job and matches well with the non-compute
intensive nature of the PPE in general.

For stream joins, a unit job can be considered as fetching
one or more tuples from one of the streams and matching
them against the tuples in the opposite join window. This
job can be parallelized in two ways, that is either by (a)
replicating the fetched tuples to each SPE and partitioning
the join window to be searched for matching tuples among
the SPEs, or by (b) partitioning the fetched tuples among
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the SPEs, and replicating the join window to each SPE.
However, option (b) has major shortcomings. First, in

order to take advantage of all the SPEs with option (b),
we need to fetch enough number of tuples from the input
stream to ensure that the partitioning of the fetched tuples
assigns at least one tuple to each SPE. This will increase
the tuple delay for slower streams, especially when all 8
SPEs are used. Second, if we have a requirement that the
fetched tuples have to be processed in sequence to preserve
ordering, then option (b) completely fails. Finally, an even
more problematic drawback of option (b) is its high memory
bandwidth requirement. With option (a), a join window is
transfered once from the main memory to the local stores
for each unit of job, whereas this has to be done 8 times
for option (b) when using all SPEs. We reach join window
processing rates of around 13.4 GB/sec in our experiments,
where a unit job contains 4 tuples, which corresponds to a
memory bandwidth requirement of 3.35 GB/sec. Using op-
tion (b) at such processing rates would make the memory
access bandwidth a bottleneck (3.35 · 8 = 26.8 GB/sec vs.
25.6 GB/sec available, see Figure 1).

Following option (a), each SPE processes its assigned part
of the join window in parallel and the load is balanced evenly,
independent of the number of tuples fetched. The results
consisting of the matching tuples are then collected at the
PPE-side. Even though the processing of a join window can
be seen as an example of embarrassingly parallel computa-
tion, the continuously changing nature of the join windows
create challenges in job partitioning. Figure 2 provides an
illustration of how the stream joins are structured using op-
tion (a) (window partitioning).

3.2 Column Oriented Join Windows
Since the transfers between the SPE local stores and the

main memory are explicitly managed by the application,
we need to make an informed decision on how to orga-
nize the memory used for the join windows. There are two
basic types of memory organizations for storing tuples in
the join windows, namely row-oriented (tuple-oriented) and
column-oriented (attribute-oriented). Row-oriented organi-
zation is a commonly applied approach in traditional rela-
tional DBMSs for organization of tuples on the disk, whereas
column-oriented organization is more commonly used for
read-optimized relational databases [30].

For performing stream joins on the Cell processor, we pro-
mote the use of column-oriented memory organization. In
a row-oriented approach, same attributes of different tuples
are not stored within a contiguous region of memory, as op-
posed to column-oriented organization. Figure 3 illustrates
this, in which different tuples are represented by different
colors and the stream schema contains four attributes: A,
B, C, and D. Assume that in this particular example one
of the join conditions is on attribute B. Noting that the
column-oriented organization help cluster together all the B
attributes, we list the advantages of this organization com-
pared to the more traditional row-oriented approach as:

• The SPEs can transfer only the join attributes, instead
of transferring all the tuples in their assigned segment
of the join windows. Even though this can also be
achieved in a row-oriented architecture, it requires to
gather attributes from non-contiguous regions of the
memory, which can be achieved by utilizing the DMA-
list operation supported by the Cell processor. How-
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Figure 3: Illustration of row-oriented and column-
oriented memory organization.

ever, it is more efficient to issue a DMA operation to
bring a block of attributes from a contiguous region of
the memory. This is illustrated in Figure 3.

• Clustering together the same attributes is crucial for
the performance of the join operator on the SPE side,
since the SIMD instructions, which can operate on a
vector of attributes at once to significantly speed-up
join processing, can only work if the attributes are on
a contiguous region of the memory and can be loaded
into the SPE registers without any overhead.

The complete details of the join window organization is
given later in Section 4.

3.3 Unit blocks and SIMD
The SIMD instructions on the SPE-side operate on vectors

of 128-bits, in the form of 16 chars, 8 shorts, 4 ints/floats,
or 2 longs/doubles. For instance, a single SIMD instruction
can sum 4 pairs of ints at once. The SPE has a rich set
of such SIMD instructions that operate on vectors of vari-
ous types. To take advantage of such instructions, the data
has to be operated on in multiples of 128-bit vectors. As a
result, we define a unit block as the minimum unit of data
needed for vectorized join processing. A unit block includes
b number of tuples, where we have:

b =
128

minA∈As(A)
(1)

Let us denote the set of join attributes by A and the size (in
bits) of an attribute A ∈ A as s(A). Then the number of
tuples required to fill a vector formed by A attributes is given
by 128/s(A). When there are more that one join attributes,
the minimum size one is used to compute b. Concretely,
we set b such that for the minimum size attribute we have
only one corresponding vector in a unit block, whereas for
other join attributes we have one or more integral number
of associated vectors. Noting that primitive types have sizes
that are powers of 2, Equation 1 follows.

As an example, if a join has two band conditions, one on
attribute A which is an int (32-bit) and another on attribute
B which is a double (64-bit), then a unit block contains
128/32 = 4 tuples, i.e., b = 4. In this case a unit block will
contain a single vector of 4 ints for the A attribute and 2
vectors of 2 doubles each for the B attribute.

4. COORDINATOR-SIDE OPERATION
In this section, we describe the major operations carried

out by the PPE (as a coordinator), which include mainte-
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Figure 4: Illustration of join data structures.

nance of the join windows, initiation of the join processing,
and collection of join results. Key features of join window
maintenance include using a lightweight, dynamic window
partitioning mechanism to balance the work across multiple
SPEs, while minimizing the delays due to memory transfers
between the PPE and the SPEs. The unique feature of join
processing initiation is the tuple batching mechanism used
to maximize the throughput when input rates are high, and
minimize the tuple delays when the input rates are low. The
result processing is designed to allow join processing to over-
lap with the result transfers.

4.1 Window Partitioning
The PPE is responsible for managing the join windows.

It does this by organizing each join window as a doubly-
linked list of basic windows, where join window Wi has
Bi(T ) number of basic windows at a given time T . Since
the windows are time-based, this number is rate dependent
and not fixed. However, during general mode of operation
we have Bi(T ) > N , where N is the number of SPEs used
by the stream join. A basic window constitutes a single
unit of transfer (from PPE to SPEs) for the join attributes,
and contains a fixed-number of unit blocks, denoted by d.
In other words, an SPE will transfer its assigned segment
of the join window one basic window at a time. Figure 4
illustrates how the join windows are structured. On the
PPE-side, a basic window contains all the attributes of the
tuples it stores. When an SPE transfers the basic window
to its local store, only the portion that includes the join at-
tributes are copied (which is a contiguous region within the
complete basic window). In the rest of the paper, when we
refer to basic window size, we only consider the part of the
basic window that contains the join attributes.

There are two motivations behind managing join windows
as a set of basic windows, namely hiding memory transfer
delays, and efficient job partitioning and re-adjustment.

4.1.1 Hiding Memory Transfer Delays

Basic windows can be used to hide the delays due to mem-
ory transfers initiated on the SPE side, through the use of
double-buffering (see Section 5 for details). To understand
this better, consider the following two extreme scenarios: In
one extreme case we have as large basic windows as possi-
ble, that is one basic window per SPE and thus Bi(T ) = N .
In another extreme case we have as small basic windows as
possible, i.e., d = 1, and thus large number of basic windows
per SPE (Bi(T )/N >> 1). In the first scenario, an SPE has
to wait for the transfer of all the join window tuples that
it will process, before starting the actual join processing.
This will result in a large transfer delay and will hurt the
join throughput. On the other hand, the second scenario en-
ables us to overlap the memory transfers with the processing
of join window tuples through the use of double buffering.

2

2

2 1 1

2 2 1

2 2 1 1

>spe1 >spe1 >spe2 >spe2 >spe3 >spe4

>spe1 >spe1 >spe2 >spe2 >spe3 >spe3 >spe4

>spe1 >spe1 >spe2 >spe2 >spe3 >spe4

*

*

Figure 5: Illustration of dynamic window partition-
ing and pointer adjustments.

However, since the basic windows are too small, issuance of
many small asynchronous DMA transfer commands will ac-
cumulate into a large overall transfer delay. Again, this will
reduce the throughput. We analytically study this trade-off
in Section 6 and describe how the basic window size can
be set to minimize the delays due to memory transfers and
achieve high throughput.

4.1.2 Dynamic Window Partitioning

Basic windows enable more efficient dynamic job parti-
tioning, as well as more efficient tuple admission and expi-
ration. A new basic windows is inserted into a join window
only when the first basic window becomes full. Similarly,
expired tuples are removed at the granularity of basic win-
dows. As a result, at any time the first basic window is
partially full, whereas the last basic window includes a mix
of expired and non-expired tuples. The latter implies that
the last basic window has to be time checked during join
processing. The partitioning of the join windows among the
SPEs needs to be changed only when the list of basic win-
dows are updated. This happens when there is an insertion
or removal of a basic window, which happen at a signifi-
cantly less frequency compared to the arrival rate of tuples
at the join operator. As we will describe shortly, upon such
changes the job partitioning is updated in O(N) time.

To maintain the job partitioning, the PPE keeps N num-
ber of pointers that correspond to the first basic windows to
be processed by each SPE. This is done for each join window.
The PPE also keeps the number of basic windows assigned
to each SPE from a join window. SPEs are assigned consec-
utive basic windows from the join window. Let us denote
the number basic windows assigned to SPE j ∈ [1..N ] from
window Wi as ci(j). Then we have:

ci(j) =

(

⌈Bi(T )/N⌉ if j ≤ Bi(T ) mod N

⌊Bi(T )/N⌋ otherwise
(2)

The PPE is responsible for updating this partitioning when
a basic window is added or removed from the join win-
dows. When a new basic window is added to Wi, the SPE
that gets an additional job can be defined as max{j | j ∈
[1..N ] and ci(j − 1) > ci(j)}, assuming we have ci(0) = ∞.
Once this SPE is determined, all starting basic window
pointers for SPEs with an index smaller than or equal to
j are shifted one level up toward the start of the join win-
dow. Similarly, when a basic window is removed from the
join window Wi, the SPE that loses a job can be defined as
min{j | j ∈ [1..N ] and ci(j + 1) < ci(j)}, assuming we have
ci(N + 1) = −∞. Once this SPE is determined, all starting
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basic window pointers for SPEs with an index larger than j
are shifted one level up toward the start of the join window.
This re-adjustment procedure achieves the mentioned O(N)
time, and is independent of the number of basic windows
present in the join windows. Since N is small (8 for a sin-
gle Cell processor) and re-adjustment happens infrequently,
dynamic job partitioning has minimal overhead.

Figure 5 illustrates the pointer movements needed for dy-
namic window partitioning, for a join window of 6 basic
windows partitioned among N = 4 SPEs. In this scenario,
initially the first 2 SPEs are assigned 2 basic windows each,
and the 2 remaining SPEs are assigned one basic window
each (see first row), according to Equation 2. The starting
basic window pointers and the number of basic windows as-
signed are indicated for each SPE in Figure 5. A new basic
window arrives (drawn in red) and the third SPE is the one
that gets an additional basic window as a result of this. This
is marked with ∗ in the figure. Since SPEs are assigned con-
secutive basic windows, all starting basic window pointers
before or at the marked pointer are shifted one level left to
yield the new partitioning, in which the first 3 SPEs are as-
signed 2 basic windows, and the remaining SPE is assigned
one basic window (see second row), satisfying Equation 2.
The figure also shows removal of a basic window due to ex-
piration, that is the last one (drawn in yellow). After the
expiration, the third SPE is the one that loses a basic win-
dow from its partition, and again this is marked with an ∗.
As a result, all the starting basic window pointers after the
marked pointer are shifted one level left to yield the new
partitioning (see third row).

4.2 Input Batching
One of the operations performed by the PPE is to initi-

ate the join processing. This is achieved by notifying each
SPE about their assigned job, using inter-processor commu-
nication. In our join operator, the PPE sends the following
information to each SPE to initiate the join processing: (i)
the address of the first basic window to be processed by the
SPE, (ii) the number of basic windows to be processed, (iii)
the address of the input batch, that is the input tuples to be
processed against the assigned basic windows, and (iv) the
size of the input batch in terms of unit blocks. The direction
of the join (whether we are performing Si ⊲⊳ Wj or Sj ⊲⊳ Wi)
and whether the last basic window assigned to an SPE is to
be time checked are embedded into the second and fourth
messages respectively, using negation. The size of the input
batch is an important factor in maximizing the throughput
of the join as well as minimizing the average tuple delay.
We define the latter as the total time it takes for a tuple to
finish its processing since the time it was fetched from one
of the input streams. Throughput is the average number of
tuples processed per time unit. The correct batch size to use
depends strongly on the stream rates and the performance
of the join operation under current rates.

4.2.1 Batch Size Trade-off

Let us analyze the average tuple delay, which is made
up of two components. The first component is the time
a tuple stays in the input batch, waiting for the batch to
fill up. The second component is the time it takes to pro-
cess a batch divided by the number of tuples in the batch.
When the stream rates are high, the second component dom-
inates, since tuple inter-arrival times will be small (shorter

delay due to first component) and the join windows will con-
tain more tuples (longer delay due to second component).
Larger batch sizes minimize the overhead of tuple process-
ing, since the memory transfer overheads are incurred once
per batch. As a result, larger batches are better for achieving
high throughput and low tuple delay when the stream rates
are high. However, when the stream rates are low, the first
component will dominate the average tuple delay. For in-
stance, when the tuple inter-arrival time is larger than twice
the time it takes to process a unit block of tuples against
the join window, increasing the batch size beyond a single
unit block will increase the average tuple delay. Further-
more, it won’t bring any increase in the output rate (thus
in throughput), since the join is already able to handle all
the incoming tuples with the smallest possible batch size. In
summary, a clear trade-off exists in setting the batch size.

4.2.2 Dynamic Tuple Batching

We take advantage of the batch size trade-off by perform-
ing dynamic, rate-aware tuple batching. Concretely, we keep
small buffers at the inputs of the stream join operator. We
check the buffer associated with a given stream to look for
new tuples in order to fill the corresponding input batch. We
admit as many tuples from the buffer into our input batch,
such that the admitted tuples result in an integral number of
unit blocks in the batch and this number does not exceed a
threshold of l unit blocks. l defines the maximum batch size
and is a parameter to the operator. If the buffer does not
contain enough tuples to fill a single unit block in the batch,
we skip the processing for this stream and go on fetching
the tuples for the next stream. If we have one or more unit
blocks in our batch after fetching tuples, we perform the join
by notifying the SPEs, as described earlier. This results in
rate-aware tuple batching. When the stream rates are low,
there won’t be any build-ups in the buffers and the batch
will operate with a single unit block. When tuples start to
accumulate in the buffers due to high input rates, dynamic
tuple batching will increase the batch size.

4.3 Result Handling
After initiating the join for an input batch, the PPE waits

for results and the completion of the join by all SPEs that
were assigned portions of the join window. One of our aims
is to overlap the result transfers and processing with the join
processing. Result processing involves generating the tuples
of the output stream using the matched tuples. Since the
SPEs only work on the join attributes, they do not report
the matching tuples directly, but indirectly through the use
of match entries in the form of 〈a, i, j〉. Here a is the address
of the basic window that has generated a matching tuple, i is
the index of this tuple in the basic window, and j is the index
of the corresponding matching tuple in the input batch. One
näıve approach for reporting results is to accumulate all the
match entries at the SPE-side and report them back to the
PPE at the end of join processing. However, this way of
result reporting introduces delays due to result processing
and transfer after the join processing is complete on the
SPE-side. Here we describe a technique for hiding this delay
by asynchronously streaming the results back to the PPE in
small batches, as the results are produced. This is especially
effective when the selectivity of the join is high.

Concretely, the PPE maintains N number of result
buffers, one for each SPE. Each SPE also keeps two re-
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sult buffers of the same size in its local store. SPEs put
their generated match entries into one of their local result
buffers. When the buffer fills up, they notify the PPE (us-
ing a mailbox message) that they want to report the match
entries they accumulated so far. In its notification message,
an SPE includes the address of its result buffer that holds
the recent match entries. The PPE uses this address to fetch
these match entries into the corresponding result buffer it
stores for the SPE. However, in order not to block the SPE
on the transfer of the result buffer and the processing of the
match entries within, the PPE dispatches the job of result
transfer and processing to a result thread on the PPE-side.
Before dispatching this job to the result thread, the PPE
makes sure that any previous result buffers from this SPE
are processed (which should not require any wait during nor-
mal mode of operation). The PPE then sends a message to
the SPE in order to enable continuation of the join process-
ing. After receiving this message, the SPE goes on with
join processing by switching the result buffer it uses. The
main PPE thread continuous servicing other SPEs, while
the result thread works on transferring the match entries
and processing results. This way, the result transfer and
processing is performed by the PPE in parallel to the join
processing performed on the SPE-side.

5. CO-PROCESSOR-SIDE OPERATION
In this section, we describe the SPE-side operation, which

includes the core join processing functionality. The key fea-
tures of join processing include minimizing the delay due to
memory transfers, taking advantage of SIMD instructions to
expedite processing, and optimizing the join code for taking
advantage of instruction-level parallelism.

5.1 Join Processing
As we have mentioned earlier in Section 4.1, the join pro-

cessing on the SPE-side involves double buffering to hide
the delays due to memory transfers. Concretely, the SPE
first fetches the input batch and the first basic window that
is assigned to it, using a single DMA-list transfer. The join
processing can start after this transfer completes. The DMA
request for bringing the next basic window is issued, be-
fore the first basic window is processed for finding matches
against the tuples in the input batch. Note that each basic
window includes the address of the basic window following
it in the join window. By the time the processing of the first
basic window completes, the next basic window should have
arrived and the processing can continue after the DMA re-
quest for the third basic window is issued. The process con-
tinues in this manner by keeping two basic window buffers.
While one of the buffers is being searched for matches, the
other buffer is filled in from the main memory in parallel. In
summary, the delay due to memory transfers consists of the
time needed to bring in the initial basic window (together
with the input batch) and the cycles spent for issuing asyn-
chronous DMA requests for the following basic windows.

Even though we pay the penalty of waiting for a memory
transfer only once, most of the times this can be avoided
by caching. Concretely, each SPE can cache the first basic
window they retrieved from their assigned segment of a join
window, together with the address of the basic window. If a
new join processing request over a join window has the same
first basic window address with the last processing request
on the same join window, then there is no need for fetching

the first basic window again and the cached one can be used
to start the processing immediately. Only exception to this
is the case where the first basic window assigned to an SPE
is the first basic window of the join window. In this case,
the number of active tuples in the basic window may have
increased since the last processing was performed on the join
window, whereas the basic window address stayed the same.
This is because, the first basic window of the join window
may be partially full at any time. We solve this problem by
sending the number of active tuples in the first basic window
to be processed by an SPE, as part of the join processing
initiation parameters. This way, an SPE can detect if it is
assigned the first basic window of the join window and if so
can fetch only the new tuples.

The described caching mechanism is very effective for bi-
nary joins, because the first basic window to be processed
by an SPE does not change unless a new basic window is
added or removed from the join window. Unfortunately,
this caching mechanism does not extend to hash-based equi-
joins, as it will be later discussed in Section 7. Moreover,
the local store size may become a limiting factor for using it
in m-way joins. Because of these, we do not use this caching
mechanism in our experiments.

5.2 Taking Advantage of SIMD
We now describe how SIMD instructions can be used

to speed-up the join processing. For illustration purposes,
we will consider a band join condition in the form Xl ≤
ti.A− tj .B ≤ Xu and will assume that the attributes A and
B are both floats. As a result, a 128-bit vector contains 4
join attributes. Furthermore, let us assume that we have A
attributes in our input batch and B attributes in our current
basic window. The join is performed in an NLJ fashion, but
using SIMD instructions. For the current attribute in the
input batch, we first create a 128-bit vector that contains the
exact same attribute value multiple times. In the running
example, we will create a vector of 4 identical floats using
the current A attribute of the input batch. Let us denote
this vector by va. We iterate over the current basic window
that contains the B attributes to find tuples matching with
the current A attribute. This iteration is performed in a vec-
tor at a time manner. Let us denote the current vector we
are processing from the current basic window as vb. Each vb

vector we process includes B attributes belonging to 4 dif-
ferent tuples. We use one SIMD instruction to subtract va

from vb to get 4 differences in one result vector, say vd, and
two SIMD instructions to compare vd against the boundary
conditions Xl and Xu to get 2 vectors of 4 comparison re-
sults each, say vl and vu. We use one SIMD instruction to
logically and vl and vu to yield a vector, say vr, that con-
tains 4 results indicating whether we have a match or no
match for the 4 B attributes we had in the vb vector. In
summary, 5 SIMD instructions are used to compute the re-
sult of four matchings, whereas the same processing requires
16 instructions without the SIMD support. Figure 6 gives
a summary of the SIMD supported join computation. The
match entries described earlier in Section 4.3 are generated
using the result vector vr and the indexes of matching tuples
in the input batch and the basic window.

5.3 Optimizing the Join Code
We can further improve the performance of the join code

at the SPE-side by considering the following two properties

369



initially a = a1, vb = 〈b1, b2, b3, b4〉

SIMD replicate a va = 〈a1, a1, a1, a1〉

SIMD subtract va from vb vd = 〈· · · , a1 − bi, · · · 〉

SIMD compare vd with Xl vl = 〈· · · , a1 − bi ≥ Xl, · · · 〉

SIMD compare Xu with vd vu = 〈· · · , Xu ≥ a1 − bi, · · · 〉

SIMD and vl and vu vr = 〈· · · , Xu ≥ a1 − bi ≥ Xl, · · · 〉

Figure 6: Set of SIMD instructions used to compare
a single attribute against a vector of attributes.

of the hardware:

• The SPEs can issue certain instructions on their two
pipelines in parallel to improve the performance, by re-
ducing the average number of cycles it takes to execute
an instruction, that is the CPI of an application.

• The SPEs do not have branch predictors and thus
loops with small inner bodies are expected to hurt per-
formance due to branch related pipeline stalls. This
should be avoided as much as possible.

In consideration of these properties, we unroll the inner
NLJ loop and perform the join processing for 8 vectors worth
of attributes from the current basic window during one it-
eration. The load and store instructions can be dual-issued
with the floating point instructions used to compute match-
ing join attributes. For instance, loading the second vector
of attributes from the basic window can be done in parallel
with performing the subtraction of the input batch attribute
vector from the first vector of attributes that are already
loaded. Loading/storing 8 vectors from/to the basic win-
dow to/from the registers within the body of the inner loop
allows the optimizing compiler of the Cell processor [11] to
improve the CPI performance of the application by increas-
ing the number of dual-issued instructions. Unrolling also
reduces branching overhead due to the inner NLJ loop. The
loop can be unrolled in larger numbers with diminishing re-
turns. Fixed number of registers (128 for SPEs) limits the
benefit from further unrolling. The match entry compu-
tation part of the join processing requires one branch per
compared tuple, and thus the overall CPI of the join is not
minimal in general. Ideally, the CPI of an application can be
as low as 0.5, at which point all instructions are dual-issued.

6. BASIC WINDOW SIZE
In this section, we provide an analytical model for finding

the optimal basic window size, which minimizes the time it
takes to process join windows at the SPE-side, including the
time spent for memory transfers that are not performed in
parallel. In other words, our aim is to find the best setting
for d, the number of unit blocks within a basic window.

Let us denote the average rate of the stream on which our
join window is maintained as λ. Then the average number
of basic windows we have within the join window is given
by L = (λ · w)/(b · d), recalling that b denotes the number
of tuples in a unit block and w denotes the length of the
join window. The size of a single basic window is given by
H = d · b · s(A), recalling that s(A) is the size of the join
attributes. The time it takes to process a join window on the

SPE-side can be divided into two components: (i) time spent
on memory transfers, and (ii) time spent on join evaluation.
The time needed to transfer a memory block of size X bytes
can be modeled as αm +β(X), where αm is the time needed
to issue the DMA commands and β(X), which is a non-linear
function (see [26] for Cell DMA performance), gives the time
spent for actually moving the data. Then the time spent due
to the first component is given by αm · L + β(H), since we
wait for the transfer of the basic window (of size H) only
once, whereas the time to issue a DMA request is incurred
for every basic window in the join window (L times). The
time needed to evaluate the join for one basic window can
be modeled as a linear function (see Section 8 for validation
of this assumption) αn + βn · X, where αn represents the
fixed per-basic window overhead and βn · X represent the
time spent for matching tuples in a basic window of size X
bytes. Then the time spent due to the second component is
given by L · (αn + βn · H). Note that this is equivalent to
L ·αn +λ ·w · s(A) ·βn and the part dependent on d is given
by L · αn. As a result, smaller basic windows increase the
join evaluation overhead.

The Cell architectures limits the size of DMA transfers
to 16 KBs. On the other extreme, it does not make sense
to make DMA transfer smaller than 128 bytes, which is the
cache line size and the DMA cost is fixed up to the cache
line size. As a result, we have d∗ ∈ 2x, x ∈ [7..14], where
d∗ denotes the optimal number of unit blocks within a basic
window. We have:

d∗ = argmin
d∈2[7..14]

(αm · L + β(H)) + L · (αn + βn · H) (3)

For simplicity, assume that the function β(X) is linear
and has the form βm ·X. Then solving Equation 3 gives the
following closed form:

d∗ =

s

αm + αn

βm

·
λ · w

b2 · s(A)
(4)

Equation 4 shows that optimal basic window size increases
with increasing stream rates and window sizes. We further
study this in Section 8.

7. DISCUSSIONS
In this section, we discuss how our approach can be ex-

tended to hash-based equi-joins and multi-way joins, and
how resource-adaptation can be performed to handle chang-
ing load conditions within a single Cell processor.

7.1 M-way Stream Joins
An m-way stream join can be processed in MJoin [33]

fashion by taking a given input tuple through m-1 number
of join windows, following the join order associated with the
tuple’s source stream. To port this to Cell, we use a slightly
different strategy to balance the load across the SPEs than
the one used for binary joins. In particular, we maintain
N partitions over each join window as usual, but we only
distribute one of the join windows across the N SPEs dur-
ing the processing of an input batch. The join window to
distribute depends on the processed input batch and the
join order for that batch. Concretely, the first join window
in the join order associated with the input batch is parti-
tioned among the SPEs. For instance, if the join order for
stream S1 is S3, S2, S4 for a 4-way join (we are performing
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cle performance of join
w./w.o. optimizations.

Figure 8: CPI (Cycles
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optimizations.

Figure 9: Optimal basic
window size (analytical es-
timate).

S1 ⊲⊳ W3 ⊲⊳ W2 ⊲⊳ W4), then only window W3 is partitioned
among the SPEs when processing an input batch from S1.
When a match is found by an SPE in its assigned segment
of the partitioned join window, it fully processes the next
join window (W2), and in the case of further matches the
following join window (W4). This procedure partitions the
load evenly across the SPEs.

7.2 Hash-based Equi-joins
Windowed stream joins with equality conditions can be

evaluated using a symmetric hash-based join algorithm [23].
Our approach easily extends to such hash-based joins. In-
stead of managing each join window as a linked list of basic
windows, we maintain it as a set of hash buckets, where each
hash bucket is a linked list of basic windows. As a result, the
PPE maintains partitioning of the basic windows among the
N SPEs for each hash bucket, instead of each join window.
Since a new tuple can affect only one hash bucket, there is
no additional computational complexity brought by main-
taining a dynamic partitioning for each hash bucket. For a
hash-based join, an SPE will only process the basic windows
in its assigned segment of the hash bucket corresponding to
the current tuple. One subtle issue is that, since it is highly
likely that the successive tuples will hash into different buck-
ets, the caching of the first basic window assigned to an SPE
is no more an effective optimization.

7.3 Resource Adaptation
So far we have assumed that the number of SPEs used, N ,

is fixed. In practice, we can dynamically change the num-
ber of SPEs used based on the join performance under the
current input stream rates. This is especially useful when
additional operators are being run on the same Cell proces-
sor, which can potentially use the free SPEs. The rate at
which the tuples arrive at the join operator and the rate at
which they are processed can be dynamically compared to
see whether additional SPEs are needed. We can start the
join by using a single SPE. In the case that the tuple pro-
cessing rate is lower than the input rate, the join is forced to
randomly drop some of the tuples and this can be avoided
by bringing in more computing power in the form of ad-
ditional SPEs. Conversely, the join can decide to free an
SPE if the tuple processing rate is sufficiently high relative
to the input stream rate. However, this kind of adaptation
can not be performed too frequently, since there is an over-

head associated with spawning a new SPE thread from the
PPE, assuming there is a free SPE available to use by the
join operator. Furthermore, addition of a new SPE necessi-
tates re-adjustment of the join window partitioning. Unlike
re-adjustment due to addition or removal of basic windows,
this requires time proportional to the number of basic win-
dows, instead of number of SPEs. This may also contribute
to the adaptation overhead, in case the join windows contain
large number of basic windows.

8. EXPERIMENTAL EVALUATION
In this section, we present a set of experimental results to

study the performance of the proposed stream join operator
on the Cell processor. We make use two types of platforms in
our experimental study. One of them is an IBM Cell proces-
sor clocked at 3.2 Ghz. We perform our experiments using
up to 8 SPEs. The other is IBM Full-System Simulator for
the Cell processor [20], which makes it possible to measure
the CPI of SPE-side join code. We divided the set of exper-
iments into two categories, namely the SPE-only study and
the general study. In the SPE-only part, we mainly study
the performance of the core SPE code used to match a given
input batch against the tuples in a basic window. These ex-
periments are performed on the Cell system simulator. In
the general study part, we focus on the performance of the
overall join operator with respect to two metrics: average
output rate and average tuple processing time. These ex-
periments are performed on the Cell processor.

In our experimental studies, we compare the following
three approaches on the Cell processor.

− Non-SIMD represents the stream join without the
use of vectorized operations on the SPE-side.

− SIMD-Noopt represents SIMD-enhanced join, but
without the loop unrolling.

− SIMD represents the stream join as it is described in
this paper, with all enhancements.

We also compare the performance of stream joins on the Cell
processor against a dual 3.2 Ghz Intel Xeon processor (see
Section 8.2.2 for details).

8.1 SPE-only Study
The experiments reported in this section use a band join

on a single float attribute. We focus on the performance
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Figure 10: Scalability w.r.t.
to input stream rates.

Figure 11: Impact of the
number of SPEs used on
join output rate.

Figure 12: Impact of the
input batch size on average
tuple processing time.

of the core join processing performed on a single SPE using
a single basic window of varying size.

8.1.1 Running Time of Join Core

Figure 7 plots the number of cycles (on the left y-axis,
read from solid lines) and the number of cycles/bytes (on
the right y-axis, read from dashed lines with same order of
solid lines) it takes to perform the join on the SPE-side us-
ing an input batch of one unit block and for a basic window
of given size (on the x-axis, in bytes). Besides the three al-
ternative approaches mentioned earlier, Figure 7 also plots
the processor cycles (but not cycles/bytes) spent for bring-
ing a basic window into the local store of an SPE from the
main memory via a DMA transfer1. Note that both the
x-axis and the y-axis are in logarithmic scale. We observe
that the non-SIMD join has around 10 times the process-
ing cycles of the optimized SIMD join and the SIMD-Noopt
join has around 1.8 times the processing cycles of optimized
SIMD join. The latter difference is more visible from the cy-
cles/bytes graphs read from the right y-axis. The flat part on
the DMA graph represents the basic window sizes smaller
than or equal to 128bytes (the cache line size). For such
very small basic window sizes SIMD join has a slight over-
head compared to SIMD-Noopt, since there is not enough
data to perform loop unrolling. However, basic window sizes
smaller than 128 bytes are not of practical importance due
to the high memory transfer overheads they incur during a
complete scan of the join windows.

8.1.2 CPI of Join Core

Figure 8 plots the average CPI (the smaller the better)
for executing the join over a basic window of given size for
the three approaches. The higher bars in Figure 8 (drawn
in red) show the effective CPI, which excludes the noop in-
structions that do not perform actual work. We observe
from Figure 8 that SIMD join has better CPI values com-
pared to Non-SIMD and SIMD-Noopt join, after basic win-
dow size exceed 128 bytes. In particular, Non-SIMD join
has up to 46% higher CPI compared to SIMD join. Even
though the CPI values of SIMD join and SIMD-Noopt join
seem to be close, their effective CPI values show significant
difference. In particular, SIMD-Noopt has 45% higher ef-
fective CPI compared to SIMD join, whereas for Non-SIMD
join this number is 54%. Note that the best CPI the SIMD
join can achieve is observed to be around 1.5, which can be
considered relatively high compared to the ideal value of 0.5.

1Results on DMA are reported based on actual hardware.

This is due to the branchy nature of the join code, which
has to check the result of the join condition evaluation for
each processed tuple to detect results.

8.1.3 Optimal Basic Window Size

Figure 9 plots the optimal basic window size (on z-axis, in
bytes) as a function of the input stream rate and join window
length, based on the analytical results given in Equation 3 of
Section 6. The join processing and DMA constants (αn, βn,
αm, and function β) used to generate this result are calcu-
lated using the results from Figure 7. We make two impor-
tant observations from the figure. First, even though high
stream rates and large join windows necessitate larger basic
windows, there is a wide spectrum of input stream rates and
join window lengths for which the optimal basic window size
is significantly lower than the maximum supported size of
16 KB. Second, the flat shape of the top part of the surface
shown in Figure 9 implies that there are also stream rates
and window lengths for which the 16 KB maximum basic
window size is a limiting factor in terms of performance.

8.2 General (PPE+SPEs) Study
In the experiments presented in this section, we con-

sider a binary join S1 ⊲⊳ S2. The two input streams have
the following schemas: S1(intX, floatY, char(20) Z) and
S2(intA, floatB, doubleC, boolD). We define two band
conditions for this join, one on the corresponding int at-
tributes (X and A) and another on the corresponding float

attributes (Y and B) of the two streams. As a result, the
unit block tuple count is equal to 4, i.e. b = 4. The join at-
tributes for both of the streams are generated randomly from
the interval [0, 10000] and a threshold range of (−10, 10) is
used for both of the band conditions. The default stream
rate used is λ = 500 tuples/sec and the default window
length used is w = 15 minutes. We use d = 256 as the de-
fault unit block count for the basic windows, which results
in 8 KB basic windows. By default, tuple batching is turned
off (l = 1), although we experiment with varying maximum
batch sizes. Unless it is stated otherwise, we use all of the
8 SPEs for join processing.

8.2.1 Scalability w.r.t Input Stream Rate

Figure 10 plots the output rate of the join (on the left
y-axis, using solid lines) as well as the rate at which tuples
are dropped (on the right y-axis, using dashed lines) as a
function of the input stream rate (on the x-axis), for different
approaches. Note that, when the join cannot cope up with
the incoming stream rates some tuples are dropped at the
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join inputs. The lines capturing the drop rates follow the
order of the legend entries, from top to bottom. We observer
that SIMD join supports up to 250% higher join output
rate compared to No-SIMD join and 33% better output rate
compared to SIMD-Noopt join. The SIMD join is able to
operate without droping any tuples from the input stream,
up to input rate of 1000 tuples/sec. This number is around
500 tuples/sec for No-SIMD join and around 750 tuples/sec
for SIMD-Noopt join.

Given input stream rates λ1 and λ2, join window lengths
w1 and w2, and join attributes of size s(A), the amount
of data processed per time unit for a stream join is given
by

P

i=1,2
λ3−i · (λi · wi · s(A)). Note that the term within

parenthesis is the amount of data in a join window, which is
processed for each incoming tuple from the opposite stream.
As a result, the first term is the rate for the opposite stream
of a join window. From Figure 10, we can see that at 1000
tuples/sec with 8 SPEs there is no drop and thus the join is
able to reach a data processing rate of 13.4 GB/sec based
on this formulation.

8.2.2 Impact of Number of SPEs (N)

Figure 11 plots the output rate of the join (on the left
y-axis, using solid lines) as well as the rate at which tuples
are dropped (on the right y-axis, using dashed lines) as a
function of the input stream rate (on the x-axis), for dif-
ferent number of SPEs. All of the cases additionally make
use of the PPE. The PPE not only handles join window
management and result processing, but also generation of
input streams as part of the experimental setup. For com-
parison purposes, performance of the stream join on a dual
3.2 Ghz Intel Xeon (5060 Dempsey) processor is also shown
(the implementation on the Xeon uses SSE acceleration).

We make two important observations from the figure.
First, the stream join shows perfect scalability with the num-
ber of SPEs, since the maximum output rate supported by
N SPEs is around 2 times that of N/2 SPEs. This attests
to minimal overhead of dynamic job partitioning among the
SPEs. Second, we observe around 8.3 times higher out-
put rate compared to the Intel Xeon processor, when all
the SPEs are used. This attests to the high computational
power of the Cell processor, as well as the effectiveness of
our proposed techniques in exploiting this power to maxi-
mize the performance of windowed stream joins.

8.2.3 Impact of Input Batch Size

Figure 12 plots the average tuple processing time (in mi-
croseconds) as a function of the maximum input batch size,
for different lengths of join windows. We make three ob-
servations from the figure. First, larger batch sizes reduce
the average time it takes to process a tuple. This is because
memory transfer overheads are incurred once per batch. Sec-
ond, and more importantly, with increasing batch sizes the
rate of reduction in the average tuple processing time de-
creases. It is observed that increasing the batch size beyond
128 bytes brings insignificant gains. Third, with increasing
window lengths the reduction rate in average tuple process-
ing time slightly decreases. However, this effect is limited.
Going from 1 minute join windows to 15 minutes join win-
dows, the tail of the average tuple processing delay graph
is still almost flat around 128 bytes. This shows that the
maximum number of unit blocks in the input batch, i.e.,
parameter l, need not be large. Since we use dynamic in-
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Figure 13: Impact of basic window size on
average tuple processing time.

put batching, we can achieve both high throughput and low
tuple delay (which includes the waiting time in the input
batch) with a small maximum input batch size.

8.2.4 Impact of Basic Window Size

Figure 13 plots the average tuple processing time (in mi-
croseconds) as a function of the basic window size, for dif-
ferent join window lengths. Note that the x-axis is in log-
arithmic scale. We observe that for shorter join windows
smaller basic windows provide better performance, whereas
for longer join windows larger basic windows achieve better
performance. The minimum average tuple processing times
for different window lengths are connected to show this ef-
fect. This observation is in line with our intuition from
Section 4.1 and the analytical study presented in Section 6.
From Figure 13, we also observe that using a sub-optimal
basic window size can cause up to 10% increase in average
tuple processing time.

9. RELATED WORK
Performing joins on data streams has been actively stud-

ied in recent years [23, 13, 18, 28]. The costly nature of
stream join operations and the stringent response time re-
quirements of data stream management systems has created
further interest in accelerating stream joins operators. Two
lines of research emerged in this direction, namely load shed-
ding and hardware support in the form of co-processors.

In DSMSs, load shedding [32] refers to reducing the load
incurred by the system, while keeping the quality or the
quantity of the output high. In the context of stream joins,
this is usually done by selectively dropping some of the in-
put tuples or selectively processing only a subset of the join
windows [8, 2, 12]. Load shedding is often effective when the
processing capacity of the system is not sufficient handle the
processing demand of the data stream operators.

A different and new approach is to use co-processor hard-
ware to increase the system’s capacity, instead of shed-
ding load. Most of the previous work on this topic deals
with either graphics processors [16] or network proces-
sors [14]. So far the main focus of these works has been
traditional database operators (such as joins [14], spatial
range queries [6], sorting [15], and others [16]), with some
extensions to stream mining in the case of graphics proces-
sors [16]. Graphics processors (GPUs) are characterized by
high bandwidth access and low-latency (by way of sequen-
tial access) to texture memory. However, the programming
model of GPUs is somewhat limited, mainly due to the lack
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of random access writes.
Network co-processors on the other hand, such as Intel

IXP2400 [21], are more similar to the Cell architecture con-
sidered in this paper, in the sense that they enable a more
generic programming model compared to GPUs. Similar
to SPEs, network co-processors also do not have hardware-
managed memory hierarchy. A network processor like In-
tel IXP2400 has 8 micro-engines, where each micro-engine
can execute multiple threads. In [14], multiple-threads per
micro-engine is used to hide the memory transfer latencies,
in the context of relational joins (not stream joins). In
contrast, an SPE can hide the memory transfer latencies
through the use of asynchronous DMAs and avoid context
switching overhead. In general, compared to network pro-
cessors, the Cell architecture is more powerful and capable,
with data and instruction-level parallelism provided by each
SPE. This makes it a good choice for low-latency and high-
throughput data stream operations.

Parallel joins in relational DBMSs has been extensively
studied in the past for shared nothing architectures [29, 9,
24]. In this paper, we study parallel stream joins in DSMSs
and describe concepts and techniques to scale them on the
Cell processor − a good example of emerging multi-core,
heterogeneous architectures.

10. CONCLUSION
In this paper, we developed concepts and techniques to

execute windowed stream joins, on high-performance het-
erogeneous multi-core processors in a scalable manner. We
demonstrated the effectiveness of our approach on the IBM
Cell processor. We showed that column-oriented memory
organization and dynamic window partitioning enable us to
better exploit the resources provided by the co-processors
in a heterogeneous architecture. We developed techniques
such as delay-optimized double buffering, rate-aware dy-
namic batch processing, and SIMD-optimized join code, that
together lead to high throughput and low latency process-
ing. Our experimental results show that, following the de-
sign guidelines and implementation techniques outlined in
this paper, windowed stream join operators can achieve high
scalability by making efficient use of the extensive hardware
parallelism provided by heterogeneous multi-core processors
like Cell and significantly surpass the performance obtained
from conventional high-end processors.
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