Adaptive Aggregation on Chip Multiprocessors

John Cieslewicz*f
Columbia University

johnc@cs.columbia.edu

ABSTRACT

The recent introduction of commodity chip multiprocessors
requires that the design of core database operations be care-
fully examined to take full advantage of on-chip parallelism.
In this paper we examine aggregation in a multi-core en-
vironment, the Sun UltraSPARC T1, a chip multiproces-
sor with eight cores and a shared L2 cache. Aggregation is
an important aspect of query processing that is seemingly
easy to understand and implement. Our research, however,
demonstrates that a chip multiprocessor adds new dimen-

sions to understanding hash-based aggregation performance—

concurrent sharing of aggregation data structures and con-
tentious accesses to frequently used values. We also iden-
tify a trade off between private data structures assigned
to each thread versus shared data structures for aggrega-
tion. Depending on input characteristics, different aggrega-
tion strategies are optimal and choosing the wrong strategy
can result in a performance penalty of over an order of mag-
nitude. We provide a thorough explanation of the factors af-
fecting aggregation performance on chip multiprocessors and
identify three key input characteristics that dictate perfor-
mance: (1) average run length of identical group-by values,
(2) locality of references to the aggregation hash table, and
(3) frequency of repeated accesses to the same hash table
location. We then introduce an adaptive aggregation op-
erator that performs lightweight sampling of the input to
choose the correct aggregation strategy with high accuracy.
Our experiments verify that our adaptive algorithm chooses
the highest performing aggregation strategy on a number of
common input distributions.

1. INTRODUCTION

The number of transistors in microprocessors continues to
increase exponentially. Until recently, microarchitects have
used larger transistor budgets to achieve higher clock rates,

*Supported by a U.S. Department of Homeland Security
Fellowship

TSupported by NSF Grant 11S-0534389

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct corimleadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3@./

339

Kenneth A. Rosst
Columbia University

kar@cs.columbia.edu

increase cache sizes, and exploit instruction level parallelism
(ILP). Higher clock rates have become problematic because
of power consumption and heat dissipation issues as well
as diminishing returns associated with achieving more ILP.
This has caused a paradigm shift in microarchitecture design
away from faster uniprocessors toward chip multiprocessors
(CMP). For at least the next several years, growth in proces-
sor performance will depend on increased thread level par-
allelism (TLP) [13]. Chip multiprocessors differ from sym-
metric multiprocessor (SMP) machines in that the multiple
cores on a chip often share cache resources and off-chip band-
width, whereas SMP machines only share physical memory.
On-chip cache coherency between CMP cores is much faster
than cache coherency between SMP processors.

The available commodity chip multiprocessors can be di-
vided into two groups: a “fat camp” and a “lean camp”[12].
Fat camp multiprocessors have a few wide issue, out-of-order
cores with relatively high clock rates. These cores resemble
uniprocessors and often share a large L2 cache. Lean camp
processors have simpler pipelines and execution units, typ-
ically run at somewhat slower clock rates, and are more
energy-efficient. The focus of these processors is on provid-
ing high overall chip throughput, a feature that is important
to OLAP database operations, rather than low latency for
single-threaded applications. Because the lean camp pro-
cessors are simpler, more cores fit on a processor die, thus
allowing for more on-chip thread contexts. In this paper
we investigate aggregation on a lean camp chip multiproces-
sor, the Sun UltraSPARC T1. The T1 currently offers the
most on-chip thread contexts of any commodity processor,
allowing us to explore on-chip TLP in database operations
by using many threads on real hardware. Although the T1
has some limitations, such as floating point capability, the
parallelism issues experienced with this processor are gener-
alizable to future “lean camp” processor designs. Section 5
contains a discussion of the T1.

Aggregation is a commonly used operator in database sys-
tems, particularly for queries typical of On-Line Analytical
Processing (OLAP). Aggregation is also useful in other con-
texts. In stream processing or network monitoring applica-
tions, running aggregates of stream data may be maintained
so that up-to-date summaries of the data can be generated.

When aggregates are applied to large input streams, the
aggregate operator can be a bottleneck, so it is important
to make aggregate processing as efficient as possible. At
first, aggregation seems simple to implement. Because the
T1 shares the L2 cache among its cores, a shared hash table
data structure is an obvious solution—a shared hash table

can be built and indexed by a hash function of the group-by
columns. Each hash cell contains one value per aggregate
function being computed. Each input record is hashed to
a hash cell, and the corresponding aggregate values are up-
dated. If collisions occur at a bucket, hash cells are added
to an overflow list for that bucket.

The parallelism inherent in multicore systems adds one
layer of complexity. On the T1, there are 32 threads ac-
cessing the hash table concurrently. In order to guarantee
consistency, some form of mutual exclusion needs to be en-
forced to prevent destructive concurrent updates to the same
hash cell or to data structure elements such as pointers in
the hash bucket.

We study two kinds of concurrency control for parallel
access to the hash table. The first employs locking prim-
itives provided by the operating system. The second kind
of concurrency control takes advantage of the presence of
operations that are guaranteed by the system to be atomic.
For example, there is an atomic 64-bit add instruction that
can be used to compute sums and counts. Since addition is
commutative, the order in which the records are processed
does not matter. We show how other aggregates, such as
minimum and maximum, can be implemented using atomic
primitives, even in the absence of direct atomic min or max
instructions. Our performance study suggests that the use
of atomic operations is more efficient on the T1 than locking.

A related performance problem for concurrent access is
contention. When many threads attempt to modify the
same hash cell, a contention bottleneck can occur. (Even
with the atomic implementation above, there is a time-win-
dow during which a competing thread must stall.) As we
shall see experimentally, such contention bottlenecks can de-
crease throughput by an order of magnitude.

An alternative implementation to the shared hash table
would be to give each thread its own separate hash table.
At the end of the input stream, the data from the various
tables would be combined. The advantage is that concur-
rency control on each table is unnecessary, and contention
is not a problem. The disadvantage is that it requires 32
times as much memory as the shared approach. As a result,
memory barriers such as the L2 cache size and the RAM
size are reached with much smaller group-by cardinalities
than with the shared table. Nevertheless, for small group-
by cardinalities, we demonstrate that the performance of the
independent hash tables is superior to the shared table.

Ideally, we would like to get the best of both worlds: the
performance of separate tables for small group-by cardinal-
ities, and the performance of a shared table for large car-
dinalities. However, group-by cardinalities do not tell the
whole story. The reference pattern of group-by values in the
input stream plays a major role in the performance of the
different algorithms.

The first and most obvious characteristic of this reference
stream is locality. If there is temporal locality (a group-
by value is repeated within a short time window) or spatial
locality (a small number of group-by values) then there is
potential for cache reuse. Since cache misses are a large cost
factor for modern processors, locality is typically desirable.
However, temporal locality can also be undesirable, such as
when it causes contention in the shared hash table. This
contention can happen even when there is only moderate
overall locality, for example, when there are a few “heavy
hitters” in the distribution.

340

In order to distinguish between these situations, we pro-
pose to sample small pieces of the input stream during the
aggregate computation. After the sampling phase is com-
plete, regular aggregation is performed using a suitable vari-
ant of hash-based aggregation. The sampling phase tries to
identify three measures of the input stream:

1. The average run length of group-by values.

2. The expected L2 cache miss rate.

3. The frequency of the k most frequently-seen group-by

values, for a suitably chosen k.

The way each of these statistics is used to select a suitable
variant algorithm will be discussed in Section 4.

Our first contribution is a new hybrid aggregation algo-
rithm that uses a common shared hash table, as well as
small local hash tables that together fit in the L2 cache. For
many kinds of input streams this hybrid algorithm obtains
the benefits of the independent tables approach, while using
much less memory.

A second contribution is an adaptive framework in which
the data obtained during the sampling phase is used to
choose an appropriate algorithm for that data. We demon-
strate experimentally that the adaptive algorithm typically
tracks the best performance of the shared, hybrid, and in-
dependent approaches as the group-by cardinality is varied.
In some cases, the adaptive performance is superior to these
basic approaches due to the optimized processing of runs of
common group-by values. Our experimental study covers a
variety of data distributions that occur in practice.

Another contribution is a thorough analysis of how time is
spent when performing hash-based aggregation on the Sun
T1. For large group-by cardinalities that do not fit in the
L2 cache, pure computation consumes roughly 40% of the
cycles. An additional 40% of the cycles are spent waiting for
cache misses. For L2-resident aggregation, between 60% and
77% of the cycles are spent on instructions, and L1 misses
are the most significant source of latency. These results
confirm the results of [12] who identify L2 hit time as a
significant performance issue on multicore processors.

The alternative to an adaptive aggregate operator is to
have a collection of aggregate operators that are available
to the query optimizer, and to allow the optimizer to choose
a suitable algorithm based on each algorithm’s cost function.
The disadvantages of such an approach include: (a) the op-
timizer has to rely on compile-time rather than run-time
statistics about the input distribution; (b) performance de-
pends critically on parameters such as run-length and value
frequency that are hard to model analytically for outputs of
other database operations; (c) the optimizer’s search space
is larger because it has to consider multiple aggregation im-
plementations rather than one; and (d) the optimizer does
not necessarily have access to run-time configuration infor-
mation, such as the number of threads available and the
cache size on the target platform.

2. RELATED WORK

An adaptive query operator is one whose behavior de-
pends on statistics and/or performance measurements ob-
tained during query execution [6]. Adaptive operators have
been proposed in several forms. [14, 18] gather cardinality
estimates during query execution and reoptimize the query if

those statistics exceed certain optimizer-generated bounds.
[2] routes individual records to operators based on running
performance estimates of each operator. Sampling to im-
prove join performance is presented in [3]. Adaptive parallel
aggregation has been invesitgated in the context of shared-
nothing parallelism [22]; our work presents novel adaptive
aggregation techniques for chip multiprocessors.

Modern commercial database systems typically employ
some form of shared-nothing or shared-memory parallelism
[7]. A chip multiprocessor (CMP) is a shared-memory pro-
cessor, but differs from symmetric multiprocessor (SMP)
systems. On an SMP, accesses to common data elements in
RAM must be mediated using a cache coherency protocol.
Such protocols incur significant latencies (hundreds of cy-
cles) and use resources such as bus bandwidth. In contrast,
coherency on a CMP is maintained on-chip, using fast, ded-
icated hardware. As a result, parallel algorithms that might
be impractical on an SMP may be efficient on a CMP.*

There has been much recent work on architecture-conscious
database systems, e.g., [1, 17, 21]. Most of this work has
focused on processors with limited or no TLP. Architecture-
conscious database parallelism has been studied using non-
traditional computing platforms such as graphics processors
[10], network processors [8], and supercomputers [4]. The
intra-operator parallelism presented in this paper may be
supported using parallel input and output buffers [5]. [4]
shows that high latency memory operations can be effec-
tively mitigated by TLP on large shared memory systems
with many concurrent threads per processor.

We use conventional hashing rather than variants of cuckoo
hashing that have been shown to be more efficient on some
processors [25, 20]. This is appropriate for the T1, because
[25, 20] are trying to achieve ILP, while the T1 is focused on
TLP. Further, [20] is optimizing for a machine with long
branch misprediction latencies and hardware support for
SIMD instructions. The T1 does not have noticeable branch
latencies and does not provide efficient SIMD instructions.

3. AGGREGATIONALGORITHMS

Any aggregate operator has three phases. The first phase
is the startup phase, in which all data structures are initial-
ized. For example, in a hash table, the “valid bits” would
be set to zero for every hash bucket. The second phase is
the computation phase in which the input data is consumed
and used to update the data structures. The third phase is
finalization in which data structure elements are combined
to generate a single final result. For example, if each thread
has its own private hash table, then those tables must be
merged during finalization. Finalization is also where alge-
braic aggregates are computed, such as deriving an average
from a sum and a count.

We focus on the computation phase in our experimental
study, since it is usually the most time-consuming compo-
nent of the aggregation process. = We divide the compu-
tation phase into time-slices. A time-slice corresponds to
uninterrupted aggregation for a certain amount of time (or
number of records). Between time-slices, other work may be
scheduled for other operators, with the system rescheduling

L1An SMP system composed of CMP processors would still
have expensive off-chip cache coherency between processors.
The Sun T1 does not support off-chip coherency and there-
fore can only be used in single CMP configurations.

341

the aggregation operator for more work once more input
records are available. Longer time-slices allow the system to
benefit from temporal locality in both the data and instruc-
tion caches. A time slice also needs to be long enough that
overheads such as context-switching and thread start-up are
small, but short enough that the batch of input records to be
processed is likely to fit within a reasonable RAM budget.

We devote all of the chip’s resources to aggregation during
a time-slice. It might be possible to devote some threads to
aggregation and other threads to other operators, but such
an approach is fraught with performance hazards. Since dif-
ferent operators will be accessing different data structures,
there could be cache interference between them. Further, if
one operator is writing to a structure that another operator
reads, some form of synchronization between threads is re-
quired. Different operators running on the same core would
share the same 16KB L1 instruction cache, and could end
up thrashing. While these obstacles might be surmountable
in some cases, we leave their study to future work.

In all experiments, we use multiplicative hashing [15] as
our hash function. Multiplicative hashing is universal, mean-
ing that it is provably robust to adversarial distributions.
64-bit integer multiplication is available on the T1 using
an operation with an 11l-cycle latency [24]. Multiplicative
hashing was extremely simple to implement, and much more
efficient on the T'1 than other hash algorithms we tried.

Sort-Based Aggregation

Sort-based aggregation has higher complexity (O(nlogn))
than hash-based aggregation, whose expected complexity is
linear in the number of records n. Further, materializing
a complete sorted input may require I/O for large input
streams: sorting is a blocking operator. In contrast, hash-
based aggregation can pipeline from another database op-
erator, one batch of records at a time. The only time that
sort-based aggregation is likely to be competitive is when the
input stream is already in sorted order. In that case, our
adaptive algorithm will identify that the stream has runs of
common group-by values and will have performance close to
that of sort-based aggregation (see Section 4.1). As a result,
we limit our investigation to hash-based aggregation.

Independent Hash Tables

The simplest parallel approach to aggregation is to give each
thread its own independent hash table. An advantage of this
approach is that threads do not concurrently access the same
hash cell. As a result, the aggregation operator can avoid
expensive synchronization primitives. The obvious disad-
vantage of this approach is memory consumption. As men-
tioned in Section 1, memory barriers such as the L2 cache
size and the RAM size are reached with much smaller group-
by cardinalities. Further, startup and finalization costs may
also be significant.

Shared Table with Locking

If all threads access a common hash table, the memory re-
quirements are less drastic than for the independent ap-
proach. However, accesses to hash cells must be protected to
prevent a race condition between threads. One way to pro-
tect access is by using a lock, in the form of an OS-supported
mutex. Locking is a general solution that can be applied to
arbitrary aggregate functions. To simplify processing, we
provide locks for each bucket, rather than for each cell.

Locks are not required during the search phase in which
the input record’s key is compared against keys in the bucket.
Once a match is found, the bucket is locked to guarantee the
atomicity of the update to the aggregate value. Locking is
also needed when inserting a new element into a hash bucket.

Shared Table with Atomic Aggregation

Modern micro-architectures provide instructions with atom-
icity guarantees. These instructions are often used to im-
plement synchronization primitives such as semaphores and
mutexes. The Sun T1 compiler provides atomic intrinsics for
integer addition, increment, bitwise OR and AND, as well as
compare-and-swap [23, 19]. Most of these intrinsics are actu-
ally compound operations defined in terms of the hardware-
supported compare-and-swap operation. While more expen-
sive than ordinary instructions, these instructions are much
cheaper than lock operations.

The standard SQL aggregates—Count, Sum, and Average—

can be computed using atomic adds or increments. Be-
cause addition is commutative, the order in which the up-
dates happen is not important. The following code fragment
shows the use of the atomic compare-and-swap instruction
for computing the minimum (maximum is analogous).

uint64_t current = bucket->min;
uint64_t old = current - 1;

while(new_value < current && current != old){
old = current;
current = atomic_cas_64(&(bucket->min),o0ld,new_value);

}

The atomic_cas_64 operation compares the contents of
the destination (first argument) with a value (second argu-
ment) for equality. If the two values are equal, a new value
(third argument) is swapped with the destination. The old
contents of the destination are returned as a result of the
operation regardless of whether the swap took place.

While many commonly used aggregates are definable us-
ing atomic primitives, some aggregate functions (such as
user-defined functions) may not be. In such a case, locking
is the only option for protecting access. The cost of atomic
operations is proportional to the number of aggregates, while
the cost of locking is fixed. As a result, we expect that as
the number of computed aggregates increases, locking will
eventually outperform atomic operations.

Hybrid Aggregation

It is possible to get most of the benefits of the independent
tables approach without the overwhelming memory require-
ments. Each thread has its own small local table, sized so
that the total space occupied by all 32 local tables is less
than the L2 cache size. Input records first go to the local
table, and are accumulated there if the group-by value is
present. Since the local table is private, no expensive pro-
tection mechanisms are necessary and the update happens
very efficiently.

When the group-by value is not present, the current input
record is added to the local table. If the bucket it maps to
is full, the oldest entry is first removed and “spilled” into a
global shared table. The shared table can use either locking
or atomic operations for protection against updates from
other concurrent threads. The structures used by the hybrid
algorithm on the T1 are described in Figure 1.

One would expect the hybrid algorithm to perform well for
data sets having good L2 cache locality, even if the group-by

342

Input Input
Stream Stream
1 32
Thread 1 L Thread 32
i 7 - i Global table
#oz‘l-"l £ #DE?I : consulted when
:| Table : able : data spills from
1 : Local tables together :
1 : fitin the L2 cache B e locelishls
4 A 4
Shared global table

Figure 1: Data structures for hybrid aggregation.

cardinality is high. On the other hand, the hybrid algorithm
likely performs worse than a shared table approach in the
absence of locality, since there is extra work on top of the
update to the shared table. In Section 6, we will verify these
expectations empirically.

4. MODELING PERFORMANCE

In order to tailor the aggregation to the input distribution,
we measure certain statistics derived from the input stream.
These statistics allow us to model the potential impact of
run-optimization (Section 4.1), cache behavior (Section 4.2)
and contention (Section 4.3). The statistics will be gathered
by each thread during short sampling windows within the
input stream. During sampling, aggregation is performed
using the hybrid algorithm and statistics are gathered.

A restriction we place on this statistical analysis is that
it be performed locally. In other words, the decision one
thread makes about locality and contention should be made
without coordination with other threads. This choice has
the following important advantages:

e Coordination costs, which can be relatively high, are
avoided. For example, spawning 32 threads takes about
5 milliseconds on our experimental platform.

A coordinated scheme would require shared data struc-
tures that could themselves have contention points.

Threads can proceed as fast as their input distributions
allow. Threads that see locality will run much faster
than threads that do not see locality. A thread that
finishes one piece of work can then pick up another
piece of work from the input queue, and continue pro-
cessing without waiting for other threads to reach a
coordination point. (Otherwise, one slow thread could
cause many threads to stall.) Such a scheme achieves
high thread utilization and good load balancing with-
out explicit scheduling.

Because contention is a property of a collection of threads,
not just a single thread, our local contention test will only
approximate true contention. We will identify a sufficient
condition for the absence of significant contention based on
the following abstraction: “If all threads had probe streams
like mine, would there be significant contention?” If the an-
swer is “yes,” then that thread is processed using the hybrid
approach to eliminate contention on frequently accessed el-
ements. If the answer is “no” for all threads, then it is

relatively easy to see that contention is avoided. Even if
all threads had the same frequently-accessed elements, the
global frequency of access to those locations in the hash table
would be below the contention threshold.

4.1 Runs

Runs of consecutive tuples with the same group-by key
often occur trivially in input sorted on the group-by key.
Runs may also be created during query processing due to a
join in which there are multiple matches for an outer relation
record containing the group-by key.

When runs are present in the input, the aggregate(s) of
the tuples in the run can be computed directly. This opti-
mization avoids the latency of cache hits in the hash table
and a hash computation for each tuple. When one run ends
and another begins, the old run’s accumulated aggregate is
pushed into the hash table. Using this run-based aggregate
is not universally optimal because the run-checking is pure
overhead if the input contains few or no runs.

During the sampling phase, we compute the average run
length. We determine a run-length threshold using a calibra-
tion experiment. On our experimental platform, run-based
aggregation is best up to a group-by cardinality of 8 for
uniformly distributed input. At this point we expect a run
length of about 1+ 1/8 + (1/8)% + ... = 8/7, which we use
as the threshold for choosing run-based aggregation.

4.2 Modeling Cache Behavior

An algorithm running on a processor can be characterized
at a cache level of the memory hierarchy by its hit rate. The
hit rate is the proportion of accesses to the cache that are
satisfied by the cache. The miss rate is the proportion of
accesses that must be satisfied by levels below the cache in
the memory hierarchy. Since misses are typically much more
costly than hits, even small miss rates can have a noticeable
effect on algorithm performance.

Our aim is to model the cache performance of the hybrid
algorithm described in Section 3. Because we are using all
32 hardware thread contexts available on the T'1, we assume
that the local tables are sized so that each occupies 3—12 of
the total L2 cache. During the sampling phase, a successful
access to an element in the local table will be counted as
a cache hit, while an unsuccessful access will be counted as
a cache miss. We measure hits and misses for a number of
records that match the local table capacity.

In order to make sure that samples are representative of
cache behavior, we “warm up” the hash table before sam-
pling by processing the number of records whose distinct
aggregates would fit in the cache. That way, we avoid count-
ing compulsory misses. The number of warm-up records is
chosen to be about 30% more than the capacity of the hash
table to ensure reasonable coverage of the table by input
records.?

Figure 2 shows the miss rates for various input distribu-
tions (see Section 5.2) using our sampling technique. In this
example, the local table capacity is about 1,500 elements.
The transition point from mostly hits to mostly misses for
most distributions occurs between roughly 1,000 and 2,000
group-by values, where aggregation using private thread ta-
bles no longer shares the L2 effectively.

The sorted input does not begin to transition until much
later because it has extremely good locality. As the group-

2For most experiments the warm up was 2,000 records.

343

1 Uniform —+—
Sorted
Heavy hitter —%—
0.8 Sequential —=—
- Self-similar
Zipf
Moving cluster —e—
i) 0.6
©
o
2]
2
= 04
0.2
/
O nnnnnn /x =

1000 10000 100000 1e+06 1e+07
|Group-by| (Log scale)

Figure 2: Miss rate sampled on test distributions.

100

by cardinality approaches the input size, there are fewer
consecutive repeated values in the sorted input, leading to
more misses within a sampling window.

To determine the locality threshold, note that we always
pay the local processing cost L, and also pay the global
processing cost G with a probability of m where m is the
miss rate. The net cost beats the global processing cost
when m is smaller than 1 — é We empirically determine
that for L2-resident local tables, Z = 0.5 (see Figure 4 for

G
example). Thus we use 0.5 as our locality threshold.

4.3 Modeling Contention

Contention occurs when multiple threads try to access
the same memory location concurrently. For contention to
be a performance issue, there must be elements that oc-
cur frequently in the input streams of many threads. In
many cases, frequently occurring elements will be associated
with locality of reference. Since the outcome we choose is
the same for distributions with contention and distributions
with locality (see Section 4.4), this overlap of the categories
is not problematic.

One can also have contention without locality. For exam-
ple, suppose there are a few heavy hitters in an otherwise
non-local distribution. The heavy hitters may be frequent
enough to cause contention, while not quite frequent enough
to meet the locality threshold for the distribution as a whole.
As we shall see empirically, the performance penalty for con-
tention is very high, reducing performance by an order of
magnitude. Thus we include an explicit test for contention
during the sampling phase, separate from the locality test.

We measure contention by counting the number of ac-
cesses to each hash bucket for a sample of consecutive input
records. A bucket with many accesses is a potential source of
contention. We measure accesses to a bucket rather than to
a specific element because counting accesses at this coarser
granularity incurs less overhead. Because our sampling win-
dow is small and our hashing function is universal, the prob-
ability is low that two different elements will map to the
same bucket and together suggest contention when either
element in isolation would not signify possible contention.

To quantify the contention, consider an input distribution
in which a proportion p of the elements contained a single
common group-by value V', while the remaining proportion
(1 — p) were uniformly distributed over a large number of
elements distinct from V. In this setting, one would expect
contention only on the common group-by value V. We are

0.6

=~ Extra Time per Contentious Tuple

—4— Base Time

0.5

° °
S 2

Microseconds

o
N

0.1

Figure 3: Contention overhead as a function of 1/p.

interested in how the contention overhead varies with p.

We model this scenario as follows: Let g be the time taken
for an input other than V| and w be the time taken by a
single thread to process the contentious input, V, including
all synchronization latencies. We wish to solve for w in terms
of other variables. Let s be the service time for records with
V, i.e., the time observed by the system (all threads) to
process a contentious record while obtaining and holding
exclusive access to needed resources. Unlike w, s does not
include the time spent waiting for those resources. Because
contentious records are serialized, s is independent of the
number of threads. The average time per record (which we
can measure) will be

(1)

Equating the service rate for contentious records with the
rate at which records are processed gives an equilibrium in
which

A=(1-p)g+pw=g+plw-—g).

1

S

__Tr
(1-p)g+pw

where T is the number of threads. Solving for w gives

(2)

®3)

Thus, when the service time is too long to keep up with
the workload, w should be a linearly decreasing function
of 1/p. To further illustrate this model, consider the case
when all tuples are contentious, i.e., p = 1. It follows then
that w = T's, as shown by Equation 3. This represents a
serialization of the threads, with w, the time for one thread
to process a tuple, now equal to the time for all other thread
to process a tuple plus its time to process a tuple, including
the synchronization latencies experienced by all threads.
Figure 3 shows measured values of (A — g)/p as a func-
tion of 1/p for the atomic-update implementation with three
computed aggregates. g was measured at a point where p
was sufficiently small that contention was absent. According
to the formulas above, (A —g)/p = w— g is a measure of the
per-tuple contention overhead. Figure 3 shows that the cost
decreases linearly, as predicted by the model, and that con-
tention disappears when the frequency reaches about 1/8.
The contention overhead for the locking implementation
also has an initial straight-line behavior like Figure 3, but
with a sharp drop when transitioning from slight contention
at p = 1/17 to almost no contention at p = 1/20. We
hypothesize that the lock operations are much more time-

w:Ts—i—g—g
p

344

consuming when locks are not available because operating
system calls must be made to manage thread scheduling.

When we varied the number of aggregate functions, the
contention performance penalty was very similar to Figure 3.
At first glance, it may seem surprising that performing many
atomic updates does not add to the overall contention over-
head, since there are more potentially contentious updates
happening. However, the first of these updates is where the
real contention takes place, causing delays for some of the
threads. For the second and subsequent updates, the flow of
accesses has been limited by the first update to a rate that
the hardware can handle without contention.

A straight line cost function f that does not depend on
the number of aggregate functions is very easy to store in
the database catalog for use in estimating contention for
the atomic approach. We estimate overall contention by
combining the overhead estimates for all values whose fre-
quencies exceed the x-intercept of the cost function f. In
Figure 3, for example, that means that all elements with a
frequency greater than 1/8 will contribute to the cost. If
there were two such elements, with frequencies 1/5 and 1/7,
then the overhead would be f(1/5)/5+ f(1/7)/7. The fre-
quencies are estimated using the bucket counters mentioned
above. We label the stream as having contention if the con-
tention overhead exceeds a certain fraction of the normal
processing cost. For our experiments, we set this threshold
to 100%, so that the contention label means that contention
more than doubles the processing cost.?

For the lock-based approach, we simply set a threshold of
p = 1/20, and label the stream as contentious if any element
has a frequency greater than 1/20.

4.3.1 Duplicate Elimination, Min and Max

For duplicate elimination, we do not need to do any pro-
tected updates to aggregate values. As a result, there is
potential contention only for the initial insertion of an el-
ement into the hash table. Since we expect many accesses
per element, this kind of contention will be negligible. Fur-
ther, since protected updates are relatively expensive, their
absence means a potential performance gain relative to con-
ventional aggregation.

A similar observation can be made about Min and Max
aggregates. If the values being aggregated are randomly
ordered, then we expect to be reasonably close to a Min or
Max after a relatively small number of tuples. For example,
after probing 99 values, the running minimum is expected
to be the first percentile boundary value. The probability
that the 100th input value will need to update the running
minimum is therefore only one percent. Thus, almost all of
the time we can simply read the current minimum (without
a protected access) and reject the new value because it does
not beat the current value. In rare cases, the current value
will beat the old minimum, in which case we do go back and
perform a protected access. An adversarial distribution of
values (such as a monotonically decreasing sequence) would
invalidate this analysis, but such issues are reasonably easy
to handle using some initial randomization.

As a result, our contention model should return “no con-
tention” for duplicate elimination, or for aggregates con-

3This factor of two corresponds roughly with the measured
performance advantage of the atomic method relative to the
partitioned method for inputs without locality (see Figure 4
for example).

sisting only of Min and Max aggregates. Other aggregates
should be handled as previously described.

4.4 Adaptive Aggregation

Based on the sampled statistics, our decision process is
described below. Since atomic aggregation outperforms the
lock-based algorithm for most scenarios we have studied,
we will choose the atomic algorithm for accessing the global
table. (See Section 6.5 for a discussion of when locking beats
the atomic algorithm.) For aggregate functions that cannot
be expressed atomically, one would need to use the lock-
based implementation.

1. For duplicate elimination, or aggregates involving only
Min and Max, use atomic aggregation; otherwise

If there is locality or contention, then use the hybrid
algorithm; otherwise

Use atomic aggregation.

Whatever method is chosen, if the average run-length
exceeds the threshold, apply the run-length optimiza-
tion.

One could sample once per time-slice, or multiple times
per time slice. If the distribution changes often within a
time-slice, more frequent sampling will give a better choice
of algorithm, at the cost of additional sampling work. We
examine the cost/benefit tradeoffs of the sampling frequency
in Section 6.4. One could dynamically adjust the sampling
frequency based on the similarity between successive sam-
ples, but such issues are beyond the scope of this paper.

Several of the thresholds discussed in the previous sec-
tions are dependent on the machine on which the aggre-
gation will be run. These thresholds can be estimated in
advance using a small number of calibration experiments,
such as those used to estimate f in Section 4.3. For stan-
dard aggregate functions, the thresholds are relatively insen-
sitive to query parameters such as the number of aggregates
being computed. Complex user-defined aggregate functions
might change the performance profile sufficiently to change
the preferred thresholds. However, in that case the compu-
tation cost is likely to dominate the overall processing time.

5. EXPERIMENTAL SETUP

All experiments were conducted on a 1GHz Sun Fire T1000
server with an UltraSPARC T1 processor (Table 1). Unless
otherwise stated, we use all 32 available hardware threads.

We measure events, such as cache misses, using perfor-
mance counters provided by the T1 hardware. Unlike some
hardware, branch mispredictions are not problematic for the
T1 due to the interleaved nature of the threads: a branch can
be resolved within three cycles, when a thread is typically
rescheduled. We measured TLB misses but found them to
be insignificant because the operating system automatically
used large pages for the heap. Instruction cache misses were

4The miss latency varies with the workload, and with the
load on the various processors [13]. When operating out of
the L2 cache, our workload stresses the memory unit using
all processors, so we use the 155 cycle estimate in our calcu-
lations. When the hash table(s) fit in the L2 cache, we use
the 90 cycle estimate obtained with Calibrator [16]: reading
the input (which is responsible for most L2 misses) does not
stress the memory unit.

345

Operating System
Cores (Threads/core)
RAM

Shared L2 Cache

Solaris 10 11/06
8 (4)
8GB
3MB, 12-way associative
Hit latency: 21 cycles
Miss latency: 90-155 cycles*
8KB per core
Shared by 4 threads
16KB per core
Shared by 4 threads
132GB/s
25GB/s over 4 DDR2

L1 Data Cache

L1 Instruction Cache

On-chip bandwidth
Off-chip bandwidth

Table 1: Specifications of the Sun UltraSPARC T1.

insignificant due to the inner loop’s small code size. The
counts that did make significant contributions to latency
were the L1 data cache misses and the L2 cache misses.

5.1 Implementation Details

We measure the performance for a single time-slice con-
sisting of 224 &~ 16 million records. This gives a total time of
between 50 and 500 milliseconds per time-slice. The graphed
measurements are averages over four repetitions. The exper-
iments are performed for the first time-slice of an aggrega-
tion, which may have more insertions into the hash table
than later time-slices. The cost of insertions will only be-
come noticeable at group-by cardinalities in the millions, as
the number of records per group becomes small.

Records are 16 bytes, consisting of a 64-bit integer group-
by value, and a 64-bit integer value for aggregation. The
input fits in 256MB of RAM.® All comparison and arith-
metic operations use 64-bit integer instructions. The Ultra-
SPARC T1 design exhibits a number of significant perfor-
mance tradeoffs. Most notable is the single floating point
unit that is shared by all of the cores. This means that
floating point intensive code does not perform well on the
T1. For this reason we focus on aggregations involving in-
tegers. Future generations of the T1 will have one floating
point unit per core [9], and we expect our techniques to be
applicable to floating point aggregates on such a system.

We tried to use the prefetch instructions to improve per-
formance by hiding some of the L2 cache miss latency. We
found that prefetching did not improve performance, so our
measured implementation does not use prefetching. There
are several reasons why a prefetch may be dropped, and
these may have influenced our observations [23, 24]. Note
also that gains from prefetching are relatively small on the
T1. Each thread has just a 25% share of a 1GHz processor,
compared with a conventional single-threaded computation
having 100% of a 3GHz processor. As a result, L2 cache
latency is an order of magnitude less significant when mea-
sured in cycles. Note also that, unlike some “fat camp”
processors, the T1 does not perform hardware prefetching
for regular-stride access patterns.

Since integer division is very expensive on the T1, we
use hash tables whose size is a power of 2, so that bucket
calculations can use masks and shifts rather than modulus
operations. Given an estimate of the group-by cardinality
(something typically provided by the query optimizer), we

5For duplicate elimination experiments there is no value for
aggregation and records are 8 bytes.

size the hash table so that its occupancy is expected to be
at most 50%. Chaining is used to resolve hash collisions.
Hash buckets have size matching the size of an L2 cache
line (64 bytes), except when the number of aggregates being
computed is too large to fit in a cache line. In that case, a
small integer number of cache lines is used per bucket. Hash
buckets are 64-byte aligned.

During initial experimentation using independent hash ta-
bles, we observed poor performance for certain group-by car-
dinalities. This was due to implicit contention for cache re-
sources. The use of the same hash function in each thread,
together with common alignment relative to the L1 cache,
caused conflict misses between threads in the L1 cache. We
resolved this issue by ensuring that the hash table structures
begin at offsets that stripe the hash tables in the L1 cache.

The input is divided into equal sized contiguous chunks
that form the unit of work for a thread. When a thread
finishes one chunk, it starts work on another chunk if there
are any remaining. (Chunk size is discussed in Section 6.4.)
We observed in preliminary experiments that this strategy
performs better than interleaving thread accesses to the in-
put stream because it allows for more TLP. With interleaved
input access, multiple threads may stall on the same cache
miss, reducing parallelism, whereas with independent con-
tiguous input chunks each thread’s input misses will not be
correlated with other threads’ misses.

5.2 Input Distributions

We experiment with aggregation performance on multi-
ple input distributions, where the distribution refers to the
characteristics of the group-by key in the input relation. For
each input distribution, we also vary the number of distinct
group-by keys in the distribution. The input is synthetic
and the distributions were generated in a manner similar
to Gray et al. [11]. The distributions we use are: (1) uni-
form, (2) sorted, (3) heavy hitter, (4) sequential, (5) Zipf,
(6) self-similar, and (7) moving cluster.

In the heavy hitter input, one value accounts for 50% of
the group-by keys, while the other values are chosen uni-
formly from the other group-by keys. The sequential distri-
bution consists of input records in segments, each consisting
of a numerically increasing sequence of group-by values. For
example, with 10000 group-by values, the sequence of group-
by values would be 1,2,...,10000,1,2,...,10000,1,2,....
The self-similar distribution uses an 80-20 proportion, and
the Zipf distribution uses an exponent of 0.5. In the moving-
cluster distribution with ¢ > W, record number i is chosen
uniformly from the range |(c—W)i/r] to |[(c—W)i/r+W],
where c is the target group-by cardinality, r is the number of
records, and W is a window size. For ¢ < W moving-cluster
reverts to a uniform distribution. We use W = 1024.

During input generation we specified a target group-by
cardinality. However, because of the probabilistic nature of
many of the distributions, this target was not met, especially
when the requested group-by cardinality approached the size
of the input. For each graph we plot the actual group-by
cardinality in the input data rather than the target used to
generate the input.

Except for Section 6.4, the input is divided into 32 equal
chunks. Each thread samples once at the start of its chunk,
and then processes the remainder of the chunk. In Sec-
tion 6.4, we vary the chunk size. The sample size is chosen
in the manner described in Section 4.2.

346

350 Mutex —+—
Atomic
300 Indpendent—x—
Hybrid —&—
B Adaptive
S 250
9
8
S 200
(5]
[5%
o
k]
(%2}
c
S
5
e Eseut it
0

4 8 12

Log2(|Group By[)
Figure 4: Throughput for Q1 (uniform data).

16 20 24

350 Mutex —+—
Atomic
300 Indpendent—*—
Hybrid —&—
B Adaptive
S 250
9
8
S5 200
=}
<]
5 1503_&\3 \anﬂnﬂrﬂmr
[} REpm=N
=4
2
= 1
s 00
50

S
i = s WPy

4 8 12

Log2(|Group By[)
Figure 5: Throughput for Q2 (uniform data).

16 20 24

6. EXPERIMENTS

Our experiments compute answers to the following queries:

Q1: Select G, count(*), sum(V), sum(V*V)
From R Group By G

Select G, max(V), min(V), min(V)
From R Group By G

Select distinct G From R

Q2:

Q3:

The repeated min in query Q2 will allow us to more easily
compare the performance of queries Q2 and Q1 since they
have the same number of aggregates and output tuple size.

6.1 Resultson Uniform Data

In this section, we show the performance of the various
algorithms for queries Q1, Q2, and Q3 on uniform data.

Figure 4 presents the throughput for query Q1 as the
group-by cardinality varies. Figure 4 exhibits a performance
change at the same point that our sampling model (Fig-
ure 2) shows the uniform input distribution to transition
from mostly cache-hits to mostly cache-misses. The atomic
and mutex implementations exhibit very low throughput for
small group-by cardinalities due to contention. Though the
independent tables approach performs well when every table
fits in the L2 cache, performance suffers significantly when
the table sizes exceed the L2 cache size (around a group-
by cardinality of 1500). Moreover, the independent tables
approach fails at a cardinality of 2 million because it can-
not allocate enough physical RAM for all 32 separate tables.
Our adaptive method tracks the maximum performing strat-

600

Mutex —+—
Atomic

Indpendent—x—

Hybrid —&—
Adaptive

500

Millions of Records/Second

=

4

8 12
Log2(|Group By[)

Figure 6: Throughput for Q3 (uniform data).

16 20 24

egy for all group-by cardinalities, and exceeds them for small
group-by cardinalities due to the run optimization.

Figure 5 shows the throughput for query Q2 as the group-
by cardinality varies. As expected, because the Min and
Max aggregates rarely require protected access, the atomic
method performs best. Our adaptive algorithm chooses this
algorithm, with run optimization for small group-by cardi-
nalities. In order to show how important avoiding protected
access is, Figure 5 shows the performance of the lock-based
algorithm without this reduced-protection optimization.

Figure 6 shows the throughput for query Q3 as the group-
by cardinality varies. The picture is similar to that for query
Q2, except that the lock-based method and atomic method
are identical: there are no aggregate values to update.

Time Breakdown

We try to pinpoint exactly where the T1 is spending its time
during the aggregate computation of query Q1 on uniform
data (Figure 4). Each cache miss is assigned its full la-
tency, which is an overestimate because some of the latency
may be overlapped with other work/latency. As a result,
we sometimes obtain a total latency greater than 100% of
the cycle budget. We consider our adaptive strategy at five
different group-by cardinalities that represent different con-
figurations:

Card. | Algorithm | Comments

2 | Hybrid 4+ runs | Average run length = 2
32 | Hybrid L1 resident
1024 | Hybrid Always hit local tables in L2
32768 | Atomic Global table L2 resident
262144 | Atomic Well out of cache

Figure 7 shows the time breakdown at these group-by car-
dinalities.

When the aggregation data structures are L1 or L2 cache
resident, processor utilization exceeds 60%, and hits 77% for
L1-resident tables. A majority of cycles perform useful com-
putation. For all of the cache resident aggregations (the four
left columns), the L2 miss latency is due almost entirely to
compulsory misses on the input records. Four input records
fit in one 64-byte L2 cache line, so we expect one L2 cache
miss per four input records, and this is, in fact, what we
measure for the L1 resident aggregation. When the size of
the aggregation hash table exceeds the L2 cache, L2 cache
misses become a significant source of latency and processor
utilization falls to around 40%, which is still relatively good.

347

120%

100%
80% |
40% .

20% -

Percentage of Cycles Spent per Tuple

0%
32 1024 32778

Group-by Cardinality

262144

EInstructions BL1 Miss Latency (Overestimate)
[JL2 Miss Latency (Overestimate) [Other Latency

Figure 7: How cycles are spent.

Instructions and cache misses do not account for all of the
latency. The “other latency” category includes non cache-
related stalls such as long-latency instructions (multiply at
11 cycles and branches at 3 cycles) and waits during atomic
add instructions. These latencies may be less effectively
overlapped with computation from other threads when pro-
cessor utilization falls.

6.2 Adaptability

We now investigate how well our adaptive algorithm per-
forms under a variety of input distributions for query Q1.
Figure 8 shows the performance results. As for the uniform
case, our adaptive method almost always tracks the best al-
gorithm for each group-by range. For sorted data, the run
optimization makes a dramatic contribution to high perfor-
mance. In some ranges, the performance of the independent
tables approach outperforms the adaptive method. How-
ever, in these ranges, the independent tables make excessive
memory demands, 32 times the amount needed by the adap-
tive approach. These demands may not be reasonable given
a fixed RAM budget for the query and/or system. The
distribution in Figure 8(d) validates the contention model.
Though non local after a group-by cardinality of 16000, the
distribution has significant contention and the adaptive al-
gorithm correctly chooses hybrid aggregation. At very high
group-by cardinalities, the contention is reduced and the
adaptive algorithm correctly chooses shared aggregation.

These results show that the adaptive method is doing a
good job of determining when to transition between algo-
rithms for a variety of input distributions. As a result, the
performance of the operator is robust with respect to the
underlying input distribution.

6.3 Thread Scaling

Figure 9 shows how performance scales with the number of
available threads. When interpreting these results, it is im-
portant to remember that T1 processor has eight cores, each
of which has four threads. Therefore, after eight threads are
used, additional threads will compete for L1 and execution
resources. That said, scaling is rather good, particularly for
larger group-by cardinalities.

Figure 9(a) demonstrates an important aspect of con-
tention: adding more threads naively can actually reduce
performance! Based on the term T's in Equation 3 of our

g 350 Mutex —— g 350 Mutex —— g 350 Mutex ——
o 300 Atomic o 300 Atomic o 300 Atomic
Q Q [0
%) Indpendent—— %) Indpendent—«— %) Indpendent——
» 250 Hybrids —=— » 250 Hybrid —=— » 250 Hybrid —=—
2 Adaptive 2 Adaptive 2 Adaptive
§ 200 § 200 § 200
X 150 5 B X 150 X 150 iFET
S) = E‘ﬂ\ﬂ S) [S] R
2 100 \, 2 100 . 2 100
2 BN 2 LAY 2 e
S %0 T - R S 50 SRRy B 50 f@ﬁﬂ,ﬁéf e
0 === 0 = (R
0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
Log2(|Group By|) Log2(|Group By|) Log2(|Group By|)
(a) Sorted (b) Moving cluster (c) Zipf
g 350 Mutex —— g 350 Mutex —— g 350 Mutex ——
o 300 Atomic o 300 Atomic o 300 Atomic
Q [0 [0
%) Indpendent—— %) Indpendent—«— %) Indpendent——
» 250 Hybrid —=— » 250 Hybrid —=— » 250 Hybrid —=—
2 Adaptive 2 Adaptive 2 Adaptive
g 200 g 200 g 200
C 150 EEEEERy & 150 P Rsy x
S o ks a ks .
2 100 2 100 \AW 2 100
5 . 5 BN 5 \
= 50 L Sy = 50 ha Y SR = 50 AN s S S
= SR s = e 5 S 3 R N
[0 ——— — e o et s s S [0 m—— " 0 = et
0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24

Log2(|Group By|)
(d) Self-similar

Log2(|Group By|)
(e) Heavy Hitter

Log2(|Group By|)
(f) Sequential

Figure 8: Throughput for select distributions for query Q1. Note the logarithmic scale on the x-axis.

180 Mutex —+—
S 160 Atomic -
5 Independent—x— =
g 140 Hybrid —=— =
2 '
¢ 120 Adaptive
2
8 100
[5)
T g
o
2 60
K=l
= 40
=

20

0
0 4 8 12 16 20 24 28 32

Number of Threads

(a) Group-by Cardinality of 4

Millions of Records/Second

60 Mutex ——
Atomic
50 Independent—+—
Hybrid —=—
Adaptive _—
40 //*—/’;r

30

20

10

12 16 20
Number of Threads

(b) Group-by Cardinality of 65536

24 28 32

Figure 9: Scaling of the various aggregation methods on uniform input data.

contention model, we expect a decrease in performance for
small group-by cardinalities on the shared table strategies
when more threads are added to the computation. Fig-
ure 9(a) confirms this expectation.

6.4 Sampling

In this section we quantify the overhead of sampling at
various frequencies, and measure how well the adaptive al-
gorithm performs on inputs whose underlying distribution
is changing. We form mixed distributions by taking N
records in turn from each of the seven previous distribu-
tions. At N = 5,000, the distribution is changing rapidly,
on a scale that is comparable to the sampling window. At
N = 50,000 the distribution is changing less frequently. At
N = 2'% ~ 500,000, the distribution changes precisely 32
times within the input.

We consider several resampling frequencies. With a sam-
ple size of 3,500 records (warm-up and sampled tuples as de-

348

scribed in Section 4.2), one sample per thread corresponds
to sampling 0.667% of the data. At this setting, each thread
processes % of the data, sampling once. With a samples per
thread, we are sampling 0.667a% of the data. A thread pro-
cesses 32% of the data before asking for more work. When
a is large, fast threads (say those working on sorted data)
may process more records overall than other threads.

The performance of the adaptive algorithm is shown in
Figure 10 for various values of a. The best performance
appears to be at & = 16. For N = 2'° where each thread
sees a single distribution, the suboptimality of « = 1 is
due to the inability of fast threads to do extra work once
they have finished their current work. For N = 50,000, the
suboptimality of a = 1 is due to running the “wrong” algo-
rithm for the data because the sample is not representative
of the current data. Sampling overhead causes o = 64 to
be suboptimal—42% of the data is sampled at this setting.
Additional sampling does not seem to help for N = 5,000,

- 350 - 350 - 350
5 11— 5 5
o 300} 4 o 300 o 300t
8 \ 16 —— & & |
@ 2504 @ 250% @ 250%
b \ e \ = “
8 200\ S 200t} 8 200
[0} [0} [0}
T 150 T 150 T 150
o o o
2 100 2 100 2 100
S S S
= 50 = 50 = 50
= = =

0 0 0

0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
Log2(|Group By|) Log2(|Group By|) Log2(|Group By|)
(a) N = 5,000 (b) N = 50,000 (c) N =2%

Figure 10: Resampling performance on a mixed input distribution.

since the distributions are changing too frequently.

We now compare the performance on the mixed distri-
butions with the average performance over the individual
single distributions. Since the mixed distributions contain
an equal number of records from each distribution, a com-
parison with the average time taken over all distributions
is fair. Figure 11 shows the results for « = 16, normal-
ized so that the average time of the single distributions is
100%. Figure 11 also shows the performance of the adaptive
method on uniform data, for comparison.

When N = 29 the performance equals or exceeds the
average performance of the single distributions. This im-
provement happens primarily because some threads observe
locality and choose a local computation. This removes those
threads from the pool of possible contenders for shared data,
thus reducing the impact of contention on the global table.
When N = 50,000, the performance is close to the average
performance of the single distributions and always beats the
performance of the uniform distribution. When N = 5,000,
sampling is not very effective, and the performance is no-
ticeably worse than the performance on the individual dis-
tributions. The spike at a group-by of 8,192 is because this
group-by value is large enough to make most access patterns
non-local. However, if the sampling is done over a window
that exhibits locality, the (usually incorrect) decision to use
the hybrid approach will result in many more cache misses.

6.5 Other Results

Startup and Finalization Costs. We measured the
startup and finalization costs for each of the algorithms,
and found that in most cases they were negligible compared
with the cost of one time-slice. The one case where startup
and finalization costs were significant was the independent
tables approach, where 32 copies of the hash table need to
be initialized and merged. At the very highest group-by
cardinalities, the startup and finalization costs were each
comparable to the cost of processing one time-slice.

More Aggregate Functions. We also implemented
queries with more input columns and more computed ag-
gregates. The results were similar to those already pre-
sented, except that the lock-based implementation begins
to outperform the atomic implementation in contention-free
regions once there are at least six aggregate functions being
computed. As previously mentioned, the cost of locking is
fixed, while the cost of atomic operations is proportional to
the number of aggregate functions, so a transition of this
kind was expected. In a complete system, a calibration ex-

349

130%

125%

120% -

115% -

110%

105% -

100% +--

95%

90% -

Normalized Execution Time

85% -

80%
32

1024
Group-by Cardinality
EuUniform B 5000 150000 [524288

8192 262144

Figure 11: Mixed versus Single Distributions. Re-
sampling rate a = 16.

periment would identify this trade-off threshold, and use a
lock-based implementation for queries with more than the
threshold number of aggregate functions.

Sensitivity to the Group-By Estimate. The aggre-
gation performance was reasonably sensitive to the initial
group-by estimate provided by the query optimizer. If this
estimate was too small, the hash table has many overflow
chains that cause a significant slowdown. On the other hand,
estimates that were too large had a minimal impact on per-
formance. As aresult, when the optimizer is uncertain about
the group-by cardinality, it is a good idea to provide an over-
estimate to the aggregation algorithm.

7. DISCUSSION

The speed of aggregation is higher when the input stream
displays temporal locality. For uniform data, Figure 4 shows
that a group-by cardinality of 500 allows for a tuple to be
processed every 8 cycles, while for a cardinality of 100,000
a tuple is processed every 20 cycles. It might be possible to
preprocess the input stream to improve temporal locality by
partitioning the input according to the group-by values. If
the partitioning can be done using fewer than 12 cycles per
record, then preprocessing would be worthwhile.

Locality enhancement of this kind has been studied in the
form of the radix-cluster algorithm of [17]. On various ar-
chitectures, an optimized 2000-way radix-cluster algorithm

took between 60 and 120 cycles per 8-byte record [17]. With
8-way parallelism on the T1 (recall that the threads are in-
terleaved rather than truly parallel), a parallel radix-cluster
algorithm might be expected to take roughly 8-15 cycles per
8-byte record, or slightly more per 16-byte record (as used in
Figure 4). This performance may be less than the 12 cycle
threshold mentioned above, and therefore radix-clustering
could potentially improve performance by a small amount.
Since implementing a parallel version of radix-cluster and
accurately modeling when to use it are both complex prob-
lems, we leave such improvements to future work.

Zukowski et. al. [25] perform a query similar to our du-
plicate elimination query Q3 on a 3GHz Pentium 4 machine,
using a variant of cuckoo hashing. At one million group-by
values, their measured performance is about 27 million four-
byte records per second, while they obtain about 81 million
records per second for a group-by cardinality of 256.

Our numbers for this scenario (measured over eight-byte
records) are 54 million and 250 million records per second,
respectively. Our results are therefore roughly consistent
with our 8:3 total cycle advantage, and our keys are larger.
The fact that we are cycle-comparable to Pentium-class ma-
chines is good, because the T1 is more energy-efficient. Also,
our algorithms naturally scale with the additional paral-
lelism that will be available on future processors.

8. CONCLUSION

In this paper we have examined aggregation on a chip mul-
tiprocessor. In addition to a novel performance model for
locality and contention, we propose and evaluate an adap-
tive aggregation operator that provides good performance
regardless of the input distribution.

Even though our target architecture, the UltraSPARC T'1,
is a single-issue, in-order processor, the overall CPU utiliza-
tion is very high because of hardware support for 32 con-
current threads. Our performance evaluation also confirms
that the aggregation work is well balanced between the var-
ious threads. Keeping all available threads busy with useful
work is key to extracting maximum performance from par-
allel architectures such as CMPs.

Future multi-core architectures may cause contention and
locality issues to change. For instance, additional cores or
hardware threads will increase contention, resulting in con-
tention for shared algorithms at higher group-by cardinali-
ties. Observations from [12] suggest that larger L2 caches
will have longer hit latencies, depressing the performance
of L2 cache resident aggregation. If the amount of cache
per core (or thread) decreases, the locality transition point
between independent and global strategies will shift toward
lower group-by cardinalities. For example, on the Ultra-
SPARC T2, which will have 64 threads, the amount of L2
cache per thread will be 33% lower than on the UltraSPARC
T1, even though the size of the L2 cache will increase [9].

The chip multiprocessor landscape continues to evolve. To
get the most out of these processors, database algorithms
must continue to adapt.

9. REFERENCES

[1] A. Ailamaki et al. Query co-processing on commodity
processors. In VLDB, page 1267, 2006.

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In SIGMOD, pages
261-272, 2000.

350

B3]

(10]

(11]

(15]

(16]

(17]

(18]

(19]

20]

(21]

S. Chen et al. Inspector joins. In VLDB, pages
817-828, 2005.

J. Cieslewicz et al. Realizing parallelism in database
operations: Insights from a massively multithreaded
architecture. In DaMoN, page 4, 2006.

J. Cieslewicz et al. Parallel buffers for chip
multiprocessors. In DaMoN, pages 9-18, 2007.

A. Deshpande et al. Adaptive query processing: Why,
how, when, what next. In SIGMOD, pages 806-807,
2006.

D. J. DeWitt and J. Gray. Parallel database systems:
The future of high performance database systems.
Comm. ACM, 35(6):85-98, 1992.

B. T. Gold et al. Accelerating database operations
using a network processor. In DaMoN, page 1, 2005.
R. Golla. Niagara2: A highly threaded
server-on-a-chip, October 2006.
http://www.opensparc.net/publications/.

N. K. Govindaraju et al. Fast computation of
database operations using graphics processors. In
SIGMOD, pages 215-226, 2004.

J. Gray et al. Quickly generating billion-record
synthetic databases. In SIGMOD, pages 243-252,
1994.

N. Hardavellas et al. Database servers on chip
multiprocessors: Limitations and opportunities. In
CIDR, pages 79-87, 2007.

J. L. Hennessy and D. A. Patterson. Computer
Architecture. Morgan Kaufman, 4th edition, 2007.

N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans.
In SIGMOD, pages 106-117, 1998.

D. E. Knuth. The Art of Computer Programming,
volume 3. Addison-Wesley, 2nd edition, 1998.

S. Manegold. The calibrator (v0.9e), a cache-memory
and TLB calibration tool.

http://homepages.cwi.nl/ manegold/Calibrator/.

S. Manegold et al. Optimizing main-memory join on
modern hardware. IEEE Trans. Knowl. Data Eng.,
14(4):709-730, 2002.

V. Markl et al. Robust query processing through
progressive optimization. In SIGMOD, pages 659-670,
2004.

N. Nagarajayya. Improving application efficiency
through chip multi-threading. Technical report, Sun
Microsystems, 2005.

K. A. Ross. Efficient hash probes on modern
processors. In ICDE, pages 1297-1301, 2007.

K. A. Ross et al. Architecture sensitive database
design: Examples from the Columbia group. IEEE
Data Eng. Bull., 28(2):5-10, 2005.

A. Shatdal and J. F. Naughton. Adaptive parallel
aggregation algorithms. In SIGMOD, pages 104-114,
1995.

Sun Microsystems. OpenSPARC T1 Microarchitecture
Specification, August 2006.

Sun Microsystems. UltraSPARC T1 Supplement to the
UltraSPARC' Architecture 2005, March 2006.

M. Zukowski et al. Architecture-conscious hashing. In
DaMoN, page 6, 2006.

