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ABSTRACT Hotel Parking | Swim. | Workout Star
Name Available | Pool Center | Rating | Price
Current skyline evaluation techniques follow a common paradigm | Slumber Well F F F * 80
that eliminates data elements from skyline consideration by find- | Soporific Inn F T F *x 65
ing other elements in the dataset that dominate them. The perfor- gg?évsst?’a:"glt:é 17*: 5 ? *x ié(l)
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mance of such techniques is heavily influenced by the underlying Nap Motel P P T F - 101

data distribution (i.e. whether the dataset attributes are correlated,
independent, or anti-correlated).

In this paper, we propose the Lattice Skyline Algorithm (LS) that
is built around a new paradigm for skyline evaluation on datasets
with attributes that are drawn from low-cardinality domains. LS
continues to apply even if one attribute has high cardinality. Many
skyline applications naturally have such data characteristics, and

previous skyline methods have not exploited this property. We domains that have low cardinalities, and only one domain that is un-

ngt[]haé ?J.;y[? eﬂﬂmiﬁfp?:g“epsqrmfn?ggleﬁyg ol;vstlhsaltl% e constrained (th®rice attribute in Table 1). This dataset character-

performance of LS is independent of the input data distribution. Fi- Isticis common in many real applications f_or s_everal_ reasons. First,
) . . many applications naturally have low cardinality attributes. For ex-
nally, we demonstrate through extensive experimentation on both

real and synthetic datasets that LS can result in a significant perfor- alrgﬁLe. tfzggoﬁfzrbr)elixgsﬁhg%ﬂlrcartilé):?a?lftuenncénr:/sc;lr\;?n:ahtfal:tsr ?bru(taé()-
mance advantage over existing techniques. p 9 p

and several additional attributes with low-cardinality or boolean-
valued domains, including the number of doors and the presence or

Table 1: A sample hotels dataset.

the Soporific Inn. The Nap Motel is not in the skyline because the
Soporific Inn also contains a swimming pool, has the same number
of stars as the Nap Motel, and costs less.

In this example, the skyline is being computed over a number of

1. INTRODUCTION absence of airbags. Second, even seemingly continuous attribute
The skyline operator has emerged as an important summarizationare often naturally searched using a mapping to a low cardinality
technique for multi-dimensional datasets. For a dat&sebnsist- domain. For example, the car mileage is often mapped to a small
ing of data point®1, pz, ..., pn, the skylinesS is the set of alp; number of mileage ranges. _ _
such that there is np; that dominateg;. p; is said todominatep; Existing skyline evaluation methods are not designed to exploit
if p; is better tharp; in at least one dimension and not worse than the Iow-cardlnallty gharacterlstlcs of such applications, and as a

An example of the skyline operator in a hotel room selection this paper is on developing an efficient skyline algorithm for such
application is shown in Table 1. In this example, various hotels applications. ) ) ) ]
in a particular city list guest amenities that they contain, such as We propose an algorithm called the Lattice Skyline algorithm
whether or not they have parking facilities, a swimming pool, and a (LS) that is built around a new paradigm for skyline evaluation.
workout facility for guests. The hotels also list the number of stars We show that the partial order imposed by the skyline operator
that they are rated, and the average price of a room. In this example 0ver such low-cardinality domains constituteattice. We then
a traveler wants to maximize the star rating and boolean-valued develop an algorithm that exploits this property and computes the
amenities of the hotel while minimizing the price. The skyline of Skyline based on the structure of this lattice. The algorithm is very
this dataset consists of the Soporific Inn, the Drowsy Hotel, and the €fficient, and for typical dimensionalities has an asymptotic com-
Celestial Sleep. The Slumber Well is not in the skyline since it has Plexity that is linear in the number of input tuples, which can be

no client amenities and it has a lower rating and costs more than@ big improvement over other techniques. Detailed experimental
evaluation comparing LS with existing methods on both real and

synthetic datasets shows that in practice LS is indeed significantly
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that dominate them. The performance of this class of algorithm cardinalitym is small. A low-cardinality attribute domain is said to
varies greatly depending on the underlying data distribution; specif- betotally orderedif s1 < s2 < ... < s,,. Skylines usually involve
ically, the performance of these algorithms degrades if the distribu- totally ordered attribute domains. Boolean-valued attributes are a
tion tends towards an anti-correlated distribution. Note that many special case of totally ordered, low-cardinality attributes. Hence-
skyline applications involve datasets in which there is a tradeoff in forth, we refer to low-cardinality domains and implicitly assume
relative values, which often naturally results in datasets that tend that they are totally ordered.
to be anti-correlated. In contrast, LS uses a lattice-structure that Related Work: The skyline is related to several other prob-
is dependent only on the underlying domain characteristics which lems, including maximal vectors [13], the Pareto set, and convex
results in performance that is both predictable and independent ofhulls [3]. The skyline was first introduced in the context of database
the underlying distribution of the dataset. This property is very de- systems in [4]. In this paper, the authors introduce several algo-
sirable, not only from a stability perspective, but also when using rithms for evaluating the skyline, including the block-nested loops
the skyline operator in a complex application in which estimates of (BNL) algorithm, a divide-and-conquer approach, and an indexing
computational costs can be useful in shaping the user experiencetechnique using B-trees.
(for example in providing progress indicators [8, 18] for complex The Sort-First Skyline algorithm is proposed in [9], and it is a
queries, which has received a lot of attention in recent years). variant of the BNL algorithm. This technique requires the data
We acknowledge that previous skyline algorithms which have to be sorted by a scoring function. Once the data is sorted, the
been designed to be largely independent of the underlying domaincomparison between tuples is simplified since the buffer pool is
characteristics are more general than LS. The generality of theseguaranteed to contain only skyline points. The technique is refined
methods implies that they can be applied in any setting. However, in [10] by eliminating some tuples during the first sort pass with
we have observed that many skyline applications involve domains comparisons to a small collection of tuples that fall early in the
with small cardinalities — these cardinalities are either inherently sort order and combining the final pass of the sort with the first
small (such as star ratings for hotels), or can naturally be mapped tofilter pass of the skyline computation. The refined version of the
low-cardinality domains (such as mileage on a used car). We showalgorithm is called LESS.
that LS produces substantial performance gains for this important  Two progressive techniques were proposed in [22]: the Bitmap
class of applications. and the Index techniques. The Bitmap technique operates on sky-
The main contributions of this paper are as follows: lines over low-cardinality domains, similar to the LS algorithm.
The Bitmap technique does not allow one of the attributes to be
1. We develop a new paradigm for skyline computation that is over an unrestricted domain, so the scope of applications in which
based on constructing a lattice over the underlying domains. it is applicable is more narrow. Bitmap also requires preprocess-
We then develop an efficient algorithm that exploits this lat- ing, since bitmap indices are required, and the Bitmap technique
tice structure to compute skylines over low-cardinality do- was also shown to be generally less efficient than the Index tech-
mains. nique. Since we are proposing an unindexed technique, we do not
compare with either of these indexed techniques; we further dis-
2. We show that this method can easily accommodate one un-cuss our rational for selecting SFS with LESS for comparison in
constrained domain by modifying the lattice-based computa- Section 6.
tion. Several techniques using R-trees have been proposed [12,19,20]
Many other problems relating to skyline evaluation have been stud-
3. We show that for low-cardinality datasets of typical skyline i€d. Techniques to reduce the number of skyline points in high
dimensionality, the skyline using LS can be evaluated in lin- dimensions have also been proposed, including the skyline fre-
ear time! quency [7], strong skyline points [25], and the k-dominant sky-
line [6]. Other techniques to reduce output volume, including Ap-
4. We conduct an extensive performance evaluation using both Proximately dominating representatives [11] and henost rep-
real and synthetic datasets and compare our method with the"€Sentative skyline operator [17], have also been studied. Tech-
SFS technique [9] with the LESS optimizations [10], which ~niques to evaluate skylines in subspaces have been proposed in [24]
is currently considered to be the most efficient skyline method @nd [21]. These consider the lattice of dimensional subspaces for
that does not require indexing or preprocessing. Our evalua- SKyline evaluation; in contrast, our work views the discrete, well-
tions shows that LS is significantly faster than SFS with the ordered data space as a lattice and uses that lattice to evaluate the
LESS optimizations. skyline. In [15], a data cube for the dominance relationship is pro-
posed. It uses a lattice structure to develop the D*-tree, which in
The remainder of this paper is organized as follows: Section 2 tUrn is used to answer several types of dominance queries. How-
discusses related work. In Section 3, we show that the skyline op- €Ver, the dominance relationship is a very different analysis oper-
erator over the space of vectors over low-cardinality domains is a ation than the skyline operation. Also, LS uses a lattice structure
lattice, and develop an algorithm for computing skylines using this On-the-fly to answer skyline queries, as opposed to indexing to eval-
lattice. In Section 4 we extend the algorithm to accommodate one Yate the dominance of a specific point. Skyline evaluation has also
attribute over an unrestricted domain. In Section 5 we discuss prop-Peen studied in the context of streaming environments in [16, 23]
erties of LS and Section 6 presents experimental results. Section 72nd in the context of partially ordered attribute domains in [S].
discusses applications of LS for discretized attribute domains, and
Section 8 contains our concluding remarks.

3. SKYLINE COMPUTATION FOR LOW-

CARDINALITY ATTRIBUTES
2. TERMINOLOGY AND RELATED WORK Throughout this paper, and without loss of generality, we con-

Terminology: An attribute domain is said to Hew-cardinality sider the skyline with the max operator for all attributes. This
if its value is drawn from a seéf={s1, s2, ..., sm } such that the set means that the valuE dominates the valué’ in the boolean case
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Figure 1: (a) A Boolean Lattice and (b) the Boolean Lattice
with arrows to explicitly indicate the dominance relationship.

and that larger values dominate smaller ones for low-cardinality
and unrestricted attributes.

In this section, we first show that the skyline operator over the
space ofd-dimensional vectors over low-cardinality domains is a
lattice. We then show how this lattice property can be used to de-
velop an efficient skyline algorithm (the Lattice Skyline algorithm).
We also give an example of its use and analyze its complexity.

3.1 Skyline and the Low-Cardinality Lattice

The dominance operato’ over a dataset defines a partial or-

(2,2) 2,2)

1,2) (2,1) 1,2 (2,1)

0,2) (1,1) (2,0) 0,2 €1 (2,0)

0,1) (1,0 (0,1) (1,0

©.0) ©0.0)
@ (b)

Figure 2: A two-dimensional lattice in which each attribute is
drawn from the domain {0,1,2}.

Showing (2) also involves proving two cases - (a) in which
dominatesy (or y dominatese) and the case (b) in which andy
are not comparable by the skyline operator. This part can be proved
in a similar way as above, and is omitted in the interest of space.

Since B and the skyline operator are a lattice, we can draw the

dering. (This is easy to see in the dataset in Table 1. The CelestialHasse diagram for the lattice. The Hasse diagrad fir d = 3 in

Sleep dominates the Slumber Well, and hence Celestial Steep
Slumber Well. The ordering is not total since the Celestial Sleep
neither dominates nor is dominated by the Soporific Inn).

In this subsection, we show that the partial order that the skyline
operator imposes over the spacelafimensional vectors over low-
cardinality domaing3 is a lattice. We lefB denote the space af
dimensional vectors over low-cardinality domains throughout the
rest of the paper.

We use the following definition for the lattice of a partially or-
dered set.

DEFINITION 3.1. A partially ordered setS with operator <’
is a lattice ifV a, b € S, the se{a, b} has a least upper bound and
a greatest lower bound if.

We can now use Definition 3.1 to show that the space of vectors
B with the skyline operator is a lattice.

THEOREM 3.2. The space of boolean valued vect&svith the
skyline operator <’ is a lattice.

PrROOF To show thatB with the skyline operator<’ is a lat-
tice, we must show that each pgit, y} wherez,y € B has (1) a
greatest lower bound iB and (2) a least upper bound B

Showing (1) involves proving two cases - the case (a) in which
dominatesy (or y dominatest) and the case (b) in which andy
are not comparable by the skyline operator.

e CASE 1.a: Ifx dominatesy (y dominatese), then trivially
the greatest lower boungbetweenz andy is y (z).

CASE 1.b: Ifx andy are not comparable in the partial order
<, then the greatest lower bougdbetweenz andy is ob-
tained by taking the min betweanandy on all dimensions.

q is now a lower bound betweenandy since in any dimen-
sioni, g has a value smaller than or equal to both that of

y in dimensioni, and hence is dominated by bothr andy.

q is a greatest lower bound since increasing the value of any
attributea,; on dimensiori would no longer result in a lower
bound, since the new value gfin dimension: would now

be larger than one or both afor y in that dimension.
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which each low-cardinality attribute is boolean-valued is presented
in Figure 1a. In this Figure, the valdBT'T dominates all other
values, so itis at the top of the diagram and it is the upper bound of
the set.F'F'F is dominated by all values so it is the lower bound.

The dominance relationship between element8afan be fur-
ther illustrated by adding arrows to the Hasse diagram as shown in
Figure 1b. For exampl& T F dominatesl FF', FTF, andF FF.
These are the values in the graph in Figure 1b that are reachable
fromTTF.

An example Hasse Diagram for a lattice over a two dimensional
space in which attribute; is an element of0, 1,2} and attribute
a2 is also an element of0, 1,2} is shown in Figure 2a. In Fig-
ure 2b, arrows have been added to show the dominance relationship
between elements of the lattice.

We now define the concept of ammediate dominatoof an
element of a lattice oveB. We let f(g.a;) denote the number of
attribute values in theé'” attribute domain that,; dominates for
g € B. For example, in the domaifD, 1,2}, valuel dominates
one element.

DEFINITION 3.3. Let ¢ and ¢’ be elements fronB. ¢ is an
immediate dominator of if and only ifq dominates;” and

2?21 f(q.a:;) = Z;i:1 f(q/-ai) + 1

For example, the immediate dominators of lattice element (1,1)
in Figure 2b are (2,1) and (1,2). Inthis cagél, 1) =2 andf(2,1)
= f(1,2) = 3. In general, an element will havkor fewer immedi-
ate dominators since an element can only have 1 immediate domi-
nator per dimension. This property of the immediate dominators is
used later in the cost analysis of the algorithm.

3.2 Skyline Computation using the Lattice

A datasetD overd low-cardinality attributes does not necessar-
ily contain representatives for each lattice element. For example,
the three boolean attributes (Parking Available, Swimming Pool,
and Workout Center) in the dataset in Table 1 contaifi¥d” en-
try (the Soporific Inn and Nap Motel), but containsfié’F" entry.

The method to obtain the skyline of a datagetconsisting of
elements ofB can be visualized using the Hasse diagramBof
The elements oD that compose the skyline are those in the Hasse
diagram that have no path leading to them from another element



Algorithm 1 LS-B: The Skyline for Datasets over Low-Cardinality
Domain Attributes.
. Input: DatasetD with n tuples overd low-cardinality attributes, Vec-
tor V' of sized whereV; is the cardinality of dimension
: Output: A set of skyline points.
. Let size be the number of entries in the lattieeVq * Vo * ... x V.
. Let the set oflesignatorde {not present, present, dominafed
. Leta be an array oflesignatorof sizesize, initialized tonot present
. Let F'(j) be the one-to-one mapping gfc B to a position ina.
: for eachs € D do
Let /s be the low-cardinality attribute values of
Seta[F(ls)] to present
: end for
s fort = size — 1to0do
for Eachg € immediate dominators af|t] do
if a[g] = (presentor dominated then
a[t] =dominated
end if
end for
. end for
: for eachs € D do
Letls be the low-cardinality attribute values of
if a[F'(Is)] = presenthen
outputs as a skyline point.
end if
end for

22.
23:

present inD. For example, consider the case in whiBhis the
space of 3 boolean attribute vectors dndonsists of four tuples,
TTF, FTF, FFT, FFF. FTF is not a skyline value since it
is reachable in the diagram in Figure 1b from vall&€F < D.
Similarly, FF'F is reachable froldTF, FTF,andFFT. TTF
and F'F'T are not reachable from any of the valuedinand they
are the skyline values.

We can use these observations to develop the LS-B algorithm
to find the skyline of a dataset over the space of vectors drawn
from low-cardinality domains. Initially, all elements of the lattice
of B are marked asot presenin the dataset. The algorithm then
iterates through each tupleof the dataseD. The element of the
lattice that corresponds towill be marked agpresent(and not yet

(TTT) np (TTT) np
(TTF) p (TFT)ynp  (FTT) np (TTF) p (TFT) np (FTT) np
(TFF) np (FTF) p (FFT) p (TFF) d (FTF) d (FFT) p
(FFP p (FFP d
@) (b)

Figure 3: (a) The Boolean Lattice from the example, with
present [p] and not present [np] elements marked. (b) The lat-
tice with dominated values marked as dominatedd]. Skyline
values are those marked ).

lattice, i.e. the ordering becomé, 2), (2,1), (2,0), (1,2), etc.
In lines 7-10, the algorithm iterates over each tupléirand sets
the position ina represented by the value @fc D to present

In lines 11-17, the LS-B algorithm iterates through each element
of the lattice. If one of the immediate dominators of a lattice posi-
tion in the Hasse diagram is markedmssentor dominated indi-
cating that either it is in the skyline or it is dominated by a skyline
value, this position ir: is marked aslominated The algorithm
proceeds through the array beginning at the top of the lattice and
ending at the bottom, guaranteeing that the immediate dominators
of any element are checked before it.

In lines 18-23, the elements &f are iterated through again, and
if the position ofa for the boolean-valued attributes of a particular
tuple is equal tgoresentthen that tuple is a skyline tuple. We note
that the second pass through the dataset that outputs the skyline
values is not required if the selection predicate in the query contains
only attribute values that are in the lattice. In such cases, the query
results can be output once skyline values in the lattice are found.

3.4 Example

As an example, suppose a traveler wants to find the skyline of
hotels for the boolean valued attributes (availability of parking,
swimming pool, and workout center) for the dataset from Table 1.
Specifically, the example data is displayed in Table 2.

dominated) in the dataset. After all tuples have been processed, the The lattice element for each element®fis initially marked as

elements of the lattice that are markegassentand which are not
reachable by the dominance relationship from any ofitesent

not present The LS-B algorithm iterates through each tuple in the
input. The lattice positiodesignatorof each tuple is set tpresent

element of the lattice represent the skyline values. Elements thatFor examplegt: is the first tuple considered in the dataset. The
are present but are reachable by the dominance relationship, andlesignatorof its boolean attributest’ F'F', is set topresent The

hence are not skyline values, are markiedninatedto distinguish
them frompresentskyline values. The tuples that represprgsent
skyline values can then be output with another iterative pass over
the dataset. We call thiresent, not presenty dominatedvalue of
each lattice position théesignatorof that element.

3.3 The LS-B Algorithm

The LS-B algorithm, shown in Algorithm 1, computes the sky-
line on a dataseD with low-cardinality attribute spacB.

In lines 3-5, the algorithm begins by initializing all elements of
the arraya to not present The size of this array is equal to the
product of the domain cardinalities. Each element of the array rep-
resents one element of the lattice f8rand stores designator

We letF'(¢) denote the one-to-one mapping of an elemeatB
to a position of the array in line 6. In the boolean case, we can use
the binary value of the boolean attributes to determine the array
position. For example, il = 3, then elemenT' F'T" € D is rep-
resented by position 5 of the arraysince the binary equivalent of
TFT is 101 = 5. In the low-cardinality case in our implementa-
tion, we choosé&'(¢) to be a linearization of the elements of the

lattice with each lattice value following these actions is displayed
in Figure 3a.

Following this, the positions in the lattice that are skyline values
are evaluated. The algorithm iterates through the possible values
that the space of 3 boolean vectors can obtain. It begins with ar-
ray position 7 T'T'T) and finishes with array position F'E'F).

For each position, the immediate dominators are checked. The
actions for each lattice position, progressing from step 1 to step
8, are shown in Table 3. The lattice following the skyline value
evaluation, with each lattice element markedngsnot present

Tuple Name Boolean Attribute Values
t1 Slumber Well FFF
to Soporific Inn FTF
t3 Drowsy Hotel FFT
ta Celestial Sleep TTF
ts Nap Motel FTF

Table 2: The hotels from the example dataset of Table 1 with the
values of their three boolean-valued attributes (parking avail-
ability, swimming pool, and workout center).
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p=present or d=dominatedis shown in Figure 3b. The skyline
values are those lattice positions markegh.as

The only positions of the lattice that are markedessentnow
are positions’'TF and FF'T. These tuples are now output as the
skyline with another pass through the data.

3.5 Analysis

We now analyze the complexity of the LS-B algorithm for at-
tributes with low-cardinality domains.

THEOREM 3.4. The complexity of the LS algorithm over a set
of low-cardinality attributes i$)(dV + dn), whered is the dimen-
sionality, n is the number of data tuples, and is the product of
the cardinalities of thel low-cardinality domains from which the
attributes are drawn.

PROOF The algorithm makes an initial pass throughaltu-
ples of the data in lines 7-10 of the algorithm. For each tuple, LS-
B marks a position in an array gsesentbased on the attribute
value for each dimension. Since array accesse®atg, this pass
through the data i©(dn).

There areV elements in the lattice. Each is initialized in line 5
of the algorithm. In lines 11-17, each element of the lattice is com-
pared with its immediate dominators, of which there are at most
d. We note further that the individual operations in the algorithm

4. EXTENDING LS TO HANDLE ONE UN-
RESTRICTED ATTRIBUTE

In this section, we show how to expand the LS-B algorithm to
accommodate one attributedrawn from an unrestricted domain
producing the general case LS algorithm. (For example, the domain
of u may be the real numbers.)

4.1 Overview

The LS-B algorithm presented in Algorithm 1 marks each lattice
position agpresentnot presentor dominatedand uses these desig-
nations to find the skyline values. To accommodate an unrestricted
domain attribute, in addition to storing tlkkesignator each lattice
position also stores the bestvalue in the dataset for that lattice
element. For example, if tuples with the lattice valli&'F' have
u attribute values, 6, and7, then the lattice element could store
7 in addition to thepresent designatorin this case, we call the
locally optimal value lpv) of lattice positionI' F'F'.

DEFINITION 4.1. The locally optimal valuel¢v) of an element
q € B is the maximum value of the unrestricted attributfor any
element of a dataset whose low-cardinality attributesare

In the LS-B algorithm presented in the previous section, a lattice
element that is markepresentis in the skyline if none of the lat-
tice positions dominating it are marked @®sent Now, a lattice

are very simple, and that the actual complexity is somewhat better element with dov « is in the skyline if none of the lattice positions

than the asymptotic would suggest. For instance, eleifei) of
the lattice depicted in Figure 2b has only 1 immediate dominator
instead of 2. In short, we expect the algorithm to be efficient in
practice, as we show in Section 6. Since therelarn®tal entries
in the lattice, each compared with at masentries, this step is
o(av).

LS-B makes a final pass through the data in lines 19-23, which

output the skyline. For each tuple, the algorithm checks an array

dominating it have dov «’ that is better than or equal ta For
example, ifTF'F has alov 7 stored in the lattice an@T F has a
lov 8, theT F'F' value is dominated and hence it will not appear in
the skyline. In this casé'F'F' can be marked as dominated. We
call the maximumlov contained in an element € B and in the
elements inB that dominatey thedominant lattice valuedlv).

DEFINITION 4.2. Let A be the set consisting of the locally op-

position based on the attribute value for each dimension to see iftimal value of an element € B and of the locally optimal values

its value ispresent This stage i$D(dn). This produces an overall
complexity ofO(dV + dn) for the algorithm.

O

Analysis: This analysis shows that if is larger thanV, the
product of the domain cardinalities of each low-cardinality domain
attribute, then the algorithm is linear in We expect to be sig-
nificantly larger thani for typical skyline datasets (past work has
usually experimented with 5-7 dimensions). We also give several
examples in Section 6 of low-cardinality datasets in which both
skyline computation is important arid is smaller tham. In such
cases, the skyline can be evaluated in linear time!

Lattice Old/New

Step Pos D1 (Value) | D2 (Value) | D3 (Value) Value

1 TTT n/a n/a n/a np/ np

2 TTF TTT (np) n/a n/a p/p

3 TFT | TTT (np) n/a n/a np/np

4 TFF TTF (p) TFT (np) n/a np/d

5 FTT TTT (np) n/a n/a np/np

6 FTF | TTF(p) | FTT (np) n/a p/d

7 FFT | TFT (np) | FTT (np) n/a p/p

8 FFF TFF (d) FTF (d) FFT (p) p/d

Table 3: The actions taken during the example, where

p=present, np=not present, and d=dominated. D1, D2, and D3
are the dominators of each position in the example. The value
of each such immediate dominator is given in parenthesis.
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of all ¢ € B that dominate;. The dominant lattice valuallv) of
q is the maximum value iA.

Now, a tuplet; with low-cardinality attribute valuegis a skyline
value if ¢ is markedpresentandt;.u is equal to thellv of ¢ in the
lattice. If thedesignatorof ¢ is dominatedsome other lattice entry
that dominateg; has anlov that is better than or equal to that of
q. We can now modify the LS-B algorithm to (1) store tlog for
each element of3, (2) find thedlv for each elemeny of B, and
then (3) compare each tuplaisvalue with thedlv to determine if
the tuple is in the skyline.

4.2 The Extended LS Algorithm

Algorithm 2 shows the general LS algorithm, which is an ex-
tension of the LS-B Algorithm. Most aspects of the algorithm re-
main unchanged. The only difference between the two is the values
stored for each element of the lattice are different (no longer just
storing thedesignatoras in the boolean case, but also a value for
the unrestricted domain). This information for each lattice element
is stored in an array of a defined typein lines 4 through 6. Each
array position stores two pieces of information: (1) tesignator
and (2) thdov of the lattice element.

Each element of the lattice is initialized ot presenin line 6
of the LS algorithm. In lines 7-15, the algorithm iterates through
the elements of the datasBt If the lattice entry is markedot
presentor the lov is smaller thanu, the lattice entry is marked
presentand theov is updated ta:. For example, suppose a dataset
consists of data elements over 3 boolean attributes and 1 unre-
stricted attribute and that the first two data elements of the input



Algorithm 2 LS: The Low-Cardinality Domain Skyline with 1 Un-
restricted Attribute Value.

1: Input: DatasetD with n tuples overd low-cardinality attributes and 1
unrestricted attribute, Vectdr of sized whereV; is the cardinality of
dimensioni.

2: Output: A set of skyline points.

3: Let size be the number of entries in the lattieeVy x Vo * ... x V.

4: Let the set oflesignatorde {not present, present, dominated

5: Let L be a defined type that containsthe locally optimal value, and
e, an element from the set designators

6: Leta be an array of typd. of sizesize, initialized tonot present

7: for eachs € D do

8: Let F(j) be the one-to-one mapping pfc B to a position ina.

9: Letls be the low-cardinality attribute values ef

10:  Letpos = F(Is).

11: if a[pos].e =not presenbr a[pos].v < s.u then

12: Seta[pos].v tou.

13: Seta[pos].e to present

14: endif

15: end for

16: for t = size — 1to 0 do

17: for Eachg € immediate dominators af[t] do

18: if alg].e = (presentor dominateq then

19: if a[t].e =not presenvr a[t].v < a[g].v then

20: alt].v = alg].v

21: a[t].e =dominated

22: end if

23: end if

24:  end for

25: end for

26: for eachs € D do

27: Letls be the low-cardinality attribute values of

28: if a[F(ls)].e = presentanda[F(ls)].v = s.u then

29: outputs as a skyline point.

30: endif

31: end for

are(T, F, F,3.2) and(T, F, F,4.9). TheT F'F lattice position is
initially not presentindicating that no elements with boolean value
TFF have yet been seen in the data. After processing input ele-
ment(T, F, F,3.2), TFF is marked apreseniand 3.2 is stored as
thelov. After processindT, F, F',4.9), the lov is set to 4.9, since
4.9 is the best value for boolean valli¢" F' so far seen.

Now, LS must find thallv for each element of the lattice. This
is done in lines 16-25 of the algorithm. It does this by iterating
over the elements of the lattice starting at the top of the lattice and
ending with the bottom element. For each such lattice element
LS checks thellv values of the immediate dominatorsqfThedlv
value ofg becomes the maximum of tldév values of the immediate
dominators ofy marked agpresentor dominatedand thelov of q.
If any of thedlv values of the immediate dominators @fnarked
aspresentor dominatedare greater than or equal to the of ¢, ¢
is marked as dominated.

Following this operation, the skyline tuples are those whose low-
cardinality value is marked ggesentand have allv equal to their
w value. In lines 26-31, LS iterates over the element®ofFor
each elementab, LS compares the value afto thedlv for the lat-

tice element. If they are the same and the lattice element is marked

presentthe tuple is an element of the skyline.

4.3 Example

Suppose a traveler is interested in finding the skyline of hotels
with regard to the three boolean-valued attributes and the price for
the data from Table 1. For this example, we transform the price
attribute via a simple flipping function 200 — price so that we
are only considering computing the skyline using thaxopera-
tor. Note that this transformation is necessary only to make the ex-
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Figure 4: (a) The Boolean Lattice from the example, with [p]
present and [np] not present elements marked with their lo-
cally optimal values; — means the lattice element is not updated.
(b) The lattice with dlvs for each element and with dominated
values marked [d]. Skyline values are those marked [p].

ample easier to follow by consistent use of thexoperator. (We
could also have negated each value to achieve the same effect.) Our
method can easily be adapted to compute the skyline using an ar-
bitrary combination ofmaxandmin operators. The data used in

the example with the price transformation is shown in Table 4. We
refer to the200 — price value asu.

The lattice consists of eight entries, one for each boolean value,
and each is initialized tnot presentThe LS algorithm now iterates
through the input and updates the lattice position for each tuple to
the bestu value so far present in the data. For example, when LS
processes tupla, thelov of FFF'F is setto 120. Since tuples and
ts both contain boolean valued attributeq’F, thelov of FTF is
set to 135 (the best value of eithett; or ¢5). The lattice following
these actions is displayed in Figure 4a.

Now, each position in the lattice stores tlo@ for each lattice
element, i.e. the best value that is present in the ftatéhat el-
ement of the lattice For example, botl; and¢s have boolean
value FTF, but thelov stores only the best value (135) fBfT'F'.

LS now finds thellv for each element of the lattice. For example,
FTF has dov equal to 135, which is better than tlew of FFF.
Hence, theF'T'F element dominates thBF'F element, and” F'F

is marked aslominatedand itsdlv is set to 135.

To find these dominating values, the algorithm iterates through
the possible values that the space of 3 boolean vectors can obtain.
It begins withTT'T and ends with#' F'F'. For each position, the
immediate dominators are checked. The actions for each lattice
position are shown in Table 5.

The skyline tuples can now be found by iterating over the dataset
again. Each tuple,-t5 is compared with its lattice position. If the
u value for each tuple is equal to thés of the lattice position and
that position is markegresent that tuple is in the skyline. If the
values are not equal or the position is markietninated then the
tuple is not in the skyline. For exampl&,.u is equal to 135 and
the dlv of lattice positionF'T'F' is 135. FT'F is also marked as
present Hence s is in the skyline. Howevet;; .u is equal to 120
and the value of" F' F's dlv is 135. MoreoverF' F'F' is marked as
dominatedsot; is not in the skyline. The skyline in this example
is to, t3 andt4.

Tuple Name Boolean Value | « (200-price) Value
t1 Slumber Well FFF 120
to Soporific Inn FTF 135
t3 Drowsy Hotel FFT 90
tq Celestial Sleep TTF 929
ts Nap Motel FTF 99

Table 4. Example data tuples.



Old/New
Step | Position Imm. Dom. (Value) Value 6. EXPERIMENTAL EVALUATION
1 TTT n/a [np] =/ [np] - In this section we presents results from an experimental study
2 | TTF TTT (Inp] -) [P199/[p] 99 designed to compare the performance of LS with the best existing
2 g::g TR ([:;]gr‘g)(’[;%l;)([np] 5 {ﬂg}j {Q]plgg method. We have implemented two algorithms: a) our LS algo-
5 TT TTT ([np] -) [np] =/ [np] — rithm _and b) the SFS algonthm [_9] _W|th the LESS optimizations
6 FTF TTF ([p] 99), FTT (Inp]-) | [p] 135/ [p] 135 described in [10]. (A brief description of the LESS algorithm is
7 FFT TFT ([np]-), FTT ([np] -) [p] 90/ [p] 90 presented in Section 2 of this paper.) Throughout this section, we
8 rpp | TFF(d]99), FTF ([p] 135), [0] 120/ [d] 135 refer to these'algorithms simply as LS and LESS, re_spectively. All
FFT ([p] 90) methods are implemented in C++. A buffer pool of size 500 pages
is used by both implementations for the experiments, and all page
Table 5: Example LS actions to find thedlv for each lattice requests go through this buffer pool. Page size is set to 4KB for
position. Each lattice position is marked [p]=present, [np]=not both methods. All experiments are performed on a 1.7GHz Xeon
present, or [d]=dominated with the dlv next to it. machine running Debian Linux 2.6.

In all experiments, the tuple size is 100 bytes. This tuple size

. is also used in [10] for their experiments. If the amount of space
4.4 Analy5|5 needed to store the attribute values that the skyline is evaluated over
The LS algorithm performs the same sequence of operations asis less than 100 bytes, a random sequence of bits is added to the
LS-B, with minor differences in the specifics that do not impact tuple for padding. This more closely resembles a real database set-

the complexity. Hence, the complexity of the LS algorithm for ting in which a projection is applied to the tuples of the skyline that
one unrestricted attribute is identical to that of the LS-B algorithm. seek information such as that contained in a text field or some other

We omit a formal proof since it is similar to the one presented in information in addition to the multidimensional skyline values.

Section 3. The reader will notice that LS requires two scans of the dataset
to output the skyline, the first to mark positions in a lattice structure
5. PROPERTIES OF LS and a second to output skyline points from values derived from the

lattice. Our implementation does both of these passes through the
dataset for LS, i.e. our LS implementation is outputting not just
skyline values but the 100 byte values associated with each skyline
tuple. Hence, our comparison with LESS is a fair comparison.

The reason for choosing the LESS algorithm is as follows: LS is
1. The performance of LS does not depend on the ordering of a skyline evaluation technique that does not require an index, such

the elements of the input. as BBS that requires an underlyidytree, or some other multidi-

_ .. mensional index. SFS with the LESS optimizations is currently the

2. The performance of LS does not depend on the distribution peg; general skyline evaluation technique that also does not require

of the input. an index to be preconstructed on the data.

The first property is desirable because we want a skyline compu-  Both LS and LESS do not require preprocessing or indexing,
tation technique to have good performance irrespective of the orderWhich makes them very appealing when the skyline operation is
of the input elements. For example, the performance of the BNL Part of a complex query (for example computing the skyline over a
algorithm of [4] improves significantly if skyline tuples that domi- subs_et of the base_relatior_1). Onthe ot_he.r hand,_ indexed techniq_ues
nate a large number of data points are present early in the dataset€duire precomputing an index, or building an index on-the-fly if
since this allows BNL to eliminate most of these points in the first One does not exist, which is expensive. To confirm this, we have
elimination pass. On the other hand, if skyline tuples come very considered bulk loading an R-tree index on the fly using the R-tree
late in the dataset order, many passes are needed to eliminate norRulk loading technique of [14] and then running BBS [19]. For the.
skyline points from consideration. SFS [9] addresses this issue bydatasets that we use in this section, the |nde_x construction time is
first sorting the data, but requires an expensive sorting operation. Often greater by more than an order of magnitude compared to the

LS achieves the first property because it is intrinsically insensi- LS evaluation time. In the interest of space, we omit these results.
tive to the ordering of the input. No additional costs are incurred
such as sorting. For each input element, LS simply reads and writesG- 1 Datasets
an element of the lattice. Accessing each element of the lattice has For the datasets, we use both synthetic and real datasets. The
the same fixed cost (an array access), so LS is not sensitive to re-use of synthetic datasets allows us to carefully explore the effect of
orderings of the input elements. various data characteristics, and is commonly used for skyline eval-

The second property is desirable because we want skyline al-uation. We generate the synthetic datasets with correlated (CO),
gorithms to have good performance regardless of whether the in-independent (IN) and anti-correlated (AC) distributions using the
put data is correlated, independent, or anti-correlated. Algorithms popular skyline dataset generator of [4]. We have modified the
such as SFS and BNL tend to perform much worse if the input is generator to generate (a) datasets withttributes each from low-
anti-correlated. The performance of LS does not depend on the in-cardinality domains with domain size of and (b) datasets with
put distribution, since finding the skyline values involves the same d — 1 attributes from low-cardinality domains and 1 attribute from
comparisons with immediate dominators for each element of the the domain of all real numbers between 0 and 100K.
lattice irrespective of the dataset distribution. More skyline points ~ We generate a number of synthetic datasets by varying three pa-
may be found if the dataset is anti-correlated, but this also does notrameters: (1) the data cardinality (2) the data dimensionality,
result in a difference in performance. This is because during the and (3) the number of distinct values for each low-cardinality at-
second pass through the data, each input element is checked withribute domainc. Datasets are generated for the CO, IN, and AC
thedlv of the corresponding lattice element to determine if the in- distributions by holding two of these three parameters fixed at a de-
put element is a skyline point. fault value and varying the third parameter. The parameter settings

In the previous section, we showed that LS can have a signif-
icant asymptotic complexity advantage over other techniques. In
this section, we discuss two properties of LS that are desirable for
skyline computation.
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Parameter Settings o Domain

d 5,6,7 Description Type Values Cardinality

c 4,6,8, 10, 12 Rating Low-card. 1/10 Increments| 101

n 100K, 250K,500K, 750K, 1M Color Boolean Color or B&W 2

Year Low-card. | Integer 99

Table 6: Parameter settings used for varying the dimensionality No. of Reviewers| Continuous| # of voters 217K

(d), attribute cardinality (c), and dataset cardinality (n) for the

synthetic data experiments, with default parameters shown in Table 8: Attributes in the IMDB movie dataset.

bold.
— 6.3 Performance on Synthetic datasets
omain
D e Cardinally 6.3.1 d-1 Low-Cardinality Attributes and One Con-
# of Bathrooms | Low-card. | Nearest 1/2 Bath 4 tinuous Attribute
# of Floors Low-card. | Integer 3 In this experiment, we evaluate the two algorithms on both corre-
Total Rooms Low-card. | Integer 10 lated, independent, and anti-correlated datasets. In these tests, one
Eg;gﬁg;rage ggg::gﬂ igi g: mg g attribute is drawn from an unrestricted domain consisting of the set
Colonial Arch. | Boolean Yes or No 5 of a}ll real numbers between 0 and 1OQK gnd the r(_amaldmgl _
Estimated Price | Continuous!| Dollar value nearly 160K attributes are are drawn from low-cardinality domains. In the first
test, we vary the dimensionality between 5 and 7 (similar to the per-
Table 7: Attributes in the Zillow house-price dataset. formance study of [10]). The results are shown in Figures 5a, 5b,

and 5c for the correlated, independent, and anti-correlated datasets,
respectively. Figure 5d, shows the number of skyline points for

used for these three parameters are shown in Table 6, with defaulteach distribution.
parameter settings shown in bold. (The default value ef 500 K From Figure 5¢c we observe that LS is an order of magnitude
is also used in [10]). faster than LESS in the AC case. LS is also faster in the indepen-

We also use two real datasets for our experiments. The first dent case for 6 dimensions (about 3X), 7 dimensions (about 4X),
dataset is a house-price information dataset that is obtained fromand a small advantage for 5 dimensions. In the correlated case,
Zillow.com [2]. Zillow lists the number of bedrooms, the number of  the algorithms perform almost identically for lower dimensions (5
bathrooms, the estimated price, and other information about housesand 6). LESS does achieve an advantage over LS for 7 dimensions
all over the United States. We obtained a dataset containing morein the CO case. Notice that the performance of LS is not varying
than 160K entries for the local regional area between Yonkers, NY across distributions, which is expected (see Section 5 for details).
and Stamford, CT. This region corresponds to the area that a NewThe time curve for LS is identical for the CO, IN, and AC distri-
York City commuter might live in north of the city. The datasetcon- butions, only the scaling in the three graphs is changing. LESS'’s
tains 8 attributes which are summarized in Table 7. In this dataset, performance varies with the number of skyline points. The number
the house price is an unconstrained attribute. of skyline points for each distribution is shown in Figure 5d. When

The second real dataset is taken from the Internet Movie Databasehe number of skyline points is small (near 10), as in the CO case
(IMDB) [1], which contains information about movies and televi- LESS performs as well or better than LS. However, when the num-
sion shows, and ratings of these by actual users. From the IMDB, ber of skyline points increases and as the dataset becomes more
we have produced a dataset that contains over 161K entries and fouanti-correlated, LESS requires more computation time as expected.
attributes. The four attributes are summarized in Table 8. In this LS has a bigger advantage in the AC case because LESS is not able
dataset, the rating attribute is a value between 0.0 and 10.0 with 1to eliminate as many tuples with its sort-filter pass as in the IN case.
decimal precision, and the number of reviewers is an unconstrainedHence, LESS must perform more comparisons in the AC case.

attribute of the dataset with a range from 0 to 217K. Itis worth noting that the number of skyline points for the 1 unre-
. stricted andl—1 low-cardinality domains in Figure 5d never climbs
6.2 Experimental Setup above 4 percent of the 500K dataset size for any of the dimen-

A buffer pool size of 500 pages is used in all the experiments. sionalities or distributions. In all other experiments, the number of
For LS, 499 buffer pages are used to store the lattice element en-skyline points for each test is a small percentage of the data (also
tries in an array and 1 page is used to read in the data set. Thealways less than 4 percent of the dataset size). In other words, low-
499 buffer pool pages are enough for the lattice structure to fit into cardinality domains do not produce a catastrophic case in which
memory for all tests. For example, for either the CO, IN, or AC nearly the whole dataset is in the skyline.
synthetic datasets with the default parametdrs=(6, ¢ = 6) the In the second test, we vary the attribute cardinality between 4 and
lattice structure size i8° = 32768 lattice entries. Each lattice 12. The results are presented in Figures 6 a, b, and c for the CO,
entry uses 34 bits (4 bytes to store #i& attribute which may be IN, and AC distributions, respectively. Similar to the dimensional-
either low-cardinality or from an unrestricted domain, and 2 bits to ity results already presented, LS outperforms LESS by more than
store thedesignato). Hence, the lattice structure in this case uses an order of magnitude for the AC distribution. For the IN distribu-
136K of memory (32768*34/8). Note that the buffer pool is of size tion, the performance advantage of LS relative to LESS rises as the
500*4K=2000K. Note also that the largest the size of the lattice domain cardinalities (and hence also the number of skyline points
reaches in these experimentsi$34/8=1088K. present in the dataset) increases, varying from between 1.5X better

In [10], the authors state that no increase in performance is no- when each of the — 1 low-cardinality domains has cardinality 4
ticed when setting the EF window size to more than 5 pages. We to about 2.5X better when the cardinality is 12. For the correlated
observed this also in our experiments and even noticed a decreasease, LS and LESS perform about the same when the domain cardi-
in performance for some larger EF window sizes. Hence, the EF nalities are between 4 and 10 while LESS achieves a performance
window size is set to 5 pages in our experiments, which is also advantage when the domain cardinality reaches 12. This is because
done in [10]. the small number of skyline points (similar to the dimensionality
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Figure 5: Results for 1 unrestricted and d-1 low-cardinality attributes with varying dimensionality for (a) the CO, (b) the IN,
and (c) the AC distributions. (n=500K, c=8) The number of skyline pints in each dataset is shown in (d).
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Figure 6: Results for 1 unrestricted and d-1 low-cardinality attributes with varying attribute cardinality for (a) the CO, (b)
the IN, and (c) the AC distributions. (n=500K, d=6) The number ofskyline points in each dataset is shown in (d).

tests, about 10 total data points) present in the data for the corre-9d, and 10d for varying dimensionality, attribute cardinality, and
lated case means that LESS can be very efficient. The number ofdataset cardinality, respectively. The reader may notice when ob-
skyline points for each distribution is shown in Figure 6d. The per- serving this data for the correlated and independent data distribu-
formance of LESS degrades for the other data distributions as thetions that the number of skyline points decreases as d gets
number of skyline points rises. The performance of LS varies with larger, which seems counter-intuitive. This occurs because, for
the sizes of the low-cardinality domains, since larger sizes mean these parameter choices, there are a large number of duplicates of
more elements in the lattice. The performance of LS does not vary the maximal tuple. This repetition occurs because in these cases,
with the data distribution, but remains constant across each of thethe size of the dataspace is smaller than the dataset size. Skyline
three distributions. algorithms cannot simply discard such duplicate skyline values be-
In the third test, we vary the input data cardinality between 100K cause the skyline query very often is requesting information beyond
and 1M data tuples. The results for the CO, IN, and AC distribution just skyline values (for example, the name of a hotel) that is unique
are presented in Figures 7 a, b, and c, respectively. LS is faster tharto each tuple. These duplicates can occur in real datasets. For ex-
LESS by an order of magnitude or better for the AC distribution, ample, many hotels could offer a workout center, a pool, and free
and about 3X better than LESS on the IN distribution. LS and parking. A skyline query for these attributes could then return mul-
LESS perform similarly on the CO dataset. The performance of tiple hotels offering the same features.
LS decreases approximately linearlyraincreases, since the size In the first test, we vary the dimensionality between 5 and 7 (as
of n exceeds the cost of the lattice comparisahs-(1)* V=164K. in the performance comparison in [10]). The results are shown
for all data sizes except 100K. The performance of LESS degradesin Figures 8 a, b, and c for the correlated, independent, and anti-
faster for the AC distribution because the number of skyline points correlated datasets, respectively. LS performs better than LESS by

is greatest for this distribution (see Figure 7d). a factor of 5-6X for the AC dataset. On the IN dataset, LS also out-
o ) performs LESS when the dimensionality is 6 or 7 (nearly 2X). LS
6.3.2 d Low-Cardinality Attributes performs about the same as LESS for the correlated dataset for di-

In this section, we evaluate the performance of LS on datasets mensionalities of 5 and 6 and LESS performs better than LS for the
that containd attributes drawn from low-cardinality domains. We ~ correlated dimensionality of 7. The performance advantage for LS
again compare LS with LESS and test with synthetically generated for the d low-cardinality attributes is not as great as was achieved

datasets from the CO, IN, and AC distributions. in Section 6.3.1 because the number of skyline points is smaller.
For these experiments, we build the lattice usihg 1 of the As is described in Section 6.1, there is a smaller number of sky-

low-cardinality attributes. This allows us to use Algorithm 2 for line points for the correlated case because the number of values

the skyline evaluation, storing the value of #& attribute in the expected to be located at the maximum point decreases as the di-

lattice. The skyline evaluation using this technique is correct. This mensionality increase$(0K /8” = 15 vs. 500K /8" > 1). This
results in better performance than building the lattice overlall ~ trend accounts for the shape of the lines for the number of skyline
attributes since the size of the lattice is smaller. points in Figure 8d.

The skyline sizes for the datasets are presented in Figures 8d, Inthe nextexperiment, we vary the low-dimensionality cardinal-
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Figure 8: Results for d low-cardinality attributes with varying dimensionality for (a) the CO, (b) the IN, and (c) the AC
distributions. (n=500K, c=8) The number of skyline points in each d&aset is shown in (d).

ities. The results for this experiment are shown in Figures 9 a, b, sions, there are seven possible selections of six of the first seven
and c for the CO, IN, and AC datasets, respectively. LS is faster in attributes. Each of these seven possible attribute selections, along

the anti-correlated case by nearly an order of magnitude for6 with the price attribute, make up the 7 dimension attribute subsets.
and is about 4X faster when= 4. LS is faster for the indepen- The performance on the Zillow dataset is shown in Figure 11a.
dent case by about 2X when> 8 and aboutl.5X whenc = 4 Here, we see that LS outperforms LESS by about an order of mag-
or 6. The performance of LESS for the correlated case is better for nitude. This behavior is due to the anti-correlated nature of the
¢ > 6 versusc = 4 because the number of skyline points for 4 price attribute with respect to the number of features (bedrooms,

is much greater than the other cases. This is because the smallebathrooms, etc.) offered by each house. Intuitively speaking, as
data space results in more duplicate values (see Section 6.1 for dethe number of features rises, the cost of the house also rises. This
tails). Essentially, the performance of LESS for the CO case closely produces an advantage for LS since its performance is independent
follows the trend set by the skyline size, shown in Figure 9d. of the dataset distribution.

In the third test, we vary the number of data points in each dataset We also evaluate the performance of LS on the IMDB movie
between 100K and 1M. The results are shown in Figures 10 a, b, dataset. There are four different skyline queries that differermsuse
and c for the CO, IN, and AC datasets respectively. LS is better may want to use with this dataset: (1) a query for classic movies
by nearly an order of magnitude for the AC distribution and by that are in black and whit€§BW (e.g. “Casablanca”), (2) a query
nearly 2X for the IN distribution for cardinalities greater than or for classic movies that are in cold®C (e.g. “The Wizard of Oz"),
equal to 500K. The performance of LESS and LS is similar for the (3) for new movies that are black and whiBW (e.g. “Schindler’s

correlated case, for reasons already discussed. List”), and (4) for new movies in coloNC. All queries maximize
the movie rating and number of reviewers attributes when perform-
6.4 Performance on Real Datasets ing the skyline, to find highly rated movies that have been reviewed

by as many voters as possible. Each query either minimizes or

First, we evaluate the performance of LS and LESS on the Zillow maximizes the year and color attributes, depending on whether it
dataset. This dataset contains 8 attributes (see Table 7), and our y » dep 9

queries compute the skyline with respect to the max operator for Is a classic or new movie query for films in color or in black and
the first 7 attributes, since these attributes represent home featurey. h':]e' Th? péz_rformﬂge %r: the ";/IDB dataseft[gr_t heze fouzr)?;Jerles
that a home buyer may want to maximize. We take the skyline with 'S SHOWN In Figure - 'he periormance o IS about aster
) T . than LESS for the€CBW and CC queries and about 1.7X faster on
respect to the min operator for the estimated price of the house. . .
. . . . ! ; the NBW query. LS achieves a modest improvement for i@
Using this 8 dimensional dataset, we obtain 5, 6, and 7 dimen- uerv. The reason why LESS performs relatively better folNGe
sional subsets to be used for testing in the following way: for 5 di- query. Y P y

mensions, we randomly select 4 of the first 7 attributes along with movie query is that the movie entitled “The Shawshank Redemp-

the price attribute (the unrestricted attribute) to obtain 5 attributes 2??h:?)z;?$;ﬁ;g?tl?u£%e; ?(fa\:\/e\éli?nv}ll;(rrr;%r\/eiézagc)zni;I;)téag(lja?ng
in total. We do this 10 times to obtain 10 unique 5 dimensional gs. 1, ; 9

datasets whose query times are then averaged and reported in thigumber of the other entries. Hence, the skyline filter pass of LESS

section. A similar operation is done for 6 dimensions. For 7 dimen- IS very effective. There is no similar effect for the other queries.
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5, 107 g less der of magnitude and for the lower dimensional IMDB movie
~LESS ’G OLs database LS outperforms LESS by up to 2X.
4 oLs & o8]
3]
Z 3 £ o0s] 7. DISCRETIZED SKYLINES
g ) S s In many applications, it may be appropriate to discretize attributes
[ 1 s that are over continuous-value domains at coarse granularity. For
14 9 02l example, consider the hotel dataset already used as a running ex-
o ample (see Table 1). Now consider what happens if Celestial Sleep
0 6 7 CBW CC NBW NC were to reduce the price of a room to 66 dollars. The tuples for the
Total Dimensions Query Celestial Sleep and Soporific Inn are as follows:
(@) (b) Hotel Parking | Swim. | Workout Star
. . Name Available | Pool Center | Ratin Price
Figure 1;: I_:’erforma}nce of LS and LESS on (a) the_ Zillow Soporific Inn v 'F T Va I*g |65
house-price information dataset, and (b) the IMDB Movie Rat- Celestial Sleep T T F —_— 66

ings D . ) . o . .
gs Dataset The Celestial Sleep does not dominate the Soporific Inn since it

is still more expensive. Although the Soporific Inn is still in the
which means that LESS does more work for these. LS performs skyline, including it there in the skyline adds little value since most
the same irrespective of the input. It is also worth noting that the travelers would prefer to stay at the higher-rated Celestial Sleep
“low” cardinality domains in this example each had cardinalities for only one extra dollar. This characteristic feature is present in a
of approximately 100. Even for this largevalue, LS outperforms number of real skyline applications.
LESS. As another example, consider the typical car purchase applica-
. tion in which users explore the tradeoffs in price and several addi-

6.5 Performance Summary' tional attributes with low-cardinality or boolean-valued domains. A

The performance results can be summarized as follows: mileage attribute that may be over a continuous domain can be dis-
cretized into a low-cardinality domain. For example, mileage cat-
egories might include 30,000-40,000 miles, 40,000-50,000 miles,
etc. (Websites such as autotrader.com already allow you to search
for cars with mileage under certain increments such as under 75,000).
This sort of coarse discretization is often appropriate for continu-
ous valued attributes in many skyline applications because the pur-

datasets, with LESS achieving an advantage when 7 or pose of skyline computations is often to find candidates for further

¢ > 10. consideration, and small differences in the value of a continuous
e FFor the real Zillow dataset LS outperforms LESS by an or- attribute can sometimes be ignored.

e LS typically performs between 5X and an order of magnitude
better than LESS on anti-correlated datasets.

e LS performs between about 1.5X and 4X better than LESS
on independent datasets.

e LS and LESS perform similarly for the synthetic correlated
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pages 203-214, 2005.
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