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ABSTRACT
Current skyline evaluation techniques follow a common paradigm
that eliminates data elements from skyline consideration by find-
ing other elements in the dataset that dominate them. The perfor-
mance of such techniques is heavily influenced by the underlying
data distribution (i.e. whether the dataset attributes are correlated,
independent, or anti-correlated).

In this paper, we propose the Lattice Skyline Algorithm (LS) that
is built around a new paradigm for skyline evaluation on datasets
with attributes that are drawn from low-cardinality domains. LS
continues to apply even if one attribute has high cardinality. Many
skyline applications naturally have such data characteristics, and
previous skyline methods have not exploited this property. We
show that for typical dimensionalities, the complexity of LS is lin-
ear in the number of input tuples. Furthermore, we show that the
performance of LS is independent of the input data distribution. Fi-
nally, we demonstrate through extensive experimentation on both
real and synthetic datasets that LS can result in a significant perfor-
mance advantage over existing techniques.

1. INTRODUCTION
The skyline operator has emerged as an important summarization

technique for multi-dimensional datasets. For a datasetD consist-
ing of data pointsp1, p2, ..., pn, the skylineS is the set of allpi

such that there is nopj that dominatespi. pi is said todominatepj

if pi is better thanpj in at least one dimension and not worse than
pj in all other dimensions, for a defined comparison function.

An example of the skyline operator in a hotel room selection
application is shown in Table 1. In this example, various hotels
in a particular city list guest amenities that they contain, such as
whether or not they have parking facilities, a swimming pool, and a
workout facility for guests. The hotels also list the number of stars
that they are rated, and the average price of a room. In this example,
a traveler wants to maximize the star rating and boolean-valued
amenities of the hotel while minimizing the price. The skyline of
this dataset consists of the Soporific Inn, the Drowsy Hotel, and the
Celestial Sleep. The Slumber Well is not in the skyline since it has
no client amenities and it has a lower rating and costs more than
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Hotel Parking Swim. Workout Star
Name Available Pool Center Rating Price
Slumber Well F F F ⋆ 80
Soporific Inn F T F ⋆⋆ 65
Drowsy Hotel F F T ⋆⋆ 110
Celestial Sleep T T F ⋆ ⋆ ⋆ 101
Nap Motel F T F ⋆⋆ 101

Table 1: A sample hotels dataset.

the Soporific Inn. The Nap Motel is not in the skyline because the
Soporific Inn also contains a swimming pool, has the same number
of stars as the Nap Motel, and costs less.

In this example, the skyline is being computed over a number of
domains that have low cardinalities, and only one domain that is un-
constrained (thePrice attribute in Table 1). This dataset character-
istic is common in many real applications for several reasons. First,
many applications naturally have low cardinality attributes. For ex-
ample, used car purchase applications often involve the user ex-
ploring tradeoffs between the car price (an unconstrained attribute)
and several additional attributes with low-cardinality or boolean-
valued domains, including the number of doors and the presence or
absence of airbags. Second, even seemingly continuous attribute
are often naturally searched using a mapping to a low cardinality
domain. For example, the car mileage is often mapped to a small
number of mileage ranges.

Existing skyline evaluation methods are not designed to exploit
the low-cardinality characteristics of such applications, and as a
result, are not efficient when used in these cases. The focus of
this paper is on developing an efficient skyline algorithm for such
applications.

We propose an algorithm called the Lattice Skyline algorithm
(LS) that is built around a new paradigm for skyline evaluation.
We show that the partial order imposed by the skyline operator
over such low-cardinality domains constitutes alattice. We then
develop an algorithm that exploits this property and computes the
skyline based on the structure of this lattice. The algorithm is very
efficient, and for typical dimensionalities has an asymptotic com-
plexity that is linear in the number of input tuples, which can be
a big improvement over other techniques. Detailed experimental
evaluation comparing LS with existing methods on both real and
synthetic datasets shows that in practice LS is indeed significantly
more efficient than existing methods.

An additional interesting property of the new lattice-based sky-
line computation paradigm is that the performance of LS is inde-
pendent of the underlying data distribution. To understand this
property, consider the paradigm used by previous skyline evalu-
ation techniques, such as Block Nested Loops [4] and Sort-First
Skyline [9]. These algorithms eliminate data elements from con-
sideration in the skyline by finding other elements in the dataset
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that dominate them. The performance of this class of algorithm
varies greatly depending on the underlying data distribution; specif-
ically, the performance of these algorithms degrades if the distribu-
tion tends towards an anti-correlated distribution. Note that many
skyline applications involve datasets in which there is a tradeoff in
relative values, which often naturally results in datasets that tend
to be anti-correlated. In contrast, LS uses a lattice-structure that
is dependent only on the underlying domain characteristics which
results in performance that is both predictable and independent of
the underlying distribution of the dataset. This property is very de-
sirable, not only from a stability perspective, but also when using
the skyline operator in a complex application in which estimates of
computational costs can be useful in shaping the user experience
(for example in providing progress indicators [8, 18] for complex
queries, which has received a lot of attention in recent years).

We acknowledge that previous skyline algorithms which have
been designed to be largely independent of the underlying domain
characteristics are more general than LS. The generality of these
methods implies that they can be applied in any setting. However,
we have observed that many skyline applications involve domains
with small cardinalities – these cardinalities are either inherently
small (such as star ratings for hotels), or can naturally be mapped to
low-cardinality domains (such as mileage on a used car). We show
that LS produces substantial performance gains for this important
class of applications.

The main contributions of this paper are as follows:

1. We develop a new paradigm for skyline computation that is
based on constructing a lattice over the underlying domains.
We then develop an efficient algorithm that exploits this lat-
tice structure to compute skylines over low-cardinality do-
mains.

2. We show that this method can easily accommodate one un-
constrained domain by modifying the lattice-based computa-
tion.

3. We show that for low-cardinality datasets of typical skyline
dimensionality, the skyline using LS can be evaluated in lin-
ear time!

4. We conduct an extensive performance evaluation using both
real and synthetic datasets and compare our method with the
SFS technique [9] with the LESS optimizations [10], which
is currently considered to be the most efficient skyline method
that does not require indexing or preprocessing. Our evalua-
tions shows that LS is significantly faster than SFS with the
LESS optimizations.

The remainder of this paper is organized as follows: Section 2
discusses related work. In Section 3, we show that the skyline op-
erator over the space of vectors over low-cardinality domains is a
lattice, and develop an algorithm for computing skylines using this
lattice. In Section 4 we extend the algorithm to accommodate one
attribute over an unrestricted domain. In Section 5 we discuss prop-
erties of LS and Section 6 presents experimental results. Section 7
discusses applications of LS for discretized attribute domains, and
Section 8 contains our concluding remarks.

2. TERMINOLOGY AND RELATED WORK
Terminology: An attribute domain is said to below-cardinality

if its value is drawn from a setS={s1, s2, ..., sm} such that the set

cardinalitym is small. A low-cardinality attribute domain is said to
betotally orderedif s1 < s2 < ... < sm. Skylines usually involve
totally ordered attribute domains. Boolean-valued attributes are a
special case of totally ordered, low-cardinality attributes. Hence-
forth, we refer to low-cardinality domains and implicitly assume
that they are totally ordered.

Related Work: The skyline is related to several other prob-
lems, including maximal vectors [13], the Pareto set, and convex
hulls [3]. The skyline was first introduced in the context of database
systems in [4]. In this paper, the authors introduce several algo-
rithms for evaluating the skyline, including the block-nested loops
(BNL) algorithm, a divide-and-conquer approach, and an indexing
technique using B-trees.

The Sort-First Skyline algorithm is proposed in [9], and it is a
variant of the BNL algorithm. This technique requires the data
to be sorted by a scoring function. Once the data is sorted, the
comparison between tuples is simplified since the buffer pool is
guaranteed to contain only skyline points. The technique is refined
in [10] by eliminating some tuples during the first sort pass with
comparisons to a small collection of tuples that fall early in the
sort order and combining the final pass of the sort with the first
filter pass of the skyline computation. The refined version of the
algorithm is called LESS.

Two progressive techniques were proposed in [22]: the Bitmap
and the Index techniques. The Bitmap technique operates on sky-
lines over low-cardinality domains, similar to the LS algorithm.
The Bitmap technique does not allow one of the attributes to be
over an unrestricted domain, so the scope of applications in which
it is applicable is more narrow. Bitmap also requires preprocess-
ing, since bitmap indices are required, and the Bitmap technique
was also shown to be generally less efficient than the Index tech-
nique. Since we are proposing an unindexed technique, we do not
compare with either of these indexed techniques; we further dis-
cuss our rational for selecting SFS with LESS for comparison in
Section 6.

Several techniques using R-trees have been proposed [12,19,20].
Many other problems relating to skyline evaluation have been stud-
ied. Techniques to reduce the number of skyline points in high
dimensions have also been proposed, including the skyline fre-
quency [7], strong skyline points [25], and the k-dominant sky-
line [6]. Other techniques to reduce output volume, including Ap-
proximately dominating representatives [11] and thek most rep-
resentative skyline operator [17], have also been studied. Tech-
niques to evaluate skylines in subspaces have been proposed in [24]
and [21]. These consider the lattice of dimensional subspaces for
skyline evaluation; in contrast, our work views the discrete, well-
ordered data space as a lattice and uses that lattice to evaluate the
skyline. In [15], a data cube for the dominance relationship is pro-
posed. It uses a lattice structure to develop the D*-tree, which in
turn is used to answer several types of dominance queries. How-
ever, the dominance relationship is a very different analysis oper-
ation than the skyline operation. Also, LS uses a lattice structure
on-the-fly to answer skyline queries, as opposed to indexing to eval-
uate the dominance of a specific point. Skyline evaluation has also
been studied in the context of streaming environments in [16, 23]
and in the context of partially ordered attribute domains in [5].

3. SKYLINE COMPUTATION FOR LOW-
CARDINALITY ATTRIBUTES

Throughout this paper, and without loss of generality, we con-
sider the skyline with the max operator for all attributes. This
means that the valueT dominates the valueF in the boolean case
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Figure 1: (a) A Boolean Lattice and (b) the Boolean Lattice
with arrows to explicitly indicate the dominance relationship.

and that larger values dominate smaller ones for low-cardinality
and unrestricted attributes.

In this section, we first show that the skyline operator over the
space ofd-dimensional vectors over low-cardinality domains is a
lattice. We then show how this lattice property can be used to de-
velop an efficient skyline algorithm (the Lattice Skyline algorithm).
We also give an example of its use and analyze its complexity.

3.1 Skyline and the Low-Cardinality Lattice
The dominance operator ‘≺’ over a dataset defines a partial or-

dering. (This is easy to see in the dataset in Table 1. The Celestial
Sleep dominates the Slumber Well, and hence Celestial Sleep≺
Slumber Well. The ordering is not total since the Celestial Sleep
neither dominates nor is dominated by the Soporific Inn).

In this subsection, we show that the partial order that the skyline
operator imposes over the space ofd dimensional vectors over low-
cardinality domainsB is a lattice. We letB denote the space ofd-
dimensional vectors over low-cardinality domains throughout the
rest of the paper.

We use the following definition for the lattice of a partially or-
dered set.

DEFINITION 3.1. A partially ordered setS with operator ’≺’
is a lattice if∀ a, b ∈ S, the set{a, b} has a least upper bound and
a greatest lower bound inS.

We can now use Definition 3.1 to show that the space of vectors
B with the skyline operator is a lattice.

THEOREM 3.2. The space of boolean valued vectorsB with the
skyline operator ’≺’ is a lattice.

PROOF. To show thatB with the skyline operator ’≺’ is a lat-
tice, we must show that each pair{x, y} wherex, y ∈ B has (1) a
greatest lower bound inB and (2) a least upper bound inB.

Showing (1) involves proving two cases - the case (a) in whichx
dominatesy (or y dominatesx) and the case (b) in whichx andy
are not comparable by the skyline operator.

• CASE 1.a: Ifx dominatesy (y dominatesx), then trivially
the greatest lower boundq betweenx andy is y (x).

• CASE 1.b: Ifx andy are not comparable in the partial order
≺, then the greatest lower boundq betweenx andy is ob-
tained by taking the min betweenx andy on all dimensions.
q is now a lower bound betweenx andy since in any dimen-
sioni, q has a value smaller than or equal to both that ofx or
y in dimensioni, and henceq is dominated by bothx andy.
q is a greatest lower bound since increasing the value of any
attributeai on dimensioni would no longer result in a lower
bound, since the new value ofq in dimensioni would now
be larger than one or both ofx or y in that dimension.
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Figure 2: A two-dimensional lattice in which each attribute is
drawn from the domain {0,1,2}.

Showing (2) also involves proving two cases - (a) in whichx
dominatesy (or y dominatesx) and the case (b) in whichx andy
are not comparable by the skyline operator. This part can be proved
in a similar way as above, and is omitted in the interest of space.

SinceB and the skyline operator are a lattice, we can draw the
Hasse diagram for the lattice. The Hasse diagram ofB for d = 3 in
which each low-cardinality attribute is boolean-valued is presented
in Figure 1a. In this Figure, the valueTTT dominates all other
values, so it is at the top of the diagram and it is the upper bound of
the set.FFF is dominated by all values so it is the lower bound.

The dominance relationship between elements ofB can be fur-
ther illustrated by adding arrows to the Hasse diagram as shown in
Figure 1b. For example,TTF dominatesTFF , FTF , andFFF .
These are the values in the graph in Figure 1b that are reachable
from TTF .

An example Hasse Diagram for a lattice over a two dimensional
space in which attributea1 is an element of{0, 1, 2} and attribute
a2 is also an element of{0, 1, 2} is shown in Figure 2a. In Fig-
ure 2b, arrows have been added to show the dominance relationship
between elements of the lattice.

We now define the concept of animmediate dominatorof an
element of a lattice overB. We letf(q.ai) denote the number of
attribute values in theith attribute domain thatai dominates for
q ∈ B. For example, in the domain{0, 1, 2}, value1 dominates
one element.

DEFINITION 3.3. Let q and q′ be elements fromB. q is an
immediate dominator ofq′ if and only ifq dominatesq′ and
Pd

i=1
f(q.ai) =

Pd

i=1
f(q′.ai) + 1.

For example, the immediate dominators of lattice element (1,1)
in Figure 2b are (2,1) and (1,2). In this case,f(1, 1) = 2 andf(2, 1)
= f(1, 2) = 3. In general, an element will haved or fewer immedi-
ate dominators since an element can only have 1 immediate domi-
nator per dimension. This property of the immediate dominators is
used later in the cost analysis of the algorithm.

3.2 Skyline Computation using the Lattice
A datasetD overd low-cardinality attributes does not necessar-

ily contain representatives for each lattice element. For example,
the three boolean attributes (Parking Available, Swimming Pool,
and Workout Center) in the dataset in Table 1 contains aFTF en-
try (the Soporific Inn and Nap Motel), but contains noTFF entry.

The method to obtain the skyline of a datasetD consisting of
elements ofB can be visualized using the Hasse diagram ofB.
The elements ofD that compose the skyline are those in the Hasse
diagram that have no path leading to them from another element
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Algorithm 1 LS-B: The Skyline for Datasets over Low-Cardinality
Domain Attributes.
1: Input: DatasetD with n tuples overd low-cardinality attributes, Vec-

tor V of sized whereVi is the cardinality of dimensioni.
2: Output: A set of skyline points.
3: Let size be the number of entries in the lattice= V1 ∗ V2 ∗ ... ∗ Vd.
4: Let the set ofdesignatorsbe{not present, present, dominated}.
5: Let a be an array ofdesignatorsof sizesize, initialized tonot present.
6: Let F (j) be the one-to-one mapping ofj ∈ B to a position ina.
7: for eachs ∈ D do
8: Let ls be the low-cardinality attribute values ofs.
9: Seta[F (ls)] to present.

10: end for
11: for t = size − 1 to 0 do
12: for Eachg ∈ immediate dominators ofa[t] do
13: if a[g] = (presentor dominated) then
14: a[t] =dominated
15: end if
16: end for
17: end for
18: for eachs ∈ D do
19: Let ls be the low-cardinality attribute values ofs.
20: if a[F (ls)] = presentthen
21: outputs as a skyline point.
22: end if
23: end for

present inD. For example, consider the case in whichB is the
space of 3 boolean attribute vectors andD consists of four tuples,
TTF , FTF , FFT , FFF . FTF is not a skyline value since it
is reachable in the diagram in Figure 1b from valueTTF ∈ D.
Similarly, FFF is reachable fromTTF , FTF , andFFT . TTF
andFFT are not reachable from any of the values inD, and they
are the skyline values.

We can use these observations to develop the LS-B algorithm
to find the skyline of a dataset over the space of vectors drawn
from low-cardinality domains. Initially, all elements of the lattice
of B are marked asnot presentin the dataset. The algorithm then
iterates through each tuplet of the datasetD. The element of the
lattice that corresponds tot will be marked aspresent(and not yet
dominated) in the dataset. After all tuples have been processed, the
elements of the lattice that are marked aspresentand which are not
reachable by the dominance relationship from any otherpresent
element of the lattice represent the skyline values. Elements that
are present but are reachable by the dominance relationship, and
hence are not skyline values, are markeddominatedto distinguish
them frompresentskyline values. The tuples that representpresent
skyline values can then be output with another iterative pass over
the dataset. We call thepresent, not present,or dominatedvalue of
each lattice position thedesignatorof that element.

3.3 The LS-B Algorithm
The LS-B algorithm, shown in Algorithm 1, computes the sky-

line on a datasetD with low-cardinality attribute spaceB.
In lines 3-5, the algorithm begins by initializing all elements of

the arraya to not present. The size of this array is equal to the
product of the domain cardinalities. Each element of the array rep-
resents one element of the lattice forB and stores adesignator.

We letF (q) denote the one-to-one mapping of an elementq ∈ B
to a position of the array in line 6. In the boolean case, we can use
the binary value of the boolean attributes to determine the array
position. For example, ifd = 3, then elementTFT ∈ D is rep-
resented by position 5 of the arraya, since the binary equivalent of
TFT is 101 = 5. In the low-cardinality case in our implementa-
tion, we chooseF (q) to be a linearization of the elements of the

(T T T)
 np


(T F T) 
np
(T T F) 
p
 (F T T) 
np


(T F F) 
np
 (F T F) 
p
 (F F T) 
p


(F F F) 
p


(T T T)
 np


(T F T) 
np
(T T F) 
p
 (F T T) 
np


(T F F) 
d
 (F T F) 
d
 (F F T) 
p


(F F F) 
d


(a) (b)

Figure 3: (a) The Boolean Lattice from the example, with
present [p] and not present [np] elements marked. (b) The lat-
tice with dominated values marked as dominated [d]. Skyline
values are those marked [p].

lattice, i.e. the ordering becomes(2, 2), (2, 1), (2, 0), (1, 2), etc.
In lines 7-10, the algorithm iterates over each tuple inD and sets
the position ina represented by the value ofq ∈ D to present.

In lines 11-17, the LS-B algorithm iterates through each element
of the lattice. If one of the immediate dominators of a lattice posi-
tion in the Hasse diagram is marked aspresentor dominated, indi-
cating that either it is in the skyline or it is dominated by a skyline
value, this position ina is marked asdominated. The algorithm
proceeds through the array beginning at the top of the lattice and
ending at the bottom, guaranteeing that the immediate dominators
of any element are checked before it.

In lines 18-23, the elements ofD are iterated through again, and
if the position ofa for the boolean-valued attributes of a particular
tuple is equal topresent, then that tuple is a skyline tuple. We note
that the second pass through the dataset that outputs the skyline
values is not required if the selection predicate in the query contains
only attribute values that are in the lattice. In such cases, the query
results can be output once skyline values in the lattice are found.

3.4 Example
As an example, suppose a traveler wants to find the skyline of

hotels for the boolean valued attributes (availability of parking,
swimming pool, and workout center) for the dataset from Table 1.
Specifically, the example data is displayed in Table 2.

The lattice element for each element ofB is initially marked as
not present. The LS-B algorithm iterates through each tuple in the
input. The lattice positiondesignatorof each tuple is set topresent.
For example,t1 is the first tuple considered in the dataset. The
designatorof its boolean attributes,FFF , is set topresent. The
lattice with each lattice value following these actions is displayed
in Figure 3a.

Following this, the positions in the lattice that are skyline values
are evaluated. The algorithm iterates through the possible values
that the space of 3 boolean vectors can obtain. It begins with ar-
ray position 7 (TTT ) and finishes with array position 0 (FFF ).
For each position, the immediate dominators are checked. The
actions for each lattice position, progressing from step 1 to step
8, are shown in Table 3. The lattice following the skyline value
evaluation, with each lattice element marked asnp=not present,

Tuple Name Boolean Attribute Values
t1 Slumber Well FFF

t2 Soporific Inn FTF

t3 Drowsy Hotel FFT

t4 Celestial Sleep TTF

t5 Nap Motel FTF

Table 2: The hotels from the example dataset of Table 1 with the
values of their three boolean-valued attributes (parking avail-
ability, swimming pool, and workout center).
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p=present, or d=dominatedis shown in Figure 3b. The skyline
values are those lattice positions marked asp.

The only positions of the lattice that are marked aspresentnow
are positionsTTF andFFT . These tuples are now output as the
skyline with another pass through the data.

3.5 Analysis
We now analyze the complexity of the LS-B algorithm for at-

tributes with low-cardinality domains.

THEOREM 3.4. The complexity of the LS algorithm over a set
of low-cardinality attributes isO(dV + dn), whered is the dimen-
sionality,n is the number of data tuples, andV is the product of
the cardinalities of thed low-cardinality domains from which the
attributes are drawn.

PROOF. The algorithm makes an initial pass through alln tu-
ples of the data in lines 7-10 of the algorithm. For each tuple, LS-
B marks a position in an array aspresentbased on the attribute
value for each dimension. Since array accesses areO(1), this pass
through the data isO(dn).

There areV elements in the lattice. Each is initialized in line 5
of the algorithm. In lines 11-17, each element of the lattice is com-
pared with its immediate dominators, of which there are at most
d. We note further that the individual operations in the algorithm
are very simple, and that the actual complexity is somewhat better
than the asymptotic would suggest. For instance, element(2, 1) of
the lattice depicted in Figure 2b has only 1 immediate dominator
instead of 2. In short, we expect the algorithm to be efficient in
practice, as we show in Section 6. Since there areV total entries
in the lattice, each compared with at mostd entries, this step is
O(dV ).

LS-B makes a final pass through the data in lines 19-23, which
output the skyline. For each tuple, the algorithm checks an array
position based on the attribute value for each dimension to see if
its value ispresent. This stage isO(dn). This produces an overall
complexity ofO(dV + dn) for the algorithm.

Analysis: This analysis shows that ifn is larger thanV , the
product of the domain cardinalities of each low-cardinality domain
attribute, then the algorithm is linear inn. We expectn to be sig-
nificantly larger thand for typical skyline datasets (past work has
usually experimented with 5-7 dimensions). We also give several
examples in Section 6 of low-cardinality datasets in which both
skyline computation is important andV is smaller thann. In such
cases, the skyline can be evaluated in linear time!

Lattice Old/New
Step Pos D1 (Value) D2 (Value) D3 (Value) Value

1 TTT n/a n/a n/a np / np
2 TTF TTT (np) n/a n/a p / p
3 TFT TTT (np) n/a n/a np / np
4 TFF TTF (p) TFT (np) n/a np / d
5 FTT TTT (np) n/a n/a np / np
6 FTF TTF (p) FTT (np) n/a p / d
7 FFT TFT (np) FTT (np) n/a p / p
8 FFF TFF (d) FTF (d) FFT (p) p / d

Table 3: The actions taken during the example, where
p=present, np=not present, and d=dominated. D1, D2, and D3
are the dominators of each position in the example. The value
of each such immediate dominator is given in parenthesis.

4. EXTENDING LS TO HANDLE ONE UN-
RESTRICTED ATTRIBUTE

In this section, we show how to expand the LS-B algorithm to
accommodate one attributeu drawn from an unrestricted domain
producing the general case LS algorithm. (For example, the domain
of u may be the real numbers.)

4.1 Overview
The LS-B algorithm presented in Algorithm 1 marks each lattice

position aspresent, not present, or dominatedand uses these desig-
nations to find the skyline values. To accommodate an unrestricted
domain attribute, in addition to storing thedesignator, each lattice
position also stores the bestu value in the dataset for that lattice
element. For example, if tuples with the lattice valueTFF have
u attribute values5, 6, and7, then the lattice element could store
7 in addition to thepresent designator. In this case, we call7 the
locally optimal value (lov) of lattice positionTFF .

DEFINITION 4.1. The locally optimal value (lov) of an element
q ∈ B is the maximum value of the unrestricted attributeu for any
element of a dataset whose low-cardinality attributes areq.

In the LS-B algorithm presented in the previous section, a lattice
element that is markedpresentis in the skyline if none of the lat-
tice positions dominating it are marked aspresent. Now, a lattice
element with alov u is in the skyline if none of the lattice positions
dominating it have alov u′ that is better than or equal tou. For
example, ifTFF has alov 7 stored in the lattice andTTF has a
lov 8, theTFF value is dominated and hence it will not appear in
the skyline. In this case,TFF can be marked as dominated. We
call the maximumlov contained in an elementq ∈ B and in the
elements inB that dominateq thedominant lattice value (dlv).

DEFINITION 4.2. Let A be the set consisting of the locally op-
timal value of an elementq ∈ B and of the locally optimal values
of all q′ ∈ B that dominateq. The dominant lattice value (dlv) of
q is the maximum value inA.

Now, a tupleti with low-cardinality attribute valuesq is a skyline
value if q is markedpresentandti.u is equal to thedlv of q in the
lattice. If thedesignatorof q is dominated, some other lattice entry
that dominatesq has anlov that is better than or equal to that of
q. We can now modify the LS-B algorithm to (1) store thelov for
each element ofB, (2) find thedlv for each elementq of B, and
then (3) compare each tuple’su value with thedlv to determine if
the tuple is in the skyline.

4.2 The Extended LS Algorithm
Algorithm 2 shows the general LS algorithm, which is an ex-

tension of the LS-B Algorithm. Most aspects of the algorithm re-
main unchanged. The only difference between the two is the values
stored for each element of the lattice are different (no longer just
storing thedesignatoras in the boolean case, but also a value for
the unrestricted domain). This information for each lattice element
is stored in an array of a defined typeL in lines 4 through 6. Each
array position stores two pieces of information: (1) thedesignator
and (2) thelov of the lattice element.

Each element of the lattice is initialized tonot presentin line 6
of the LS algorithm. In lines 7-15, the algorithm iterates through
the elements of the datasetD. If the lattice entry is markednot
presentor the lov is smaller thanu, the lattice entry is marked
presentand thelov is updated tou. For example, suppose a dataset
consists of data elements over 3 boolean attributes and 1 unre-
stricted attribute and that the first two data elements of the input
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Algorithm 2 LS: The Low-Cardinality Domain Skyline with 1 Un-
restricted Attribute Value.
1: Input: DatasetD with n tuples overd low-cardinality attributes and 1

unrestricted attribute, VectorV of sized whereVi is the cardinality of
dimensioni.

2: Output: A set of skyline points.
3: Let size be the number of entries in the lattice= V1 ∗ V2 ∗ ... ∗ Vd.
4: Let the set ofdesignatorsbe{not present, present, dominated}.
5: Let L be a defined type that containsv, the locally optimal value, and

e, an element from the set ofdesignators.
6: Let a be an array of typeL of sizesize, initialized tonot present.
7: for eachs ∈ D do
8: Let F (j) be the one-to-one mapping ofj ∈ B to a position ina.
9: Let ls be the low-cardinality attribute values ofs.

10: Let pos = F (ls).
11: if a[pos].e =not presentor a[pos].v < s.u then
12: Seta[pos].v to u.
13: Seta[pos].e to present.
14: end if
15: end for
16: for t = size − 1 to 0 do
17: for Eachg ∈ immediate dominators ofa[t] do
18: if a[g].e = (presentor dominated) then
19: if a[t].e =not presentor a[t].v ≤ a[g].v then
20: a[t].v = a[g].v
21: a[t].e =dominated
22: end if
23: end if
24: end for
25: end for
26: for eachs ∈ D do
27: Let ls be the low-cardinality attribute values ofs.
28: if a[F (ls)].e = presentanda[F (ls)].v = s.u then
29: outputs as a skyline point.
30: end if
31: end for

are(T, F, F, 3.2) and(T, F, F, 4.9). TheTFF lattice position is
initially not present, indicating that no elements with boolean value
TFF have yet been seen in the data. After processing input ele-
ment(T, F, F, 3.2), TFF is marked aspresentand 3.2 is stored as
the lov. After processing(T, F, F, 4.9), the lov is set to 4.9, since
4.9 is the best value for boolean valueTFF so far seen.

Now, LS must find thedlv for each element of the lattice. This
is done in lines 16-25 of the algorithm. It does this by iterating
over the elements of the lattice starting at the top of the lattice and
ending with the bottom element. For each such lattice elementq,
LS checks thedlv values of the immediate dominators ofq. Thedlv
value ofq becomes the maximum of thedlv values of the immediate
dominators ofq marked aspresentor dominatedand thelov of q.
If any of thedlv values of the immediate dominators ofq marked
aspresentor dominatedare greater than or equal to thelov of q, q
is marked as dominated.

Following this operation, the skyline tuples are those whose low-
cardinality value is marked aspresentand have adlv equal to their
u value. In lines 26-31, LS iterates over the elements ofD. For
each element ofD, LS compares the value ofu to thedlv for the lat-
tice element. If they are the same and the lattice element is marked
present, the tuple is an element of the skyline.

4.3 Example
Suppose a traveler is interested in finding the skyline of hotels

with regard to the three boolean-valued attributes and the price for
the data from Table 1. For this example, we transform the price
attribute via a simple flipping function to200 − price so that we
are only considering computing the skyline using themaxopera-
tor. Note that this transformation is necessary only to make the ex-
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Figure 4: (a) The Boolean Lattice from the example, with [p]
present and [np] not present elements marked with their lo-
cally optimal values; – means the lattice element is not updated.
(b) The lattice with dlvs for each element and with dominated
values marked [d]. Skyline values are those marked [p].

ample easier to follow by consistent use of themaxoperator. (We
could also have negated each value to achieve the same effect.) Our
method can easily be adapted to compute the skyline using an ar-
bitrary combination ofmaxandmin operators. The data used in
the example with the price transformation is shown in Table 4. We
refer to the200 − price value asu.

The lattice consists of eight entries, one for each boolean value,
and each is initialized tonot present. The LS algorithm now iterates
through the input and updates the lattice position for each tuple to
the bestu value so far present in the data. For example, when LS
processes tuplet1, thelov of FFF is set to 120. Since tuplest2 and
t5 both contain boolean valued attributesFTF , thelov of FTF is
set to 135 (the bestu value of eithert2 or t5). The lattice following
these actions is displayed in Figure 4a.

Now, each position in the lattice stores thelov for each lattice
element, i.e. the best value that is present in the datafor that el-
ement of the lattice. For example, botht2 and t5 have boolean
valueFTF , but thelov stores only the best value (135) forFTF .
LS now finds thedlv for each element of the lattice. For example,
FTF has alov equal to 135, which is better than thelov of FFF .
Hence, theFTF element dominates theFFF element, andFFF
is marked asdominatedand itsdlv is set to 135.

To find these dominating values, the algorithm iterates through
the possible values that the space of 3 boolean vectors can obtain.
It begins withTTT and ends withFFF . For each position, the
immediate dominators are checked. The actions for each lattice
position are shown in Table 5.

The skyline tuples can now be found by iterating over the dataset
again. Each tuplet1-t5 is compared with its lattice position. If the
u value for each tuple is equal to thedlv of the lattice position and
that position is markedpresent, that tuple is in the skyline. If the
values are not equal or the position is markeddominated, then the
tuple is not in the skyline. For example,t2.u is equal to 135 and
the dlv of lattice positionFTF is 135. FTF is also marked as
present. Hence,t2 is in the skyline. However,t1.u is equal to 120
and the value ofFFF ’s dlv is 135. Moreover,FFF is marked as
dominated, sot1 is not in the skyline. The skyline in this example
is t2, t3 andt4.

Tuple Name Boolean Value u (200-price) Value
t1 Slumber Well FFF 120
t2 Soporific Inn FTF 135
t3 Drowsy Hotel FFT 90
t4 Celestial Sleep TTF 99
t5 Nap Motel FTF 99

Table 4: Example data tuples.
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Old/New
Step Position Imm. Dom. (Value) Value

1 TTT n/a [np] – / [np] –
2 TTF TTT ([np] –) [p] 99 / [p] 99
3 TFT TTT ([np] –) [np] – / [np] –
4 TFF TTF ([p] 99), TFT ([np] –) [np] – / [d] 99
5 FTT TTT ([np] –) [np] – / [np] –
6 FTF TTF ([p] 99), FTT ([np] –) [p] 135 / [p] 135
7 FFT TFT ([np] –), FTT ([np] –) [p] 90 / [p] 90

8 FFF
TFF ([d] 99), FTF ([p] 135),

[p] 120 / [d] 135
FFT ([p] 90)

Table 5: Example LS actions to find thedlv for each lattice
position. Each lattice position is marked [p]=present, [np]=not
present, or [d]=dominated with the dlv next to it.

4.4 Analysis
The LS algorithm performs the same sequence of operations as

LS-B, with minor differences in the specifics that do not impact
the complexity. Hence, the complexity of the LS algorithm for
one unrestricted attribute is identical to that of the LS-B algorithm.
We omit a formal proof since it is similar to the one presented in
Section 3.

5. PROPERTIES OF LS
In the previous section, we showed that LS can have a signif-

icant asymptotic complexity advantage over other techniques. In
this section, we discuss two properties of LS that are desirable for
skyline computation.

1. The performance of LS does not depend on the ordering of
the elements of the input.

2. The performance of LS does not depend on the distribution
of the input.

The first property is desirable because we want a skyline compu-
tation technique to have good performance irrespective of the order
of the input elements. For example, the performance of the BNL
algorithm of [4] improves significantly if skyline tuples that domi-
nate a large number of data points are present early in the dataset,
since this allows BNL to eliminate most of these points in the first
elimination pass. On the other hand, if skyline tuples come very
late in the dataset order, many passes are needed to eliminate non-
skyline points from consideration. SFS [9] addresses this issue by
first sorting the data, but requires an expensive sorting operation.

LS achieves the first property because it is intrinsically insensi-
tive to the ordering of the input. No additional costs are incurred
such as sorting. For each input element, LS simply reads and writes
an element of the lattice. Accessing each element of the lattice has
the same fixed cost (an array access), so LS is not sensitive to re-
orderings of the input elements.

The second property is desirable because we want skyline al-
gorithms to have good performance regardless of whether the in-
put data is correlated, independent, or anti-correlated. Algorithms
such as SFS and BNL tend to perform much worse if the input is
anti-correlated. The performance of LS does not depend on the in-
put distribution, since finding the skyline values involves the same
comparisons with immediate dominators for each element of the
lattice irrespective of the dataset distribution. More skyline points
may be found if the dataset is anti-correlated, but this also does not
result in a difference in performance. This is because during the
second pass through the data, each input element is checked with
thedlv of the corresponding lattice element to determine if the in-
put element is a skyline point.

6. EXPERIMENTAL EVALUATION
In this section we presents results from an experimental study

designed to compare the performance of LS with the best existing
method. We have implemented two algorithms: a) our LS algo-
rithm and b) the SFS algorithm [9] with the LESS optimizations
described in [10]. (A brief description of the LESS algorithm is
presented in Section 2 of this paper.) Throughout this section, we
refer to these algorithms simply as LS and LESS, respectively. All
methods are implemented in C++. A buffer pool of size 500 pages
is used by both implementations for the experiments, and all page
requests go through this buffer pool. Page size is set to 4KB for
both methods. All experiments are performed on a 1.7GHz Xeon
machine running Debian Linux 2.6.

In all experiments, the tuple size is 100 bytes. This tuple size
is also used in [10] for their experiments. If the amount of space
needed to store the attribute values that the skyline is evaluated over
is less than 100 bytes, a random sequence of bits is added to the
tuple for padding. This more closely resembles a real database set-
ting in which a projection is applied to the tuples of the skyline that
seek information such as that contained in a text field or some other
information in addition to the multidimensional skyline values.

The reader will notice that LS requires two scans of the dataset
to output the skyline, the first to mark positions in a lattice structure
and a second to output skyline points from values derived from the
lattice. Our implementation does both of these passes through the
dataset for LS, i.e. our LS implementation is outputting not just
skyline values but the 100 byte values associated with each skyline
tuple. Hence, our comparison with LESS is a fair comparison.

The reason for choosing the LESS algorithm is as follows: LS is
a skyline evaluation technique that does not require an index, such
as BBS that requires an underlyingR-tree, or some other multidi-
mensional index. SFS with the LESS optimizations is currently the
best general skyline evaluation technique that also does not require
an index to be preconstructed on the data.

Both LS and LESS do not require preprocessing or indexing,
which makes them very appealing when the skyline operation is
part of a complex query (for example computing the skyline over a
subset of the base relation). On the other hand, indexed techniques
require precomputing an index, or building an index on-the-fly if
one does not exist, which is expensive. To confirm this, we have
considered bulk loading an R-tree index on the fly using the R-tree
bulk loading technique of [14] and then running BBS [19]. For the
datasets that we use in this section, the index construction time is
often greater by more than an order of magnitude compared to the
LS evaluation time. In the interest of space, we omit these results.

6.1 Datasets
For the datasets, we use both synthetic and real datasets. The

use of synthetic datasets allows us to carefully explore the effect of
various data characteristics, and is commonly used for skyline eval-
uation. We generate the synthetic datasets with correlated (CO),
independent (IN) and anti-correlated (AC) distributions using the
popular skyline dataset generator of [4]. We have modified the
generator to generate (a) datasets withd attributes each from low-
cardinality domains with domain size ofc, and (b) datasets with
d − 1 attributes from low-cardinality domains and 1 attribute from
the domain of all real numbers between 0 and 100K.

We generate a number of synthetic datasets by varying three pa-
rameters: (1) the data cardinalityn, (2) the data dimensionalityd,
and (3) the number of distinct values for each low-cardinality at-
tribute domainc. Datasets are generated for the CO, IN, and AC
distributions by holding two of these three parameters fixed at a de-
fault value and varying the third parameter. The parameter settings
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Parameter Settings
d 5, 6, 7
c 4, 6,8, 10, 12
n 100K, 250K,500K, 750K, 1M

Table 6: Parameter settings used for varying the dimensionality
(d), attribute cardinality (c), and dataset cardinality (n) for the
synthetic data experiments, with default parameters shown in
bold.

Domain
Description Type Values Cardinality
# of Bedrooms Low-card. Integer 7
# of Bathrooms Low-card. Nearest 1/2 Bath 4
# of Floors Low-card. Integer 3
Total Rooms Low-card. Integer 10
Contains Garage Boolean Yes or No 2
Asphalt Roof Boolean Yes or No 2
Colonial Arch. Boolean Yes or No 2
Estimated Price Continuous Dollar value nearly 160K

Table 7: Attributes in the Zillow house-price dataset.

used for these three parameters are shown in Table 6, with default
parameter settings shown in bold. (The default value ofn = 500K
is also used in [10]).

We also use two real datasets for our experiments. The first
dataset is a house-price information dataset that is obtained from
Zillow.com [2]. Zillow lists the number of bedrooms, the number of
bathrooms, the estimated price, and other information about houses
all over the United States. We obtained a dataset containing more
than 160K entries for the local regional area between Yonkers, NY
and Stamford, CT. This region corresponds to the area that a New
York City commuter might live in north of the city. The dataset con-
tains 8 attributes which are summarized in Table 7. In this dataset,
the house price is an unconstrained attribute.

The second real dataset is taken from the Internet Movie Database
(IMDB) [1], which contains information about movies and televi-
sion shows, and ratings of these by actual users. From the IMDB,
we have produced a dataset that contains over 161K entries and four
attributes. The four attributes are summarized in Table 8. In this
dataset, the rating attribute is a value between 0.0 and 10.0 with 1
decimal precision, and the number of reviewers is an unconstrained
attribute of the dataset with a range from 0 to 217K.

6.2 Experimental Setup
A buffer pool size of 500 pages is used in all the experiments.

For LS, 499 buffer pages are used to store the lattice element en-
tries in an array and 1 page is used to read in the data set. The
499 buffer pool pages are enough for the lattice structure to fit into
memory for all tests. For example, for either the CO, IN, or AC
synthetic datasets with the default parameters (d = 6, c = 6) the
lattice structure size is85 = 32768 lattice entries. Each lattice
entry uses 34 bits (4 bytes to store the6th attribute which may be
either low-cardinality or from an unrestricted domain, and 2 bits to
store thedesignator). Hence, the lattice structure in this case uses
136K of memory (32768*34/8). Note that the buffer pool is of size
500*4K=2000K. Note also that the largest the size of the lattice
reaches in these experiments is86*34/8=1088K.

In [10], the authors state that no increase in performance is no-
ticed when setting the EF window size to more than 5 pages. We
observed this also in our experiments and even noticed a decrease
in performance for some larger EF window sizes. Hence, the EF
window size is set to 5 pages in our experiments, which is also
done in [10].

Domain
Description Type Values Cardinality
Rating Low-card. 1/10 Increments 101
Color Boolean Color or B&W 2
Year Low-card. Integer 99
No. of Reviewers Continuous # of voters 217K

Table 8: Attributes in the IMDB movie dataset.

6.3 Performance on Synthetic datasets

6.3.1 d-1 Low-Cardinality Attributes and One Con-
tinuous Attribute

In this experiment, we evaluate the two algorithms on both corre-
lated, independent, and anti-correlated datasets. In these tests, one
attribute is drawn from an unrestricted domain consisting of the set
of all real numbers between 0 and 100K and the remainingd − 1
attributes are are drawn from low-cardinality domains. In the first
test, we vary the dimensionality between 5 and 7 (similar to the per-
formance study of [10]). The results are shown in Figures 5a, 5b,
and 5c for the correlated, independent, and anti-correlated datasets,
respectively. Figure 5d, shows the number of skyline points for
each distribution.

From Figure 5c we observe that LS is an order of magnitude
faster than LESS in the AC case. LS is also faster in the indepen-
dent case for 6 dimensions (about 3X), 7 dimensions (about 4X),
and a small advantage for 5 dimensions. In the correlated case,
the algorithms perform almost identically for lower dimensions (5
and 6). LESS does achieve an advantage over LS for 7 dimensions
in the CO case. Notice that the performance of LS is not varying
across distributions, which is expected (see Section 5 for details).
The time curve for LS is identical for the CO, IN, and AC distri-
butions, only the scaling in the three graphs is changing. LESS’s
performance varies with the number of skyline points. The number
of skyline points for each distribution is shown in Figure 5d. When
the number of skyline points is small (near 10), as in the CO case,
LESS performs as well or better than LS. However, when the num-
ber of skyline points increases and as the dataset becomes more
anti-correlated, LESS requires more computation time as expected.
LS has a bigger advantage in the AC case because LESS is not able
to eliminate as many tuples with its sort-filter pass as in the IN case.
Hence, LESS must perform more comparisons in the AC case.

It is worth noting that the number of skyline points for the 1 unre-
stricted andd−1 low-cardinality domains in Figure 5d never climbs
above 4 percent of the 500K dataset size for any of the dimen-
sionalities or distributions. In all other experiments, the number of
skyline points for each test is a small percentage of the data (also
always less than 4 percent of the dataset size). In other words, low-
cardinality domains do not produce a catastrophic case in which
nearly the whole dataset is in the skyline.

In the second test, we vary the attribute cardinality between 4 and
12. The results are presented in Figures 6 a, b, and c for the CO,
IN, and AC distributions, respectively. Similar to the dimensional-
ity results already presented, LS outperforms LESS by more than
an order of magnitude for the AC distribution. For the IN distribu-
tion, the performance advantage of LS relative to LESS rises as the
domain cardinalities (and hence also the number of skyline points
present in the dataset) increases, varying from between 1.5X better
when each of thed − 1 low-cardinality domains has cardinality 4
to about 2.5X better when the cardinality is 12. For the correlated
case, LS and LESS perform about the same when the domain cardi-
nalities are between 4 and 10 while LESS achieves a performance
advantage when the domain cardinality reaches 12. This is because
the small number of skyline points (similar to the dimensionality

274



T
im

e 
(s

)

0

1

2

3

Total Dimensions
5 6 7

LESS
LS

T
im

e 
(s

)

0

2

4

6

8

10

Total Dimensions
5 6 7

LESS
LS

T
im

e 
(s

)

0

5

10

15

20

25

30

35

Total Dimensions
5 6 7

LESS
LS

# 
of

 S
ky

lin
e 

P
oi

nt
s

1

10

100

1000

10000

Total Dimensions
5 6 7

P
er

ce
nt

 o
f T

ot
al

 P
oi

nt
s

.01

.1

1

4

Corr
Ind
Anti

(a) (b) (c) (d)

Figure 5: Results for 1 unrestricted and d-1 low-cardinality attributes with varying dimensionality for (a) the CO, (b) the IN,
and (c) the AC distributions. (n=500K, c=8) The number of skyline points in each dataset is shown in (d).
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Figure 6: Results for 1 unrestricted and d-1 low-cardinality attributes with varying attribute cardinality for (a) the CO, (b)
the IN, and (c) the AC distributions. (n=500K, d=6) The number ofskyline points in each dataset is shown in (d).

tests, about 10 total data points) present in the data for the corre-
lated case means that LESS can be very efficient. The number of
skyline points for each distribution is shown in Figure 6d. The per-
formance of LESS degrades for the other data distributions as the
number of skyline points rises. The performance of LS varies with
the sizes of the low-cardinality domains, since larger sizes mean
more elements in the lattice. The performance of LS does not vary
with the data distribution, but remains constant across each of the
three distributions.

In the third test, we vary the input data cardinality between 100K
and 1M data tuples. The results for the CO, IN, and AC distribution
are presented in Figures 7 a, b, and c, respectively. LS is faster than
LESS by an order of magnitude or better for the AC distribution,
and about 3X better than LESS on the IN distribution. LS and
LESS perform similarly on the CO dataset. The performance of
LS decreases approximately linearly asn increases, since the size
of n exceeds the cost of the lattice comparisons (d − 1)*V =164K.
for all data sizes except 100K. The performance of LESS degrades
faster for the AC distribution because the number of skyline points
is greatest for this distribution (see Figure 7d).

6.3.2 d Low-Cardinality Attributes
In this section, we evaluate the performance of LS on datasets

that containd attributes drawn from low-cardinality domains. We
again compare LS with LESS and test with synthetically generated
datasets from the CO, IN, and AC distributions.

For these experiments, we build the lattice usingd − 1 of the
low-cardinality attributes. This allows us to use Algorithm 2 for
the skyline evaluation, storing the value of thedth attribute in the
lattice. The skyline evaluation using this technique is correct. This
results in better performance than building the lattice over alld
attributes since the size of the lattice is smaller.

The skyline sizes for the datasets are presented in Figures 8d,

9d, and 10d for varying dimensionality, attribute cardinality, and
dataset cardinality, respectively. The reader may notice when ob-
serving this data for the correlated and independent data distribu-
tions that the number of skyline points decreases asc or d gets
larger, which seems counter-intuitive. This occurs because, for
these parameter choices, there are a large number of duplicates of
the maximal tuple. This repetition occurs because in these cases,
the size of the dataspace is smaller than the dataset size. Skyline
algorithms cannot simply discard such duplicate skyline values be-
cause the skyline query very often is requesting information beyond
just skyline values (for example, the name of a hotel) that is unique
to each tuple. These duplicates can occur in real datasets. For ex-
ample, many hotels could offer a workout center, a pool, and free
parking. A skyline query for these attributes could then return mul-
tiple hotels offering the same features.

In the first test, we vary the dimensionality between 5 and 7 (as
in the performance comparison in [10]). The results are shown
in Figures 8 a, b, and c for the correlated, independent, and anti-
correlated datasets, respectively. LS performs better than LESS by
a factor of 5-6X for the AC dataset. On the IN dataset, LS also out-
performs LESS when the dimensionality is 6 or 7 (nearly 2X). LS
performs about the same as LESS for the correlated dataset for di-
mensionalities of 5 and 6 and LESS performs better than LS for the
correlated dimensionality of 7. The performance advantage for LS
for thed low-cardinality attributes is not as great as was achieved
in Section 6.3.1 because the number of skyline points is smaller.
As is described in Section 6.1, there is a smaller number of sky-
line points for the correlated case because the number of values
expected to be located at the maximum point decreases as the di-
mensionality increases (500K/85 = 15 vs. 500K/87 > 1). This
trend accounts for the shape of the lines for the number of skyline
points in Figure 8d.

In the next experiment, we vary the low-dimensionality cardinal-
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Figure 8: Results for d low-cardinality attributes with varying dimensionality for (a) the CO, (b) the IN, and (c) the AC
distributions. (n=500K, c=8) The number of skyline points in each dataset is shown in (d).

ities. The results for this experiment are shown in Figures 9 a, b,
and c for the CO, IN, and AC datasets, respectively. LS is faster in
the anti-correlated case by nearly an order of magnitude forc ≥ 6
and is about 4X faster whenc = 4. LS is faster for the indepen-
dent case by about 2X whenc ≥ 8 and about1.5X whenc = 4
or 6. The performance of LESS for the correlated case is better for
c ≥ 6 versusc = 4 because the number of skyline points forc = 4
is much greater than the other cases. This is because the smaller
data space results in more duplicate values (see Section 6.1 for de-
tails). Essentially, the performance of LESS for the CO case closely
follows the trend set by the skyline size, shown in Figure 9d.

In the third test, we vary the number of data points in each dataset
between 100K and 1M. The results are shown in Figures 10 a, b,
and c for the CO, IN, and AC datasets respectively. LS is better
by nearly an order of magnitude for the AC distribution and by
nearly 2X for the IN distribution for cardinalities greater than or
equal to 500K. The performance of LESS and LS is similar for the
correlated case, for reasons already discussed.

6.4 Performance on Real Datasets
First, we evaluate the performance of LS and LESS on the Zillow

dataset. This dataset contains 8 attributes (see Table 7), and our
queries compute the skyline with respect to the max operator for
the first 7 attributes, since these attributes represent home features
that a home buyer may want to maximize. We take the skyline with
respect to the min operator for the estimated price of the house.

Using this 8 dimensional dataset, we obtain 5, 6, and 7 dimen-
sional subsets to be used for testing in the following way: for 5 di-
mensions, we randomly select 4 of the first 7 attributes along with
the price attribute (the unrestricted attribute) to obtain 5 attributes
in total. We do this 10 times to obtain 10 unique 5 dimensional
datasets whose query times are then averaged and reported in this
section. A similar operation is done for 6 dimensions. For 7 dimen-

sions, there are seven possible selections of six of the first seven
attributes. Each of these seven possible attribute selections, along
with the price attribute, make up the 7 dimension attribute subsets.

The performance on the Zillow dataset is shown in Figure 11a.
Here, we see that LS outperforms LESS by about an order of mag-
nitude. This behavior is due to the anti-correlated nature of the
price attribute with respect to the number of features (bedrooms,
bathrooms, etc.) offered by each house. Intuitively speaking, as
the number of features rises, the cost of the house also rises. This
produces an advantage for LS since its performance is independent
of the dataset distribution.

We also evaluate the performance of LS on the IMDB movie
dataset. There are four different skyline queries that different users
may want to use with this dataset: (1) a query for classic movies
that are in black and white,CBW (e.g. “Casablanca”), (2) a query
for classic movies that are in color,CC (e.g. “The Wizard of Oz”),
(3) for new movies that are black and white,NBW(e.g. “Schindler’s
List”), and (4) for new movies in color,NC. All queries maximize
the movie rating and number of reviewers attributes when perform-
ing the skyline, to find highly rated movies that have been reviewed
by as many voters as possible. Each query either minimizes or
maximizes the year and color attributes, depending on whether it
is a classic or new movie query for films in color or in black and
white. The performance on the IMDB dataset for these four queries
is shown in Figure 11b. The performance of LS is about 2X faster
than LESS for theCBW andCC queries and about 1.7X faster on
the NBW query. LS achieves a modest improvement for theNC
query. The reason why LESS performs relatively better for theNC
movie query is that the movie entitled “The Shawshank Redemp-
tion” has the largest number of reviews (more than 217K), and one
of the best ratings. It, and a few similar movies, dominate a large
number of the other entries. Hence, the skyline filter pass of LESS
is very effective. There is no similar effect for the other queries.
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Figure 9: Results for d low-cardinality attributes with varying attrib ute cardinality for (a) the CO, (b) the IN, and (c) the AC
distributions. (n=500K, d=6) The number of skyline points in each dataset is shown in (d).
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Figure 10: Results for d low-cardinality attributes with varying data set cardinality for (a) the CO, (b) the IN, and (c) the AC
distributions. (c=8, d=6) The number of skyline points in each dataset is shown in (d).
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Figure 11: Performance of LS and LESS on (a) the Zillow
house-price information dataset, and (b) the IMDB Movie Rat-
ings Dataset.

which means that LESS does more work for these. LS performs
the same irrespective of the input. It is also worth noting that the
“low” cardinality domains in this example each had cardinalities
of approximately 100. Even for this largec value, LS outperforms
LESS.

6.5 Performance Summary:
The performance results can be summarized as follows:

• LS typically performs between 5X and an order of magnitude
better than LESS on anti-correlated datasets.

• LS performs between about 1.5X and 4X better than LESS
on independent datasets.

• LS and LESS perform similarly for the synthetic correlated
datasets, with LESS achieving an advantage whend = 7 or
c ≥ 10.

• For the real Zillow dataset LS outperforms LESS by an or-

der of magnitude and for the lower dimensional IMDB movie
database LS outperforms LESS by up to 2X.

7. DISCRETIZED SKYLINES
In many applications, it may be appropriate to discretize attributes

that are over continuous-value domains at coarse granularity. For
example, consider the hotel dataset already used as a running ex-
ample (see Table 1). Now consider what happens if Celestial Sleep
were to reduce the price of a room to 66 dollars. The tuples for the
Celestial Sleep and Soporific Inn are as follows:

Hotel Parking Swim. Workout Star
Name Available Pool Center Rating Price
Soporific Inn F T F ⋆⋆ 65
Celestial Sleep T T F ⋆ ⋆ ⋆ 66

The Celestial Sleep does not dominate the Soporific Inn since it
is still more expensive. Although the Soporific Inn is still in the
skyline, including it there in the skyline adds little value since most
travelers would prefer to stay at the higher-rated Celestial Sleep
for only one extra dollar. This characteristic feature is present in a
number of real skyline applications.

As another example, consider the typical car purchase applica-
tion in which users explore the tradeoffs in price and several addi-
tional attributes with low-cardinality or boolean-valued domains. A
mileage attribute that may be over a continuous domain can be dis-
cretized into a low-cardinality domain. For example, mileage cat-
egories might include 30,000-40,000 miles, 40,000-50,000 miles,
etc. (Websites such as autotrader.com already allow you to search
for cars with mileage under certain increments such as under 75,000).
This sort of coarse discretization is often appropriate for continu-
ous valued attributes in many skyline applications because the pur-
pose of skyline computations is often to find candidates for further
consideration, and small differences in the value of a continuous
attribute can sometimes be ignored.
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Definition: We may formally define the discretized skyline if
we letg(q.ai) denote the value of theith attribute ofq in the dis-
cretized space.

DEFINITION 7.1. Elementq ∈ D is said to dominateq′ ∈ D
in the discretized space with respect to preference function≺i if
∀i ∈ d,g(q.ai) ≺i g(q′.ai). The discretized skylineA for dataset
D is the set of allp ∈ D such thatp is not dominated by any other
q ∈ D in the discretized space.

This formulation weakens the dominance condition for two pur-
poses. First, it observes that a small advantage in dimensioni for q
overq′ does not necessarily makeq more interesting thanq′ (such
as in the case of the Soporific Inn and Celestial Sleep), although
discretization may not necessarily solve this problem when values
fall close to bucket boundaries. Second, the overall number of sky-
line points may be reduced, and this is usually desirable.

LS is applicable only to problems with low-cardinality domains,
with at most one unconstrained domain. When discretization is
appropriate, any continuous attribute can be converted into a low-
cardinality attribute. LS can then be applied after such discretiza-
tion.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed the Lattice Skyline algorithm

that is built around a new paradigm for skyline evaluation of datasets
whose attributes are drawn from low-cardinality domains. Other
skyline evaluation techniques are built around a common paradigm
that eliminates points from consideration in the skyline by finding
some other dataset element that dominates it. LS uses the structure
of the lattice imposed by the skyline operator on the data space of
the low cardinality attributes to identify skyline points. This allows
LS to have a complexity (for typical skyline dimensionalities and
low-cardinality domains) that is linear in the size of the input. It
also means that the performance of LS is independent of the data
distribution, an important result since the performance of other sky-
line algorithms typically degrades as the dataset attributes become
anti-correlated.

We have shown that LS is applicable to skyline evaluation for
three important classes of applications: those in which all attributes
come from low-cardinality domains (such as the discretized sky-
line), those in which attribute domains can be naturally mapped
to low-cardinality domains, and those in which one attribute is
from an unrestricted domain and all other attributes are from low-
cardinality domains. For these applications, LS is also usually sig-
nificantly faster than existing skyline evaluation methods.

We leave as future work extensions of the LS algorithm when the
product of the attribute domain cardinalities is greater than main
memory. In such cases, it may be possible to extend LS such that
the entire lattice is selectively cached in main memory.
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