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ABSTRACT
Evaluation of twig queries over probabilistic XML is inves-
tigated. Projection is allowed and, in particular, a query
may be Boolean. It is shown that for a well-known model of
probabilistic XML, the evaluation of twigs with projection
is tractable under data complexity (whereas in other proba-
bilistic data models, projection is intractable). Under query-
and-data complexity, the problem becomes intractable even
without projection (and for rather simple twigs and data).

In earlier work on probabilistic XML, answers are always
complete. However, there is often a need to produce partial
answers because XML data may have missing sub-elements
and, furthermore, complete answers may be deemed irrele-
vant if their probabilities are too low. It is shown how to
define a semantics that provides partial answers that are
maximal with respect to a probability threshold, which is
specified by the user. For this semantics, it is shown how to
efficiently evaluate twigs, even under query-and-data com-
plexity if there is no projection.

1. INTRODUCTION
Probabilistic data has been widely investigated due to

many potential applications. Data models and query lan-
guages were proposed and algorithms for query evaluation
were developed (Section 6 discusses related work). When
querying probabilistic data, we have to compute the answers
as well as the probability of each one. An alternative is to
compute just those answers with a probability above some
given threshold. In this paper, we study the evaluation of
twig (i.e., tree) queries over probabilistic XML. Our data
model for probabilistic XML is similar to that of [21].

Invariably, projection is always an obstacle. When applied
to ordinary data, projection creates duplicates. Therefore, it
can be handled straightforwardly as a post-processing step.
However, projection introduces inherent complications when
applied to probabilistic data. For example, one might think
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that since each duplicate has its own probability, we only
need to take the sum in order to get the accumulated prob-
ability of a particular answer (e.g., tuple) that is represented
by all its duplicates. However, this is incorrect, because the
duplicates of a given answer are not disjoint events. They
are also not independent events, which rules out other im-
mediate solutions (e.g., using the complement probabilities).
In [9] they show that, in probabilistic relational databases,
evaluating projection is #P-hard even if it is only applied
to tree queries with just three relations.

When querying XML using twig queries, projection means
that an answer consists of the match of only a part of the
query nodes. We present an algorithm for evaluating twig
queries with projections (and in particular, Boolean queries)
over probabilistic XML. Our algorithm is efficient under
data complexity. We also show that, under query-and-data
complexity, query evaluation is intractable even under strong
restrictions (and even without projection).

Another important aspect of query evaluation over proba-
bilistic XML is partial answers to queries. The phenomenon
of missing sub-elements is pervasive in XML documents, and
having probabilistic data only compounds it (because sub-
elements with low probabilities might be deemed missing,
for all practical purposes). Yet, existing approaches com-
pute only answers that completely match the given query,
even if these answers have low probabilities. At the same
time, they ignore partial answers, even if they have high
probabilities. This is a drawback when users are interested
in partial (as well as complete) answers.

Our approach is to adapt existing work on maximal an-
swers [4, 6, 17, 18, 19] to probabilistic XML. Intuitively, a
maximal answer binds data items (i.e., values, objects or el-
ements, depending on the data model) to a maximal subset
of the query variables. In other words, one cannot extend a
maximal answer by binding any additional variable.

Two issues arise when dealing with maximal answers. The
first is efficiency. We do not want to generate all the partial
answers and then choose the maximal ones. Thus, data
complexity is not suitable for analyzing the running time of
evaluation algorithms (because, when the size of the query is
fixed, the time needed for generating all the partial answers
and then choosing the maximal ones is greater by at most
a polynomial factor than the time required for computing
just the maximal answers). Therefore, we should analyze
evaluation algorithms under query-and-data complexity.

The second issue is the notion of maximal answers over
probabilistic data. If we use the ordinary definition (which
applies to non-probabilistic data), then we are faced with
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the problem discussed earlier. That is, we will get maximal
answers with low probabilities and miss partial answers that
have higher probabilities. Therefore, when a user specifies
a probabilistic threshold, it should be used not just for fil-
tering out answers (with low probabilities) in the last stage,
but also for deciding whether an answer is maximal or not.
Consequently, we define a maximal answer over probabilis-
tic data as a partial answer that binds a subset V of the
query variables, such that V is maximal with respect to the
following condition. If we extend the answer by any possible
binding to a variable that is not in V , then the probability
of the answer will decrease below the threshold specified by
the user.

We give an efficient algorithm, under query-and-data com-
plexity, for computing maximal answers to projection-free
twig queries over probabilistic XML. We also show how to
use this algorithm to evaluate queries with projection. In ad-
dition, we discuss the issues of completeness constraints [19]
and ranked enumeration.

2. DOCUMENTS, TWIGS AND MATCHES
This section describes our non-probabilistic data model.

2.1 Trees
We consider trees that are directed and unordered. Given

a tree t, the set of nodes and the set edges are denoted by
V(t) and E(t), respectively. Note that E(t) ⊆ V(t) × V(t).
We use root(t) to denote the root of t. If (n1, n2) ∈ E(t),
then n2 is a child of n1, which in turn is the parent of n2.
A leaf of t is a node without any children. The set of all
leaves of t is denoted by leaves(t).

Suppose that there is a path from node n1 to node n2. We
say that n2 is a descendant of n1, whereas n1 is an ancestor
of n2. Note that every node is both a descendant and an
ancestor of itself. If n1 6= n2, then n2 is a proper descendant
of n1, which in turn is a proper ancestor of n2.

If the trees t′ and t satisfy V(t′) ⊆ V(t) and E(t′) ⊆ E(t),
then t′ is a subtree of t, denoted by t′ � t. If, in addition, t′

and t have the same root, then t′ is an r-subtree of t, denoted
by t′ �r t.

A subset V of the nodes of a tree t induces the subgraph
g of t that consists of all the nodes of V and the edges
connecting those nodes. Note that g is a subtree of t if it is
connected.

Consider a node n of a tree t. We use tn
∆ to denote the

subtree of t that is rooted at n and is induced by all the
descendants of n.

Given a nonempty subset N of the nodes of a tree t,
we say that an r-subtree t′ of t is reduced with respect to
(abbr. w.r.t.) N if N ⊆ V(t′) and leaves(t′) ⊆ N (i.e., t′ con-
tains all the nodes of N , but no proper r-subtree of t′ has
this property). Note that a tree t has exactly one r-subtree,

denoted by t|N , that is reduced w.r.t. N .

2.2 Documents and Twigs
In this paper, data are unranked XML documents and

queries are twig patterns (possibly with projection).
Formally, an XML document (or just document for short)

is a tree with values and tags attached to its nodes. We use
d to denote documents, and u, v and w to denote nodes of
documents. The value and tag of a node v are denoted by
val(v) and tag(v), respectively.

A twig pattern (or just twig for short) is a tree with child
edges and descendant edges. Each node n of the twig is
associated with a unary predicate condn(·) over nodes of
documents. As explained later, n can match a node v of a
document only if condn(v) is satisfied. We use n and m to
denote nodes of twigs (in order to make a clear distinction
from nodes of documents).

Figure 2 shows two twigs. Note that child and descendant
edges are depicted by single and double lines, respectively.
All the node predicates in Figure 2 have the simple form
tag(·) = Y, where Y is a tag. The unary predicate condn(v)
is allowed to express any condition about the value and tag
of node v, provided that it can be tested efficiently. For
example, (tag(·) = A∨tag(·) = B)∧(val(·) ≥ 10∨val(·) = 5).

2.3 Three Semantics for Queries
We now define three different semantics for applying twigs,

namely, complete, incomplete and Boolean.
The Complete Semantics. When interpreting a twig

under the complete semantics, we call it a c-twig and denote
it by C. Under this semantics, a match of a twig in a doc-
ument is a mapping from the nodes of the twig to those of
the document, such that all the constraints of the twig are
satisfied. Formally, a complete match (abbr. c-match) of a
c-twig C in a document d is a mapping ϕ : V(C) → V(d)
that satisfies the following.

1. Roots are matched, i.e., ϕ(root(C)) = root(d).

2. For all nodes n ∈ V(C), the predicate condn(ϕ(n)) is
satisfied.

3. For all child edges (np, nc) ∈ E(C), the node ϕ(np) of
d is the parent of ϕ(nc).

4. For all descendant edges (na, nd) ∈ E(C), the node
ϕ(na) of d is a proper ancestor of ϕ(nd).

C(d) denotes the set of all the c-matches of the c-twig C in
the document d, and it is the value of C w.r.t. d.

Let X ⊆ V(C). The query πX C is the projection of C
onto X. The projection of a c-match ϕ onto X is the restric-
tion of ϕ to the nodes of X and is denoted by ϕ[X]. The set
πX C(d), which is the value of πX C w.r.t. d, consists of all
the mappings obtained by projecting the c-matches of C(d)
onto X, that is,

πX C(d) =
{

ϕ[X] | ϕ ∈ C(d)
}

.

Given a mapping φ that is defined on X, we use Img(φ) to
denote its image, that is,

Img(φ) = {φ(n) | n ∈ X} .

Example 2.1. Consider the document d1 that is shown at
the bottom of the middle part of Figure 1. Note that the tags
appear inside the circles that depict the nodes. (For simplic-
ity, the nodes of d1 do not have values.) In this example,
we view T1 of Figure 2 as c-twig and, hence, denote it by C.
Note that C has only child edges and its node predicates are
of the form tag(·) = Y. There are two c-matches of C in d1.
The first is {n0 7→ v0, n1 7→ v5, n2 7→ v6} (i.e., n0 is mapped
to v0, etc.) and the second is {n0 7→ v0, n1 7→ v7, n2 7→ v8}.

Next, consider the query πX C, where X = {n1}. The set
πX C(d1) consists of the mappings {n1 7→ v5} and {n1 7→ v7}.
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The Incomplete Semantics. Under the incomplete se-
mantics, a twig is called an i-twig and is denoted by I. A
match of an i-twig may be defined only over an r-subtree of
the i-twig, rather than over the whole i-twig. Formally, an
incomplete match (abbr. i-match) of an i-twig I in a docu-
ment d is a mapping ϕ : V → V(d), such that V ⊆ V(I), the
nodes of V induce an r-subtree C of I and ϕ is a c-match
of C in d. Dom(ϕ) denotes the domain of ϕ, i.e., the set of
nodes V(C). I(d) denotes the set of all i-matches of I in d.

Note that although I is interpreted under the incomplete
semantics, the notion of a c-match of I is well defined. In
particular, every c-match of I is also an i-match.

Consider an i-twig I and a document d. Given two i-
matches ϕ1, ϕ2 ∈ I(d), we say that ϕ2 subsumes ϕ1, denoted
by ϕ1 v ϕ2, if Dom(ϕ1) ⊆ Dom(ϕ2) and ϕ1(n) = ϕ2(n) for
all nodes n ∈ Dom(ϕ1). If, in addition, ϕ1 6= ϕ2, then ϕ2

properly subsumes ϕ1, denoted by ϕ1 < ϕ2. Finally, given
a subset J of I(d), the set of maximal i-matches of J is
denoted by max(J) and is defined as the set of all i-matches
ϕ ∈ J , such that no i-match of J properly subsumes ϕ.

Example 2.2. Consider again the document d1 of Fig-
ure 1 and the twig T1 of Figure 2 that we now interpret as
an i-twig and denote by I. Clearly, both {n0 7→ v0, n1 7→ v5}
and {n0 7→ v0, n1 7→ v5, n2 7→ v6} are i-matches of I in d1.
Moreover, the latter subsumes the former. In fact, in this
particular example, the only maximal i-matches of I are c-
matches. However, if we change the node predicate of n2

to tag(·) = C, then the first of the above two i-matches is
maximal whereas the second is not an i-match at all.

The Boolean Semantics. When a twig is interpreted as
a Boolean query, it is called a b-twig and is denoted by B (or
R). Formally, given a document d, we define B(d) = true

if there is a c-match of B in d; otherwise, B(d) = false.

3. PROBABILISTIC MODEL

3.1 Probabilistic XML
Probabilistic XML is a probability distribution over a space

of documents (of the type defined in Section 2.2). When we
want to emphasize that a document belongs to this space,
we call it a random document. As in [21], we describe
this space by means of a probabilistic document (abbr. p-
document), which is a tree P that has two types of nodes.
Ordinary nodes are regular XML nodes (with a tag and a
value) and they may appear in random documents. Distri-
butional nodes are only used for defining the probabilistic
process of generating random documents (but they do not
occur in those documents). A distributional node specifies
a distribution over the subsets of its children.

Intuitively, a random document of a p-document P is gen-
erated by a two-step procedure. In the first step, we generate
a random r-subtree s of P by applying the following top-
down process, starting at the root. If we are at an ordinary
node, we simply proceed to its children. When reaching a
distributional node, we randomly choose a (possibly empty)
subset of its children and proceed to each chosen child. We
delete each unchosen child and its descendants. The result
of the top-down process is a random r-subtree s of P (we call
s a sample of P). Note that s is not a document, because it
contains distributional nodes of P. So, in the second step,
we remove all the distributional nodes. If we remove the

parent of an ordinary node u, then the new parent of u is
its lowest ancestor among all the ordinary nodes. Next, we
formally define p-documents and their random documents.

A p-document P is a tree and its set of nodes V(P ) is
divided into two disjoint subsets, Vord(P) and Vdst(P), that
contain the ordinary and distributional nodes, respectively.
A distributional node is neither the root nor a leaf of P.

As in [21], Vdst(P) contains two types of distributional
nodes. An IDD node has children that are probabilistically
independent of each other, while the children of an MXD
node are mutually exclusive, that is, at most one child can
exist in the random r-subtree s described above.

Let v1, . . . , vk be the children of a node u ∈ Vdst(P). For
each child vi, the p-document P specifies the probability
that vi exists, given that u exists. We denote this proba-
bility by P(u, vi) and assume that it is a rational number
in [0, 1]. Note that P(u, vi) is part of the description of the
p-document P.1 If u is an MXD node, then we also assume
that

∑k

i=1 P(u, vi) ≤ 1. The probabilities specified for the
children of u imply the probability P(u, ∅) that u is childless.
Hence, in the case of an MXD node, we define

P(u, ∅) = 1−
k
∑

i=1

P(u, vi) .

If u is an IDD node, then we define

P(u, ∅) =
k
∏

i=1

(1− P(u, vi)) .

Example 3.1. Consider the p-document P shown on the
left side of Figure 1. Ordinary nodes are depicted as circles;
their tags appear inside the circles and, for simplicity, they
do not have values. Distributional nodes are shown as rect-
angular boxes with rounded corners. Thus, Vord(P) consists
of v0, v1, . . . , v10 and Vdst(P) comprises u1, . . . , u5. MXD
nodes are marked by filled circles. So, u1 and u5 are MXD
nodes while u2, u3 and u4 are IDD nodes. The probabilities
P(·, ·) are shown next to the corresponding edges.

Consider the IDD node u2. This node has two children v1
and v2 with the probabilities P(u2, v1) = 0.9 and P(u2, v2) =
0.8. Thus, P(u2, ∅) = 0.1 × 0.2 = 0.02. Now, consider the
MXD node u1 that also has two children, namely, u2 and v3
with the probabilities P(u1, u2) = 0.5 and P(u1, v3) = 0.3.
Hence, P(u1, ∅) = 1 − 0.5 − 0.3 = 0.2. Similarly, for the
MXD node u5, we have that P(u5, ∅) = 1−0.4−0.5−0.1 = 0.

In order to describe the discrete probability space of ran-
dom documents, we first define the samples and their prob-
abilities. Recall that the samples of a p-document P are the
r-subtrees of P that may be obtained by invoking the ran-
dom process described above. Formally, a sample of P is an
r-subtree s �r P that satisfies the following two conditions.

1. (Determinism Preservation) Each node v ∈ Vord(P)∩
V(s) has the same set of children in s and in P.

2. (Mutual Exclusion) Each MXD node u ∈ Vdst(P) ∩
V(s) has at most one child in s.

Ω(P) denotes the set of all samples of P. Suppose that
s ∈ Ω(P) and let u1, . . . , ul be the distributional nodes that

1Our complexity analysis assumes that P(u, vi) is given as
two integers: the numerator and the denominator.
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Figure 1: A p-document, samples and corresponding random documents

appear in s. The probability of s is
∏l

i=1 pi, where pi is
the probability that the children of ui are exactly those ap-
pearing in s. If ui is an IDD node, then pi is the product
consisting of P(ui, v) for each child v that appears in s and
1− P(ui, v) for each child v that is not in s, that is,

pi =
∏

(ui,v)∈E(s)

P(ui, v)
∏

(ui,v)∈E(P)\E(s)

(1− P(ui, v)) .

If ui is MXD, then pi = P(ui, v) if v is the single child of ui

in s; if ui has no children in s, then pi = P(ui, ∅). Clearly,
the probabilities of all the samples add up to 1.

Example 3.2. The p-document P and three of its sam-
ples (namely, s1, s2 and s′2) are shown in Figure 1. Note
that s2 is different from s′2, since the former contains the
node u2 and the latter does not.

Each sample s naturally defines an ordinary document,
denoted by Doc(s). Formally, Doc(s) is obtained from s by
deleting all the the distributional nodes. If the parent of
an ordinary node v is deleted, then v becomes a child of
its lowest ordinary ancestor. Note that Doc(·) is not one-
to-one; that is, two different samples may yield the same
document. This follows from the fact that a distributional
node can have a distributional child.

Example 3.3. Consider again the p-document P and the
samples s1, s2 and s′2 from Example 3.2. Figure 1 also shows
the documents d1 and d2. Note that Doc(s1) = d1 while
Doc(s2) = Doc(s′2) = d2.

We denote by S[P] the random variable that represents
the sample obtained from P. D[P] is the random variable
Doc(S[P]). In other words, D[P] represents a random doc-
ument that is chosen from the distribution defined by P.
As noted above, a single document can be obtained from
several different samples.

Example 3.4. Consider again Figure 1. Let us compute
the probability of the document d2, i.e., Pr (D[P] = d2). It
can be shown that s2 and s′2 are the only samples that gen-
erate d2, so

Pr (D[P] = d2) = Pr (S[P] = s2) + Pr
(

S[P] = s′2
)

.

For s2 to be obtained, all of the following independent events
should occur: (1) u1 chooses u2, (2) u2 chooses none of its
children, (3) u3 chooses v6, and (4) u4 does not choose v7.
Thus,

Pr (S[P] = s2) = 0.5× (0.1× 0.2)× 0.7× 0.6 = 0.0042 .

Similarly,

Pr
(

S[P] = s′2
)

= 0.2× 0.7× 0.6 = 0.084 .

Therefore,

Pr (D[P] = d2) = 0.0042 + 0.084 = 0.0882 .

The method of Example 3.4 for computing the probability
of a given document is inefficient because, in general, the
number of samples that yield a specific document could be
exponential in the size of P. Nevertheless, this probability
can be computed efficiently.

Proposition 3.5. Pr (D[P] = d) can be computed in poly-
nomial time in the size of P.

The algorithm for computing Pr (D[P] = d) is omitted due
to a lack of space. Moreover, this algorithm is not necessary
for obtaining the main results of this paper.

3.2 Probabilistic Semantics of Queries
We consider a query Q and start with an intuitive expla-

nation. To simplify the terminology, the discussion below
assumes that Q is a c-twig, but in principle it also applies
to i-twigs and b-twigs.

When dealing with ordinary XML, the input to Q is a
document and the output is a set of c-matches, as explained
in Section 2. In probabilistic XML, in contrast, the input
is a p-document P, which represents a probabilistic space
that may have an exponential number of documents (in the
size of P). Consequently, it is intractable to apply Q to
each document in this space. Instead, the common approach
(e.g., [9, 21]) is to compute for each possible c-match ρ,
the probability that ρ is produced when applying Q to a
random document. Next, we describe the formal notation
for expressing this probability.

Recall that the random variable D[P] represents a docu-
ment generated by P. So, for the given query Q, the random

30



variable Q(D[P]) represents the application of Q (as defined
in Section 2) to the random document D[P]. Therefore,
Pr (ρ ∈Q(D[P])) denotes the probability that the c-match
ρ is produced when applying the query Q to a random doc-
ument. That is, Pr (ρ ∈Q(D[P])) is the sum of the proba-
bilities of all random documents d of P, such that ρ ∈ Q(d).

The result of applying the query Q to the p-document P
is the set of all possible c-matches ρ of Q in random docu-
ments of P. For each c-match ρ of the result, we compute
the probability Pr (ρ ∈Q(D[P])). In [20], it is argued that
matches with low probabilities are insignificant. We follow
this principle and assume that the user specifies a thresh-
old p ∈ [0, 1] and is interested only in results that have a
probability of at least p. Next, we formally define the three
semantics of queries in probabilistic XML.

3.2.1 The Complete Semantics
Consider a p-document P and a c-twig C. We define C(P)

as the set of all c-matches of C in the random documents of
P, that is,

C(P)
def

=
⋃

s∈Ω(P)

C(Doc(s)) .

The output of C for the threshold p is denoted by C↑p(P)
and formally defined as follows.

C↑p(P)
def

= {φ ∈ C(P) | Pr (φ∈C(D[P])) ≥ p}

If the query is a projection of C onto a set of nodes X,
then we denote it by πX C. The set πX C(P) is obtained by
applying the projection to each c-match of C(P), that is,

πX C(P) =
{

ϕ[X] | ϕ ∈ C(P)
}

.

The output of πX C for the threshold p is denoted by
π↑p

X C(P) and defined as follows.

π↑p
X C(P)

def

= {γ ∈ πX C(P) | Pr (γ ∈ πX C(D[P])) ≥ p}

Example 3.6. Let P be the p-document of Figure 1. In
this example, we interpret the twig T1 of Figure 2 under the
complete semantics and denote it by C. Note that C has only
child edges and its node predicates are of the form tag(·) = Y.
Let ϕ be the c-match {n0 7→ v0, n1 7→ v7, n2 7→ v9}. Clearly,
Pr (ϕ ∈ C(D[P])) is the same as the probability that v9 exists
in D[P]. Therefore,

Pr (ϕ∈C(D[P])) = 0.4× 0.5 = 0.2 .

Now, we consider the query πX C, where X = {n1}. The
set πX C(P) consists of the mappings {n1 7→ v3}, {n1 7→ v5}
and {n1 7→ v7}. Let us compute the probability of the map-
ping γ = {n1 7→ v7}. Observe that γ ∈ πX C(D[P]) holds
exactly when D[P] contains v7 and at least one of v8 and
v9. The probability that D[P] contains v7 is 0.4. Since u5

is an MXD node, the probability that either v8 or v9 exists,
given that v7 exists, is 0.4 + 0.5 = 0.9. Therefore,

Pr (γ ∈ πX C(D[P])) = 0.4× 0.9 = 0.36 .

3.2.2 The Incomplete Semantics
Consider a p-document P and an i-twig I. The set of all

i-matches of I in the random documents of P is denoted by
I(P) and formally defined as follows.

I(P)
def

=
⋃

s∈Ω(P)

I(Doc(s))

Given a threshold p ∈ [0, 1], the set of all i-matches with
a probability of at least p is denoted by I↑p(P) and formally
defined as follows.

I↑p(P)
def

= {φ ∈ I(P) | Pr (φ∈ I(D[P])) ≥ p}

However, I↑p(P) is not the output of I, since it has re-
dundant i-matches, due to the fact that if φ ∈ I↑p(P), then
all the i-matches that are subsumed by φ are also in I↑p(P).
Thus, we define the output of I for the threshold p as the
set max

(

I↑p(P)
)

, which contains only i-matches of I↑p(P)

that are not subsumed by other i-matches of I↑p(P).
Note that for a given i-match φ ∈ I(P), the probabil-

ity Pr (φ ∈ I(D[P])) is the same as the probability that a
random document contains the image of φ. Thus, this prob-
ability can be computed as follows. First, obtain the subtree
P | Img(φ), i.e., the r-subtree of P that is reduced w.r.t. the
image of φ (see the definition in Section 2.1). Then, compute
the product of the probabilities P(u, v) for all edges (u, v)

of P | Img(φ), such that u is a distributional node. Note that
the same procedure computes the probability of a c-match
φ of a c-twig C, i.e., Pr (φ ∈ C(D[P])). However, computing
the probability of a projection of a c-match is much more
subtle and is discussed in Section 4.

Example 3.7. Consider again the p-document P of Fig-
ure 1. We now interpret T1 (shown in Figure 2) as an i-twig
and, hence, denote it by I. The following are some of the
i-matches of I(P).

• γ1 = {n0 7→ v0},

• γ2 = {n0 7→ v0, n1 7→ v7},

• γ3 = {n0 7→ v0, n1 7→, v7, n2 7→ v8}, and

• γ4 = {n0 7→ v0, n1 7→ v7, n2 7→ v9}.

Both γ3 and γ4 subsume γ2 which, in turn, subsumes γ1.
Furthermore, no other match of I(P) subsumes either γ2, γ3

or γ4. Clearly, Pr (γ1 ∈ I(D[P])) = 1, Pr (γ2 ∈ I(D[P])) =
0.4, Pr (γ3 ∈ I(D[P])) = 0.16 and Pr (γ4 ∈ I(D[P])) = 0.2.
Therefore, the i-matches among γ1, γ2, γ3 and γ4 that belong
to max

(

I↑p(P)
)

are as follows. If p = 0.3, then only γ2 is in

max
(

I↑p(P)
)

. If p = 0.2, then only γ4 is in max
(

I↑p(P)
)

.

Finally, for p = 0.1, both γ3 and γ4 are in max
(

I↑p(P)
)

(whereas γ1 and γ2 are not).

Note that the i-match γ4 is the same as the c-match ϕ
of Example 3.6. Both γ4 and ϕ have the same probabil-
ity, which is not a coincidence, because the probability of a
match (which is both an i-match and a c-match) depends
only on the nodes in its image, but not on the semantics of
the query.

(n6) tag(·) = C

(n2) tag(·) = B

(n1) tag(·) = A

(n0) tag(·) = RT1 T2 (n3) tag(·) = R

(n5) tag(·) = B

(n4) tag(·) = A

Figure 2: Twigs
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Recall that the output of an i-twig I is defined as the set
max

(

I↑p(P)
)

, namely, we first choose all the i-matches that
have a probability of at least p and then remove subsumed
i-matches. This semantics is monotone in the sense that the
output is increased if we either lower the threshold or add
more data to the p-document. Note that when we say that
the “output is increased,” we mean that each i-match of the
old output is subsumed by some i-match of the new output.

As an alternative, one could define the output by first
removing subsumed i-matches and then selecting those that
have a probability of at least p. But doing so would result
in a semantics that is not monotone under addition of data
to the p-document.

3.2.3 The Boolean Semantics
Given a Boolean queryB and a p-document P, we are only

interested in the probability Pr (B(D[P]) = true). Clearly,
Pr (B(D[P]) = false) = 1− Pr (B(D[P]) = true).

Instead of Pr (B(D[P]) = true) and Pr (B(D[P]) = false),
we write Pr (B(D[P])) and Pr (¬B(D[P])), respectively.

Example 3.8. Consider again the p-document P of Fig-
ure 1. We now interpret T1 of Figure 2 as a b-twig and
denote it by B. In this example, we compute Pr (B(D[P])).
There is a c-match of B in D[P] if and only if at least one of
the following three independent events occur. (1) D[P] con-
tains v3, (2) D[P] contains v6, or (3) D[P] contains v7 and
at least one of v8 and v9. Thus, the probability that none of
these events occurs is equal to Pr (¬B(D[P])).

Clearly, the probabilities that the first and second events
do not occur are 1− 0.3 and 1− 0.7, respectively. The com-
plement of the third event is the union of the following two
disjoint events. The first one is that v7 does not exist (and
its probability is 1 − 0.4 = 0.6). The second event is that
v7 exists, but neither v8 nor v9 exists (and its probability is
0.4 × (1 − 0.4 − 0.5) = 0.04, since u5 is an MXD node).
Thus, Pr (¬B(D[P])) = 0.7 × 0.3 × (0.6 + 0.04) = 0.1344.
We conclude that Pr (B(D[P])) = 1− 0.126 = 0.8656.

Note that the above example is rather simple, because T1

is a path. A similar approach would not work if the b-twig
is defined by T2 of Figure 2. In Section 4, we show how to
compute the probability of an answer to a general b-twig.

3.3 Evaluation Problems
In the following sections, we consider the evaluation of

queries over p-documents under the three semantics. In par-
ticular, we deal with three different computational problems:

• EvalComplete: Enumerate π↑p
X C(P), given a c-twig C,

a set X ⊆ V(C), a p-document P and a threshold p.

• EvalMaximal: Enumerate max(I↑p(P)), given an i-
twig I, a p-document P and a threshold p.

• EvalBoolean: Determine Pr (B(D[P])), given a b-twig
B and a p-document P.

4. EVALUATING C-TWIGS AND B-TWIGS

4.1 Reducing Projections to Boolean Queries
In this section, we study the complexity of the problems

EvalComplete and EvalBoolean. We first describe an algo-
rithm for solving both problems. This algorithm is efficient

under data complexity, i.e., when the size of the query is
bounded by a constant. Later in this section, we show that
both problems are intractable under query-and-data com-
plexity, even under significant simplifying assumptions.

Before presenting the algorithm for solving EvalBoolean,
we show that EvalComplete can be reduced to EvalBoolean.
Consider a p-document P, a c-twig C, a subset X of the
nodes of C and a threshold p. Our goal is to evaluate
π↑p

X C(P) by using an algorithm that computes Pr (B(D[P]))
for a b-twig B. Under data complexity, we can find all the
mappings γ : X → Vord(P) in polynomial time. So, it is
sufficient to show how to compute the probability of each
mapping, since the output consists of the ones with a prob-
ability of at least p. (Clearly, optimizations can be applied.)

So, we consider a mapping γ : X → Vord(P) and show how
to compute its probability, that is, Pr (γ ∈ πX C(D[P])). If
there is an n ∈ X, such that γ(n) does not satisfy the node
predicate of n (i.e., condn(γ(n)) = false), then the proba-
bility of γ is 0. So, suppose otherwise. We transform P into
a new p-document P ′ as follows. For each n ∈ X, we replace
the tag of γ(n) with a new unique tag that does not appear
anywhere else in P ′. We also construct a new b-twig B that
is identical to C, except for the following. For each node
n ∈ X, we replace condn(·) with tag(·) = Y, where Y is the
new unique tag of γ(n). It is easy to show that there is a one-
to-one correspondence between the random documents of P
and those of P ′, such that probabilities (of documents) are
preserved. (The only difference between two corresponding
documents is in the tags of the nodes that are in the im-
age of γ.) Moreover, there is a one-to-one correspondence

between the c-matches ϕ ∈ C(P) that satisfy ϕ[X] = γ and
the c-matches of B in random documents of P ′, such that
the following holds. If ϕ and ϕ′ is a pair of corresponding
c-matches defined over C and B, respectively, and d and d′

is a pair of corresponding random documents of P and P ′,
respectively, then ϕ ∈ C(d) if and only if ϕ′ is a c-match of
B in d′. Thus, the following holds.

Pr (γ ∈ πX C(D[P])) = Pr
(

B(D[P ′])
)

To conclude, an efficient algorithm for solving EvalBoolean
gives rise to an efficient solution of EvalComplete. So we
now consider the problem EvalBoolean.

4.2 Notation
We start with some definitions that are necessary for de-

scribing the algorithm for evaluating b-twigs. Consider a
tree T . Let r be the root of T and c be one of its children.
The subtree of T that consists of the edge (r, c) and the sub-

tree T c
∆ is called a branch of T and is denoted by T

r
c
∆
. If n

is a node of T , then each branch of T n
∆ is a sub-branch of T .

Note that a branch is a special case of a sub-branch, and so
is an edge (m,n) of T , such that n is a leaf.

Consider a b-twig B and a new node n that is not in B.
The b-twig n/B is obtained by making n the new root and
adding a child edge from n to the root of B. The b-twig
n//B is constructed similarly, except for using a descendant
edge to connect n and the root of B. We use ∗ to denote a
node that matches everything, i.e., cond∗(·) = true.

We generalize b-twigs by combining them to make expres-
sions, using the logical operators ∨, ∧ and ¬. For example,
the expression B1 ∨ ¬B2 is evaluated over a document d by
first evaluating B1(d) and B2(d), and then applying the log-
ical operators. The following important property holds for
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conjunctions of b-twigs. Given the b-twigs B1, . . . , Bh, we
can construct a new b-twig B′ by merging the roots of the
Bi. The predicate of the new root is the conjunction of the
root predicates of B1, . . . , Bh. It is easy to verify that the
conjunction B1∧ · · ·∧Bh is equivalent to B′. Consequently,
if B has a height of at least 1 and R1, . . . , Rq (q ≥ 1) are all
its branches, then we define the conjunction R1 ∧ · · · ∧ Rq

as the branch representation of B.

4.3 The Algorithm
The input to the algorithm is a p-document P and a b-

twig B̄. The output is Pr
(

B̄(D[P])
)

. At first, we construct

the set B from B̄ as follows. Note that B̄ ∈ B.
B consists of all the conjunctions B1 ∧ · · · ∧, Bh (h ≥ 1),

such that each b-twig Bi is one of the following.

• A sub-branch of B̄.

• A leaf of B̄.

• ∗//B̄n
∆, where n is a non-root node of B̄.

The algorithm computes Pr (B(D[P v
∆])) for every node v

of P and for all b-twigs B of B. However, if w is a distribu-
tional node of P, then Pw

∆ is not a p-document, because the
root of a p-document must be an ordinary node. Therefore,
the following equation defines the meaning of B(D[Pw

∆]) in
the case that w is a distributional node.

B (D [Pw
∆])

def

= B
(

D
[

P
◦
w
∆

])

(1)

The p-document in the right side of the above equation is
obtained from Pw

∆ by adding a new root, denoted by ◦, and
making w the only child of that root. Intuitively, the or-
dinary node ◦ satisfies the root predicate of every b-twig.
Formally, it means that when applying a b-twig B to a ran-
dom document that has ◦ as its root, then we treat B as if
its root is ∗.

The computation of Pr (B(D[P v
∆])) is done bottom-up by

applying a dynamic-programming algorithm. Thus, when
node v is reached, then for every child u of v and for all
B ∈ B, the probability Pr (B(D[P u

∆])) has already been
computed. In the following sections, we describe how to
compute Pr (B(D[P v

∆])) for B ∈ B, when visiting node v.
Note that dynamic programming by itself is not sufficient

for getting a practical algorithm. Roughly speaking, the rea-
son is that each branch of P v

∆ may satisfy an arbitrary set of
branches of B. Basically, our algorithm efficiently converts
Pr (B(D[P u

∆])) into either a sum of probabilities of disjoint
events or a product of probabilities of independent events,
where these probabilities are computed in prior steps.

4.3.1 Three Simple Cases
We first describe how to compute Pr (B(D[P v

∆])) when we
need not know the probabilities for the children of v.

Case 1. Node v is a leaf (and, hence, ordinary). In
this case, v itself is the only random document. Therefore,
Pr (B(D[P v

∆])) = 1 if B consists of a single node n and v
satisfies the predicate of n; otherwise, Pr (B(D[P v

∆])) = 0.
Case 2. Node v is ordinary and it does not satisfy the

root predicate of B. In this case, Pr (B(D[P v
∆])) = 0.

Case 3. B consists of a single node n. If v is either a
distributional node or an ordinary node that satisfies the
predicate of n, then Pr (B(D[P v

∆])) = 1. Otherwise, this is
the same as the previous case, i.e., Pr (B(D[P v

∆])) = 0.

In the remainder of the algorithm, we assume that none of
the above three cases holds. In other words, neither B nor
P v

∆ is a leaf, and if v is ordinary, then it satisfies the root
predicate of B. We first deal with three different cases where
v has a single child, and then reduce the case of multiple
children to that of a single child.

4.3.2 Ordinary Node and One Distributional Child
Suppose that v is an ordinary node with a single child u1,

which is distributional. Since v satisfies the root predicate
of B (otherwise, Case 2 holds), Equation (1) implies the
following (when substituting u1 for w in that equation).

Pr (B(D[P v
∆])) = Pr (B(D[Pu1

∆ ]))

Since u1 is a child of v, the right side of the above equation
has already been computed in a previous iteration.

4.3.3 Ordinary Node and One Ordinary Child
Suppose that both v and its only child u1 are ordinary

nodes. Let R1 ∧ · · · ∧Rq be the branch representation of B
and r be the root of B. Let B1, . . . , Bq be obtained from
R1, . . . , Rq, respectively, by deleting the root r. If only child
edges emanate from r, then

Pr (B(D[P v
∆])) = Pr

(

q
∧

j=1

Bj(D[Pu1

∆ ])

)

.

However, this equation does not necessarily hold if r has one
or more outgoing descendant edges. To handle descendant
edges, we reduce the computation to that of a conjunction
of negated branches as follows.

Since the negation of B is ¬R1 ∨ · · · ∨ ¬Rq,

Pr (B(D[P v
∆])) = 1− Pr

(

q
∨

j=1

¬Rj(D[P v
∆])

)

. (2)

Using the principle of inclusion and exclusion, we can formu-

late Pr
(

∨q

j=1 ¬Rj(D[P v
∆])
)

as a sum of probabilities of the

following form, where J is a nonempty subset of {1, . . . , q}.

Pr

(

∧

j∈J

¬Rj(D[P v
∆])

)

(3)

Suppose that in some branch Rj , a descendant edge con-
nects the root n to its only child, that is, Rj is of the form
n//B′. We define R1

j = n/B′ and R2
j = n/∗//B′. Clearly,

¬Rj(D[P v
∆]) ≡ ¬R1

j (D[P v
∆]) ∧ ¬R2

j (D[P v
∆]) .

So, without loss of generality, we assume that in each branch
Rj of (3), a child edge emanates from the root (or else we
replace ¬Rj with ¬R1

j ∧ ¬R
2
j ). Since v satisfies the root

predicate of every Rj (otherwise, Case 2 holds), we get the
following.

Pr

(

∧

j∈J

¬Rj(D[P v
∆])

)

= Pr

(

∧

j∈J

¬Bj(D[Pu1

∆ ])

)

To compute the right side, we first use the equation:

Pr

(

∧

j∈J

¬Bj(D[Pu1

∆ ])

)

= 1− Pr

(

∨

j∈J

Bj(D[Pu1

∆ ])

)

(4)
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Then, we apply the principle of inclusion and exclusion in

order to convert Pr
(

∨

j∈J
Bj(D[Pu1

∆ ])
)

to a sum of prob-

abilities of the form Pr
(

∧

j∈J′ Bj(D[Pu1

∆ ])
)

, where J ′ is a

nonempty subset of J . Each probability in the sum has al-
ready been computed in a previous iteration, because u1 is
a child of v and every conjunction

∧

j∈J′ Bj is in B.

4.3.4 Distributional Node and One Child
Suppose that v is a distributional node that has a sin-

gle child u1. B has at least one child (otherwise, Case 3
holds) and, hence, it could be satisfied only if v chooses u1,
i.e., (v, u1) ∈ S[P v

∆]. Thus, Pr (B(D[P v
∆])) is equal to2

Pr
(

B(D[P v
∆]) | (v, u1) ∈ S[P v

∆]
)

P(v, u1) .

If u1 is distributional, then by Equation (1), we get that

Pr
(

B(D[P v
∆]) | (v, u1) ∈ S[P v

∆]
)

= Pr
(

B(D[Pu1

∆ ])
)

,

where the right side was computed in a previous iteration.
If u1 is ordinary, then by Equation (1), we get that

Pr
(

B(D[P v
∆]) | (v, u1) ∈ S[P v

∆]
)

= Pr
(

B
(

D
[

P
◦

u1

∆

]) )

and we can compute the right side as in Section 4.3.3.

4.3.5 Multiple Children
In this section, we assume that v has k > 1 children

u1, . . . , uk. Suppose first that v is an MXD node. B has
at least two nodes (otherwise, Case 3 holds) and hence, it
cannot be satisfied if v chooses none of its children. More-
over, the events (v, ui) ∈ S[P v

∆] (i = 1, . . . , k) are disjoint.
Thus,

Pr (B(D[P v
∆])) =

k
∑

i=1

Pr
(

B
(

D
[

P
v
ui

∆

]))

.

The probabilities of the sum are computed as in Section 4.3.4.
Next, suppose that v is either an ordinary or IDD node.

The difficulty of computing Pr (B(D[P v
∆])) in this case is

that two branches of the random document can satisfy the
same branch of B (or, more generally, intersecting sets of
branches of B). Therefore, we cannot apply a naive reduc-
tion to the previous two cases. In the following we again use
the principle of inclusion and exclusion and, as a result, get
expressions that are evaluated by considering each branch
of the document separately.

We start by rewriting Pr (B (D [P v
∆])) as described at the

beginning of Section 4.3.3. In other words, we use Equa-
tion 2 (where R1, . . . , Rq is the branch representation of B),
and then apply the principle of inclusion and exclusion to
convert the probability on the right side of (2) into a sum of
probabilities of the form shown in (3). The negated branch
¬Rj (j ∈ J) is satisfied in a document d if and only if it is
satisfied in every branch of d. (In contrast to Rj that only
has to be satisfied in one branch of d.) Since we assume
that v is either an ordinary or IDD node, distinct branches
of D[P v

∆] are probabilistically independent. Therefore,

Pr

(

∧

j∈J

¬Rj (D [P v
∆])

)

=
k
∏

i=1

Pr

(

∧

j∈J

¬Rj

(

D
[

P
v
ui

∆

])

)

.

2Recall that P(v, u1) is the probability that (v, u1) ∈ S[P v
∆].

Consequently, it suffices to compute the probability for each
branch of P v

∆. So, consider the branch that includes ui. If
both v and ui are ordinary nodes, then we continue exactly
as described in Section 4.3.3 below (3). Otherwise, similarly
to the last part of Section 4.3.3 (that starts at Equation (4)),
we use the equation

Pr

(

∧

j∈J

¬Rj

(

D
[

P
v
ui

∆

])

)

= 1− Pr

(

∨

j∈J

Rj

(

D
[

P
v
ui

∆

])

)

and the principle of inclusion and exclusion, so that the
probabilities to be computed are of the following form (where
J ′ is a nonempty subset of J).

Pr





∧

j∈J′

Rj

(

D
[

P
v
ui

∆

])





Since each conjunction
∧

j∈J′ Rj is in B, we can now pro-
ceed as in either Section 4.3.2 or Section 4.3.4, depending
on whether v is ordinary or distributional.

4.3.6 Correctness

Lemma 4.1. The algorithm correctly computes the prob-
ability Pr (B(D[P v

∆])) for all b-twigs B ∈ B and nodes v ∈
V(P), in polynomial time under data complexity.

Our algorithm shows that determining Pr (B(D[P v
∆])) is in

fact parametrically tractable [22], that is, the size of the
query does not affect the degree of the polynomial, only
its coefficients. The above lemma and the reduction of Sec-
tion 4.1 imply the following.

Theorem 4.2. Both EvalComplete and EvalBoolean can
be solved in polynomial time, under data complexity.

4.4 Query-and-Data Complexity
We now consider the query-and-data complexity of Eval-

Complete and EvalBoolean. Note that, under this measure,
the output of EvalComplete may be exponentially larger
than the input. In this case, an evaluation algorithm is effi-
cient if it runs in polynomial total time [16], that is, polyno-
mial time in the combined size of the input and the output.
Under query-and-data complexity, both problems become
intractable. Furthermore, these problems remain intractable
even under strong simplifying assumptions.

Theorem 4.3. Under query-and-data complexity:

• Computing Pr (B(D[P])) is #P-complete.

• Determining whether π↑p
X C(P) 6= ∅ is P#P-hard.

• Determining whether C↑p(P) 6= ∅ is NP-complete.

Furthermore, these results hold even if (1) there are no MXD
nodes, (2) distributions are only over leaves, (3) all the prob-
abilities are 0.5, (4) the twig has only child edges, and (4)
the out degree of each node of the twig is at most 2.

Recall that P#P is the class of problems that can be solved
by polynomial-time machines that have an oracle to some
#P-complete problem (e.g., the number of satisfying assign-
ments of a CNF formula). Note that this class contains
the whole polynomial hierarchy [26]. Containment in #P is
shown rather straightforwardly by an adaptation of the tech-
niques of [13]. For showing #P-hardness, we use a reduction
from #Set-Cover which is known to be #P-complete [23].
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5. EVALUATING I-TWIGS
In the previous section, we showed that the evaluation

of c-twigs is tractable only under data complexity. In this
section, we consider i-twigs and prove that their evaluation
is tractable even under query-and-data complexity.

We use two notions of efficiency of enumeration algorithms
which are stronger than polynomial total time and relate the
time that is needed for generating the ith result (which is
an i-match in this case), after the first i − 1 have already
been created. Incremental polynomial time means that the
ith i-match is generated in time that is polynomial in the
combined size of the input and the first i − 1 i-matches.
The stronger notion of polynomial delay means that there
is a polynomial delay between the output of every two con-
secutive i-matches. The algorithm that we present in this
section enumerates the maximal i-matches in incremental
polynomial time and is a reduction to a simplified problem
which is discussed first.

5.1 Finding Maximal Subsumed Matches
We consider the problem of finding all the maximal i-

matches among those that are subsumed by a given i-match
ϕ and have a probability of at least p. Formally, suppose
that P is a p-document, I is an i-twig and ϕ is an i-match
of I in a random document of P, i.e., ϕ ∈ I(P). We denote
by Ivϕ(P) the set of all i-matches γ ∈ I(P), such that γ is

subsumed by ϕ. For a threshold p ∈ [0, 1], the set I↑p

vϕ(P)

consists of all the i-matches of Ivϕ(P) with a probability of
at least p, that is,

I↑p

vϕ(P)
def

= {γ ∈ I(P) | γ v ϕ ∧ Pr (γ ∈ I(D[P])) ≥ p} .

The goal is to find max(I↑p

vϕ(P)), that is, to enumerate all

i-matches γ ∈ I↑p

vϕ(P), such that no i-match of I↑p

vϕ(P) prop-
erly subsumes γ. The algorithm SubMatches of Figure 3
solves this problem. Next, we describe it.

Let ϕ ∈ I(P). Recall that P | Img(ϕ) denotes the r-subtree
of P that is reduced w.r.t. the image of ϕ (see the definition

in Section 2.1). In this section, we denote P | Img(ϕ) by Pϕ.
The input of the algorithm SubMatches is a p-document
P, an i-twig I, an i-match ϕ ∈ I(P), a threshold p and a set
U of nodes, which is initially empty. The algorithm finds
all i-matches ϕ′ ∈ max(I↑p

vϕ(P)) that satisfy the following
constraint. The reduced r-subtree Pϕ′ must include all the
nodes of U .

We define the accumulated probability along a path in P as
the product of all values P(v, u), where v is a distributional
node and (v, u) is an edge on the path. (As a special case,
note that an empty product is equal to 1.) Let v be a node
of Pϕ. The conditional connection cost of v, denoted by
cCost(v), is the maximum of all accumulated probabilities
along paths from v to a (not necessarily proper) descendant
of v that is in Img(ϕ). Note that cCost(v) = 1 if v ∈ Img(ϕ).

Now, we describe the algorithm in detail. Lines 2–3 and
Lines 4–6 deal with two special cases as follows. Line 2 tests
whether Pϕ contains U . If not (which may only occur for
recursive calls but not for the initial one), then the output
is empty and the algorithm terminates in Line 3. Line 4
tests whether the probability of ϕ is at least p. If so, then
max(I↑p

vϕ(P)) = {ϕ} and, hence, the algorithm prints ϕ in

Line 5 and terminates in Line 6. Note that Pr (ϕ ∈ I(D[P]))
is the same as the probability that Pϕ is an r-subtree of S[P]
(denoted by Pϕ �r S[P]). Thus, Pr (ϕ ∈ I(D[P])) is equal

Algorithm SubMatches(P, I, ϕ, p, U)

1: Pϕ ← P
| Img(ϕ)

2: if U 6⊆ V(Pϕ) then

3: return

4: if Pr (ϕ∈ I(D[P])) ≥ p then

5: output(ϕ)
6: return

7: for all nodes v ∈ V(Pϕ) \ U do

8: c[v]← cCost(v)
9: if v has a distributional parent u then

10: c[v]← c[v] · P(u, v)
11: w ← argminv {c[v] | v ∈ V(Pϕ) \ U}
12: X ← {n ∈ Dom(ϕ) | ϕ(n) is not a descendant of w}

13: γ ← ϕ[X]

14: if Pr (γ ∈ I(D[P])) · c[w] < p then

15: SubMatches(P, I, γ, p, U)

16: q ← Pr
(

P |U∪{w} � S[P]
)

17: for all leaves u of P |U∪{w} do

18: q ← q · cCost(u)
19: if q ≥ p then

20: SubMatches(P, I, ϕ, p, U ∪ {w})

Figure 3: Computing max(I↑p

vϕ(P))

to the product of the probabilities P(v, u), where (v, u) is
an edge of Pϕ and v is distributional.

The main part of the algorithm (Lines 7–20) chooses a
node w ∈ V(Pϕ) and divides the enumeration

into two recursive calls. Line 15 and Line 20 enumerate
all i-matches ϕ′ of max(I↑p

vϕ(P)) such that w 6∈ V(Pϕ′) and

w ∈ V(Pϕ′), respectively. The arguments of the recursive
call in Line 20 are the original ϕ and a new set, namely,
U ∪ {w}. (Of course, the original P, I and p are the re-
maining arguments.) In Line 15, the arguments are the
original set U and a new i-match γ, where γ is the max-
imal i-match that satisfies γ v ϕ and w 6∈ V(Pγ). (Clearly,
γ is unique.) It is easy to show the following two facts.
First, the same i-match cannot be enumerated by both re-
cursive calls. Second, the two recursive calls together enu-
merate all the i-matches of max(I↑p

vϕ(P)). However, the re-
cursive call in Line 15 may also enumerate some i-matches
that do not belong to max(I↑p

vϕ(P)) if we choose node w
arbitrarily. But this problem cannot occur because the par-
ticular choice of w and the test of Line 14 guarantee that
max(I↑p

vγ(P)) ⊆ max(I↑p

vϕ(P)). Furthermore, if the test of

Line 14 is false, then w appears in Pϕ′ for all i-matches ϕ′

of max(I↑p

vϕ(P)), such that V(Pϕ′) contains U . Therefore,

none of these i-matches is in max(I↑p

vγ(P)) and, hence, only
the recursive call of Line 20 has to be executed. The proof
is omitted due to lack of space.

Line 11 chooses w to be the node that has the minimum
value in the array c, where c is computed in Lines 7–10 for
all nodes of V(Pϕ) \ U as follows. If v has a distributional
parent u, then c[v] is the product of cCost(v) and P(u, v).
Otherwise, it is just cCost(v). Line 12 finds the domain X
of γ and Line 13 computes γ by applying projection onto X
to ϕ.

To guarantee efficiency, it is crucial not to execute the
recursive call of Line 20 if it returns an empty result. So,
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Line 19 tests whether there exists an i-match ψ v ϕ, with a
probability of at least p, such that the r-subtree of Img(ψ)
contains U ∪ {w}. This test is just q ≥ p, where q is com-
puted in Lines 16–18 as the product of the following num-
bers. (Recall that P |U∪{w} is the r-subtree of P that is
reduced w.r.t. U ∪ {w}).

• The probability that U ∪{w} is contained in a random

sample of P, i.e., Pr
(

P |U∪{w} � S[P]
)

.

• cCost(u) for all leaves u of P |U∪{w}.

The following lemma shows the correctness and efficiency
of SubMatches.

Lemma 5.1. SubMatches(P, I, ϕ, p, U) enumerates all i-

matches γ ∈ max(I↑p

vϕ(P)), such that Img(γ) contains a de-
scendant of u for each u ∈ U . It runs with polynomial delay.

5.2 The Main Algorithm
We now describe the algorithm EvalITwig of Figure 4

for enumerating max(I↑p(P)). This algorithm is a reduc-
tion to the problem solved in the previous section, namely,
enumerating max(I↑p

vϕ(P)); it is an adaptation of a general
approach for enumerating maximal subgraphs that satisfy
some connected hereditary property [5, 4, 20].

We start with some definitions. Consider a p-document
P, an i-twig I and a threshold p ∈ [0, 1]. Let γ be an i-match
of I(P) and let n 7→ v be a particular assignment that maps
node n of I to node v of P, where v is ordinary and neither
n nor v is a root. We say that γ and n 7→ v are partially
consistent if the following conditions hold.

• Node v satisfies the node predicate of n.

• The parent m of n is in Dom(γ), i.e., γ(m) is defined.

• If (m,n) is a child edge of I, then γ(m) is the parent
of v; otherwise, γ(m) is a proper ancestor of v.

We say that γ and n 7→ v violate mutual exclusion if the
following holds. There is a node n′ ∈ Dom(γ), such that
γ(n′) and v belong to different branches of some MXD node
of P. Finally, we say that γ and n 7→ v are fully consistent
if they are partially consistent and do not violate mutual
exclusion.

The algorithm EvalITwig of Figure 4 accepts as input
a p-document P, an i-twig I and a threshold p ∈ [0, 1]. It
uses two subroutines that we now describe. The first one,
MaxExtend(P, I, ψ, p), accepts an i-match ψ ∈ I↑p(P) and
extends ψ to an i-match of max(I↑p(P)) by applying the
following greedy process. We arbitrarily choose a node n
of I, such that n 6∈ Dom(ψ), and an ordinary node v of P.
Let ψn7→v denote the extension of ψ that maps the nodes
of Dom(ψ) as in ψ and maps n to v. If ψ and n 7→ v
are fully consistent and Pr (ψn7→v ∈ I(D[P])) ≥ p, then we
permanently replace ψ with ψn7→v and continue the greedy
process; otherwise, we continue the greedy process with ψ
by trying another assignment n′ 7→ v′. The algorithm ter-
minates when ψ cannot be extended by any assignment.

The second subroutine, Merge(P, I, γ, n, v), merges an i-
match γ ∈ max(I↑p(P)) with the assignment n 7→ v, where
n ∈ V(I), v ∈ Vord(P) and neither n nor v is a root. The
result of this merging is an i-match that maps n to v and
maps the other nodes in its domain as γ. Note that the

Algorithm EvalITwig(P, I, p)

1: Printed ,ToExtend ← empty balanced search trees
2: ϕ0 ←MaxExtend(P, I, {root(I) 7→ root(P)} , p)
3: output(ϕ0)
4: Printed .Insert(ϕ0)
5: ToExtend .Insert(ϕ0)
6: while ToExtend 6= ∅ do

7: γ ← ToExtend .Remove()
8: for all nodes v ∈ Vord(P) \ root(P) do

9: for all nodes n ∈ V(I) \ {root(I)} do

10: ϕ←Merge(P, I, γ, n, v)
11: if ϕ 6= ⊥ then

12: for all ψ ∈ SubMatches(P, I, ϕ, p, ∅) do

13: ψ ←MaxExtend(P, I, ψ, p)
14: if ψ /∈ Printed then

15: output(ψ)
16: Printed .Insert(ψ)
17: ToExtend .Insert(ψ)

Figure 4: Computing max(I↑p(P))

result could be ⊥, that is, the i-match that is defined on
the empty domain. Merge(P, I, γ, n, v) starts by testing
whether γ and n 7→ v are partially consistent. If they are
not, then the result is ⊥; otherwise, the following is done.
Let X = Dom(γ). We remove from X every n′, such that
γ(n′) and v are in different branches of an MXD node of P.
We also remove all the descendants of n. The result of the
merge operation is the i-match that maps every node of (the
final value of) X as γ and maps n to v.

The algorithm EvalITwig of Figure 4 uses two balanced
search trees for storing results. Printed stores the results
that have been printed and ToExtend stores the results that
need to be processed in Lines 6–17 (as describe below). Ini-
tially, the algorithm generates an arbitrary i-match ϕ0 ∈
max(I↑p(P)) by maximizing the i-match that maps the root
of I to that of P. (We assume that root(P) satisfies the pred-
icate of root(I), or else there are no i-matches.) In Lines 3–5,
ϕ0 is printed and stored in both Printed and ToExtend .

The loop of Line 6 is repeated as long as ToExtend is
nonempty. In each iteration, Line 7 removes an i-match γ
from ToExtend . In the two nested loops of Lines 8–9, the
i-match γ is merged with every assignment n 7→ v, such
that n ∈ V(I), v ∈ Vord(P) and neither n nor v is a root.
If the merged i-matched ϕ is ⊥, then the algorithm con-
tinues to the next iteration of the nested loops. Otherwise,
Lines 13–17 are repeated for all i-matches ψ ∈ max(I↑p

vϕ(P)).
The i-matches ψ are obtained by executing the algorithm
SubMatches of Figure 3 (with the empty set as U). Each
ψ is maximized in Line 13 and if it has just been generated
for the first time (i.e., it is not in Printed), then it is sent
to the output and inserted into both Printed and ToExtend
(Lines 15–17). The following theorem shows the correctness
of EvalITwig.

Theorem 5.2. The algorithm EvalITwig(P, I, p) enu-
merates max(I↑p(P)) in incremental polynomial time, under
query-and-data complexity.

Corollary 5.3. Under query-and-data complexity, Eval-
Maximal can be solved in incremental polynomial time.
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5.3 Extensions and Intractability Results

5.3.1 Projection
In this section, we discuss i-twigs with projections. Con-

sider an i-twig I and a set X of nodes of I. We use ϕ[X]

to denote the projection of the i-match ϕ onto the nodes
of X ∩ Dom(ϕ). The definitions of πX I(P) and π↑p

X I(P)
are analogous to the corresponding definitions in the case of
the complete semantics (see Section 3.2.1). The goal is to
find the maximal matches after projection, that is, the set
max(π↑p

X I(P)) and the probabilities of its elements.

The probability of a mapping ϕ[X] ∈ πX I(P) is the same
as the probability that a random document contains the
image of ϕ[X]. So, it can be computed as described in Sec-
tion 3.2.2. This is true because a leaf of I that is not in
X has no effect on the query and, hence, can be removed.
In fact, instead of using I itself, we can transform it into a
smaller i-twig by removing every node that has no descen-
dant (including itself) in X. Therefore, we get the following.

Proposition 5.4. The set max(π↑p
X I(P)) and the prob-

abilities of its elements can be computed in polynomial time
under data complexity.

It is unknown whether max(π↑p
X I(P)) can be enumer-

ated efficiently under query-and-data complexity. Never-
theless, the following theorem shows that we can compute
max(π↑p

X I(P)) by first executing EvalITwig(P, I, p) and
then applying the projection followed by elimination of sub-

sumed i-matches. (Note that ϕ
[X]
1 may be subsumed by ϕ

[X]
2

even if ϕ1 is maximal.)

Theorem 5.5. Consider a p-document P, an i-twig I, a
set of nodes X ⊆ V(I) and a threshold p ∈ [0, 1]. Then

max
(

πX

(

max(I↑p(P))
))

= max
(

π↑p
X I(P)

)

.

Note that if I is replaced with a c-twig,3 then the left-hand
side is contained in the right-hand side but equality does not
necessarily hold, because the probability of a projection of
a c-match could be determined by multiple, dependent c-
matches. However, in the case of i-twigs, if a projection
is in max(π↑p

X I(P)), then there is at least one i-match in

max(I↑p(P)) that subsumes that projection.

5.3.2 Completeness Constraints
We often want to restrict the degree of incompleteness by

requiring that some specific nodes of the query are always
matched. This requirement is extended in [19] to complete-
ness constraints, that is, constraints of the following form.
For an edge (n,m) of the i-twig I, if n is in the domain of
the result, then m must also be in that domain. In [19], it
is shown that such constraints can be efficiently supported
in ordinary data. Generally, in the case of p-documents,
i-twigs with these types of constraints cannot be evaluated
efficiently under query-and-data complexity, since c-twigs
are a special case of i-twigs with these constraints.

An important observation is the following one. While it
is impossible to support completeness constraints as defined
in [19], supporting the following type of constraints can be
achieved by extending the algorithm EvalITwig (without

3In this case, max is the identity operator.

changing its complexity). For an edge (n,m) of I, if n is
in the domain of an i-match ϕ, then m must also be in the
domain of ϕ and the path in P from ϕ(n) to ϕ(m) must
consist of only ordinary nodes (that is, should not include
distributional nodes).

5.3.3 Ranked Enumeration
Maximal results of queries over probabilistic data may

largely differ in their relevancy to the user. Therefore, it
is desirable to assess a score for each result and output the
results in ranked order, i.e., in descending order of score.
Two measures are likely to determine the semantic strength
of a result: uncertainty and incompleteness. In the first
case, the score of a result is proportional to its probability,
whereas in the second case, the score is proportional to the
size of its domain.

The algorithm EvalITwig of Figure 4 enumerates the re-
sults in an arbitrary order. Naturally, enumeration in ranked
order is more desirable. Note that under data complexity,
ranking does not increase the complexity of evaluation, since
one can sort the results prior to presenting them the user.
However, this approach cannot yield enumeration in incre-
mental polynomial time (or with polynomial delay) under
query-and-data complexity. In [19], it is shown that in the
case of ordinary documents, one can enumerate the maxi-
mal matches by increasing amount of incompleteness, with
polynomial delay under query-and-data complexity (even if
additional ranking functions are involved). A similar result,
however, cannot be realized in the case of probabilistic doc-
uments, as shown by the following theorem.

Theorem 5.6. For the two scoring measures described
above, an algorithm that runs in incremental polynomial
time, under query-and-data complexity, cannot solve Eval-
Maximal by enumerating max(I↑p(P)) in ranked order, un-
less P=NP.

6. RELATED WORK
Probabilistic data models for XML are described in [1,

25, 14, 15, 21]. In [14, 15], semistructured data are viewed
as acyclic directed graphs where probabilities (or intervals
of probabilities [14]) are defined over sets of children. Our
p-documents are similar to those of [21]. In [1], two specific
models of probabilistic XML are presented. The “simple
probabilistic trees” (SP trees) are a restriction of our p-
documents to independent distributions, whereas the “fuzzy
trees” generalize our data model by associating with each
node a conjunction of atomic events (which may include
negation). Theoretic aspects of the fuzzy-tree model are
studied in [25]. Interestingly, there is an efficient translation
of an SP tree into a p-document and of a p-document into
a fuzzy tree.

Neither projection (which includes Boolean queries as a
special case) nor incompleteness has been studied in any
probabilistic XML model. Thus, in the above models, query
evaluation reduces to (1) evaluating the query as if the doc-
ument is ordinary (i.e., without probabilities), and (2) eval-
uating for each match, the probability that its image occurs
in a random document (as discussed in Section 3.2.2 just
before Example 3.7).4 Note that this straightforward ap-
proach cannot handle projection. It can be used for finding

4In [21], there is an additional operation that groups multi-
ple results that differ only in the values of the leaves.
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the probability of a partial answer, but it would entail find-
ing all partial answers prior to selecting the maximal ones.

The fuzzy trees are more general than our model, but
the tractability results of [25] are only for queries without
projections. We can show that it is #P-hard, under data
complexity, to evaluate twig queries with projections over
fuzzy trees (even under strong restrictions on the queries
and data5). Furthermore, it is NP-hard, under query-and-
data complexity, to find the maximal answers to twig queries
(without projections) over fuzzy trees.6 We can show similar
intractability results for the DAG models of [14, 15].

Probabilistic models for relational databases are investi-
gated in [2, 3, 7, 8, 9, 11, 20]. These models substantially
differ from our model, due to the conditional nature of prob-
abilistic XML (where the random process of generating data
is hierarchal). The work of [9, 10] shows that projection sig-
nificantly increases the data complexity—even projections
of very simple (tree) queries become intractable. As a sim-
ple example, [9] shows that any b-twig that consists of a
single path with at least four nodes is #P-hard when the
data form a graph (rather than a tree). In contrast, we have
shown that all twigs with projections have a tractable data
complexity in our model. Hence, our results do not follow
from those of [9, 10].7

Maximal answers to queries over ordinary data have been
investigated in [4, 5, 12, 17, 18, 24, 20]. Similarly to [5,
4, 20], we adapt a general approach that can be abstractly
described as enumerating maximal subgraphs that satisfy
some connected hereditary property. This adaptation en-
ables us to reduce the problem to the one that is solved in
Section 5.1. The only other work that deals with maximal
answers in the context of probabilistic data is [20]. How-
ever, [20] is couched in the relational model which is not
hierarchical, there is no root and a maximal answer has at
most one tuple from each relation. Therefore, the results of
this paper do not follow from those of [20] and, more im-
portantly, even the problem itself cannot be phrased in the
framework of [20].

7. CONCLUSION
The large variety of roles that XML has in practice neces-

sitates several semantics for query evaluation. We have stud-
ied the evaluation of twig queries over probabilistic XML
under three semantics, namely, complete, incomplete and
Boolean. In comparison to previous work on probabilistic
XML [1, 14, 15, 21], we have considered c-twigs with pro-
jections. Supporting projection substantially complicates
query evaluation, because the probability of a result is de-
rived from multiple, highly dependent events, namely, the
results of the sub-twigs that are projected out. We have
presented an algorithm for evaluating queries under the com-
plete and Boolean semantics. Our algorithm is efficient un-
der data complexity. In comparison, very simple queries
are highly intractable (under data complexity) in the prob-
abilistic relational models of [9, 10], when projection is al-
lowed. We have shown that, under query-and-data com-

5Namely, each node of the document consists of one positive
(not necessarily distinct) event and the query consists of only
two child edges.
6It is in polynomial time under data complexity.
7Moreover, [9, 10] do not consider mutually exclusive distri-
butions and it is not clear how to express descendant edges
in their framework.

plexity, query evaluation is intractable, even under strong
simplifying assumptions (in particular, even if there is no
projection). For the incomplete semantics, we have given
an algorithm that is efficient under query-and-data complex-
ity; for i-twigs with projections, the evaluation problem is
tractable under data complexity.

Acknowledgments
The authors thank Yuri Kosharovsky and the anonymous
referees for helpful comments and suggestions.

8. REFERENCES
[1] S. Abiteboul and P. Senellart. Querying and updating

probabilistic information in XML. In EDBT, 2006.
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