
Effective Phrase Prediction

Arnab Nandi
Dept. of EECS

University of Michigan, Ann Arbor

arnab@umich.edu

H. V. Jagadish
Dept. of EECS

University of Michigan, Ann Arbor

jag@umich.edu

ABSTRACT
Autocompletion is a widely deployed facility in systems that
require user input. Having the system complete a partially
typed “word” can save user time and effort.

In this paper, we study the problem of autocompletion
not just at the level of a single “word”, but at the level of
a multi-word “phrase”. There are two main challenges: one
is that the number of phrases (both the number possible
and the number actually observed in a corpus) is combina-
torially larger than the number of words; the second is that
a “phrase”, unlike a “word”, does not have a well-defined
boundary, so that the autocompletion system has to decide
not just what to predict, but also how far.

We introduce a FussyTree structure to address the first
challenge and the concept of a significant phrase to address
the second. We develop a probabilistically driven multi-
ple completion choice model, and exploit features such as
frequency distributions to improve the quality of our suffix
completions. We experimentally demonstrate the practica-
bility and value of our technique for an email composition
application and show that we can save approximately a fifth
of the keystrokes typed.

1. INTRODUCTION
Text-input interfaces have been undergoing a sea change

in the last few years. The concept of automatic comple-
tion, or autocompletion has become increasingly pervasive.
An autocompletion mechanism unobtrusively prompts the
user with a set of suggestions, each of which is a suffix,
or completion, of the user’s current input. This allows the
user to avoid unnecessary typing, hence saving not just time
but also user cognitive burden. Autocompletion is find-
ing applications in specialized input fields such as file lo-
cation fields [30], email address fields [30] and URL ad-
dress bars [25], as well as new, more aggressive applications
such as dictionary-based word / phrase completion [23] and

Supported in part by NSF grant number 0438909 and NIH grant

number R01 LM008106.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB2007 Vienna, Austria
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

search query suggestion, available now in mainstream web
browsers [25]. With the recent increase in user-interface to
server communication paradigms such as AJAX [32], and as
users become more receptive to the idea of autocompletion,
it will find many more applications, giving rise to increased
expectations from autocompletion systems.

Current autocompletion systems are typically restricted
to single-word completion. While being a very helpful fea-
ture, single word completion does not take advantage of col-
locations in natural language – humans have a tendency
to reuse groups of words or “phrases” to express meanings
beyond the simple sum of the parts. From our observa-
tions, examples of such collocations can not only be proper
noun phrases; such as “Enron Incorporated”, but also com-
monly used phrases such as “can you please send me the”
or “please let me know if you have any questions”. Such
phrases become much more common when attached to a
personalized context such as email, or personal writing, due
to the tendency of an individual to mention the same the
same phrases during repetitive communication. Many cur-
rent systems incorporate multiple word occurrences by en-
coding them as single words; for example “New York” is
converted to “New York”. However, such schemes do not
scale beyond a few words, and would bloat the index (e.g.
suffix-tree) sizes for applications where we desire to index a
large number of phrases. It is this multi-word autocom-
pletion problem that we seek to address in this paper.

We note that autocompletion is only useful if it appears
“instantaneous” in the human timescale, which has been ob-
served [5, 27] to be a time upper bound of approximately
100ms. This poses a stringent time constraint on our prob-
lem. For single word completion, typical techniques involve
building a dictionary of all words and possibly coding this
as a trie (or suffix-tree), with each node representing one
character and each root-leaf path depicting a word (or a suf-
fix). Such techniques cannot be used directly in the multi-
word case because one cannot construct a finite dictionary
of multi-word phrases. Even if we limit the length of phrases
we will consider to a few words at most, we still need an “al-
phabet” comprising all possible words, and the size of the
dictionary is several orders of magnitude larger than for the
single word case.

It goes without saying that autocompletion is useful only
when suggestions offered are correct (in that they are se-
lected by the user). Offering inappropriate suggestions is
worse than offering no suggestions at all, distracting the
user, and increasing user anxiety [1]. As we move from word
completion to phrase completion, we find that this correct-

219



ness requirement becomes considerably more challenging.
Given the first 5 letters of a long word, for example, it is
often possible to predict which word it is: in contrast, given
the first 5 words in a sentence, it is usually very hard to pre-
dict the rest of the sentence. We therefore define our prob-
lem as one of completing not the full sentence, but rather a
multi-word phrase, going forward as many words as we can
with reasonable certainty. Note that our use of the word
“phrase” does not refer to a construct from English gram-
mar, but rather an arbitrary sequence of words. At any
point in the input, there is no absolute definition of the end
of the current phrase (unlike word or sentence, which have
well-specified endings) – rather the phrase is as long as we
are able to predict, and determining the length of the phrase
itself becomes a problem to address. For example, given the
prefix please let, one possible phrase completion is please let
me know ; a longer one is please let me know if you have
any problems. The former is more likely to be a correct pre-
diction, but the latter is more valuable if we get it correct
(in that more user keystrokes are saved). Choosing between
these, and other such options (such as please let me know
when), is one problem we address in this paper.

Traditional methods of autocompletion have provided only
a single completion per query. Current autocompletion para-
digms and user interface mechanisms do allow for multiple
suggestions to be given to the user for example by cyclic
tab-based completions [39] in command line shells, or by
drop-down completions in search engines. However, this fa-
cility is typically used to present a comprehensive list of
possible completions without any notion of ranking or sum-
marization.

There are dozens of applications that could benefit from
multi-word autocompletion, and the techniques we develop
in this paper should be applicable irrespective of the appli-
cation context. Nonetheless, to keep matters concrete, we
will focus on email composition as our motivating applica-
tion. We all spend a significant fraction of our work day
composing emails. A tool can become valuable even if it
helps decrease this time only slightly. We hypothesize that
the typical official email conversation is rerepetitive and has
many standard phrases. For each user, there is typically
available a long archive of sent mail, which we can use to
train an autocompletion system. And finally, the high speed
at which most of us type out emails makes it essential that
autocompletion queries have very short response times if
they are to help rather than hinder the user, leading to tight
performance requirements which we will attempt to address.

1.1 Our contributions
We introduce a query model that takes into account the

multiplicity of completion choice, and propose a way to pro-
vide top-k, ranked suggestions, paying attention to the na-
ture of results returned.

We introduce the concept of a significant phrase, which is
used to demarcate frequent phrase boundaries. It is possible
for significant phrases to overlap. It is also possible for there
to be two (or more) significant phrases of differing lengths
for any completion point. To evaluate systems that provide
multiple ranked autocompletion results, we define a novel
total profit metric for ranked autocompletion results, that
takes into account the cost of distraction due to incorrect
suggestions.

At the physical level, we propose the construction of a

word-based suffix tree structure we call the FussyTree, where
every node in the tree corresponds to a word instance in the
corpus, and root-leaf paths depict phrases. Queries are exe-
cuted upon receipt of a prefix phrase from the user-interface,
and the suffix-tree is then traversed to provide the results.
We develop techniques to minimize resource requirements in
this context, such as tree size and construction time.

The next section discusses the challenges and motivations
for our work, and details some of the existing solutions to the
problems at hand. In Section 3, we describe our data model
and the notion of significance. The FussyTree data struc-
ture, its construction and querying are defined in Section 4.
This is followed by Section 5, where we discuss evaluation
strategies and metrics for our experiments. We report our
experiments and findings in Section 6, and suggests exten-
sions to our work in Section 7. We conclude with a discussion
of the problem at hand in Section 8.

2. MOTIVATION AND CHALLENGES

2.1 Pervasiveness of Autocompletion
The concept of autocompletion has become prevalent in

current user interfaces. It has found its way into mobile
phones [38], OS-level file and web browsers [25], desktop
search engines such as Google Desktop [22], GNOME Bea-
gle [21] and Apple Spotlight [20], various integrated devel-
opment environments, email clients such as Microsoft Out-
look [23], and even word processors such as Microsoft Word [23]
and OpenOffice [2]. The latest versions of Microsoft Inter-
net Explorer [24] and Mozilla Firefox [25] implement au-
tocompletion to suggest search queries to the user. This
widespread adoption of autocompletion demands more from
the backend mechanisms that support it in terms of fast re-
sponse times with large amounts of suggestion data. While
improvements in underlying computer hardware and soft-
ware do allow for implementation of more responsive user
interfaces, the basic computational challenges involving au-
tocompletion still need to be solved.

2.2 Related Work
The concept of autocompletion is not new. Implementa-

tions such as the “Reactive Keyboard” developed by Dar-
ragh and Witten [6] have been available since the advent of
modern user interfaces, where the interface attempts to pre-
dict future keystrokes based on past interactions. Learning-
based assistive technologies have been very successfully used
to help users with writing disabilities [18], and this technol-
ogy is now being extended to accelerate text input for the
average user.

There have been successful implementations for autocom-
pletion in controlled language environments such as com-
mand line shells developed by Motoda and Yoshida [29],
and by Davison and Hirsh [7]. Jacobs and Blockeel have
addressed the problem of Unix command prediction using
variable memory Markov models. Integrated Development
environments such as Microsoft Visual Studio also exploit
the limited nature of controlled languages to deliver accu-
rate completion mechanisms that speed up user input.

As in these controlled languages, there is high predictabil-
ity in natural human language text, as studied by Shan-
non [37], making a great case for the invention of auto-
mated natural language input. Phrase prediction and dis-
ambiguation for natural language have been active areas

220



of research in the speech recognition and signal processing
community [11], providing reliable high-level domain knowl-
edge to increase the accuracy of low-level audio processing.
Phrase level prediction and disambiguation have also found
great use in the area of machine translation to improve re-
sult quality [42]. Similar ideas involving language modelling
have been used for spelling correction [17]. The exact task
of sentence completion has been tackled using different ap-
proaches. Grabski et al. [12] have developed an information
retrieval based set of techniques, using cosine similarity as
a metric to retrieve sentences similar to the query. Bickel et
al. [3] take on a more language model-based approach, by
estimating parameters in linearly interpolated n-gram mod-
els.

While there have been significant advances in the level of
phrase prediction for natural language, there appears to be
very little attention paid to the efficiency of the prediction
itself. Most models and systems are built for offline use,
and are not designed for real time use at the speed of hu-
man typing - several queries a second. Also, the data models
implemented by most are agnostic of actual implementation
issues such as system memory. We attempt to bridge this
gap, using a data-structures approach to solving this prob-
lem. We conceive the phrase completion problem as a suffix
tree implementation, and institute methods and metrics to
ensure result quality and fast query response times.

In addition to the nature of the queries, we recognize pa-
rameters that have not been considered before in traditional
approaches to the problem setting. While the concept of
contextual user interaction is quite prevalent [36], the con-
text of the query phrase has been ignored in surveyed text-
prediction literature. This is an important feature, since
most human textual input is highly contextual in nature. In
the following sections, we evaluate the ability of improving
result quality using the query context.

The problem of frequent phrase detection has also been
addressed in the context of “phrase browsing” in which doc-
uments are indexed according to a hierarchy of constituent
phrases. The Sequitur algorithm used in these techniques [31,
28, 33] suffers from the problem of aggressive phrase cre-
ation and is not ideal for cases where we wish to index only
the n-most frequent phrases, as opposed to all the repeated
phrases in the document. Additionally the in-memory data
structure created is hence extremely large and infeasible for
large datasets.

Efficient data structures for prefix-text indexing have been
studied. For example, trie variants such as burst tries [13,
43] have been shown to be effective for indexing word se-
quences in large corpora. However, these techniques still
require memory resident structures and furthermore do not
consider phrase boundaries or phrase frequencies, and hence
cannot be used for our application.

2.3 Vocabulary and size
There has been considerable work [40, 41, 34] that consid-

ers the problem of frequent phrase storage using suffix trees
for both small and large data sets. However, traditional
techniques that study efficient suffix tree construction make
an assumption that the vocabulary (tree alphabet) involved
is small. Since we consider natural language phrase auto-
completion as our target application, our vocabulary is that
of all the possible words in the text, which is a very large
number. Hence, the average fanout of each node in the suf-

fix tree is expected to be quite high, that is, each word will
have a high number of distinct words following it. In ad-
dition, the trees are expected to be sparse and extremely
varied in their structure. This high fanout and sparse, var-
ied structure challenges current scalable construction algo-
rithms since sub-tasks in these algorithms, such as the iden-
tification of common substrings.

Such flat, wide suffix-trees also make querying difficult due
to the increased costs in searching through the nodes at each
level. A possible solution is to maintain each list of children
in lexicographic order, which affects the lower bounds on
suffix tree construction taking it from O(n) to O(n log σ),
where σ is the size of the vocabulary and n the size of our
input text. Farach et al. [9] address this very problem and
propose a linear-time algorithm for suffix tree construction.
However, this algorithm involves multiple scans of the input
string to construct and splice together parts of the tree,
which makes it impossible to implement applications that
are incremental or stream-like in nature, or where the corpus
size is very large.

In other related work, the estimation of phrase frequen-
cies has been looked into is an index estimation problem.
Krishnan et al. [16] discuss the estimation techniques in the
presence of wildcards, while Jagadish et al. [14] use various
properties such as the short-memory property of text to es-
timate frequency for substrings. However, both papers con-
sider only low vocabulary applications. For example, the
construction of pruned count suffix trees, as suggested in
these papers, is infeasible for phrases due to the large inter-
mediate size of the trees, even with in-construction pruning.

3. DATA MODEL
In the context of the problem setting described above, we

now formalize our autocompletion problem.
Let a document be represented as a sequence of words,

w1, w2, . . . , wN . A phrase r in the document is an occurrence
of consecutive words, wi, wi+1, . . . , wi+x−1, for any starting
position i in [1, N ]. We call x the length of phrase r, and
write it as len(r) = x.

The autocompletion problem is, given w1, w2, . . . wi−1, to
predict completions of the form: wi, wi+1, . . . , wi+c−1, where
we would like the likelihood of this completion being correct
to be as high as possible, and for the length of the completion
to be as large as possible.

Of course, the entire document preceding word i can be
very long, and most of it may have low relevance to the
predicted completion. Therefore, we will consider a phrase
to comprise a prefix of length p and a completion of length c.
Values for both p and c will be determined experimentally.

We now introduce an example to help explain concepts
throughout the rest of this paper, a sample of a multi doc-
ument text stream for email as shown in Table 1. We also
present the n-gram frequency table, in this example choos-
ing a training sentence size N = 2. In other words, we
determine frequencies for words and word pairs but not for
word triples or longer sequences. We are not interested in
phrases, or phrase components, that occur infrequently. In
this example, we have set a threshold parameter τ = 2.
The italicized (last three) phrases have frequency below this
threshold, and are hence ignored.

3.1 Significance
A phrase for us is any sequence of words, not necessarily a

221



Doc 1 please call me asap
Doc 2 please call if you
Doc 3 please call asap
Doc 4 if you call me asap

phrase freq phrase freq
please 3 please call 3
call 4 call me 2
me 2 if you 2
if 2 me asap 2
you 2 call if 1
asap 3 call asap 1

you call 1

Table 1: An example of a multi-document collection

grammatical construct. What this means is that there are no
explicit phrase boundaries∗. Determining such boundaries
is a first requirement. In practice, what this means is that
we have to decide how many words ahead we wish to predict
in making a suggestion to the user.

On the one hand we could err in providing suggestions
that are too specific; e.g. a certain prefix of the sentence is
a valid completion and has a very high probability of being
correct. However the entire suggestion in its completeness
has a lower chance of being accepted. Conversely, the sug-
gestions maybe too conservative, losing an opportunity to
autocomplete a longer phrase.

We use the following definition to balance these require-
ments:

Definition 1. A phrase “AB” is said to be significant if
it satisfies the following four conditions:

• frequency : The phrase AB occurs with a threshold
frequency of at least τ in the corpus.

• co-occurrence : “AB” provides additional information
over “A”, i.e. its observed joint probability is higher
than that of independent occurrence.

P (“AB”) > P (“A”) · P (“B”)

• comparability : “AB” has likelihood of occurrence that
is “comparable” to “A”. Let z ≥ 1 be a comparability
factor. We write this formally as:

P (“AB”) ≥
1

z
P (“A”)

• uniqueness : For every choice of “C”, “AB” is much
more likely than “ABC”. Let y ≥ 1 be a uniqueness
factor such that for all C,

P (“AB”) ≥ yP (“ABC”)

z and y are considered tuning parameters. Probabilities
within a factor of z are considered comparable, and proba-
bilities more than a factor of y apart are considered to be
very different.
∗Phrases are not expected to go across sentence boundaries,
so the end of a sentence is an upper bound on the length of
a phrase, but note that we have not yet seen the end of the
current sentence at the time we perform phrase prediction,
so we do not know what this upper bound is.

In our example, we set the frequency threshold τ = 2,
the comparability factor z = 2, and the uniqueness factor
y = 3. Consider Doc. 1 in the document table. Notice
that the phrase “please call” meets all three conditions of
co-occurrence, comparability, and uniqueness and is a sig-
nificant phrase. On the other hand, “please call me” fails
to meet the uniqueness requirement, since “please call me
asap” has the same frequency. In essence, we are trying
to locate phrases which represent sequences of words that
occur more frequently together than by chance, and cannot
be extended to longer sequences without lowering the prob-
ability substantially. It is possible for multiple significant
phrases to share the same prefix. E.g. both “call me” and
“call me asap” are significant in the example above. This
notion of significant phrases is central to providing effective
suggestions for autocompletion.

4. THE FUSSYTREE
Suffix trees are widely used, and are ideal data struc-

tures to determine completions of given strings of charac-
ters. Since our concern is to find multi-word phrases, we
propose to define a suffix tree data structure over an al-
phabet of words. Thus, each node in the tree represents a
word. Such a phrase completion suffix tree is complemen-
tary with respect to a standard character-based suffix tree,
which could still be used for intra-word completions using
standard techniques. We refer to our data structure as a
FussyTree, in that it is fussy about the strings added to it.

In this section we introduce the FussyTree as a variant of
the pruned count suffix tree, particularly suited for phrase
completion.

4.1 Data Structure
Since suffix trees can grow very large, a pruned count suf-

fix tree [16] (PCST) is often suggested for applications such
as ours. In such a tree, a count is maintained with each
node, representing the number of times the phrase corre-
sponding to the node occurs in the corpus. Only nodes with
sufficiently high counts are retained, to obtain a significant
savings in tree size by removing low count nodes that are not
likely to matter for the results produced. We use a PCST
data structure, where every node is the dictionary hash of
the word and each path from the root to a leaf represents
a frequent phrase. The depth of the tree is bounded by the
size of the largest frequent phrase h, according to the hth or-
der Markov assumption that constrains wt to be dependent
on at most words wt+1 · · ·wt+h. Since there are no given
demarcations to signify the beginning and end of frequent
phrases, we are required to store every possible frequent sub-
string, which is clearly possible with suffix trees. Also, the
structure allows for fast, constant-time retrieval of phrase
completions, given fixed bounds on the maximum frequent
phrase length and the number of suggestions per query.

Hence, a constructed tree has a single root, with all paths
leading to a leaf being considered as frequent phrases. In the
Significance Fussytree variant, we additionally add a marker
to denote that the node is significant, to denote its impor-
tance in the tree. By setting the pruning count threshold to
τ , we can assume that all nodes pruned are not significant in
that they do not satisfy the frequency condition for signifi-
cance. However, not all retained nodes are significant. Since
we are only interested in significant phrases, we can prune

222



any leaf nodes of the ordinary PCST that are not significant.
(We note that this is infrequent. By definition, a leaf node
u has count greater than the pruning threshold and each of
its children a count less than threshold. As such, it is likely
that the uniqueness condition is satisfied. Also, since the
count is high enough for any node not pruned, the compa-
rability test is also likely to be satisfied. The co-occurrence
test is satisfied by most pairs of consecutive words in natural
language).

4.2 Querying: TheProbe Function
The standard way to query a suffix tree is to begin at the

root and traverse down, matching one query character in
turn at each step. Let node u be the current node in this
traversal at the point that the query is exhausted in that all
of its characters have been matched. The sub-tree rooted at
node u comprises all possible completions of the given query
string.

For the FussyTree, we have to make a few modifications
to the above procedure to take into account the lack of well-
defined phrase boundaries. There are precisely two points
of concern – we have to choose the beginning of the prefix
phrase for our query as well as the end point of the comple-
tions.

Recall that no query is explicitly issued to our system
– the user is typing away, and we have to decide how far
back we would like to go to define the prefix of the current
phrase, and use as the query to the suffix tree. This is a bal-
ancing act. If we choose too long a prefix, we will needlessly
constrain our search by including irrelevant words from the
“distant” past into the current phrase. If we choose too short
a prefix, we may lose crucial information that should impact
likely completions. Previous studies [14] have demonstrated
a “short memory property” in natural language, suggesting
that the probability distribution of a word is conditioned on
the preceding 2-3 words, but not much more. In our sce-
nario, we experimentally found 2 to be the optimum choice,
as seen in section 6.5.2. So we always use the last two words
typed in as the query for the suffix tree.

Once we have traversed to the node corresponding to the
prefix, all descendants of this node are possible phrase com-
pletions. In fact, there are many additional phrase comple-
tions corresponding to nodes that have been pruned away
in the threshold-based pruning. We wish to find not all pos-
sible completions, but only the significant ones. Since we
have already marked nodes significant, this is a simple ques-
tion of traversing the sub-tree and returning all significant
nodes(which represent phrases) found. In general there will
be more than one of them.

4.3 Tree Construction

4.3.1 Naive algorithm
The construction of suffix trees typically uses a sliding

window approach. The corpus is considered a stream of
word-level tokens in a sliding window of size N , where N is
the order of the Markovian assumption. We consider each
window instance as a separate string, and attempt to insert
all its prefixes into the PCST. For every node that already
exists in the tree, the node count is incremented by one.
The tree is then pruned of infrequent items by deleting all
nodes (and subsequent descendants) whose count is lower
than the frequency threshold τ .

Add-Phrase(P )
1 while P 6= {}
2 do
3 if Is-Frequent(P )
4 then
5 Append-To-Tree(P )
6 return
7 Remove-Rightmost-Word(P )

Is-Frequent(P )
1 for i← 1 to maxfreq
2 do
3 //slide through with a window of size i
4 for each f in Sliding-Window(P, i)
5 do
6 if Frequent-Table-Contains(f) = false
7 then
8 return false
9 return true

Append-To-Tree(P )
1 //align phrase to relevant node in existing suffix tree
2 //add all the remaining words as a new path

4.3.2 Simple FussyTree Construction algorithm
The naive algorithm for PCST construction described above

does not scale well since the entire suffix tree including in-
frequent phrases is constructed as an intermediate result,
effectively storing a multiple of the corpus size in the tree.
[16] suggests calling the prune() function at frequent inter-
vals during the construction of the suffix tree using a scaled
threshold parameter. However, our experiments showed that
this strategy either produced highly inaccurate trees in the
case of aggressive thresholding, or even the intermediate
trees simply grew too large to be handled by the system
with less aggressive thresholding.

To remedy this, we propose a basic Simple FussyTree Con-
struction algorithm in which we separate the tree construc-
tion step into two parts. In the first step we use a sliding
window to create an n-gram frequency table for the corpus,
where n = 1, ..., N , such that N is the training sentence
size. We then prune all phrases below the threshold param-
eter and store the rest. In our second step, we add phrases
to the tree in a fussy manner, using another sliding win-
dow pass to scan through the corpus. This step stores all
the prefixes of the window, given that the phrase exists in
the frequency table generated in the first step. The testing
of the phrase for frequency is done in an incremental man-
ner, using the property that for any bigram to be frequent,
both its constituent unigrams need to be frequent, and so
on. Since the constituent n-grams are queried more than
once for a given region due to the sliding window property
of our insertion, we implement an LRU cache to optimize
the isFrequent() function.

An example illustrating the FussyTree algorithm
We use the data from the example provided in Table 1 to
construct our aggregate tokenized stream:

(please, call, me, asap, -:END:-, please, call, if, you, -:END:-,
· · · )

where the -:END:- marker implies a frequency of zero for
any phrase containing it. We now begin the construction

223



of our tree using a sliding window of 4. The first phrase
to be added is (please, call, me, asap) followed by its pre-
fixes, (please, call, me), (please, call) and (please). We then
shift the window to (call, me, asap, -:END:-), and its pre-
fixes (call, me, asap), (call, me) and (call), and so on. All
phrases apart from those that contain either of (call, if),
(call, asap), (you, call) or (-:END:-) will meet the frequency
requirements, resulting in Fig. 1. Significant phrases are
marked with a ∗. Note that all leaves are significant (due to
the uniqueness clause in our definition for significance), but
some internal nodes are significant too.

root

please call me asap* if you*

call*

me if

asap* you*

me

asap*

asap* you*

Figure 1: An example of a constructed suffix-tree

4.3.3 Analysis
We now provide a brief complexity analysis of our tree

construction algorithm. It uses a sliding window approach
over the corpus, adding the windowed phrases to the tree.
Given a corpus of size S and a window of fixed size h, we
perform frequency checks on each of the phrase incremen-
tally. Hence, the worst case number of actual frequency
checks performed is S × 2h. Note that h is a small number
(usually under 8), and hence does not pose any cause for
concern. Additionally, the LRU cache for frequency checks
brings down this number greatly, guaranteeing that our cor-
pus scanning is done in O(S). Further, each phrase can
in the worst case create a completely new branch for it-
self which can have a maximum depth of h, the size of the
window. Thus, the number of tree operations is also lin-
ear with the corpus size, indicating that our construction
algorithm time will grow linearly with the size of the corpus
size. The constant-time lookup for the querying stage is ex-
plained thus: a query can at worst force us to walk down
the longest branch in the tree, which is of maximum depth
h, a fixed number.

We now look into the correctness of our tree construction
with respect to our definition of significance. In our im-
plementation, the FussyTree is constructed with only those
phrases possessing a frequency greater than τ , ensuring that
all nodes marked significant in the tree represent frequent
phrases. This asserts correctness the frequency rule in the
notion of significance. The co-occurrence and comparability
are also rendered correctly, since we possess all the count
information to mark them. However, to assert uniqueness
in the leaf nodes of our tree, we note the loss of count in-
formation for the leaf nodes’ children. Obviously, the fre-
quency for the children of the leaf nodes is lesser than the
threshold, and hence is most likely low enough to satisfy the
uniqueness clause. However, there may be a case in which
the children may have just missed the threshold, making the

leaf node ineligible for the uniqueness clause. In this case,
we conservatively mark all leaf nodes as significant.

4.3.4 Training sentence size determination
The choice of the size of the training sentence size N , is a

significant parameter choice. The cost of tree construction
goes up with N , as longer frequent phrases are considered
during the construction. This predicates the need to store
n-gram frequency tables (where n = 1 . . . N) take up consid-
erable resources, both in terms of storage and query times
to check for frequency. The cost of phrase look-up in the re-
sultant tree also increases because of this reason. Hence, in
the interest of efficiency, we would like to minimize the value
of N . Yet, using too small a value of N will induce errors
in our frequency estimates, by ignoring crucial dependence
information, and hence lead to poor choices of completions.
Keeping this in mind, we experimentally derive the value of
N in Sec. 6.5.1.

We note similar ideas in [41], where frequency informa-
tion is recorded only if there is a significant divergence from
the inferred conditional probabilities. However we point out
that the frequency counts there are considered on a per-item
basis, as opposed to our approach, which is much faster to
execute since there are no requirements to do a recurring
frequency check during the actual creation of the FussyTree
structure.

4.4 Telescoping
Telescoping [26] is a very effective space compression meth-

od in suffix trees (and tries), and involves collapsing any
single-child node (which has no siblings) into its parent node.
In our case, since each node possesses a unique count, tele-
scoping would result in a loss of information, and so cannot
be performed directly, without loss of information. Given
the large amount of storage required to keep all these counts,
we seek techniques to reduce this, through mechanisms akin
to telescoping.

To achieve this, we supplant the multi-byte count element
by a single-bit flag to mark if a node is “significant” in each
nodeat depth greater than one. All linear paths between
significant nodes are considered safe to telescope. In other
words, phrases that are not significant get ignored, when
determining whether to telescope, and we do permit the
collapsing together of parent and child nodes with somewhat
different counts as long as the parent has no other significant
children. To estimate the frequency of each phrase, we do
not discard the count information from the significant nodes
directly adjacent to the root node. By the comparability
rule in the definition of significance, this provides an upper
bound for the frequency of all nodes, which we use in place
of the actual frequency for the probe function. We call the
resulting telescoped structure a Significance FussyTree with
(offline) significance marking.

Online significance marking
An obvious method to mark the significance of nodes would
be to traverse the constructed suffix tree in a postprocessing
step, testing & marking each node. However, this method
requires an additional pass over the entire trie. To avoid
them, we propose a heuristic to perform an on-the-fly mark-
ing of significance, which enables us to perform a significance
based tree-compaction without having to traverse the entire
tree again.

224



Given the addition of phrase ABCDE, only E is consid-
ered to be promoted of its flagged status using the current
frequency estimates, and D is considered for demotion of its
status. This ensures at least 2-word pipelining. In the case
of the addition of ABCXY to a path ABCDE where E is
significant, the branch point C is considered for flag pro-
motion, and the immediate descendant significant nodes are
considered for demotion. This ensures considering common
parts of various phrases to be considered significant.

Append-To-Tree(P )
1 //align phrase to relevant node in existing suffix tree
2 using cursor c, which will be last point of alignment
3 Consider-Promotion(c)
4 //add all the remaining words as a new path
5 the cursor c is again the last point of alignment
6 Consider-Promotion(c)
7 Consider-Demotion(c→ parent)
8 for each child in c→ children
9 do

10 Consider-Demotion(child)

We call the resulting structure a Significance FussyTree
with online significance marking.

5. EVALUATION METRICS
Current phrase / sentence completion algorithms discussed

in related work only consider single completions, hence the
algorithms are evaluated using the following metrics:

Precision =
n(accepted completions)

n(predicted completions)

Recall =
n(accepted completions)

n(queries, i.e. initial word sequences)

where n(accepted completions) = number of accepted com-
pletions, and so on. In the light of multiple suggestions per

query, the idea of an accepted completion is not boolean any
more, and hence needs to be quantified. Since our results
are a ranked list, we use a scoring metric based on the in-
verse rank of our results, similar to the idea of Mean and
Total Reciprocal Rank scores described in [35], which are
used widely in evaluation for information retrieval systems
with ranked results. Also, if we envisage the interface as a
drop-down list of suggestions, the value of each suggestion
is inversely proportional to it’s rank; since it requires 1 key-
press to select the top rank option, 2 keypresses to select
the second ranked one, and so on. Hence our precision and
recall measures are redefined as:

Precision =

P

(1/rank of accepted completion)

n(predicted completions)

Recall =

P

(1/rank of accepted completion)

n(queries, i.e. initial word sequences)

To this end we propose an additional metric based on a
“profit” model to quantify the number of keystrokes saved
by the autocompletion suggestion. We define the income
as a function of the length of the correct suggestion for a
query, and the cost as a function of a distraction cost d
and the rank of the suggestion. Hence, we define the Total
Profit Metric(TPM) as:

TPM(d) =

P

(sug. length× isCorrect)− (d + rank)

length of document

Where isCorrect is a boolean value in our sliding window
test, and d is the value of the distraction parameter. TPM
metric measures the effectiveness of our suggestion mecha-
nism while the precision and recall metrics refer to the qual-
ity of the suggestions themselves. Note that the distraction
caused by the suggestion is expected to be completely un-
obtrusive to user input : the value given to the distraction
parameter is subjective, and depends solely on how much a
user is affected by having an autocompletion suggestion pop
up while she is typing. The metric TPM(0) corresponds to
a user who does not mind the distraction at all, and com-
putes exactly the fraction of keystrokes saved as a result of
the autocompletion. The ratio of TPM(0) to the total typed
document length tells us what fraction of the human typing
effort was eliminated as a result of autocompletion. TPM(1)
is an extreme case where we consider every suggestion(right
or wrong) to be a blocking factor that costs us one keystroke.
We conjecture that the average, real-world user distraction
value would be closer to 0 than 1.

We hence consider three main algorithms for compari-
son: (1) We take the naive pruned count suffix tree algo-
rithm(Basic PCST) as our baseline algorithm. (2) We con-
sider the basic version of the FussyTree construction algo-
rithm called the Simple FussyTree Construction as an ini-
tial comparison, where we use frequency counts to construct
our suffix tree. (3) Our third variant, Significance FussyTree
Construction is used to create a significance-based FussyTree
with significance marked using the online heuristic.

6. EXPERIMENTS
We use three different datasets for the evaluation with

increasing degrees of size and language heterogeneity. The
first is a subset of emails from the Enron corpus [15] re-
lated to emails sent by a single person which spans 366
emails or 250K characters. We use an email collection of
multiple Enron employees, with 20,842 emails / 16M char-
acters, as our second collection. We use a more heteroge-
neous random subset of the Wikipedia† for our third dataset
comprising 40,000 documents / 53M characters. All docu-
ments were preprocessed and transformed from their na-
tive formats into lowercase plaintext ASCII. Special invalid
tokens (invalid Unicode transformations, base64 fragments
from email) were removed, as was all punctuation, so that we
can concentrate on simple words for our analysis. All experi-
ments were implemented in the Java programming language
and run on a 3GHz x86 based computer with 2 gigabytes
of memory and inexpensive disk I/O, running the Ubuntu
Linux operating system.

To evaluate the phrase completion algorithms, we employ
a sliding window based test-train strategy using a parti-
tioned dataset. We consider multi-document corpora, ag-
gregated and processed into a tokenized word stream. The
sliding window approach works in the following manner: We
assume a fixed window of size n, larger than or equal to the
size of the training sentence size. We then scan through
the corpus, using the first α words as the query, and the
first β words preceding the window as our context. We then

†English Wikipedia: http://en.wikipedia.org

225



Algorithm Small Large Enron Wikipedia

Basic PCST 13181 1592153 –
Simple FussyTree 16287 1024560 2073373
Offline Significance 19295 1143115 2342171
Online Significance 17210 1038358 2118618

Table 2: Construction Times (ms)

retrieve a ranked list of suggestions using the suggestion al-
gorithm we are testing, and compare the predicted phrases
against the remaining n− α words in the window, which is
considered the “true” completion. A suggested completion
is accepted if it is a prefix of the “true” completion.

6.1 Tree Construction
We consider the three algorithms described at the end of

Sec. 5 for analysis. We ran the three algorithms over all
three candidate corpora, testing for construction time, and
tree size. We used the standard PCST construction algo-
rithm [14] as a base line. We found the values of compara-
bility parameter z = 2 and uniqueness parameter y = 2 in
computing significance to be optimum in all cases we tested.
Therefore, we use these values in all experiments reported.
Additionally, the default threshold values for the three cor-
pora were kept at 1.5× 10−5 of corpus size; while the value
for the training sentence size N was kept at 8, and the trees
were queried with a prefix size of 2. The threshold, training
sentence size and prefix size parameters were experimentally
derived, as shown in the following sections.

We present the construction times for all three datasets
in Table 2. The PCST data structure does not perform well
for large sized data – the construction process failed to ter-
minate after an overnight run for the Wikipedia dataset.
The FussyTree algorithms scale much better with respect to
data size, taking just over half an hour to construct the tree
for the Wikipedia dataset. As we can see from Table 2, the
Significance FussyTree algorithm is faster than offline signif-
icance marking on the Simple FussyTree, and is only slightly
slower to construct than the Simple FussyTree algorithm.

6.2 Prediction Quality
We now evaluate the the prediction quality of our algo-

rithms in the following manner. We simulate the typing of a
user by using a sliding window of size 10 over the test corpus,
using the first three words of the window as the context, the
next two words as the prefix argument, and the remaining
five as the true completion. We then call the probe function
for each prefix, evaluating the suggestions against the true
completion. If a suggestion is accepted, the sliding window
is transposed accordingly to the last completed word, akin
to standard typing behavior.

In Table 4 we present the TPM(0) and TPM(1) scores
we obtained for three datasets along with the recall and
precision of the suggestions. We compare our two tree con-
struction algorithms, the Simple FussyTree, and the Signif-
icance FussyTree. The Basic PCST algorithm is not com-
pared since it does not scale, and because the resultant tree
would any way be similar to the tree in the Simple FussyTree
algorithm. We see (from the TPM(0) score) that across all
the techniques and all the data sets, we save approximately
a fifth of key strokes typed. Given how much time each of us
puts into to composing text every day, this is a really huge
saving.

Algorithm Small Large Enron Wikipedia
Simple FussyTree 8299 12498 25536
Sigf. FussyTree 4159 8035 14503

Table 3: Tree Sizes (in nodes) with default threshold
values

Corpus: Enron Small
Dataset / Algo Recall Precision TPM(0) TPM(1)

Simple FussyTree 26.67% 80.17% 22.37% 18.09%
Sigf. FussyTree 43.24% 86.74% 21.66% 16.64%

Corpus: Enron Large
Dataset / Algo Recall Precision TPM(0) TPM(1)

Simple FussyTree 16.59% 83.10% 13.77% 8.03%
Sigf. FussyTree 26.58% 86.86% 11.75% 5.98%

Corpus: Wikipedia
Dataset / Algo Recall Precision TPM(0) TPM(1)

Simple FussyTree 28.71% 91.08% 17.26% 14.78%
Sigf. FussyTree 41.16% 93.19% 8.90% 4.6%

Table 4: Quality Metrics

To put the numbers in perspective, we consider modern
word processors such as Microsoft Word [23], where auto-
completion is done on a single-suggestion basis using a dic-
tionary of named entities. We use the main text of the Lord
of The Rings page on the English Wikipedia as our token
corpus, spanning 43888 characters. In a very optimistic and
unrealistic scenario, let us assume that all named entities
on that page (for our problem, all text that is linked to
another Wikipedia entry) are part of this dictionary; this
could be automated using a named entity tagger, and also
assume that we have a perfect prediction quality given a
unit prefix size. Given this scenario, there are 226 multiple
word named entity instances, which, given our optimistic
assumptions, would result in an ideal-case completion
profit of 2631 characters, giving us a TPM(0) of 5.99%.
Our phrase completion techniques can do better than this
by a factor of 3.

Despite the discarding of information through significance
marking and telescoping, we observe how the Significance
FussyTree algorithm results in a much smaller tree size (as
seen in Table 3), and can still perform comparably with the
baseline Simple FussyTree in terms of result quality. We
observe an overall increase in recall and precision on adding
significance, and that it causes a slight reduction in TPM
metrics especially in high-variance corpora (as opposed to
single author text). We consider the TPM drop to be ac-
ceptable in light of the reduction in tree size.

Looking across the data sets, we observe a few weak trends
worth noticing. If we just look at the simple FussyTree
scores for recall and precision, we find that there is a slight
improvement as the size of the corpus increases. This is to
be expected – the larger the corpus, the more robust our
statistics. However, the TPM scores do not follow suit, and
in fact show an inverse trend. We note that the difference be-
tween TPM and recall/precision is that the latter addition-
ally takes into account the length of suggestions made (and
accepted), whereas the former only considers their number
and rank. What this suggests is that the average length
of accepted suggestion is highest for the more focused cor-
pus, with emails of a single individual, and that this length
is lowest for the heterogeneous encyclopedia. Finally, the

226



Algorithm Small Large Enron Wikipedia
Simple FussyTree 0.020 0.02 0.02
Sigf. FussyTree 0.021 0.22 0.20
Sigf. + POS 0.30 0.23 0.20

Table 5: Average Query Times (ms)

recall and precision trends are mixed for the significance
algorithms. This is because these algorithms already take
significance and length of suggestion into account, merging
the two effects described above. As expected, the TPM
trends are clear, and all in the same direction, for all the
algorithms.

6.3 Response Time
We measure the average query response times for various

algorithms / datasets. As per Table 5, it turns out that
we are well within the 100ms time limit for “instantaneous”
response, for all algorithms.

6.4 Online Significance Marking
We test the accuracy of the online significance marking

heuristic by comparing the tree it generates against the
offline-constructed gold standard. The quality metrics for all
three datasets, as shown in Table 6, show that this method
is near perfect in terms of accuracy‡, yielding excellent pre-
cision§ and recall¶ scores in a shorter tree construction time.

Dataset Precision Recall Accuracy

Enron Small 99.62% 97.86% 98.30%
Enron Large 99.57% 99.78% 99.39%
Wikipedia 100% 100% 100%

Table 6: Online Significance Marking heuristic qual-
ity, against offline baseline

6.5 Tuning Parameters

6.5.1 Varying training sentence size
As described in Sec. 4.3.4, the choice of the training sen-

tence size N is crucial to the quality of the predictions. We
vary the value of this training sentence size N while con-
structing the Significance FussyTree for the Small Enron
dataset, and report the TPM scores in Fig. 2. We infer that
the ideal value for N for this dataset is 8.

6.5.2 Varying prefix length
The prefix length in the probe function is a tuning pa-

rameter. We study the effects of suggestion quality across
varying lengths of query prefixes, and present them in Fig. 2.
We see that the quality of results is maximized at length =
2.

6.5.3 Varying frequency thresholds
To provide an insight into the size of the FussyTree, in

nodes, as we vary the frequency threshold during the con-
struction of the FussyTree for the Small Enron and Large
Enron datasets; and observe the change in tree size, as
shown in Fig.3.

‡
percentage predictions that are correct

§
percentage significant marked nodes that are correct

¶
percentage of truly significant nodes correctly predicted

(a) (b)

Figure 2: Effect of varying (a) training sentence size
(b) prefix length on TPM in Small Enron dataset

(a) (b)

Figure 3: Effect of varying threshold on FussyTree
size in (a) Small Enron (b) Large Enron datasets

6.5.4 Varying tree size
We now use the frequency threshold as a way to scale up

the size of the tree for the Significance FussyTree. We plot
the TPM values(0 and 1) against the tree size for the Small
Enron dataset. As can be seen, since the decrease in tree
size initially causes a very gradual decrease in TPM, but
soon begins dropping quite sharply at around threshold =
5 and above. Hence, we prefer to use threshold = 4 in this
case.

7. POSSIBLE EXTENSIONS
In experiments over our test corpora in Sec. 6.3, we ob-

serve that the probe function takes less than a hundredth
of a millisecond on average to execute and deliver results.

Figure 4: Effect of varying FussyTree size on TPM
for Small Enron dataset, t labels show threshold val-
ues for the respective tree sizes

227



Corpus: Enron Small
Dataset / Algo Recall Precision TPM(0) TPM(1)

Simple + POS 25.0% 77.09% 22.22% 17.93%
Sigf. + POS 40.44% 81.13% 21.25% 16.23%

Corpus: Enron Large
Dataset / Algo Recall Precision TPM(0) TPM(1)

Simple + POS 16.13% 85.32% 15.05% 9.01%
Sigf. + POS 23.65% 84.99% 12.88% 6.16%

Corpus: Wikipedia
Dataset / Algo Recall Precision TPM(0) TPM(1)

Simple + POS 22.87% 87.66% 17.44% 14.96%
Sigf. + POS 41.16% 95.3% 8.88% 4.6%

Table 7: Quality Metrics, querying with reranking

Studies by Card [5] and Miller [27] have shown that the
appearance of “instantaneous” results is achieved within a
response time span of 100ms. Hence, this validates our
premise and shows that there is a clear window of oppor-
tunity in terms of query time, to include mechanisms that
improve result quality using the additional information. We
discuss some methods to improve quality in this section.

We base our extensions on the premise that the context
of a phrase affects the choice of suitable phrase comple-
tions. The context of a phrase is defined as the set of words
wi−y, wi−y+1, . . . , wi−1 preceding the phrase wi, wi+1, . . . wi+x.

The context of a prefix can be used to determine additional
semantic properties, such as semantic relatedness of the con-
text to the suggestion, and the grammatical appropriateness
based on a part-of-speech determination. We conjecture
that these features abstract the language model in a way
so as to efficiently rank suggestions by their validity in light
of the context. This context of the query is used to rerank
the suggestions provided by the FussyTree’s probe function.
The reranking takes place as a postprocessing step after the
query evaluation.

7.1 Reranking using part-of-speech
We use a hash map based dictionary based on the Brill

part-of-speech(POS) tagger [4] to map words to their part-
of-speech. A part of speech automata is trained on the en-
tire text during the sliding window tree construction, where
each node is a part of speech, and each n-gram (to a cer-
tain length, say 5) is a distinct path, with the edge weights
proportional to the frequency. Hence the phrase “submit
the annual reports” would be considered as an increment
to the “verb-det-adj-noun” path weights. The reasoning is
that part-of-speech n-grams are assumed to be a good ap-
proximation for judging a good completion in running text.
During the query, the probe function is modified to per-
form a successive rerank step, where the suggestions R are
ranked in descending order of prob(POSc, POSp, POSri

),
where POSc, POSp and POSri

are the POS of the con-
text, prefix and suggestion, respectively. We then evaluate
the precision, recall, TPM and execution time of the new
reranking-based probe function, as reported in Table 7. We
observe that the reranking has little average affect on Recall,

Figure 5: Bipartite graph - synset co-occurrences

Precision and TPM. We note however that on any individ-
ual query, the input can be significantly positive or negative.
Isolating the cases where the effect is positive, we are work-
ing towards a characterization of the effect.

7.2 Reranking using semantics
Another source of contextual information is the set of

meanings of the prefix’s word neighborhood. We reason that
some word meanings would have a higher probability to co-
occur with certain others. For example, for any sentence
mentioning “hammer” in its context and “the” as prefix, it
would more probable to have “nail properly” as a possible
completion than “documents attached”, even if the latter is
a much more frequent phrase overall, disregarding context.
A simple bipartite classifier is used to consider prob(A|B),
where A is the set of WordNet [10] synsets, or word mean-
ings in the result set, and B is the set of synsets in the
query, as shown in Fig. 5. The classifier returns a collection
of synsets for every synset set provided in the context and
prefix. Suggestions are then ranked based on the number
of synsets mapped from each suggestion. However, experi-
ments show that the benefit due to semantic reranking was
statistically insignificant, and no greater than due to POS
reranking. In addition, it has resource requirements due to
the large amount of memory required to store the synset
classes∗, and the high amount of computation required for
each bipartite classification of synsets. We believe that this
is because co-occurrence frequency computed with the prefix
already contains most of the semantic information we seek.
We thus do not consider semantic reranking as a possible
improvement to our system.

7.3 One-pass algorithm
The FussyTree algorithm involves a frequency counting

step before the actual construction of the data structure.
This preprocessing step can be incorporated into the tree
construction phase, using on-line frequency estimation tech-
niques, such as those in [19, 8] to determine frequent phrases
with good accuracy. A single pass algorithm also allows us
to extend our application domain to stream-like text data,
where all indexing occurs incrementally. We analyze various
features of frequent phrases, such as part-of-speech, capital-
ization, and semantics. We show how the part-of-speech
information of these phrases is a good feature for predict-
ing frequent phrases with near 100% recall, by building a
simple naive Bayesian classifier to predict frequency. Since
the part-of-speech features of frequent strings are likely to
be much less sensitive to changes in corpus than the strings
themselves, we reason that it is viable to create a POS-based
classifier using an initial bootstrap corpus. The classifier can

∗
WordNet 2.1 has 117597 synsets, and 207016 word-sense pairs

228



Figure 6: Recall vs precision for POS-based fre-
quency classifier.

then be used to build suffix trees, while at the same time
train itself. This is a very convenient technique to use for fre-
quent re-indexing of data, for example an overnight re-index
of all personal email that improves the autocompletion for
the next day. Our experiment proceeds as follows. We train
a Naive Bayes classifier to classify a phrase as frequent or
infrequent based on the POS n-grams, which are generated
using the process described in section 7.1. We then test the
classifier on the training data, which in our case is the online
trading emails from the Enron dataset. We also report num-
bers from tests on other datasets; first, a separate sample of
emails from the Enron collection, and secondly the sample
of text from the Wikipedia.

On the conservative side of the precision-recall curve, ex-
periments on the large sized Enron collection report preci-
sion scores of 30%, 27% and 20%, for 80%, 85% and 99%
recall respectively. We focus on this part of the recall-
precision curve, since it is acceptable to have a large number
of prospective frequent phrases, which are pruned later when
updated with real counts.

8. CONCLUSION AND FUTURE WORK
We have introduced an effective technique for multi-word

autocompletion. To do so, we have overcome multiple chal-
lenges. First, there is no fixed end-point for a multi-word
“phrase”. We have introduced the notion of significance to
address this. Second, there often is more than one reason-
able phrase completion at a point. We have established the
need for ranking in completion results, and have introduced
a framework for suggesting a ranked list of autocompletions,
and developed efficient techniques to take the query context
into account for this purpose. Third, there is no dictionary
of possible multi-word phrases, and the number of possible
combinations is extremely large. To this end, we have de-
vised a novel FussyTree data structure, defined as a variant
of a count suffix tree, along with a memory-efficient tree
construction algorithm for this purpose. Finally, we have
introduced a new evaluation metric, TPM, which measures
the net benefit provided by an autocompletion system much
better than the traditional measures of precision and recall.
Our experiments show that the techniques presented in this
paper can decrease the number of keystrokes typed by up to
20% for email composition and for developing an encyclope-
dia entry.

Today, there are widely used word completion algorithms,
such as T9 [38]. We have shown that phrase completion
can save at least as many keystrokes as word completion.
However, word completion and phrase completion are com-
plementary rather than competing. In terms of actual im-
plementation, phrase completion can be triggered at every
word boundary(e.g. when the user types a space), while
word completion can be queried all other times.

As possible extensions, we discussed the notion of rerank-
ing suggestions using sentence context, and one-pass con-
struction of the FussyTree. As future work, the idea of text
autocompletion can be extended to various other applica-
tions. The current state of art in genomics only considers
1-8 bases as atomic units. There are no studies done at
longer, variable strings of bases, which would require large-
vocabulary capable suffix tree implementations. Another
possible application is the inference of XML schema, which
can be done by training the FussyTree with the XML paths
as input. The single-pass version of the construction algo-
rithm allows us to create a FussyTree for trend detection in
streams, where the significance concept can be used to mark
the start and end of various trends.

9. REFERENCES
[1] B. Bailey, J. Konstan, and J. Carlis. The Effects of

Interruptions on Task Performance, Annoyance, and
Anxiety in the User Interface. Proceedings of
INTERACT 2001.

[2] C. Benson, M. Muller-Prove, and J. Mzourek.
Professional usability in open source projects.
Conference on Human Factors in Computing Systems,
pages 1083–1084, 2004.

[3] S. Bickel, P. Haider, and T. Scheffer. Learning to
Complete Sentences. 16th European Conference on
Machine Learning (ECML05), pages 497–504, 2005.

[4] E. Brill. A simple rule-based part of speech tagger.
Proceedings of the Third Conference on Applied
Natural Language Processing, pages 152–155, 1992.

[5] S. Card, G. Robertson, and J. Mackinlay. The
information visualizer, an information workspace.
Proceedings of the SIGCHI conference on Human
factors in computing systems: Reaching through
technology, pages 181–186, 1991.

[6] J. Darragh, I. Witten, and M. James. The Reactive
Keyboard: a predictive typing aid. Computer,
23(11):41–49, 1990.

[7] B. Davison and H. Hirsh. Predicting sequences of user
actions. Notes of the AAAI/ICML 1998 Workshop on
Predicting the Future: AI Approaches to Time-Series
Analysis, 1998.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. Proceedings of
the twentieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
102–113, 2001.

[9] M. Farach. Optimal suffix tree construction with large
alphabets. Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on, pages
137–143, 1997.

[10] C. Fellbaum. Wordnet: An Electronic Lexical
Database. Bradford Book, 1998.

[11] E. Giachin and T. CSELT. Phrase bigrams for

229



continuous speech recognition. Acoustics, Speech, and
Signal Processing, 1995. ICASSP-95., 1995
International Conference on, 1, 1995.

[12] K. Grabski and T. Scheffer. Sentence completion.
Proceedings of the 27th annual international
conference on Research and developement in
information retrieval, pages 433–439, 2004.

[13] S. Heinz, J. Zobel, and H. Williams. Burst tries: a
fast, efficient data structure for string keys. ACM
Transactions on Information Systems, 20(2):192–223,
2002.

[14] H. Jagadish, R. Ng, and D. Srivastava. Substring
selectivity estimation. Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 249–260, 1999.

[15] B. Klimt and Y. Yang. The Enron Corpus: A New
Dataset for Email Classification Research. Proceedings
of the European Conference on Machine Learning,
2004.

[16] P. Krishnan, J. Vitter, and B. Iyer. Estimating
alphanumeric selectivity in the presence of wildcards.
Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, pages 282–293,
1996.

[17] K. Kukich. Technique for automatically correcting
words in text. ACM Computing Surveys (CSUR),
24(4):377–439, 1992.

[18] C. MacArthur. Word Processing with Speech
Synthesis and Word Prediction: Effects on the
Dialogue Journal Writing of Students with Learning
Disabilities. Learning Disability Quarterly,
21(2):151–166, 1998.

[19] G. Manku and R. Motwani. Approximate frequency
counts over data streams. Proceedings of the
Twenty-Eighth International Conference on Very
Large Data Bases, 2002.

[20] Apple Inc. Spotlight Search
http://www.apple.com/macosx/features/spotlight.

[21] Gnome Foundation. Beagle Desktop Search
http://www.gnome.org/projects/beagle/.

[22] Google Inc. Google Desktop Search
http://desktop.google.com.

[23] Microsoft Inc. Microsoft Office Suite
http://www.microsoft.com/office.

[24] Microsoft Inc. Windows Explorer
http://www.microsoft.com/windows.

[25] Mozilla Foundation. Mozilla Firefox version 2
http://www.mozilla.com/firefox/.

[26] E. M. McCreight. A space-economical suffix tree
construction algorithm. J. ACM, 23(2):262–272, 1976.

[27] R. Miller. Response time in man-computer
conversational transactions. Proceedings of the AFIPS
Fall Joint Computer Conference, 33:267–277, 1968.

[28] A. Moffat and R. Wan. Re-Store: A System for
Compressing, Browsing, and Searching Large

Documents. Proceedings of the International
Symposium on String Processing and Information
Retrieval, IEEE Computer Society, 2001.

[29] H. Motoda and K. Yoshida. Machine learning
techniques to make computers easier to use. Artificial
Intelligence, 103(1):295–321, 1998.

[30] B. Myers, S. Hudson, and R. Pausch. Past, present,
and future of user interface software tools. ACM
Transactions on Computer-Human Interaction
(TOCHI), 7(1):3–28, 2000.

[31] C. Nevill-Manning, I. Witten, and G. Paynter.
Browsing in digital libraries: a phrase-based approach.
Proceedings of the second ACM international
conference on Digital libraries, pages 230–236, 1997.

[32] L. Paulson. Building rich web applications with Ajax.
Computer, 38(10):14–17, 2005.

[33] G. Paynter, I. Witten, S. Cunningham, and
G. Buchanan. Scalable browsing for large collections:
a case study. Proceedings of the fifth ACM conference
on Digital libraries, pages 215–223, 2000.

[34] A. Pienimaki. Indexing Music Databases Using
Automatic Extraction of Frequent Phrases.
Proceedings of the International Conference on Music
Information Retrieval, pages 25–30, 2002.

[35] D. Radev, H. Qi, H. Wu, and W. Fan. Evaluating
Web-based Question Answering Systems. Proceedings
of LREC, 2002.

[36] T. Selker and W. Burleson. Context-aware design and
interaction in computer systems. IBM Systems
Journal, 39(3):880–891, 2000.

[37] C. Shannon. Prediction and entropy of printed
English. Bell System Technical Journal, 30(1):50–64,
1951.

[38] M. Silfverberg, I. S. MacKenzie, and P. Korhonen.
Predicting text entry speed on mobile phones. In CHI
’00: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 9–16, New York,
NY, USA, 2000. ACM Press.

[39] A. Taddei. Shell Choice A shell comparison. Technical
report, Guide CN/DCI/162, CERN, Geneva,
September 1994d.

[40] S. Tata, R. Hankins, and J. Patel. Practical Suffix
Tree Construction. Proceedings of the Thirtieth
International Conference on Very Large Data Bases,
Toronto, Canada, August, pages 36–47.

[41] S. Tata, J. Patel, J. Friedman, and A. Swaroop.
Towards Declarative Querying for Biological
Sequences. Technical report, Technical Report
CSE-TR-508-05, University of Michigan, 2005.

[42] D. Vickrey, L. Biewald, M. Teyssier, and D. Koller.
Word-Sense Disambiguation for Machine Translation.
HLT/EMNLP, 2005.

[43] H. E. Williams, J. Zobel, and D. Bahle. Fast phrase
querying with combined indexes. ACM Trans. Inf.
Syst., 22(4):573–594, 2004.

230


