
Efficient Computation of Reverse Skyline Queries

Evangelos Dellis
Department of Computer Science

University of Marburg
Marburg, Germany

dellis@mathematik.uni-marburg.de

Bernhard Seeger
Department of Computer Science

University of Marburg
Marburg, Germany

seeger@mathematik.uni-marburg.de

ABSTRACT
In this paper, for the first time, we introduce the concept of
Reverse Skyline Queries. At first, we consider for a multidi-
mensional data set P the problem of dynamic skyline queries
according to a query point q. This kind of dynamic sky-
line corresponds to the skyline of a transformed data space
where point q becomes the origin and all points of P are rep-
resented by their distance vector to q. The reverse skyline
query returns the objects whose dynamic skyline contains
the query object q. In order to compute the reverse sky-
line of an arbitrary query point, we first propose a Branch
and Bound algorithm (called BBRS), which is an improved
customization of the original BBS algorithm. Furthermore,
we identify a super set of the reverse skyline that is used to
bound the search space while computing the reverse skyline.
To further reduce the computational cost of determining if
a point belongs to the reverse skyline, we propose an en-
hanced algorithm (called RSSA) that is based on accurate
pre-computed approximations of the skylines. These ap-
proximations are used to identify whether a point belongs
to the reverse skyline or not. Through extensive experi-
ments with both real-world and synthetic datasets, we show
that our algorithms can efficiently support reverse skyline
queries. Our enhanced approach improves reversed skyline
processing by up to an order of magnitude compared to the
algorithm without the usage of pre-computed approxima-
tions.

1. INTRODUCTION
Given a set P of d-dimensional points, the skyline op-

erator returns all points in P that are not dominated by
another point. A point pi dominates another point pj if the
coordinate of pi in each dimension is not greater than that
of pj , and strictly smaller in at least one dimension. The set
of skyline points presents a scale-free choice of data points
worthy for further considerations in many application con-
texts. Informally, the skyline of a multidimensional data
set contains the ”best” tuples according to any preference

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

function that is monotone in each dimension.
Skyline queries [3] are a specific and relevant example of

preference queries [6], [12] and have been recognized as a use-
ful and practical way to make database systems more flexible
in supporting user requirements [5]. The skyline queries can
be either absolute or relative, where ’absolute’ means that
minimization is based on the static attribute values of data
points in P , while ’relative’ means that the minimization of
the coordinate-wise distances between the data points and
a user-given query point is taken into account. Consider for
example a used car database with a table CarDB in which
the car instances are stored as tuples with attributes Make,
Model, Year, Price and Mileage. Obviously, the ideal case
is to give the user the opportunity to specify a car of his
choice and to request the skyline according to this car. The
skyline query becomes a dynamic [16] or relative [9] skyline
query, where the domination is defined with respect to the
users query point. The skyline is then computed with re-
spect to a new transformed data space where the query point
becomes the origin and all points are represented by their
coordinate-wise distances to the query point. The dynamic
skyline contains all those (transformed) points that are not
dominated by any other point with respect to the distances
to the query point.

While there are many papers on skyline query processing
from the user perspective (selecting the products they like),
in this paper, we focus on the companies perspective. To
explain, assume that the preferences of users about cars are
stored as tuples in a relation with the same attributes as in
CarDB. Figure 1 shows the preferences of users as points in
a two-dimensional space, considering only attributes Price
and Mileage. A car dealer, who wants to determine the
effectiveness of a particular car advertisement in the mar-
ket, specifies a hypothetical car as a query point, say q.
The dealer is interested in which customers find this car
interesting, i.e., have this hypothetical car as part of their
two-dimensional dynamic skyline. In Figure 1(a), a user in-
terested in cars of type p2, would have been interested in
the hypothetical car q as q is in the dynamic skyline of p2.
The same holds for preferences p4 and p6, both are in the
reverse skyline of q as the dynamic skylines of p4 and p6 con-
tains q. Based on the result of the reversed skyline, the car
dealer might offer car q to customers with preferences p2, p4

or p6. If the result set is too small, the dealer might change
the price of the hypothetical car to increase the number of
reveresed skyline points.

The query retrieving the set of most preferred cars in our
motivating example belongs to a broader novel type of Re-

291

(a) Dynamic Skyline (b) Reverse Skyline

Figure 1: Example of Reverse Skyline

verse Skyline Queries (RSQ). The goal of a reverse skyline
query is to identify the influence of a query object on a mul-
tidimensional dataset with respect to a vector of distances.
This is in contrast to the known problem of reverse nearest
neighbors [13] where a single distance function is applied to
the multidimensional data. This is however too restrictive
for many applications that deal with multidimensional data
as in our example above. In general, there is no meaningful
and generally applicable distance function that maps a mul-
tidimensional point into a single value. Instead, we examine
the ’influence’ of a data point with respect to dynamically
dominated points. Intuitively, given a point q, the points
which have q as a member of their dynamic skyline reflect
the notion of ’influence’. We call these points the reverse
skyline of q.

Besides preference-based marketing, RSQ is highly rele-
vant for many other applications. As another example, let us
consider business location planning of a new store. Assum-
ing several possible choices for the new store location, the
strategy is to select the location that maximize the number
of customers. A reverse skyline query posed on a customer
database would return those customers who are potentially
interested in the new store.

The reverse skyline computation over multidimensional
datasets has several technical challenges. We approach the
problem of processing RSQ by analytically exploiting the
geometric properties of the problem and solution spaces.
Based on the concept of the global skyline of a point, which
is also introduced in this paper, we are able to retrieve a
small subset of the database as candidates for RSQ. We
prove that all reverse skyline points with respect to q, be-
long to the global skyline. Outlining the major issues that
are addressed in this paper, our main contributions are as
follows:

• We address the problem of Reverse Skyline Queries
(RSQ) and we propose two algorithms for computing
RSQ. The Branch and Bound Reverse Skyline (BBRS)
algorithm and the enhanced (RSSA) algorithm that
employs pre-computed approximations of the skylines.

• We present an optimal algorithm for computing ap-
proximations for 2-dimensional skylines and we pro-
vide a greedy strategy for higher dimensions.

• Through extensive experiments with both real-world
and synthetic datasets, we show that our algorithms
can efficiently support reverse skyline queries.

(a) Planar Representation (b) R-tree Nodes

Figure 2: Illustration of the BBS Algorithm.

The rest of the paper is organized as follows. Section 2
reviews the previous work related to skyline query process-
ing and reverse NN search. Section 3 presents the problem
definition, and Section 4 proposes an efficient Branch and
Bound Reverse Skyline algorithm. In Section 5, the RSSA
algorithm, which is based on pre-computed skyline approx-
imations, is proposed. Section 6 deals with the problem
of computing accurate approximations. Section 7 contains
an extensive experimental evaluation that demonstrates the
efficiency of the proposed algorithms. Finally, Section 8 con-
cludes the paper with directions for future work.

2. RELATED WORK
Although the proposed algorithms can be used with var-

ious indexes, we assume that the dataset is indexed by an
R-tree due to the popularity of this structure. Section 2.1
briefly overviews skyline query processing using the R-tree
and algorithms for dynamic (or relative) skyline computa-
tion. Section 2.2 describes previous work on (monochro-
matic) reverse nearest neighbor search. Note that the prob-
lem of reverse skyline has not been addressed so far.

2.1 Skyline Query Processing
Skyline query processing has received considerable atten-

tion in multidimensional databases and has been studied
extensively in recent years [17], [24] [22], [7]. Since the in-
troduction of the skyline operator [3], several efficient algo-
rithms have been proposed for the ’general’ skyline query
[16]. The best known algorithm that can answer Dynamic
Skyline Queries (DSQ) is the Branch-and-Bound Skyline
(BBS) algorithm [16]. BBS is a progressive optimal algo-
rithm for the conventional skyline query. In the setting of
BBS, a dynamic skyline query specifies a new n-dimensional
space based on the original d-dimensional data space. First,
each point p in the database is mapped to the point p′ =
(f1(p), ..., fn(p)) where each fi is a function of the coordi-
nates of p. Then, the query returns the general (i.e., static)
skyline of the new space (the corresponding points in the
original space).

Figure 2 shows the R-tree for the dataset of Figure 1,
together with the minimum bounding rectangles (MBR) of
the nodes. In order to process the dynamic skyline query
according to the query point q (shown in Figure 2), BBS pro-
cesses the (leaf/intermediate) entries in ascending order of
their mindist (which is computed on-the-fly in the dynamic
space when the entry is considered for the first time) to the
query reference point. At the beginning, the root entries are

292

inserted into a heap H (= {N6, N5}) using their mindist
as the sorting key. Then, the algorithm removes the top N6
of H, accesses its child node, and enheaps all the entries
there (H now becomes {N5, N2, N1}). Similarly, the next
node visited is N5, where H (= {N4, N2, N1, N3}). The
next node visited is leaf N4, where the data points are also
added to H (= {p8, N2, N1, N3, p7}). Since p8 tops H, it is
taken as the first dynamic skyline point, and used for prun-
ing in the subsequent execution. The algorithm proceeds in
the same manner until the heap becomes empty.

In analogy to skyline query processing for only one query
reference point (absolute or relative), some recent studies
considers several query points at the same time. Given a
set of data points P and a set of query points Q, a Spatial
Skyline Query (SSQ) [18] retrieves those points of P which
are not dominated by any other point in P considering their
derived spatial attributes. The main difference with the reg-
ular skyline query is that this spatial domination depends
on the location of the query points Q. The spatial skyline
query can be defined as a special case of the dynamic sky-
line query [16]. The authors in [18] proposed two algorithms
for the spatial skyline query, the R-tree-based B2S2 and the
Voronoi-based V S2. The spatial skyline query is known also
as Multi-Source Skyline Query (MSSQ) [9]. The authors in
[9] extends multi-source skyline queries to road networks
where the network distance between two locations needs to
be computed on-the-fly. Several algorithms for processing
MSSQs are proposed and evaluated in this paper.

Li et. al. in [14] define a novel data cube called Data Cube
for Dominant Relationship Analysis (DADA), which cap-
tures the dominant relationships between products and cus-
tomers, to help firms delineate market opportunities based
on customer preferences and competitive products. The con-
cept of dominance is extended for business analysis from a
microeconomic perspective. More specifically, a new form of
analysis is proposed, called Dominant Relationship Analy-
sis (DRA), which aims to provide insight into the dominant
relationships between products and potential buyers. Three
new classes of skyline queries called Dominant Relationship
Queries (DRQs) are consequently proposed for analysis pur-
poses. These types of queries are: (1) Linear Optimization
Queries (LOQ), (2) Subspace Analysis Queries (SAQ), and
(3) Comparative Dominant Queries (CDQ). Efficient com-
putation for such queries is achieved through a novel data
structure.

2.2 Reverse NN Search
Given a point q, a reverse nearest neighbor (RNN) query

retrieves all the data points that have q as one of their near-
est neighbors. Besides this monochromatic version, there
exist also the bichromatic RNN [20] where, given a set Q of
queries, the goal is to find the objects p ∈ P that are closer
to some q ∈ Q than any other point of Q. The algorithms
for RNN processing can be classified in two categories de-
pending on whether they require preprocessing, or not: the
hypersphere-approaches and the Voronoi-approaches.

The original RNN method [13] pre-computes for each data
point p its nearest neighbor NN(p). Then, it represents p
as a vicinity circle (p, dist(p, NN(p))) centered at p with ra-
dius equal to the Euclidean distance between p and its NN.
The MBRs of all circles are indexed by an R-tree, called the
RNN-tree. Using the RNN-tree, the reverse nearest neigh-
bors of q can be efficiently retrieved by a point location

query, which returns all circles that contain q. Because the
RNN-tree is optimized for RNN, but not NN search, the
authors in [13] propose to use two trees: (1) a traditional
R-tree-like structure for nearest neighbor search (called NN-
tree) and (2) the RNN-tree for reverse nearest neighbor
search. In order to avoid the maintenance of two separate
structures, Yang and Lin [23] combine the two indexes in
the RdNN-tree. Similar to the RNN-tree, a leaf node of the
RdNN-tree contains vicinity circles of data points. On the
other hand, an intermediate node contains the MBR of the
underlying points (not their vicinity circles), together with
the maximum distance from every point in the sub-tree to
its nearest neighbor. These techniques extend a multidi-
mensional index structure to store each object along with
its nearest neighbor distance and, thus, actually store hyper
spheres rather than points.

Stanoi et al. [20] eliminate the need for pre-computing all
NNs by utilizing geometric properties of RNN retrieval. Tao
et. al. [21] propose a method which utilize a conventional
data-partitioning index (e.g. R-tree) on the dataset and do
not require any pre-computation. Their method is designed
for exact processing of RkNN queries with arbitrary values of
k on dynamic multidimensional datasets. Their framework
follows a filter and refinement strategy. Specifically, the fil-
ter step retrieves a set of candidate results that is guaranteed
to include all the actual reverse nearest neighbors; the sub-
sequent refinement step eliminates the false hits. The two
steps are integrated in a seamless way that eliminates multi-
ple accesses to the same index node (i.e., each node is visited
at most once). Basically, this method store the objects in
conventional multidimensional index structures without any
extension and compute a Voronoi cell during query process-
ing.

Achtert et. al. [1] propose the first approach for efficient
RkNN search in arbitrary metric spaces where the value of
k is specified at query time. Their approach uses the ad-
vantages of existing metric index structures as well as con-
servative and progressive distance approximations to filter
out true drops and true hits. In particular, they approxi-
mate the k-nearest neighbor distance for each data object
by upper and lower bounds using two functions (of two pa-
rameters each). Their solution is based on the hypersphere
approach for the RkNN problem with an arbitrary k not ex-
ceeding a given threshold parameter kmax for general metric
objects.

3. PROBLEM DEFINITION
Let D = (D1, . . . , Dd) be a d-dimensional data space and

P ⊆ D be a data set. A point p ∈ P can be represented as
p = (p1, p2, . . . , pd) with pi ∈ Di, i ∈ {1, . . . , d}. A point
p ∈ P is said to dominate another point q ∈ P , denoted as
p ≺ q, if (1) for every i ∈ {1, . . . , d} : pi ≤ qi; and (2) for at
least one j ∈ {1, . . . , d} : pj < qj . The skyline of P is a set of
points SL ⊆ P which are not dominated by any other point.
That is, SL = {p ∈ P | 6 ∃q ∈ P : q ≺ p}. The points in SL
are called skyline points of P . Figure 3 illustrates a database
of eight objects P = {p1, p2, ..., p8} each representing a car
with two attributes Price and Mileage. Figure 3(a) shows
the corresponding points in the 2-dimensional space, where x
and y axes correspond to the attributes Mileage and Price,
respectively. In Figure 3(a), the point p1 dominates the
point p2. Overall, the skyline is the set SL = {p5, p1, p3}.

In the remaining section, we first define the dynamic sky-

293

(a) Points in a 2-d Space (b) Database Table

Figure 3: A Database Example.

line query using the above notation. Then we introduce our
reverse skyline query based on the definition of the dynamic
skyline query.

3.1 Dynamic Skyline Query
The general dynamic skyline specifies a new d′-dimensional

space based on the original d-dimensional data space. First,
each point p ∈ P is mapped to a point p′ = (f1(p),. . .,

fd′
(p)) where each fi is a one-dimensional function. Then,

the dynamic skyline of P with respect to functions f1, . . . , fd′

returns the ordinary skyline of the transformed d′-dimensional
space derived from the data set P ′. For sake of simplicity,
we assume in the following that d′ = d and that for a given
query point q f i(p) = |qi − pi|, i.e., f simply refers to the
absolute distance to the query point q in the i-th dimension.
Note that the following results still hold for a more general
class of distance functions. As an example, let us mention
that the left and right part of the absolute distance function
can receive different weights. This is important in various
applications. For example, a car with 1 liter higher fuel con-
sumption than specified in the user preference might be less
preferable than a car with 1 liter less.

Definition 1. (Dynamic Skyline Query)
Given a query point q and a data set P , a Dynamic Skyline
Query (DSQ) according to q retrieves all data points in P
that are not dynamically dominated. A point p1 ∈ P dy-
namically dominates p2 ∈ P with regard to the query point
q if (1) for all i ∈ {1, . . . , d}: |qi − pi

1| ≤ |qi − pi
2|, and (2) at

least one j ∈ {1, . . . , d}: |qj − pj
1| < |qj − pj

2|.

In the above definition, it is equivalent to compute the tra-
ditional skyline, having transformed all points in the new
data space where point q is the origin and the absolute
distances to q are used as mapping functions. Consider,
for instance, Figure 4(a). A user specifies a preference q
for a car to request the most interesting cars with respect
to the absolute distances to q where attributes Price and
Mileage is taken into account. Each point p = (p1, p2) in
the original 2-dimensional space is transformed to a point
p′ = (|p1−q1|, |p2−q2|) in the 2-dimensional distance space.
This figure illustrates that each database point is mapped
to the new distance space where q becomes the origin. The
dynamic skyline consists of points p7, p6, p2 and p4. Note
that point p8 is not part of the dynamic skyline because it
is dynamically dominated by point p2.

The terms original space and transformed space refer to
the original d-dimensional data space, while the transformed
space refers to the data obtained from the d mappings f1,
f2,. . ., fd.

(a) Dynamic Skyline of q (b) Reverse Skyline of q

Figure 4: Dynamic and Reverse Skyline.

3.2 Reverse Skyline Query
Based on the definition of dynamic skyline we now for-

mally define the reverse skyline of a point.

Definition 2. (Reverse Skyline Query)
Let P be a d-dimensional data set. A Reverse Skyline Query
(RSQ) according to the query point q retrieves all points
p1 ∈ P where q is in the dynamic skyline of p1. Formally, a
point p1 ∈ P is a reverse skyline point of q ∈ P iff 6 ∃p2 ∈ P
such that (a) for all i ∈ {1, . . . , d}: |pi

2 − pi
1| ≤ |qi − pi

1| and
(b) for at least one j ∈ {1, . . . , d}: |pj

2 − pj
1| < |qi − pi

1|.

Let us illustrate the above definition by considering our
running example. Figure 4(b) depicts the RSQ of point q.
As illustrated, point p2 is a reverse skyline point of q since,
according to above definition, point q is part of the dynamic
skyline of point p2.

The naive brute-force search algorithm for finding the re-
verse skyline of P given a query point q requires an exam-
ination of all points in P . For each point, a dynamic sky-
line query is performed (e.g. using BBS) to find the points
which have q as part of their dynamic skyline. These points
constitute the reverse skyline set. A first optimization of
this brute-force approach is to stop processing the dynamic
skyline of a point when q is already identified as a skyline
point. In this case, there is no need to compute the entire
skyline. Unfortunately, this simple optimization only leads
to marginal improvements.

4. BRANCH AND BOUND PROCESSING
OF REVERSE SKYLINE QUERIES

In this section we propose the Branch and Bound Reverse
Skyline (BBRS) algorithm for reverse skyline computation,
which is an improved customization of the original BBS al-
gorithm [16]. Similar to [16], we assume that the data points
are indexed by a data partitioning access method (e.g., R*-
tree [2]). We start by providing some important lemmas
and we continue with a description of our proposed BBRS
algorithm. Finally, we provide an analysis of BBRS.

4.1 Preliminaries
In this section we exploit the geometric properties of re-

verse skyline points with respect to an arbitrary query point.
We assume that the data set P and the query point q are
given. We first define the global skyline in order to reduce
the search space in finding reverse skyline points. For this,
we prove one lemma (Lemma 1) that helps to immediately

294

Figure 5: Global Skyline Example

identify candidate reverse skyline points. In addition, we
provide another lemma (Lemma 2) to eliminate some of
these candidate reverse skyline points not contributing to
the result set.

Definition 3. (Global Skyline)
A point p1 ∈ P globally dominates p2 ∈ P with regard to the
query point q if (1) for all i ∈ {1, . . . , d}: (p1

i −qi)(p
2
i −qi) >

0, (2) for all i ∈ {1, . . . , d}: |p1
i − qi| ≤ |p2

i − qi| and (3) for
at least one j ∈ {1, . . . , d}: |p1

j − qj | < |p2
j − qj |. The global

skyLine of a point q, GSL(q), contains those points which
are not globally dominated by another point according to q.

Figure 5 shows an example of the global skyline of point
q and the corresponding dominance regions. Note that the
global skyline is different from the dynamic skyline as there
is no space transformation. We now present an important
lemma which proves that the global skyline set is sufficient
to answer the reverse skyline of q correctly.

Lemma 1. Let q be the query point and GSL(q) be the set
of global skyline points and RSL(q) the set of reverse skyline
points. Then, RSL(q) ⊆ GSL(q).

Proof. Let x /∈ GSL(q). Then, there is a point y ∈
GSL(q) that dominates x. Since for all i ∈ {1, . . . , d}: |qi −
xi| ≥ |qi − yi| and there exists a j ∈ {1, . . . , d}: |qj − xj | >
|qj − yj |, it follows from Definition 2 that x /∈ RSL(q).

Lemma 1 enables our RSQ algorithms to efficiently re-
trieve a subset of the data points in P which are potential
reverse skyline points of q by simply examining the global
dynamic skyline of q. In Section 4.2, we utilize Lemma 1 to
find the candidate reverse skyline set. The following lemma
help us to eliminate some of these candidate reverse skyline
points not contributing to the result set.

Lemma 2. Given the global skyline GSL(q) of point q.
Assume point s ∈ GSL(q) is a global skyline point. If ∃p ∈ P
such that for all i ∈ {1, . . . , d} |pi− qi| < |si− qi| then point
s is not a reverse skyline point of q.

Proof. Assume that, the window query returns p as an
answer. This means, p dominates q relative to its distance
to s. Therefore, s is not in RSL(q).

To illustrate, consider the rectangle centered at point p2

in Figure 5. The extent of the rectangle is defined by the
coordinate-wise distances to q. If there is no point inside
this rectangle, then p2 is in RSL(q). Otherwise there is a

point in P which dominates q relative to its distance to p2.
Therefore, p2 is not in RSL(q). With the result of Lemma
2, we reduce the time complexity of our algorithms by disre-
garding the dominance tests against the global skyline set.

4.2 Description of BBRS
The Branch and Bound Reverse Skyline (BBRS) algo-

rithm computes the reverse skyline of a point q by expanding
the entries of the heap H according to their distance from q.
The algorithm works as follows: First, the algorithm com-
putes (using Lemma 1) the set GSL(q) of candidate reverse
skyline points which is an upper bound of the actual reverse
skyline set (i.e. no false hits are produced). These candi-
dates are subsequently refined to the actual result. For this
we run a window query for each skyline point s of the global
skyline and if the query returns no answer we are sure (based
on Lemma 2) that point s is a reverse skyline of q.

For the following discussion, we use the set of 2-dimensional
data points organized in the R-tree of Figure 2. BBRS starts
from the root node of the R-tree and inserts all its entries
(N5, N6) in a heap sorted by their distance from q. Then,
the entry with the minimum distance (N5) is expanded.
This expansion removes the entry (N5) from the heap and
inserts its children (N1, N2). The next expanded entry is
again the one with the minimum distance from q (N1), in
which the first global skyline point (p2) is found. This point
(p2) belongs to the reverse skyline, as the window centered
at p2 (Figure 5) is empty and is used for pruning in the
subsequent execution. Point p2 is inserted to the list RSL
of reverse skyline points. Note, that point p1 is globally
dominated by p2 and as soon as p1 is on the top of the
heap it is immediately discarded without the window test.
The next entry to be expanded is N6. BBRS proceeds with
the node N6 and inserts its children (N4, N3). The heap
now becomes (N4, N2, p1, N3). The algorithm proceeds in
the same manner until the heap becomes empty thus all re-
verse skyline points are inserted in the result set RSL. The
pseudo-code for BBRS is shown in Algorithm 1.

Two important issues need to be addressed. Firstly, the
window query can be implemented as an empty range query.
An empty range query, known also as boolean range query
[19], is a special case of range query which will return either
true or false depending on whether there is any point in-
side the given range or not. Obviously, empty range queries
can be handled more efficiently than equivalent standard
range queries and this advantage is exploited in the pro-
posed schemes. For each candidate point, we define a rect-
angular range with the candidate point as the center and the
coordinate-wise distance to the query point as its extent. If
this boolean range query returns false then the point be-
longs to the reverse skyline, otherwise point is not a reverse
skyline. The main strength of an empty range query over
traditional range queries is that even if multiple MBRs in-
tersect a search region we do not need to access all of them.
This is because, for example, if at least one edge of an MBR
is already inside the search region then it follows that there
is at least a point qualifying the query. Secondly, the domi-
nance test can be expensive if the skyline contains numerous
points. In order to speed up this task we insert the skyline
points found in a main-memory R-tree. Notice that an en-
try is tested for dominance twice: before it is inserted in the
heap and before it is expanded. The second test is neces-
sary because an entry in the heap may become dominated by

295

Algorithm 1 BBRS (R-tree R, Query point q)

1: RSL← {} //set of reverse skyline points;
2: insert all entries of the root R in the heap H sorted by

distance from q;
3: while (heap H is not empty) do
4: remove top entry e;
5: if (e is globally dominated by some point in S) then
6: discard e;
7: end if
8: if (e is an intermediate entry) then
9: for (each child ei of e) do

10: if (ei is not globally dominated by some point in
S) then

11: insert ei into heap H;
12: end if
13: end for
14: else
15: insert the pruning area of ei into S;
16: execute the window query based on e and q;
17: if window query is empty then
18: add e to the result set;
19: end if
20: discard e;
21: end if
22: output RSL
23: end while

some skyline point discovered after its insertion (therefore
it does not need to be visited).

4.3 Analysis of BBRS
In this subsection we provide an analysis of BBRS. At

first we present some important lemmas which guarantee
the correctness of our algorithm. After that, we prove the
efficiency of the branch and bound algorithm in terms of
node accesses.

Lemma 3. BBRS visits (leaf and intermediate) entries of
an R-tree in ascending order of their distance to the query
point q.

Proof. The proof is straightforward since the algorithm
always visits entries according to their mindist order pre-
served by the heap.

Lemma 4. Any data point added to RSL during the ex-
ecution of the algorithm is guaranteed to be a final reverse
skyline point.

Proof. This is guaranteed by Lemma 2.

Lemma 5. Every data point will be examined, unless one
of its ancestor nodes has been pruned.

Proof. The proof is obvious since all entries that are not
pruned by an existing global skyline point are inserted into
the heap and examined.

Lemmas 3 and 4 guarantee that, if BBRS is allowed to
execute until its termination, it correctly returns all reverse
skyline points, without reporting any false hits. Now, we
prove that BBRS retrieves as candidates only the nodes that
may contain reverse skyline points, and does not access the
same node twice. Central to the analysis of BBRS is the

concept of the global skyline search region (GSSR) of point
q, that is, the part of the data space that is not globally
dominated by any skyline point.

Lemma 6. If an entry e does not intersect the GSSR,
then there is a skyline point p whose distance from the query
point q is smaller than the mindist of e.

Proof. Since e does not intersect the GSSR, it must be
dominated by at least one skyline point p, meaning that p
dominates e. This implies that the distance of p to the query
point q is smaller than the mindist of e.

Lemma 7. The number of candidates examined by BBRS
is minimum.

Proof. Assume, to the contrary, that the algorithm also
visits an entry e that does not intersect the GSSR. Clearly,
this entry should not be accessed because it cannot con-
tain reverse skyline points. Consider a reverse skyline point
that dominates e (e.g., k). Then the distance of k to the q
is smaller than the mindist of e. According to Lemma 3,
BBRS visits the entries of the R-tree in ascending order of
their mindist to the q. Hence, k must be processed before
e, meaning that e will be pruned by k, which contradicts the
fact that e is visited. In order to complete the proof, we need
to show that an entry is not visited multiple times. This is
straightforward because entries are inserted into the heap
(and expanded) at most once, according to their mindist
from q.

5. REVERSE SKYLINE COMPUTATION
USING SKYLINE APPROXIMATIONS

In this section we propose an enhanced algorithm, called
Reverse Skyline using Skyline Approximations (RSSA) al-
gorithm for supporting reverse skyline queries which is based
on the well known filter-refinement paradigm. The main
idea is to compute the dynamic skyline for each database
object and to keep a fixed-sized approximation of this sky-
line on disk. By using this approximation in the filter step,
we are able to identify points being in the reverse skyline as
well as to filter out points not being in the reverse skyline.
The remaining candidate points are then further examined
in the refinement step. Similar to the method presented
in the previous section, a window query is issued for each
candidate, but the size of the window can be substantially
reduced due to the approximation again. Consequently, this
also leads to substantial cost savings.

5.1 Basic Observations
In this subsection we present an important lemma which

allows our RSSA algorithm to compute the reverse skyline
for every point by eliminating unnecessary dominance tests
(i.e. window queries) for (1) definite reverse skyline points
and (2) points not belonging to the result.

Lemma 8. For a given point p, let DSL(p) be the set of
dynamic skyline points of p. Let q be a query point. If there
is an s from DSL(p) that dynamically dominates the point q
then and only then point p is not a reverse skyline of q.

A straightforward corollary of the above lemma is the
following: if the query point q dominates a point s from
DSL(p), then we conclude that point p is a reverse sky-
line of q. The intuition behind the above lemma is the fact

296

(a) Lemma 8 (b) D̂DR and D̂ADR of p

Figure 6: Illustration of D̂DR(p) and D̂ADR(p).

that whenever we have to test a point p whether it is a re-
verse skyline point of q or not, it is sufficient to examine in
which of the two regions, defined by the skyline of p, the
point q belongs to. The Dynamic Dominance Region of p -
DDR(p) - contains the points dominated by at least one sky-
line point. Whereas, the Dynamic Anti-Dominance Region
- DADR(p) - contains the points dominating some skyline
point. If the query point q falls inside DADR(p), then, based
on the above observation, we conclude that point p is a re-
verse skyline point of q. In contrary, if the query point q is
in DDR(p), we can discard point p because it is not in the
reverse skyline of q. Figure 6(a) illustrates these two cases
where the skyline of p contains seven points. In this figure
point q1 is inside the DADR of p and for that reason point p
is a reverse skyline of q1. This is because point q1 dominates
some point of the dynamic skyline of p (in particular point
s1). To explain, after the insertion of the point q1, the mod-
ified skyline (shown with dashed lines in Figure 6(a)) would
also contain the point q1. Quite in contrary, in the same
figure point q2 is dominated by some point of the dynamic
skyline of p (i.e. falls inside DDR(p) and is dominated by
s1) and for that reason point p is not a reverse skyline of q2.

Based on this observation we can design a first algorithm
for reverse skyline computation of an arbitrary query point
q. In a pre-processing step, we first compute the dynamic
skyline for every point and store these skylines on disk.
When a query q is issued, we compute its global skyline
and check for each point p in the global skyline whether q
is in DADR(p) or in DDR(p). The problem of this algo-
rithm is however its huge storage overhead. For indepen-
dent dimensions the expected number of skyline points is
θ((log n)d−1/(d−1)!) [4]; therefore, the total storage cost of
keeping all dynamic skylines is then super-linear in n, the
number of objects.

In order to overcome this problem, we propose to keep
fixed-size progressive approximations of DADR and DDR for
each database point rather than keeping the exact regions.
The basic idea of our approximation scheme is to select a
sample of k points (k ≤ kmax where kmax denotes the actual
dynamic skyline points) from the dynamic skyline of point
p. Hence, the storage overhead of our approach is linear in
the number of objects (as k is considered to be a constant).
Then, the union of the dominance regions of these sam-

ples (constituting D̂DR(p)) is a progressive approximation
of DDR(p), while the union of the anti-dominance regions

(forming the D̂ADR(p)) is a progressive approximation of

DADR(p). Consider Figure 6(b), where seven skyline points
(black and white) are shown. The three black ones are se-
lected as samples for the approximation, i.e., points s1, s2

and s3. Consequently, the corresponding regions D̂ADR(p)

and D̂DR(p) are the union of the dominance region and the
anti-dominance region of these three black points, respec-
tively. The part of the dynamic space of a point p, after

removing D̂ADR(p) and D̂DR(p), constitutes the approx-
imated skyline. Figure 7 shows an example of the approxi-
mated skyline of p. Methods to compute such approximated
skylines, given a value k of skyline points (k ≤ kmax), are
discussed in Section 6.

5.2 Description of the Algorithm
The enhanced RSSA algorithm for reverse skyline query

processing on our R-tree based framework is explained next.
An R-tree is built on the dataset and a skyline approxima-
tion of every database point is stored on disk. The initializa-
tion step remains the same; a global skyline query GSL(q)
is performed returning the data objects belonging to the
global skyline of the query and in the next step these ob-
jects are efficiently analyzed to answer the query. Note that
the query point q is transformed to the new space (accord-
ing to the candidate) in order to examine in which region
of the approximate skyline it belongs to. The remainder of
this subsection explains these two steps in more detail with
necessary optimizations that can be used.

5.2.1 Filter Step
While calculating the global skyline of a query point we

need to test those candidate reverse skyline points. How-
ever, some of them can be ruled out from further elaboration
by examining their skyline approximations. The principle
of the elimination is based on Lemma 8 and means that a
point from the approximated skyline can dynamically dom-

inate the query point (i.e. query point q is in D̂DR(p)) and
therefore this candidate can never be the reverse skyline of
the query point in the whole data set. In addition, definite
reverse skyline points can immediately be reported by tak-

ing advantage of D̂ADR(p). In summary, within the filter
step we distinguish between the following three cases:

1. A point p can be dropped if q ∈ D̂DR(p).

2. Otherwise, if q ∈ D̂ADR(p) point p can be added to
the result set and is a reverse skyline point.

3. In case that q /∈ D̂ADR(p) ∪ D̂DR(p), point p needs
to be refined.

This means, as soon as we find a candidate reverse skyline
point s, we read the approximate skyline of s from disk and
we check if point q falls inside the dominance region of some
approximate skyline point. If this is the case, we can safely
drop s. We refer to this step as filter step. Our experiments
show that this step can efficiently filter out a significant
number of candidates. After the filter step, we check if the
query point falls inside the anti-dominance region of some
approximated skyline point, which means that point s is a
reverse skyline point of q.

5.2.2 Refinement Step

297

(a) Filter Step (b) Refinement Step

Figure 7: Approximated Skyline of p.

When none of the above cases match, we start the re-
finement step by issuing an empty range check query. The
query region is now the dynamic query region, defined by
the query point q and the origin of the dynamic space of p,

minus D̂ADR(p). Note that the size of the window is much
smaller than the original window size and consequently, the
query can be performed much faster.

Actually, because of the back-transformation to the origi-
nal space where point p is the center of the original window,
the small window is mapped to 2d sub-partitions defined by
point p. However, in order to further optimize the refine-
ment step, we issue a 2-step empty range query. The first
query is the original window as defined above, while the
second corresponds to the 2d projected smaller windows. If
the first range query is empty, we don’t need to access any
nodes. In the latter case, we only test with the smaller win-
dows. Figure 8 illustrates the refinement step in the original
space.

Figure 8: Refinement in the Original Space

We describe the RSSA algorithm using the example shown
in Figure 7, where the points (q1, q2, q) correspond to our
query points. A global skyline query GSL(q) is performed
returning the data objects belonging to the global skyline of
the query and in the next step these objects are efficiently
analyzed to answer the query. Assume now, point p is re-
turned by the global skyline query as a candidate reverse
skyline point. Considering Figure 7(a), because query point

q1 is in D̂ADR(p), the filter step is sufficient to identify p
being in the reverse skyline. On the other hand, query point

Figure 9: The Multi-Step Algorithm

q2 is in D̂DR(p) and therefore our filter step ensures that
point p can be discarded and is not a reverse skyline point.

Now consider 7(b) where point q is neither in D̂DR(p) nor

in D̂ADR(p) and therefore, a refinement step is necessary
by issuing a 2-step empty range query. Note that the lower
left corner of the dynamic window is the origin of the data

space. As we now can take benefit from D̂ADR(p), the
window only corresponds to the region with the grid pat-
tern. Though the refinement step is required in this case,
the much smaller window leads to substantial performance
savings. The sketch depicted in Figure 9 summarizes our
general approach for answering reverse skyline queries.

5.3 Updates
In the following, we present different strategies for up-

dating our pre-processed approximations when points are
inserted into and removed from the database. It should
be noted here that our approach is primarily designed for
query-intensive environments with a modest rate of updates
and that the dynamic maintenance of our approximation
scheme is rather expensive as the computation of skylines is
unavoidable.

Let us first discuss the case of inserting a new point x into
the database. In addition to inserting x into the R-tree, the
approximations of the affected points have to be updated.
Therefore, the global skyline GSL(x) is computed and the

approximations D̂ADR(y) and D̂DR(y) of every point y of
GSL(x) have to be checked for updates. There are the fol-

lowing two cases: First, x is in D̂DR(y). Then, x has no
impact on the skyline and its approximation. Second, x is

not in D̂DR(y), i.e., x may effect the skyline. Then, the dy-
namic skyline of y and its corresponding approximation are
computed. As the latter case might be quite expensive, we
can trade in cost for approximation quality in the following

way. When x is not in D̂ADR(y), we simply do not recom-

pute the approximation. Moreover, when x is in D̂ADR(y),
i.e., x dominates at least one of the sample points, we re-
move all the dominated sample points from the approxima-
tion and insert x into the sample. Again, there is no need
for recomputing the approximation.

Now let us consider the deletion of a point x from the
database. First, x is deleted from the R-tree and then, the
global skyline GSL(x) is computed and the approximations

298

of every points y of GSL(x) have to be checked for update.

There are now two cases. Firstly, x is in D̂DR(y), i.e., x
is not a point of the dynamic skyline. Consequently, there
is also no impact on the approximation. Secondly, x is not

in D̂DR(y). Then, y could be a member of the dynamic
skyline and therefore, the dynamic skyline is computed. If
y is indeed a skyline point, the approximation of the skyline
is recalculated. A much less expensive alternative for the
second case would be to avoid recalculation at all. Instead,
we only test whether x is in the approximation. If so, the
point is deleted from the approximation.

6. APPROXIMATION OF SKYLINES
The basic idea of our approximation scheme is to pre-

compute the dynamic skyline for each object of the database
and to select a fixed number (k) of skyline points. Hence,
the storage overhead of our approach is linear in the num-
ber of objects (as k is considered to be a constant). This
section deals with the problem of computing a good pro-

gressive approximation D̂ADR(p) and D̂DR(p). The goal
is to maximize the probability that the refinement step is
not required. This translates into maximizing the volume of

D̂ADR and D̂DR (the volume is defined as the number of
points in the regions).

Before presenting non-trivial methods for calculating such
approximations, let us first mention two naive approaches.
The first naive approach is simply to compute a random
sample of size k from the skyline points. The second naive
approach is to sort the points first according to a specific
dimension. Then, every (m/k)th point is drawn from the
sorted sequence where m denotes the number of elements.
Both methods require that the entire skyline is available.
In order to reduce the overhead of the pre-processing step,
yet another approach would be to stop computing skylines
after having received the first k. For BBS, this leads to poor
approximations and therefore we did not consider it in the
following discussions.

6.1 Optimal Approximation for two-dimensional
Skylines

An optimal algorithm for the approximation can be pro-
vided for two-dimensional data. The basic idea of the opti-
mal algorithm is similar to the ones for approximating his-
tograms [11] and time series [10]. The problem can be solved
by a dynamic programming algorithm returning the optimal
approximation. The reader is referred to [11] where the idea
is nicely presented for approximating histograms.

Suppose that S = {(x1, y1), ...,(xm, ym)} is a collection of
m skyline points in a two-dimensional space. We sort the
skyline points first in the ascending order of y-coordinate
values; consequently, they are also sorted in the descend-
ing order of x-coordinate values. Furthermore, we treat the
extreme points (x0, y0) = (0, 1) and (xm+1, ym+1) = (1, 0)
separately.

For simplicity, we consider only the Dynamic Dominance
Region (DDR) in the following discussion. For 0 ≤ i ≤ j ≤
m, the error metric we consider in this paper is:

S([i, j]) = (

j∑
k=i

xk ∗ (yk+1 − yk))− xi ∗ (yj+1 − yi)).

This function considers the case in which we choose first

the i-th skyline point and thereafter the j+1-th point. It
is important that the error metric used in our algorithm is
monotone as expressed in the following lemma.

Lemma 9. For any skyline S and any values of i, j, k with
0 ≤ i ≤ k < j ≤ m the following holds:

S([i, j]) ≤ S([i, k]) + S([k, j]).

Similar to [11], we calculate the error function SSE*(i, k)
using dynamic programming. This corresponds to the best
approximation of k points for the first i skyline points, i ≥ k.
The optimal algorithm for approximating skylines is out-
lined in Algorithm 2.

Algorithm 2 OptimalSelect()

1: Input: Skyline S, sample size kmax

2: Output: Sample Sam
3: if (|S| ≤ k) then
4: return S;
5: end if
6: for (int k = 1; i < kmax; k++) do
7: for (int i = 1; i < m; i++) do
8: SSE*(i, k) =

min1<j<i (SSE*(j, k-1) + SSE([j+1,i]));
9: end for

10: Sam = {(xj , yj) — index j was selected in
SSE*(m, kmax)};

11: end for
12: return Sam

The optimal algorithm runs in O(m2 ∗ kmax) iterations
and has a space complexity of O(m ∗ kmax) where m is the
size of the skyline and kmax denotes the sample size.

6.2 A Greedy Algorithm for d-dimensional Sky-
lines

While we can achieve an optimal approximation for 2-
dimensional skylines, the problem of an optimal approxima-
tion for d-dimensional skylines turns out to be more com-
plex for d > 2. As the monotonic property, see Lemma 9, no
longer holds, dynamic programming does not guarantee the
delivery of an optimal approximation. A naive algorithm is
to test all possible subsets of size k which would result in a
runtime of O(mk). The interested reader is referred to [15]
where efficient heuristics are discussed for obtaining approx-
imate solutions. In this paper, we limit our discussion to a
greedy-based algorithm with O(m ∗ kmax) iterations. The
basic idea is to select the point that has not been examined
yet which adds the highest volume increase. The algorithm
is outlined in Algorithm 3.

7. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the efficiency

of the proposed techniques for reverse skyline computation.
We used two real datasets, namely CarDB and NBA1 in our
experiments. Specifically, the used car database CarDB, is
a 6-dimensional dataset with attributes referring to Make,
Model, Year, Price, Mileage and Location. This dataset

1These datasets can be downloaded from autos.yahoo.com
and www.nba.com

299

Algorithm 3 GreedySelect()

1: Input: Skyline S, sample size k
2: Output: Sample Sam
3: LSB = {}; USB = {}; Sam = {};
4: if (|S| ≤ k) then
5: return S;
6: end if
7: for (int i = 0; i < k; i++) do
8: x = argmaxp∈SV OL(ADR(p) ∪ LSB)

+ V OL(DR(p) ∪ USB);
9: insert(Sam, x);

10: remove(S, x);
11: LSB = LSB ∪ADR(p);
12: USB = USB ∪DR(p);
13: end for

contains 50,000 tuples extracted from Yahoo! Autos. The
two numerical attributes Price and Mileage of a car are
considered in our experiments. NBA contains 17,000 13-
dimensional points. Each record provides statistics of a
player in a season. We selected four attributes: number
of games played (GP), total points (PTS), total rebounds
(REB) and total assists (AST). Finding the reverse skyline
in this players’ statistics data set makes excellent sense in
practice. Coaches are often interested in finding the best
substitutes of a player P. Suitable candidates might be in
the reverse skyline of P.

We also used synthetic data sets with two different distri-
butions. Uniformly distributed datasets consist of random
points from the unit square, whereas the clustered dataset
comprises ten randomly centered clusters, each of them with
an equal number of points that follow a Gaussian distribu-
tion with variance 0.05 and mean equal to the associated
centroid. We generated 2, 3 and 4-dimensional synthetic
datasets (uniform and clustered) of varying sizes, ranging
from 20,000 to 80,000 points. The values of the attributes
are in the range [0; 10,000].

All experiments have been performed on a Windows PC
with a 32-bit 3.2 GHz CPU and 2 GB main memory. In
each experiment we performed 100 reverse skyline queries to
the particular data set and reported the overall result. The
queries follow the distribution of the dataset. Each dataset
is indexed by an R-tree, where the page size is set to 4KB
in all cases. All evaluated methods have been implemented
in Java using the XXL libary [8].

7.1 Tuning the Skyline Approximation
The first set of experiments examines the impact of the

number k of approximate skyline points on the performance
of our RSSA algorithm. For every synthetic dataset (Uni-
form and Clustered) we created five R-trees by varying k
from 10 to kmax = 50 skyline points. Then, we used the
R-trees to process a query workload, and measure the aver-
age (per-query) number of page accesses. Figures 10(a) and
10(b) plot the cost as a function of k, for workloads with
d = 3. Note that the result for k = 0 corresponds to the
overhead of the basic BBRS that does not approximate the
skyline (Section 4). As k becomes larger, the query perfor-
mance improves continually. This is expected because we
are using better approximations of the skylines.

In Figure 10(c) we report the results of our approxima-
tion algorithms (optimal and greedy) for selecting the sky-

line points used in the approximation for the 2-dimensional
CAR dataset. We created three R-trees by varying k from
5 to 15 skyline points; in addition we created one R-tree to
measure the overhead of the basic BBRS (k=0). Then, we
used each tree to process a query workload. We observe that
there is only a mild difference between the greedy and the
optimal algorithm. In the following, we set k to 10 and 30
for CarDB and NBA, respectively, which provides the best
overall performance.

7.2 Examination of Reverse Skyline Queries
We now examine the performance of our algorithms for

reverse skyline computation for all datasets. Since there is
no competitive approach for reverse skyline search, we only
considered both of our algorithms. BBRS does not pre-
compute skyline approximations. Obviously, this approach
has less storage overhead than RSSA but needs expensive
refinement steps. The optimized RSSA algorithm stores all
pre-computed k skyline points on disk and therefore requires
at most one page access extra for each examination.

7.2.1 Pruning Capabilities
In Figures 11(a) and 11(b), the results are plotted for

the global vs. the reverse skyline size as a function of di-
mensionality for the synthetic datasets. More precisely, we
used datasets with 50,000 points whose d varies from 2 to
4. Based on the fact that the global skyline is a superset
of the reverse skyline, we observe that our BBRS algorithm
prunes the searched space effectively during the reverse sky-
line computation. To examine the skyline sizes for the real
datasets, we plotted the average number of global and re-
verse skyline points for the CarDB and NBA datasets in
Figure 11(c).

Figure 12(a) shows the pruning capability of RSSA w.r.t.
k on the 3-dimensional Clustered data set. Compared with
the size of the result set, only a small number of candi-

dates have to be examined, i.e., D̂DR yields a sound upper
bound. Furthermore, the number of true hits we get from

our D̂ADR approximation increases with increasing k. For
these objects no expensive refinement step is necessary, thus

our D̂ADR approximation provides a very accurate lower
bound for the skyline. Figure 12(b) shows the average size
of the window queries as a function of k for the same dataset.

7.2.2 Evaluation of the Algorithms
Next, we examine the cost of BBRS and RSSA for answer-

ing each query on various datasets. In Figure 13, we depict
the results of a comparison for our real datasets CarDB and
NBA. Note that the y-axes are plotted in logarithmic scale.

(a) Filter vs. Refinement (b) Window Radius

Figure 12: RSSA performance for different values of
k.

300

(a) Uniform (3-d, 50k) (b) Clustered (3-d, 50k) (c) CAR dataset (2-d, 50k)

Figure 10: Performance for different values of k.

(a) Uniform dataset (N=50,000) (b) Clustered dataset (N=50,000) (c) Real datasets

Figure 11: Reverse vs. Global Skyline Size.

Figure 13: Average cost of our algorithms.

RSSA consistently achieves lower average cost than BBRS
(by one order of magnitude in Figure 13). Similar results
are observed for other data sets.

7.3 Scalability with the Dimensionality and
Database Size

In this section we experientially confirm that our algo-
rithms (BBRS and RSSA) are scalable according to the di-
mensionality and the size of the database. In this experi-
ment, we only used synthetic datasets. For each dataset, we
set (for RSSA) k to the value that optimize the overall per-
formance (through a tuning process similar to Figure 10).
Specifically, we set k to 10 for the dataset containing 20,000
points, and k to 30 for the others.

7.3.1 Effect of Dimensionality
For the purpose of this experiment we used both synthetic

datasets. In order to examine the impact of the dimensional-
ity d on our algorithms, we used datasets with 50,000 points
with d varying from 2 to 4. In Figure 14(a), the cost of each
method (in retrieving reverse skylines) is plotted as a func-
tion of d for uniform distributions. Both algorithms scale
well, although our optimized RSSA algorithm outperforms

(a) Uniform (N=50k) (b) Clustered (N=50k)

Figure 14: Scalability with dimensionality.

BBRS significantly (up to an order of magnitude for d=4).
In Figure 14(b), the x-axis represents the dimensionality
whereas the y-axis measures the page accesses required to
compute the reverse skyline for the clustered dataset. Sim-
ilar observations hold as for uniformly distributed data.

7.3.2 Effect of Database Size
In this experiment we used the 3-dimensional synthetic

datasets and we varied its size between 20,000 and 80,000
points. Figure 15(a) compares the average cost of BBRS
and RSSA for uniformly distributed data. Evidently, the
optimized method (RSSA) scales better with the database
size than BBRS. In particular, RSSA outperforms BBRS
for 80,000 points significantly. Figure 15(b) illustrates the
corresponding results for Clustered data, confirming similar
observations where k = 10 was used for the smallest dataset,
and k = 30 for the others.

8. CONCLUSIONS
In this paper, we introduced the concept of Reverse Sky-

line Queries (RSQ). Given a set of data points P and a
query point q, an RSQ returns the data objects that have

301

(a) Uniform (d=3) (b) Clustered (d=3)

Figure 15: Scalability in the database size.

the query object in the set of their dynamic skyline. It is
the complimentary problem to that of finding the dynamic
skyline of a query object. Such kind of dynamic skyline cor-
responds to the skyline of a transformed data space where
point q becomes the origin and all points are represented by
their distance to q.

In order to compute the reverse skyline of an arbitrary
query point, we first proposed a Branch and Bound algo-
rithm (called BBRS), which is an improved customization
of the original BBS algorithm. Furthermore, we identified
a super set of the reverse skyline that allows us to bound
the space searched during the reverse skyline computation.
To further reduce the computational cost of determining if
a point belongs to the reverse skyline, we proposed an en-
hanced algorithm (called RSSA), that is based on accurate
pre-computed approximations of the skylines. These ap-
proximations are used to identify whether a point belongs
to the reverse skyline or not. For two-dimensional data,
we presented an optimal algorithm, while for higher dimen-
sions a greedy algorithm is proposed. Through extensive ex-
periments with both real-world and synthetic datasets, we
showed that our algorithms can efficiently support reverse
skyline queries.

In our future work, we will study the problem of support-
ing reversed k-skyband queries. Moreover, we are interested
in efficient algorithms for computing accurate skyline ap-
proximations for three- and higher-dimensional data.

9. ACKNOWLEDGMENTS
The authors would like to thank Ilya Vladimirskiy for ini-

tiating discussions that led to this paper.

10. REFERENCES
[1] E. Achtert, C. Böhm, P. Kröger, P. Kunath,

A. Pryakhin, and M. Renz. Efficient Reverse k-Nearest
Neighbor Search in Arbitrary Metric Spaces. In
SIGMOD, pages 515–526, 2006.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: An Efficient and Robust
Access Method for Points and Rectangles. In
SIGMOD, pages 322–331, 1990.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The
Skyline Operator. In ICDE, pages 421–430, 2001.

[4] C. Buchta. On the average number of maxima in a set
of vectors. Information Processing Letters,
33(2):63–65, 1989.

[5] S. Chaudhuri, N. N. Dalvi, and R. Kaushik. Robust
Cardinality and Cost Estimation for Skyline Operator.
In ICDE, page 64, 2006.

[6] J. Chomicki. Preference Formulas in Relational
Queries. ACM TODS, 28(4):427–466, 2003.

[7] E. Dellis, A. Vlachou, I. Vladimirskiy, B. Seeger, and
Y. Theodoridis. Constrained Subspace Skyline
Computation. In CIKM, pages 415–424, 2006.

[8] J. V. den Bercken, B. Blohsfeld, J.-P. Dittrich,
J. Krämer, T. Schäfer, M. Schneider, and B. Seeger.
Xxl - a Library Approach to Supporting Efficient
Implementations of Advanced Database Queries. In
VLDB, pages 39–48, 2001.

[9] K. Deng, X. Zhou, and H. T. Shen. Multi-source
Skyline Query Processing in Road Networks. In ICDE,
2007.

[10] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and
D. Gunopulos. Indexing spatiotemporal archives.
VLDB J., 15(2):143–164, 2006.

[11] H. V. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. C. Sevcik, and T. Suel. Optimal
Histograms with Quality Guarantees. In VLDB, pages
275–286, 1998.

[12] W. Kießling. Foundations of Preferences in Database
Systems. In VLDB, pages 311–322, 2002.

[13] F. Korn and S. Muthukrishnan. Influence Sets Based
on Reverse Nearest Neighbor Queries. In SIGMOD,
pages 201–212, 2000.

[14] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. DADA:
a Data Cube for Dominant Relationship Analysis. In
SIGMOD, pages 659–670, 2006.

[15] S. Muthukrishnan and T. Suel. Approximation
algorithms for array partitioning problems. J.
Algorithms, 54(1):85–104, 2005.

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An
Optimal and Progressive Algorithm for Skyline
Queries. In SIGMOD, pages 467–478, 2003.

[17] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the
Best Views of Skyline: A Semantic Approach Based
on Decisive Subspaces. In VLDB, pages 253–264, 2005.

[18] M. Sharifzadeh and C. Shahabi. The Spatial Skyline
Queries. In VLDB, pages 751–762, 2006.

[19] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High
Dimensional Reverse Nearest Neighbor Queries. In
CIKM, pages 91–98, 2003.

[20] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse
Nearest Neighbor Queries for Dynamic Databases. In
ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, pages 44–53, 2000.

[21] Y. Tao, D. Papadias, and X. Lian. Reverse kNN
Search in Arbitrary Dimensionality. In VLDB, pages
744–755, 2004.

[22] Y. Tao, X. Xiao, and J. Pei. SUBSKY: Efficient
Computation of Skylines in Subspaces. In ICDE,
page 65, 2006.

[23] C. Yang and K.-I. Lin. An Index Structure for
Efficient Reverse Nearest Neighbor Queries. In ICDE,
pages 485–492, 2001.

[24] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and
Q. Zhang. Efficient Computation of the Skyline Cube.
In VLDB, pages 241–252, 2005.

302

