
Extending QGrams to Estimate Selectivity of String
Matching with Low Edit Distance

∗

Hongrae Lee
Univ. of British Columbia

xguy@cs.ubc.ca

Raymond T. Ng
Univ. of British Columbia

rng@cs.ubc.ca

Kyuseok Shim
Seoul National Univ.

shim@ee.snu.ac.kr

ABSTRACT

There are many emerging database applications that require
accurate selectivity estimation of approximate string match-
ing queries. Edit distance is one of the most commonly used
string similarity measures. In this paper, we study the prob-
lem of estimating selectivity of string matching with low edit
distance. Our framework is based on extending q-grams
with wildcards. Based on the concepts of replacement semi-
lattice, string hierarchy and a combinatorial analysis, we
develop the formulas for selectivity estimation and provide
the algorithm BasicEQ. We next develop the algorithm
OptEQ by enhancing BasicEQ with two novel improve-
ments. Finally we show a comprehensive set of experiments
using three benchmarks comparing OptEQ with the state-
of-the-art method SEPIA. Our experimental results show
that OptEQ delivers more accurate selectivity estimations.

1. INTRODUCTION
With the widespread use of the internet, text-based data

sources have become ubiquitous. The demand for effective
support of approximate string queries becomes ever increas-
ing. For example, if a keyword is misspelled in a web search,
candidate corrections are suggested. Furthermore, many
database applications such as data integration or data clean-
ing require effective handling of approximate string match-
ing and joins.

In query optimization, the estimation of selectivity for
selection predicates or joins is necessary to produce an op-
timized query execution plan. For example, a query with
two conjunctive selection predicates, one of which may be
a LIKE predicate, may result in dramatically different pro-
cessing time depending on the order the two selections are
executed. Processing the more selective predicate first is

∗This research is sponsored by funding from Canadian
NSERC and Genome Canada. It is also supported by the
Ministry of Information and Communication, Korea, under
the College Information Technology Research Center Sup-
port Program, grant number IITA-2006-C1090-0603-0031.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 2328, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 9781595936493/07/09.

more advantageous if the costs of checking a record for both
predicates are the same. Thus, accurate estimation of the
selectivity of approximate string matching is essential for
many database applications.

To handle approximate string matching, various string
similarity measures, such as the edit distance, hamming
distance and Jaccard distance distance have been consid-
ered [3]. As one of the most widely accepted measures in
text retrieval [3, 15], the edit distance between two strings
s1 and s2, denoted as ed(s1, s2), is the minimum number
of edit operations of single characters that are needed to
transform s1 to s2. The problem statement of the paper is
as follows: Given a query string sq and a bag of strings DB,
estimate the size of the answer set {s | ed(sq, s) ≤ ∆ and
s ∈ DB}, where ∆ is the edit distance threshold.

In [6], Chaudhuri et al. proposed the Short Identifying
Substring (SIS) assumption stating that: “a query string
s usually has a ‘short’ substring s′ such that if an attribute
value contains s′, then the attribute value almost always con-
tains s as well.” Thus, for estimating the frequency of s, it is
desirable to estimate instead the frequency of s′. They show
that the SIS assumption appears to hold for long strings in
many real life data sets. Specifically, if one defines s′ to be a
short identifying substring when its selectivity is within 5%
of the selectivity of s, then there exist s′ with length ≤ 7 for
over 90% of strings s of longer lengths. Thus, in this paper,
we focus our attention on queries sq with length shorter than
40. Given such queries sq, we restrict our attention to low
edit distance, more specifically ∆ = 1, 2 or 3. For instance,
if sq = “sheffey”, the following seemingly unrelated strings
are within an edit distance of 3: ‘hefte’, ‘yeffet’, ‘elfey’, etc.
Thus, a fast solution for ∆ ≤ 3 can be valuable for many
database applications. As a preview, we make the following
contributions.

• We propose in Section 3 the concept of extended q-
grams, which can contain the wildcard symbol ?, repre-
senting any single character from the alphabet. Based
on the concepts of replacement semi-lattice, string hi-
erarchy and a combinatorial analysis, we develop in
Section 3 the formulas for determining the selectivity
when only replacements or deletions are allowed. The
replacement formula is particularly valuable as it forms
the basis for later optimizations.

• We propose in Section 4 an algorithm called BasicEQ
for selectivity estimation when all edit operations are
allowed. We then develop in Section 5 novel tech-
niques to scale up BasicEQ and present the algorithm
OptEQ. The first technique is done by approximat-

195

ing with a completion of the appropriate replacement
semi-lattice. The second one is done by avoiding un-
necessary operations by grouping semi-lattices.

• We show a comprehensive set of experiments in Sec-
tion 6. We compare OptEQ with SEPIA using three
benchmarks of varying difficulty levels. Even with less
memory, our selectivity estimations are more accurate
when ∆ ≤ 3.

2. RELATED WORK
Jin and Li studied the problem of estimating string selec-

tivity with edit distance [15]. Their technique SEPIA clus-
ters similar strings, selects a pivot for each cluster, and cap-
tures the edit distance distribution with histograms. Given
a query, it visits each cluster and estimates the number of
strings in the cluster that are within the edit distance thresh-
old using the the histograms. In comparison, the algorithms
proposed here are based on extended q-grams, which are less
dependent on data size. A comprehensive comparison with
SEPIA is given in Section 6.

Krishnan et al. first proposed using suffix trees for sub-
string selectivity estimation [17]. The KVI estimate, which
assumes independence of substrings, was proposed. Based
on the Markov assumption and the concept of maximally
overlapping substrings, Jagadish et al. proposed the MO
estimate [14]. Chaudhuri et al. observed that MO often
under-estimates [6]. Based on the SIS assumption, they
proposed the CRT algorithm, which uses q-gram tables and
regression trees. All of these estimates do not deal with edit
distance.

Approximate string matching has widely been studied across
various fields including computational biology [12], signal
processing [9], text retrieval [3, 21], and data cleaning [22].
Jin et al. proposed MAT trees to process fuzzy predicates on
strings [16]. Chaudhuri et al. developed an index structure
and a fuzzy matching algorithm to effectively filter incoming
tuples [7]. Estimating the cardinality of approximate string
predicates is essential in all these tasks.

Burkhardt et al. used q-grams to match patterns in DNA
sequences [5]. Gravano et al. applied q-grams and proposed
positional q-grams to build approximate string join capabil-
ities [11]. Burkhardt and Karkkianen proposed one-gapped
q-gram filters to efficiently filter out strings using edit dis-
tance for query processing (but not for selectivity estima-
tion) [4]. The q-gram is made by skipping some positions
and is similar to a special case of our extended q-grams.

Apart from the edit distance, Jaccard distance [8] and
Jaro-Winkler distance [23] were proposed for text retrieval
and ’record linkage’ respectively. The framework proposed
here is designed specifically for edit and hamming distance.
Extensions to handle Jaccard and Jaro-Winkler distances
are beyond the scope of this paper.

3. EXTENDED QGRAMS

3.1 Extending Qgrams with Wildcards
Let Σ be a finite alphabet with size denoted as |Σ|. The

bag DB consists of strings drawn from Σ?. To mark the
beginning and the end of a string, we use the symbols #
and $, which are assumed not to be in Σ. For a string s, we
prefix s with # and suffix with $. For example, “beau” is
transformed into “#beau$” before processing. Throughout

this paper, we use double quotes for strings, but do not use
any quotation marks for substrings. Whenever there is no
confusion, we omit # and $ for clarity.

Any string of length q(> 0) in Σ ∪ {#, $} is called a q-
gram. An N-gram table over DB consists of the frequencies
of all q-grams for 1 ≤ q ≤ N [6]. If an entry s in the table
contains both # and $, the entry gives the frequency of the
strings in DB that are exactly s. Otherwise, the entry gives
the frequency of the strings that contain s as a substring.

For edit distance, edit operations considered are deletion
(D), insertion (I) and replacement (R). Given a query string
sq, we use Ans(sq, iDjImR) to denote the set of strings
s′ such that sq can be converted to s′ with at most i(≥
0) D(eletion) operations, j(≥ 0) I(nsertion) operations and
m(≥ 0) R(eplacement) operations applied in any order. For
example, Ans(“abcd”, 2D1R) denotes the set of strings that
can be converted from “abcd” with at most two deletions
and one replacement applied in any order. The notation
2D0I1R is simplified to just 2D1R. We also use the notation
Ans(sq, k) to denote the set of strings s′ such that sq can
be converted to s′ with at most k operations when deletion,
insertion and replacement are allowed, i.e.,

Ans(sq, k) =
⋃

i+j+m=k and i,j,m≥0
Ans(s, iDjImR).

For instance, Ans(“abcd”, 1R) consists of the strings of
one of the following forms: “?bcd”, “a?cd”, “ab?d” or “abc?”,
where the wildcard symbol ? denotes a single character from
Σ. To estimate the frequency for string matching with edit
distance, we extend q-grams with the wildcard symbol. Any
string of length q > 0 in Σ ∪ {#, $, ?} is called an extended
q-gram. We generalize an N-gram table by keeping extended
q-grams, and call it an extended N-gram table.

For instance, a 3-gram table for the string “beau” contains
1-gram (i.e., for b, e, a, u individually), 2-grams (i.e., #b,
be, ea, au, u$), and 3-grams (i.e., #be, bea, eau, au$). In
an extended 3-gram table, the additional 2-grams are ?b,
?e, ?a, ?u, b?, e?, a?, u?, ??, #? and ?$. The additional
3-grams include (non-exhaustively) ?ea, #?e, etc. The entry
?ea gives the frequency of strings that include a substring of
length 3 ending in ea. The entry #?e gives the frequency of
strings that begin with the form ?e.

3.2 Replacement Semilattice
We introduce below a replacement semi-lattice and show

how this structure can be used to derive a formula for es-
timating frequencies when only replacements are allowed.
We will also show how this formula can be exploited by the
optimized algorithm OptEQ in Section 5.

Consider the set Ans(“abcd”, 2R), which consists of strings
of one of the following forms: “ab??”, “a?c?”, “?bc?”, “a??d”,
“?b?d” and “??cd”. Hereafter, we refer to these as the base
strings of Ans(“abcd”, 2R). Formally, a base string for a
query string sq and the edit distance threshold k is any
string b such that ed(b, sq) = k and insertion/replacement
modelled by ‘?’. Intuitively, base strings represent possible
forms of strings satisfying the query.

Let S1 consists of strings of the form “ab??”, and S2 of the
form “a?c?”, and so on, then Ans(“abcd”, 2R) = S1∪. . .∪S6.
Thus, the cardinality of Ans(“abcd”, 2R) can be computed
using the inclusion-exclusion principle:

|S1 ∪ S2 ∪ . . . ∪ Sn| = Σ|Si| − Σ|Si ∩ Sj | +

Σ|Si ∩ Sj ∩ Sk| − . . . + (−1)n−1|S1 ∩ S2 ∩ . . . ∩ Sn|

196

ab?? a?c? a??d ?bc? ?b?d ??cd

abc? ab?d a?cd ?bcd

abcd

level 1

level 2

level 0

Figure 1: String Semi-lattice for Ans(“abcd”, 2R)

The problem is that this formula requires a number of terms
which is exponential with respect to n. Fortunately, as
shown below, the structure of character replacements helps
to collapse the formula significantly.

The structure of character replacements is captured in a
replacement semi-lattice. Figure 1 shows the semi-lattice
for Ans(“abcd”, 2R). A node in the lattice represents a base
string or any string that is a result of intersection among
base strings. The intersection is defined as follows; (i) the
intersection of ? and? gives ?; (ii) the intersection of ? and
a character c gives c; and (iii) the intersection of two char-
acters c1, c2 is c1 if c1 = c2, and empty if c1 6= c2. For exam-
ple, intersection between “ab??” and “a?c?” gives “abc?”.
Union operation is defined similarly. We define the level of
a node to be the number of wildcard symbols in the node.
Each of the aforementioned sets S1, . . . , S6 is represented as
a level-2 node. An edge in the semi-lattice represents an
inclusion relationship between nodes in adjacent levels. For
example, there in an edge between the level-2 node “ab??”
and the level-1 node “abc?” and it indicates that the set S7

consisting of strings of the form “abc?” is a subset of S1

corresponding to “ab??”. Note that it is also a subset of S2

and S4. Six nodes at the top row(i.e., level-2 nodes here) in
the lattice are base strings, and they give rise to four level-
1 nodes, which correspond to Ans(“abcd′′, 1R). In turn,
they are parents of the single level-0 node “abcd”, which is
the bottom element of the semi-lattice. As shown later, we
exploit the property of a semi-lattice that the intersection
between any two nodes results in a node at a lower level,
decreasing the occurrence of wildcards by at least one.

3.3 An Example Replacement Formula
Continuing the example of Ans(“abcd”, 2R), there are 6

level-2 nodes, thus there are
(

6

2

)

= 15 ways of choosing two
nodes for intersections between two nodes. We call these
2-intersections. An `-intersection is any intersection of `
base strings. Among the fifteen 2-intersections, twelve cor-
respond to level-1 nodes (e.g., “ab??” ∩ “a?c?” = “abc?”),
but three correspond to the level-0 node of “abcd” (e.g.,
“ab??” ∩ “??cd” = “abcd”).

Let us continue with the 3-intersections of the six level-
2 nodes. Some of the 3-intersections correspond to level-1
nodes. For example, the 3-intersection of “ab??”, “a?c?” and
“?bc?” gives “abc?”. Among the

(

6

3

)

= 20 3-intersections,
four result in level-1 nodes, with the remaining sixteen re-
sulting in the level-0 node. The table shown in Figure 2
also summarizes the numbers for 4-, 5- and 6-intersections.
In the table, the row for level-1 indicates that twelve 2-
intersections and four 3-intersections of base wild strings
result in a level-1 node. One important observation is that
given the highly regular structure of the semi-lattice, each

2-inter. 3-inter. 4-inter. 5-inter. 6-inter.

at level-1 12 4 0 0 0

at level-0 3 16 15 6 1

Total 15=
(

6

2

)

20=
(

6

3

)

15=
(

6

4

)

6 1

Figure 2: Number of resulting intersections for
Ans(“abcd”, 2R)

level-1 node appears as results in exactly the same num-
ber of times. That is, among the twelve 2-intersections over
four level-1 nodes, each level-1 node is the result of a 2-
intersection three (= 12/4) times. Similarly, among the four
3-intersections over four level-1 nodes, each level-1 node is
the result of a 3-intersection once.

We can now calculate the size of Ans(“abcd”, 2R). Given
a string s, we abuse notation by using |s| to denote the size
of the set {t|t ∈ DB and t is a string obtained by replacing
all wildcards, if any, in s with characters in Σ}. By using
the inclusion-exclusion principle and the numbers given in
Figure 2 to simplify the calculation, we have:

|“ab??” ∪ “a?c?” ∪ “a??d” ∪ “?bc?” ∪ “?b?d” ∪ “??cd”|

= |“ab??”| + |“a?c?”| + . . . + |“??cd”|

+(−3 + 1)(|“abc?”| + |“ab?d”| + |“a?cd”| + |“?bcd”|)

+(−3 + 16 − 15 + 6 − 1)|“abcd”|

= F2 + (−3 + 1)F1 + (−3 + 16 − 15 + 6 − 1)F0

where Fi denotes the sum of the frequencies of all the level-i
nodes. Thus, with the analysis on the replacement semi-
lattice, the formula is significantly simplified.

3.4 The General Replacement Formula
Below we generalize this analysis to give the cardinality of

Ans(sq, kR), where the length of sq is `. There are
(

`

k

)

base
strings, i.e., the number of strings with exactly k characters
replaced by ? in sq. Let B`,k,r denote the number of r-
intersections (2 ≤ r ≤

(

`

k

)

) among the
(

`

k

)

base strings. It is
easy to see that:

B`,k,r =

(

(

`

k

)

r

)

(1)

Among these r-intersections, let D`,k,r denote the number
of those that give sq, i.e., there is no wildcard contained
in the r-intersection. For our example of Ans(“abcd”, 2R),
we have ` = 4 and k = 2. Thus, there are B4,2,2 = 15
2-intersections, B4,2,3 = 20 3-intersections and so on (cf:
the last row in Figure 2). Then D4,2,2, D4,2,3 and so on
correspond to the second last row of the table.

Let us take a closer look into D4,2,2 which is the number
of 2-intersections giving sq. Since performing intersections
of base strings always decreases the number of wildcards
in the result string, the intersections for B4,2,2 can only
contain strings with zero or one wildcard position. Thus,
D4,2,2 is equal to subtracting from the total number of 2-
intersections, which is given by B4,2,2, the number of 2-
intersections with 1 wildcard position in the intersection.

Let s1 and s2 be the two non-identical base strings form-
ing such a 2-intersection. Let the wildcard positions of s1 be
p1,1 and p1,2 and those of s2 be p2,1 and p2,2. The two base
strings must agree on exactly one wildcard position. Thus,
without loss of generality, we can assume that p1,1 = p2,1

197

and p1,2 6= p2,2. There are
(

4

1

)

combinations for choosing the
common wildcard position p1,1. For the remaining positions,
there must be 1 wildcard for s1 and 1 wildcard for s2 in dif-
ferent positions since p1,2 6= p2,2. This is exactly as if we
were counting the number of 2-intersections between s′1 and
s′2 which were strings of length 3 with 1 wildcard character
in different positions in each. This is B3,1,2, which automat-
ically guarantees that p1,2 6= p2,2 because the base strings
always have different wildcard positions (i.e. p1,2 6= p2,2).
Thus, in sum, D4,2,2 = B4,2,2−

(

4

1

)

∗B3,1,2. By using Eqn. (1)
for the B terms, D4,2,2 = 15−4∗3 = 3 (cf: the 2-intersection
column in Figure 2). By a similar analysis, D4,2,3 is given by
B4,2,3 −

(

4

1

)

∗B3,1,3, which gives D4,2,3 = 20− 4 ∗ 1 = 16 (cf:
the 3-intersection column). We have the following propo-
sition for the general case. A proof is included in the full
version of the paper.

Proposition 3.1.: The general equation of D`,k,r is:

D`,k,r =
i<k
∑

i=0

(−1)i ∗

(

`

i

)

∗ B`−i,k−i,r (2)

Recall that D`,k,r gives the number of r-intersections with
no wildcard contained in the intersection, i.e., level-0. We
can apply the same reasoning for a node in level-i (1 ≤ i ≤
k). A node in level-i has exactly i wildcards. There are
(

`

i

)

possibilities to pick these i wildcard positions. For the
remaining positions, there must not be any wildcard in the
r-intersection. Thus,

(

`

i

)

∗D`−i,k−i,r counts the total number
of r-intersections resulting in a node in level-i. Recall that
due to the regular structure of the semi-lattice, each node in
this level occurs the same number of times as the result of r-
intersections. Because there are

(

`

i

)

nodes in level-i, dividing
(

`

i

)

∗ D`−i,k−i,r by
(

`

i

)

gives the number of r-intersections
resulting in a specific node in level-i, which is D`−i,k−i,r.
This explains the intuition behind the following proposition.
Recall that Fi gives the sum of the frequencies of all the
level-i nodes. The alternating sign comes from the inclusion-
exclusion principle.

Proposition 3.2.: The cardinality of Ans(sq, kR) is
given by:

|Ans(sq, kR)| = Fk +

k−1
∑

i=0

Fi ∗

(l
k)

∑

r=2

(−1)r+1Dl−i,k−i,r (3)

As a side benefit, this formula covers the situation when
the hamming distance is used for similarity matching. For
small edit distance threshold k and l within, say, 40, the
magnitude of these terms is manageable computationally.
In our implementation, we use Java’s BigInteger package
for high precision.

3.5 The General Deletion Formula
Deletion operations do not insert any wildcard. This

makes the string hierarchy and computation quite trivial.
We use the example Ans(“abcd”, 2D) as an illustration. Fig-
ure 3(a) gives the string hierarchy. There are six base strings,
as the strings in Ans(“abcd”, 2D) must be one of “ab”, “ac”,
“ad”, “bc”, “bd” and “cd”. Notice that as no wildcards are
involved, any r-intersection (r ≥ 2) gives the empty set.
Thus, the hierarchy becomes a trivial single-level hierarchy.

|Ans(“abcd”, 2D)|
= |“ab” ∪ “ac” ∪ “ad” ∪ “bc” ∪ “bd” ∪ “cd”|
= |“ab”| + |“ac”| + |“ad”| + |“bc”| + |“bd”| + |“cd”|
= F0

(a) Ans("abcd", 2D)

bdad bcacab cd

(b) Ans("abcd", 1I)

abcd?

aabcd abbcd abcddabccd

ab?cda?bcd?abcd abc?d

(c) Ans("abcd", 2I)

??abcd a??bcd ?a?bcd ?ab?cd a?b?cd

ab?bcd ?aabcd a?abcd aa?bcd ?abbcd a?bbcd aab?cd

ababcd aaabcd aabbcd...

...

...ab??cd...

Figure 3: Various representative string hierarchies

where F0 gives the sum of the frequencies of all the level-0
nodes; This result extends to the general case: |Ans(sq, kD)|
is equal to F0.

3.6 The Formula for One Insertion
Next we turn to insertion operations. We begin with the

example Ans(“abcd”, 1I). The string hierarchy is shown in
Figure 3(b). There are five base strings, representing all
the possible positions for the insertion. Note that only the
2-intersections between two adjacent base strings are non-
empty.

|Ans(“abcd”, 1I)|
= |“?abcd” ∪ “a?bcd” ∪ “ab?cd” ∪ “abc?d” ∪ “abcd?”|
= |“?abcd”| + |“a?bcd”| + |“ab?cd”| + |“abc?d”| + |“abcd?”|
−(|“aabcd”| + |“abbcd”| + |“abccd”| + |“abcdd”|)
= F1 − F0

This extends to the general case: the size of Ans(sq, 1I) is
given by F1 − F0.

The analysis for Ans(sq, kI) for k > 1 can be complex.
Figure 3(c) shows the string hierarchy for Ans(“abcd”, 2I).
The structure of the hierarchy is less uniform than that of a
replacement semi-lattice. This motivates the machinery to
be presented next. Specifically, we tackle the general case
where:

Ans(sq, k) =
⋃

i+j+m=k and i,j,m≥0
Ans(s, iDjImR).

We develop the basic algorithm BasicEQ to estimate the
size of Ans(sq, k).

4. BASIC ALGORITHM FOR SIZE ESTI

MATION

4.1 Procedure BasicEQ and Generating Nodes
of the String Hierarchy

To estimate the size of Ans(sq, k), the strategy is to par-
tition Ans(sq, k) by the length of the strings in Ans(sq, k).
Specifically, if the length of sq is l, then the strings in Ans(sq, k)
vary in length from (l−k) to (l+k). Thus, Ans(sq, k) can be
partitioned – according to the length of strings – into (2k+1)

198

Input: query sq of length l, edit distance threshold k
Output: estimated frequency c
1: c = 0
2: for len = l − k to l + k do
3: find all combinations (i, j, m) for

Ans(sq, iDjImR) such that
i + j + m = k and l − i + j = len

4: if Ans(sq, iDjImR) is one of the special cases then
5: get c′ from the corresponding algorithm
6: else
7: c′ = BasicEQ(sq, k, len)
8: end if
9: c = c + c′

10: end for
11: return c

Figure 4: A Skeleton for Estimating Frequency

non-overlapping subsets. The size of each of these (2k + 1)
partitions is then estimated. Figure 4 shows a skeleton of
this algorithm.

To illustrate, consider Ans(“abcde”, 2). This answer set
can be partitioned into five non-overlapping subsets consist-
ing of strings of length from 3 to 7. Answer strings of length
3 are all contained in Ans(“abcde”, 2D). This being a pure
case, can be handled directly by the formula given in Sec-
tion 3.5. Similarly, answers of length 7 are all contained in
Ans(“abcde”, 2I). This is also a pure case and a formula for
determining its size will be given later in this section.

Line (7) of Figure 4 deals with all the general cases when
the formulas in the previous section cannot be used directly.
For instance, for Ans(“abcde”, 2), answer strings of length
5 are contained in Ans(“abcde”, 2R)∪Ans(“abcde”, 1D1I).
While we have a formula for Ans(“abcde”, 2R), we do not
have a formula for Ans(“abcde”, 1D1I). Even if we had both
formulas, estimating the sizes of the two sets separately and
adding the two estimates would give a large error because
the two answer sets overlap significantly. Thus, we have to
resort to a combined treatment of the two sets, i.e., oper-
ating from a single combined string hierarchy. The set of
base strings is first computed based on either two replace-
ments, or one deletion and one insertion. During the com-
putation, all redundant base strings are removed. For exam-
ple, Ans(“abcde”, 2R) produces a base string ”abc??” while
Ans(“abcde”, 1D1I) generates a base string ”abcd?”. How-
ever, ”abc??” contains all strings represented by ”abcd?”.
Thus, we delete ”abcd?” in the base strings for the combined
string hierarchy. From then on, the procedure BasicEQ gen-
erates the string hierarchy and compute the estimate.

Procedure BasicEQ: A skeleton of Procedure BasicEQ
is presented in Figure 5. Given a query sq and edit distance
threshold k, it gives a frequency estimate of all the answer
strings of a specific length len. Line (2) of the procedure
generates all the base strings for len. The set baseNodes is
the set of base strings that remain after removing redundant
base strings as above. Then the bulk of the computation is
to generate the nodes of the string hierarchy.

A naive approach is to perform this generation by consid-
ering all r-intersections (2 ≤ r ≤ |baseNodes|) of the base
strings in baseNodes. Obviously, due to the exponential na-
ture, this is impractical. Instead, the procedure generates
the r-intersections in a level-wise fashion. The algorithmic
structure follows the well-known Apriori algorithm in [2].

Input: query sq of length l, edit distance threshold k
length len of answer strings

Output: estimated frequency c
1: find all combinations (i, j, m) for Ans(sq, iDjImR)

such that i + j + m = k and l − i + j = len
2: generate the set baseNodes of non-redundant base

strings for the combinations above
3: initialize newNodes as baseNodes, totalNodes as φ, c

as 0
4: repeat
5: tmpNodes = φ
6: for all u ∈ newNodes and b ∈ baseNodes do
7: if u ∩ b 6= ∅ then
8: tmpNodes = tmpNodes ∪ {u ∩ b}
9: end if

10: end for
11: newNodes = tmpNodes − totalNodes
12: c = c + PartitionEstimate(newNodes)
13: totalNodes = totalNodes ∪ newNodes
14: until newNodes does not contain any u with a wildcard
15: return c

Figure 5: A Skeleton for Procedure BasicEQ

The procedure first generates 2-intersections, such as u ∩ v,
v ∩ w and u ∩ w and so on. An r-intersection is non-empty
only if all of its (r − 1)-intersections among base strings ap-
pearing in the r-intersection are non-empty. This explains
why it is sufficient to consider only new nodes in line (6).

However, the apriori strategy alone is not sufficient, and
the following optimization is critical. In order for a new
intersection (u∩ b) to be non-empty, u must contain at least
one wildcard. If there is no wildcard in u, an additional
intersection to it is either itself or the empty string. As each
iteration of the repeat-until loop of the procedure decreases
the number of wildcards by at least one and the edit distance
threshold k is not large, the procedure halts with a small
number of iterations.

4.2 Node Partitioning
Line (12) of BasicEQ attempts to estimate the frequency

of every newly generated node in the hierarchy. Recall from
the previous section that the frequency contribution of a
node q in the hierarchy is a combination of Cq∗|q|, where co-
efficient Cq denotes the number of times q appears in all the
intersections of base strings, and |q| denotes the frequency
of string q occurring in the database DB. For instance, re-
call from the example Ans(“abcd”, 2R) in Section 3.3 that
if q is the node “abcd”, Cq is (-3+16-15+6-1) = 3. The
same example also illustrates that many nodes q have the
same coefficient Cq. For the example Ans(“abcd”, 2R), all
the nodes in the same level of the semi-lattice have exactly
the same coefficient (e.g., the coefficient for F1 is -3+1 =
-2).

The same principle applies to a general string hierarchy.
The goal of PartitionEstimate is to group the nodes of the
hierarchy into partitions, so that every node q in a partition
has the same coefficient Cq. In that case, it is sufficient to
compute the coefficient of all the nodes in the partition only
once. Below we give a sufficient condition for partitioning.

Given a string hierarchy H and a node q in H, the lo-
cal semi-lattice of q is defined to be the sub-hierarchy of H
that includes only nodes that are ancestors of q and q itself.
By definition, q is the bottom element, or the root, of the

199

ab?bcd

ababcd

a?abcd

??abcda??bcdab??cd

aa?bcd ?abbcd a?bbcd aab?cd

aabbcd

a??bcd ?a?bcd ?ab?cd a?b?cd

aa?bcd?aabcd a?abcd

aaabcd

??abcd a??bcd ?a?bcd

(c)(b)(a)

Figure 6: Examples of Local Semi-lattice

semi-lattice. For instance, if H is the semi-lattice shown in
Figure 1, q1 is the node “abcd” and q2 is “abc?”, then the
local semi-lattice of q1 is the entire semi-lattice H, and the
local semi-lattice of q2 is the sub-hierarchy with “abc?” as
the bottom node and the 3 parents being “ab??”, “a?c?”
and “?bc?”. We have the following proposition stating that
local semi-lattices can form the basis of node partitioning.

Proposition 4.1. For nodes q1, q2 in string hierarchy H,
if the local semi-lattices rooted at q1, q2 are isomorphic, then
Cq1 = Cq2 .

The above proposition can be proved by induction on the
depth of the nodes in the semi-lattices. The converse of the
proposition is not true, namely Cq1 = Cq2 does not imply
isomorphic local semi-lattices.

4.3 An Example and a Formula for Two In
sertions

Let us consider the example of Ans(“abcd”, 2I). Recall
that Figure 3(c) shows the string hierarchy. As examples
of local semi-lattices, Figure 6 shows the local semi-lattices
of “ababcd”, “aaabcd” and “aabbcd”. To illustrate how
BasicEQ operates, recall that every 2-intersection node is
generated in its first iteration. Thus, all the level-0 and level-
1 nodes in Figure 6(a) are produced in the first iteration
(e.g. “ababcd”=“aa??cd” ∩ “??abcd”). However, “aaabcd”
in Figure 6(b) is generated in the second iteration because
no 2-intersection can generate that node.

To illustrate node partitioning, all the level-0 nodes of
the hierarchy shown in Figure 3(c) can be grouped into the
three partitions as shown in Figure 6. The first partition,
shown in Figure 6(a), consists of the nodes with a local semi-
lattice isomorphic to that of “ababcd”. (Below we refer to
this partition as P0,1.) Every node in this partition appears
once in 2-intersections and once in 3-intersections of base
strings with alternating sign, giving rise to the coefficient
of -1+1=0. For example, among all possible 2-intersections
of base strings in Figure 3(c), only “ab??cd” ∩ “??abcd”
results in “ababcd”.

The second partition illustrated in Figure 6(b) consists
of the nodes with a local semi-lattice isomorphic to that of
“aaabcd”. (Below we refer to this partition as P0,2.) Ev-
ery node q in this partition does not appear in its local
semi-lattice as a 2-intersection, but appears once as a 3-
intersection, giving a coefficient Cq of 1.

Finally, the third partition presented in Figure 6(c) con-
sists of nodes with a local semi-lattice isomorphic to that of
“aabbcd” (Below we refer to this partition as P0,3.). With
a similar argument, the coefficient for each node in this par-
tition becomes −2 + 4 − 1 = 1.

It is not hard to verify that |Ans(“abcd”, 2I)| is given by
F2 −F1 +0∗F0,1 +1∗F0,2 +1∗F0,3 = F2 −F1 +F0,2 +F0,3,

Input: newNodes, a set of newly formed nodes
Output: estimated frequency c
1: for all node q ∈ newNodes do
2: form the set Parq of all the parents of q
3: form the multiset PIDq of the partition id of parents

in Parq

4: form the set Bq of all the base strings which are an-
cestors of q

5: end for
6: given newNodes = {q1, . . . , qt} for some t > 0

put qi, qj(1 ≤ i, j ≤ t) in one partition if
the multisets PIDqi and PIDqj are identical and
|Bqi | = |Bqj |

7: update the global partition table and c = 0
8: for all partition P formed in the previous step do
9: CP = ComputeCoefficient(P)

10: c = c + CP ∗
∑

q∈P
EstimateFreq(q)

11: end for
12: return c

Figure 7: A Skeleton of Procedure PartitionEsti-
mate

where Fi give the sum of frequencies of all the nodes in
level-i for i = 1, 2, and F0,1, F0,2, F0,3 denote the sums of
the frequencies in partitions P0,1, P0,2 and P0,3. This result
in fact generalizes to arbitrary length sq as the following:

Proposition 4.2. The cardinality of Ans(sq, 2I) is given
by F2 − F1 + F0,2 + F0,3.

4.4 Procedure PartitionEstimate
In order to form partitions to use Proposition 4.1, an iso-

morphic test on the structure of the local semi-lattices is
required. A brute-force approach is computationally expen-
sive. Fortunately, in our framework, this test can be inte-
grated into the level-wise computation of BasicEQ. As newly
created nodes are computed in each iteration of BasicEQ,
all these nodes are passed to PartitionEstimate, of which a
skeleton is presented in Figure 7. Each node generated by
BasicEQ is assigned a partition id. For bookkeeping pur-
poses, there is a partition table which maps a node to its
partition id. There is a second table that maps a partition
id to the set of nodes contained in the partition. In our ex-
perimentation, there are typically fewer than 40 partitions;
thus, lookups can be done very quickly.

When PartitionEstimate starts, all the base strings are
in one partition because each local semi-lattice consists of
just itself. Then inductively, to check whether the local
semi-lattices of two nodes q1 q2 have the same structure,
it checks whether the partition ids of these two multisets of
parents and the number of base strings that are ancestors are
identical. These are necessary but not sufficient conditions
for isomorphism of two lattices. In Section 6, the empirical
results will show that the two conditions are rather effective
heuristics.

It is possible that both a node and its parents are gener-
ated, put into newNodes, and fed as input in the same invo-
cation of PartitionEstimate. However, as ancestors cannot
be generated later than their descendants, level-wise pro-
cessing in the first for-loop in Figure 7 insures that the PID
of parents are available when it processes a node. This detail
is omitted in Figure 7.

200

Input: a partition P
Output: estimated frequency CP

1: take any node q in partition P and set compBase con-
sisting of all the base strings which are ancestors of q

2: initialize rInter = {{b}|b ∈ compBase}; r = 2; CP = 0
3: while rInter 6= φ and r ≤ |compBase| do
4: tmpInter = φ, C′

P = 0
5: for all base ∈ compBase and inter ∈ rInter and

base 6∈ inter do
6: tmpInter = tmpInter ∪ {inter ∪ {base}}
7: if (base

⋂

intersect(inter)) = q then
8: C′

P = C′
P + 1

9: end if
10: end for
11: CP = CP + (−1)r+1C′

P

12: rInter = tmpInter; r = r + 1
13: end while
14: return CP

Figure 8: A Skeleton of Procedure ComputeCoeffi-
cient

Once the partitions are formed, then PartitionEstimate
invokes ComputeCoefficient in line (9) to compute the coef-
ficient Cp for each newly formed partition P , a procedure to
be detailed in the next subsection. Once CP is computed,
line (10) multiplies this coefficient to the frequency of each
node in the partition P . While every node in a partition
P has the same coefficient CP , each may have its own fre-
quency of occurrence in the database DB. Estimating these
frequencies will be discussed at the end of this section.

4.5 Procedure ComputeCoefficient
Given a partition P of nodes computed by PartitionEsti-

mate, the procedure ComputeCoefficient shown in Figure 8
computes the coefficient CP , the number of times a node
q ∈ P appears in all the r-intersections of the base strings.
Essentially, it starts with the set compBase of base strings
that are ancestors of q in the hierarchy. Then the algo-
rithm iterates to find r-intersections, starting from r = 2.
The set rInter consists of all non-empty r-intersections. In
other words, a set inter in rInter represents a particular
non-empty r-intersection. The for-loop starting in line (5)
constructs (r + 1)-intersections by testing one base string
base at a time from compBase. To perform the intersection
step in line (7), intersect(inter) computes the intersection
of all elements in inter. However, we can store the inter-
section in previous step and just return it here. If this new
intersection is equivalent to q itself, the coefficient Cq is in-
cremented.

Let us illustrate how ComputeCoefficient works. Assume
that a partition P with a node of “ababcd” in Figure 6(a)
and q is selected as “ababcd” at the beginning of the ex-
ecution. Then, we get compBase = {“ab??cd”, “a??bcd”,
“??abcd”}. At the first iteration of the while-loop in line
(3), tmpIter becomes { {“ab??cd”, “a??bcd”}, {“ab??cd”,
“??abcd”}, {“a??bcd”, “??abcd”’}} after exiting the for-
loop. Furthermore, the if-statement in line (7) finds that
only “ab??cd”’ ∩ “??abcd” results in q. Thus, C′

P becomes
1 and CP is -1. Since we set rIter to tmpIter and rIter is
not empty, we perform the next iteration of the while-loop.
Now, there is only one intersection {“ab??cd”, “a??bcd”,
“??abcd”} that is the only element in tmpIter and the re-
sult of the intersection is q. Thus, C′

P becomes 1 which is

added to CP by line (11) and CP becomes zero. The value
of CP does not be changed later on and finally CP becomes
zero.

One reason why this algorithm is slow is that we need
to maintain every intersection generated even though the
current r-intersection does not result in q. To alleviate this
problem, we develop an approximation method later that
avoids the maintenance of all r-intersections generated.

4.6 Procedure EstimateFreq
For the material presented so far, the discussion is mainly

based on strings (e.g., nodes in string hierarchy). It is only
in line (10) of PartitionEstimate that requires the use of the
N-gram table. The task is that for a given string q, the
frequency that this string appears in the database DB is
returned. For an extended string q, if the extended N -gram
table kept by the system contains an entry for q (e.g., when
|q| ≤ N), then the frequency |q| is immediately returned.
Otherwise, |q| needs to be estimated using estimation algo-
rithm as MO [14]. The experimental evaluation section will
compare the accuracy when EstimateFreq implements MO,
as well as other variants below.

• If s is obtained from t by replacing at least one char-
acter in t with ?, then by definition |s| ≥ |t| (e.g.
|“abc?”| ≥ |“abcd”|). However, MO estimation may
violate this condition, i.e., MO(s) may be smaller than
MO(t). In that case, the MO estimate of s is reset to
the maximum MO estimate of all such t’s. We call this
the MAX estimate.

• Among all the substrings q′ of q that are kept in the N -
gram table, let q′min be the substring with the smallest
frequency. By definition, |q| ≤ |q′min|. In other words,
this is an over-estimate of q. It has been well docu-
mented that the MO-estimate of q is often an under-
estimate, particularly when q is long [6]. Thus, one
estimate is to take the geometric mean of |q′min| and
the MO-estimate of q. We call this MO+ estimate.

• We can combine the MAX estimate and the MO+ esti-
mate to give another estimate referred to as MM. That
is, it gives the geometric mean of |q′min| and the MAX
estimate of q.

Section 6 will compare empirically the effectiveness of these
instances of EstimateFreq.

5. OPTIMIZED ALGORITHM OPTEQ
BasicEQ is efficient whenever the general formulas pre-

sented in Section 3 can be applied. For other situations,
BasicEQ is sufficient for small problems. However, it is
clear that it does not scale up with respect to query length
l and ∆ when the formulas cannot be used. The complexity
of BasicEQ is exponential with respect to l. In this section,
we propose the optimized algorithm OptEQ which extends
BasicEQ with two enhancements. We show experimentally
in the next section how OptEQ can handle long queries ef-
ficiently.

5.1 Approximating Coefficients with a Replace
ment Semilattice

When the set compBase is large (e.g., query sq is long or
k is large), computing the exact value of Cq as in Compute-
Coefficient is prohibitive. We next present a strategy to ap-
proximate Cq by avoiding the generation of all r-intersections.

201

?a?c ?ab?

?abc

a??c

ab?c

a?b???bc ?b?c

a?bc abc?

a?c??bc?ab??

aabc abbc abcc

Figure 9: String Hierarchy of Ans(“abc”, 1I1R)

?a?c ?ab? ??bc a??c a?b? aa??

?abc

aabc

a?bc aa?c aab?

Figure 10: Completion of a Replacement Semi-
lattice of Ans(“aabc”, 2R)

Let us revisit the example of Ans(“abcde”, 2). As the
computation iterates over the length of the answer strings,
one iteration deals with the strings of length five contained in
Ans(“abcde”, 1D1I)∪ Ans(“abcde”, 2R). The next iteration
deals with those of length six in Ans(“abcde”, 1I1R). The
string hierarchies in both cases are rather complex and thus
the approximation strategy is applied.

For ease of presentation, we use Ans(“abc”, 1I1R) as an
example to illustrate the strategy. To generate all the base
strings, we can first consider the position of one insertion,
followed by one replacement. Specifically, we can group the
base strings into four and the 4 groups are as follows:

• (inserting into first position) “??bc”, “?a?c” and “?ab?”

• (inserting into second position) “??bc”, “a??c” and
“a?b?”

• (inserting into third position) “?b?c”, “a??c” and “ab??”

• (inserting into fourth position) “?bc?”, “a?c?” and “ab??”

Note that the strings in DB belonging to “?abc” in the
first group above is also included in other base strings. Thus,
“?abc” is pruned in the first group. Similarly, “a?bc”, “ab?c”
and “abc?” are removed from their group’s base strings.

With the base strings of Ans(“abc”, 1I1R), we can build
the string hierarchy presented in Figure 9. In the string
hierarchy, the three base strings in the first group are or-
ganized in a sub-semi-lattice rooted at “?abc”. Similarly,
the three base strings in the second group form a sub-semi-
lattice rooted at “a?bc”. Note that “??bc” is shared between
two groups and thus these two groups correspond to a gen-
eral situation when two semi-lattices overlap on some base
strings. To compute the size of Ans(“abc”, 1I1R), eventu-
ally the coefficient of every node in the string hierarchy in
Figure 9 is needed.

Assume that we want to compute the coefficient of “aabc”
in Figure 9. Instead of applying ComputeCoefficient directly
on “aabc”, the approximation strategy completes the semi-
lattice of “aabc” with two replacements. This completed re-
placement semi-lattice is shown in Figure 10 where the two
sub-semi-lattices rooted at “?abc” and “a?bc” are shown in
solid lines, while the other parts, which do not appear in the
string hierarchy of Figure 9 and thus are not required for

2-inter. 3-inter. 4-inter. 5-inter. 6-inter.

Cr for

bottom node -3 16 -15 6 -1

estimated Cr

(

5

2

)

/
(

6

2

)

∗

(

5

3

)

/
(

6

3

)

∗

(

5

4

)

/
(

6

4

)

∗

(

5

5

)

/
(

6

5

)

∗

(

5

6

)

= 0

for “aabc” −3 = −2 16 = 8 −15 = −5 6 = 1

exact Cr
for “aabc” -2 8 -5 1 0

Figure 11: Approximating Coefficients for “aabc”

Ans(“abc”, 1I1R), are shown in dotted lines. The beauty of
the replacement semi-lattice rooted at “aabc” is that Eqn.
(3) immediately gives a formula for Caabc, if the entire re-
placement semi-lattice appears (i.e. are involved) in the sub-
semi-lattice rooted at “aabc” in Figure 9. Specifically, recall
from the discussion in Section 3.3 that the root of the semi-
lattice is the level-0 node. Thus, the relevant coefficient is
the one for F0, which is:

Croot =
∑(`

k)
r=2(−1)r+1D`,k,r.

When parts of the replacement semi-lattice are not involved,
the approximation strategy assumes that the number of r-
intersections leading to a root node is proportional to the
number of its base strings that are involved. This assump-
tion arises from the highly uniform structure of a replace-
ment semi-lattice. Thus, each term in the summation is
scaled relative to the number of the base strings involved.
Specifically, let B the size of compBase, which is the set of
base strings that are involved. Then, Croot is estimated by:

C′
root =

(`
k)

∑

r=2

(−1)r+1D`,k,r ∗

(

|B|
r

)

((`
k)
r

)

(4)

That is, in a completed replacement semi-lattice, there are
(

`

k

)

base strings. But as there are only B base strings in the
completed replacement semi-lattice that are involved, every
term is scaled proportionally.

Let us return to the example of “aabc”. Recall from Fig-
ure 10 that there are five base strings being involved for the
query of Ans(“abc”, 1I1R), as supposed to six (i.e., “aa??”
being the only base string not involved) in the completed
replacement semi-lattice. Thus, in this example, |B| = 5
and

(

`

k

)

=
(

4

2

)

= 6. The table shown in Figure 11 applies
the approximation strategy to Caabc. The second row of the
table is identical (modulo the sign) to the third row of the
table in Figure 2, as it gives the coefficients Cr for the root
node. The third row applies the proportionality factor to
each term. The last row of the table shows the true coeffi-
cients, which turn out to be identical to the approximated
ones! In general this is not always true. For example, the
division in Eqn. (4) does not always give an integer value.

5.2 Fast Intersection Tests by Grouping
Another way to optimize BasicEQ is to optimize the for-

loop in line (6) of Figure 5. Specifically, for every possible
pair of a base string b ∈ baseNode and u ∈ newNodes,
we perform the intersection. However, as seen in the previ-
ous example shown in Figure 10, base strings may naturally
group into a collection of semi-lattices. In the case of ap-
proximating by completion of a replacement semi-lattice, the
individual semi-lattices are all parts of a larger, completed
semi-lattice. In a more general setting, this condition may
not hold for all the semi-lattices. Nevertheless, some of the
semi-lattices may overlap. Below we explore further the no-
tion of grouping and show how group-wise operations can
be exploited.

202

Input: query sq of length `, edit distance threshold k
length len of answer strings

Output: estimated frequency c
1: Identical to procedure BasicEQ except using grouping

in line 4.1 and invoking ComputeCoefficient(q) by Par-
titionEstimate:

2: if q is the root of a replacement semi-lattice then
3: apply the formula in Eqn. (3)
4: else if compBase of q exceeds a certain size then
5: apply the approximation strategy based on Eqn. (4)
6: else if ComputeCoefficient is to be applied then
7: use grouping to speed up and computation of coeffi-

cients as discussed in Section 5.2
8: end if

Figure 12: A Skeleton of Procedure OptEQ

Note that a replacement operation does not cause any
character shifting in the result, while an insertion or a dele-
tion does. Thus, we organize all the base strings for a query
of the form Ans(sq, jIjD1R) by considering the position of
insertion and deletions only.

To illustrate the power of grouping, let us consider the
example of Ans(“abcd”, 1D1I1R), as part of a query with
the edit distance k = 3. We group all the base strings for
Ans(“abcd”, 1D1I1R) by first considering the deletion and
insertion. The following array shows all the possible combi-
nations for one deletion and one insertion in any order.

G =

“?abc” “a?bc” “ab?c” “abc?”
“?abd” “a?bd” “ab?d” “abd?”
“?acd” “a?cd” “ac?d” “acd?”
“?bcd” “b?cd” “bc?d” “bcd?”

We can view the first row as deleting the character d and
inserting a character at various positions. Similarly, we can
view the first column as inserting a character at the first
position and deleting a character at various positions. Then
the replacement can be applied to each of the 16 elements of
matrix G. For instance, applying one replacement to “?abc”
gives “??bc”, “?a?c” and “?ab?”. Note that these three
strings form a replacement semi-lattice rooted at “?abc”. In-
deed, the same phenomenon applies to every element of G.
In other words, the base strings of Ans(“abcd”, 1D1I1R) are
split into sixteen groups, or more specifically, semi-lattices
with the roots being the elements of G.

The first benefit of grouping in this manner can be exem-
plified by noting that G(1, 1) = “?abc” and G(4, 1) = “?bcd”
generate empty intersection. More importantly, any one of
the base strings within the group of “?abc” (namely, “??bc”,
“?a?c” and “?ab?”) and any one of the base strings within
the group of “?bcd” (namely, “??cd”, “?b?d?” and “?bc?”)
always produce an empty intersection. This is because re-
gardless of which pair, there is at least one position where
there are no wildcards and the characters do not match.
This motivates the following proposition.

Proposition 5.1. Let g1, g2 be two elements in matrix
G. Let grpDist(g1, g2) be defined as the number of non-
matching positions between g1, g2. Let s1 be any node within
the r1-replacement semi-lattice rooted at g1, where r1 is de-
fined by the query. Similarly, let s2 be any node within the
r2-replacement semi-lattice rooted at g2. Then grpDist(g1, g2) >
r1 + r2 implies s1 ∩ s2 = φ.

For the running example of Ans(“abcd”, 1D1I1R), if g1, g2

are “?abc” and “?bcd” respectively, then r1 = r2 = 1 be-
cause of the 1R specification in the query. However, the
group distance grpDist(g1, g2) = 3 because there are 3 non-
matching positions. The proposition then allows us to imme-
diately conclude that for any pair of s1 from the 1-replacement
semi-lattice rooted at g1 and s2 from the 1-replacement
semi-lattice rooted at g2, their intersection must be empty.
Thus, grouping and group distance defined via the roots of
two groups provide a fast negative test for groups of base
strings. This speeds up line (6) of BasicEQ.

Another benefit of grouping is that each replacement semi-
lattice allows the coefficient to be computed directly by the
formula given in Eqn. (3), thus avoiding the use of Com-
puteCoefficient. Specifically, the coefficient of the root of

a group is precisely Croot =
∑(`

k)
r=2(−1)r+1D`,k,r and the

coefficient of an intermediate level-i node in the group is

Cq =
∑(`

k)
r=2(−1)r+1D`−i,k−i,r, which is the coefficient of Fi

in Eqn. (3). However, we have to be careful in defining `
and k before the above formulas can be used. In the “?abc”
group for our example, every node in the replacement semi-
lattice has a wildcard at (at least) the first position. This
position should not be considered in the replacement semi-
lattice. Effective string length is defined as the length of
the root after excluding any wildcard in the root which is
shared in the group. Similarly, effective number of wildcards
is the number of wildcards excluding the wildcards common
to all within the group. In applying the formulas above,
` and k are set to the effective string length and effective
number of wildcards. For example, in Figure 9, the sub-
semi-lattice rooted at “?abc” has 3 base strings. Its effec-
tive string length is 3 instead of 4 and its effective number
wildcards is 1 instead of 2. Thus, we compute the coefficient
of “?abc” using Eqn. (3) by setting ` = 3 and k = 1

Procedure OptEQ is an optimized version of BasicEQ that
incorporates approximation and grouping into the size esti-
mation. The skeleton shown in Figure 12 highlights the key
differences. OptEQ is scalable to deal with size estimation of
queries like Ans(“abcd”, 1D1I1R) and more complex com-
binations. In general, as query sq becomes longer, the G
matrix shown earlier becomes larger. However, there are
more and more groups with large group distance and fast
negative tests provide scalability. Similarly, for the general
situation of Ans(sq, iDjImR), if (i+j) is large, again the G
matrix becomes larger. Yet, like before, grouping helps sig-
nificantly. On the other hand, if m is large (while k remains
constant), the replacement semi-lattice becomes dominant.
In that case, OptEQ either applies Eqn. (3) if possible, or
Eqn. (4) if approximation is needed.

6. EMPIRICAL EVALUATION

6.1 Implementation Highlights
The proposed algorithms BasicEQ and OptEQ were de-

veloped using Java 1.5. These algorithms were applied to
different settings of N -gram tables parameterized by the
triplet (NB , NE , PT):

• all q-grams without wildcards for |q| ≤ NB are kept;

• all q-grams with wildcards for |q| ≤ NE are kept; but

• all the entries kept must have a count > the prune
threshold PT .

203

 0

 10

 20

 30

 40

 50

 60

OptEQ
(MM,6,6,5)

OptEQ
(MAX,6,6,5)

OptEQ
(MM,5,5,0)

OptEQ
(MAX,5,5,0)

OptEQ
(MO+,5,5,0)

OptEQ
(MO,5,5,0)

SEPIA

R
e
la

ti
v
e
 E

rr
o
r

(%
)

Figure 13: Actress Last Name, ∆ = [1, 3]

OptEQ(method,NB ,NE , PT) denotes the variants when the
method used for EstimateFreq was one of: MO, MO+,
MAX and MM, and using the NB-gram table and the ex-
tended NE-gram table with prune threshold PT . For in-
stance, OptEQ(MM,9,6,1) gives the version of OptEQ using
MM for frequency estimation on the 9-gram table and the
extended 6-gram table, where only entries of count ≥ 2 are
kept. Below we will evaluate the tradeoffs among NB , NE

and PT , with respect to accuracy and memory size.
In our implementation, the (extended) q-gram tables are

optimized in size in two ways. First, in hash buckets of
tables, the string corresponding to a q-gram entry is hashed
again and stored as a byte key not as a full string key. Thus,
there may be collisions introduced by hashing, representing
a tradeoff between accuracy and size. The results reported
below include the errors arisen due to collisions. Second, for
each entry, the count is initially restricted to a short integer.
When the count exceeds the range of a short integer, the
count is maintained separately in an overflow table.

The discussion so far on the computation of coefficients
shows how they can be computed - for once. In our imple-
mentation, these coefficients are pre-computed and stored in
a coefficient table. This is possible because the coefficients
depend only on the length and the ∆ value of the query.
In “query time”, once the actual frequencies of the required
nodes are determined, the selectivity can be estimated very
efficiently using the pre-computed coefficients. Note that
this table remains unchanged from one data set to another.

6.2 Experimental Setup
We conducted a series of experiments using several data

sets. The results shown here are based on three benchmarks.

• (Short strings) The Actresses last name data set con-
sists 392,132 last names of actresses downloaded from
www.imdb.com. The maximum and average length
are 16 and 6.3.

• (Medium-length strings) The DBLP authors data set
consists of 699,198 authors’ full names from DBLP [18].
The maximum and average length are 43 and 14.3.

• (Long strings) The DBLP titles data set consists of
53,365 titles collected from DBLP. The maximum and
average length are 40 and 29.6.

SEPIA was downloaded from the FLAMINGO project
homepage [10] and was written in C++. We tuned SEPIA
to maximize its performance. The results reported here are
based on applying the error correction step included in the
software, and on using 2,000 clusters, a sampling ratio of 5%

 0

 10

 20

 30

 40

 50

 60

 70

 80

∆=3∆=2∆=1

R
e
la

ti
v
e
 E

rr
o
r

(%
)

SEPIA

OptEQ(MM,9,5,2)

OptEQ(MM,12,5,2)

Figure 14: DBLP Authors, ∆ = 1, 2, 3

and the CLOSE RAND method to populate the PPD table.
Accuracy is measured by average relative error, defined as
|est− true|/true, where est and true are the estimated and
true frequencies respectively. To avoid very low frequency
queries from skewing the average relative error figure, we
exclude queries whose true frequencies are below 3. We also
exclude best and worst 3 queries from the analysis. The
experiments were run on an Intel P4 3GHz desktop PC with
1 GB memory and 40GB disk space running GNU/Linux
with kernel 2.6. For the memory size figures cited below, the
figure for SEPIA is based on the file size written on disk
which includes the PPD table and the frequency table. For
OptEQ, the size figure is based on multiplying the number
of entries in the q-gram and extended q-gram tables with
the number of bytes per entry.

6.3 Actresses Last Names
Figure 13 compares the average relative error between

SEPIA and variants of OptEQ for the Actresses data set.
A total of 300 queries are randomly selected, of which 272
have true frequencies exceeding 3. The average relative er-
ror is obtained based on the 272 queries. The edit distance
threshold ∆ is selected among 1, 2 and 3 with equal likeli-
hood. The first column shows that the average relative error
for SEPIA is around 40%. The next four columns show the
version of OptEQ when the different frequency estimation
methods are used, NB = NE = 5, and PT = 0. Compared
with MO and MO+, MAX and MM were consistently supe-
rior. In the experiments to follow, we only show the results
of MM.

When OptEQ(MAX, 6, 6, 5) or OptEQ(MM, 6, 6, 5) are
used, the last two columns show that the average relative
errors are reduced in half from 40% to about 20%. This
shows the effectiveness of increasing NB and NE in reducing
relative error. The reason for setting the prune threshold of
PT to 5 is to keep the memory utilization of OptEQ to
be more or less the same as that used by SEPIA (3.3MB
vs 3.6MB). Thus, using less memory, OptEQ(MM, 6, 6, 5)
reduced the average relative error by half.

In terms of running time, the “build” time to construct the
extended N-gram tables took about 5 minutes. The average
query processing time for OptEQ was about 13 msec using
the pre-computed coefficient table (or 1.2 seconds if OptEQ
were to compute every coefficient on-the-fly). The build
time of SEPIA to construct the clusters and the histograms
took around 60 minutes. The query processing time for
SEPIA was about 8 msec. We do not include the results
for BasicEQ because the execution time was very slow when
the query exceeded a length of 10. For instance, for a query
of length 11, BasicEQ took 74 seconds.

204

 0

 20

 40

 60

 80

 100

 120

 140

More1007550250-25-50-75-100

N
u
m

b
e
r

o
f
q
u
e
ri
e
s

Relative Error (%)

∆

1
2
3

(a) OptEQ(MM,9,5,2)

 0

 20

 40

 60

 80

 100

 120

 140

More1007550250-25-50-75-100

N
u
m

b
e
r

o
f
q
u
e
ri
e
s

Relative Error (%)

∆

1
2
3

(b) SEPIA

Figure 15: Error Distribution: OptEQ(MM, 9, 5, 2) vs SEPIA

If we only keep simple q-grams, not extended q-grams, the
viable approach would be to enumerate all possible strings
within the threshold and sum up their frequencies. We do
not present detailed results, but the performance was un-
acceptable. For example, even for the simple query sq =
“blank”, there are more than 4 million possible strings within
edit distance threshold of 3. It took more than 20 seconds
just to estimate the frequency of each string and sum them
up. It took only 7 msec for OptEQ to process the same query
which is three orders of magnitude faster. This clearly shows
the utility of the proposed extended q-grams.

6.4 DBLP Authors
This set of experiments used queries of an average length

more than double than those used in the Actresses data set.
Out of the 900 randomly selected queries, 674 have true
frequencies exceeding 3, and are more or less equally dis-
tributed among ∆ = 1, 2, 3. Figure 14 gives the average rel-
ative errors, with ∆ separated into 1, 2 and 3 respectively.
SEPIA consistently hovers around 70% in relative error.
The average relative error given by OptEQ(MM, 12, 5, 2)
increases from around 15% for ∆ = 1 to about 30% for
∆ = 3. The memory used by OptEQ(MM, 12, 5, 2) and
SEPIA were 13.7MB and 14MB respectively. Again, with
similar or less memory, OptEQ delivered significantly more
accurate estimations. Furthermore, we reduce the memory
consumption by using OptEQ(MM, 9, 5, 2), which occupies
only 9.2MB. Yet the average relative error is still signifi-
cantly lower than that of SEPIA. Note that we increased
NB not NE from the Actresses data set. NE= 5 or 6 gen-
erally give good accuracy with reasonable space. However,
increasing NE beyond 6 is not recommended as it incurs
combinatorial increase in the space. NB offers a tunable al-
ternative, and we used higher NB for the authors data set
as strings are generally longer.

While a single value of average relative error could be mis-
leading, Figure 15 shows the distribution of errors with re-
spect to ∆. The x-axis divides the error range into ranges of
25% width, e.g., ranges [-100%,-75%), [-75%,-50%), etc. The
y-axis shows the numbers of queries within the error ranges.
For ∆ = 1, 2, 3, OptEQ(MM, 9, 5, 2) gives a more balanced
distribution. In contrast, SEPIA suffers from rather serious
under-estimation problem here.

6.5 DBLP Titles
Compared with the other two data sets, the DBLP ti-

tles data set contains the longest strings. Out of the 600
randomly generated queries, only 31 have true frequencies

 0

 5

 10

 15

 20

 25

 30

OptEQ
(MM,15,5,1)

OptEQ
(MM,12,5,1)

SEPIA

R
el

at
iv

e
E

rr
or

 (
%

)

Figure 16: DBLP Titles, ∆ in [1, 3]

exceeding 3. Among them 16, 8 and 7 have ∆ = 1, 2, 3 re-
spectively. In particular, for ∆ = 3, 5 out of 7 queries have
a length 15 or higher. To reduce the processing time for
OptEQ, we employed sampling and limited the maximum
number of groups and base strings in each group to 15 and
10 respectively for any query of length ≥ 10 and ∆ = 3.
Figure 16 gives the average relative errors. The average rel-
ative error of SEPIA is about 27%, while occupying 13MB
of memory. In contrast, OptEQ(MM, 12, 5, 1), occupying
a space of 4.3MB, gives an average relative error of about
20%. If more space is allowed, OptEQ(MM, 15, 5, 1) with a
space of 5.4MB, gives an average relative error of 12%. The
average query time is 76 msec.

Although our main focus lies in low edit distance thresh-
olds(i.e. ∆ = 1, 2, 3), we briefly present results on higher
thresholds, ∆= 4 and 5. To handle higher thresholds, sam-
pling approach is essential. We randomly sample 10 base
strings for each string hierarchy. We exclude too short sam-
pled queries (length ≤ 5) as they are meaningless in the
increased thresholds. The average relative error given by
OptEQ(MM, 12, 5, 5) is around 60%. The error is increased
significantly as all the base strings are not considered due
to sampling. However, it is still better than the average rel-
ative error of SEPIA which was 150%. It occupied 1.5MB
and the running time was 10 msec. SEPIA occupied 10MB
and it took 30 msec to estimate.

The maximum edit distance threshold we support is lim-
ited by the maximum number of wildcard in a q-gram, which
in turn is bounded by NE . Based on the discussion in sec-
tion 6.4 regarding NE , we do not recommend OptEQ for the
thresholds of 6 or higher.

6.6 Space vs Accuracy
The three parameters NB , NE and PT provide a very tun-

able setting. As shown in Figure 16, an increase in NB leads

205

to increase in space consumed but a decrease in relative er-
ror. The same can be said for NE as shown in Figure 13.
However, incrementing NE by 1 requires a lot more space
than incrementing NB by 1. In our experimentation, we
found that there is a significant reduction in error when NE

is raised from 4 to 5, whereas the reduction in error becomes
much smaller when NE exceeds 7.

When a large NE is used, one way to keep memory con-
sumption in check is to apply a larger prune threshold PT .
In general, an increase in PT leads to a reduction in space
but an increase in relative error. Consider OptEQ(MM, 15, 5, 1)
in Figure 16. The following table shows the impact of PT
on accuracy and size.

avg. rel. error size (MB)

OptEQ(MM, 15, 5, 0) 11.8% 19.4
OptEQ(MM, 15, 5, 1) 12.0% 5.4
OptEQ(MM, 15, 5, 4) 14.7% 1.9

As compared with SEPIA which uses 13MB of memory and
gives an average relative error of 27%, the last two variants
shown in the above table are better alternatives.

7. CONCLUSIONS
OptEQ uses the concept of extended q-grams, and ex-

ploits the analysis of a replacement semi-lattice. The for-
mula for determining the number of answer strings in a re-
placement semi-lattice can be used to approximate coeffi-
cients of partitions. Moreover, OptEQ groups semi-lattices
and applies group-wise operations to provide scalability. For
all the three benchmarks, OptEQ can deliver selectivity es-
timations more accurate than SEPIA does. OptEQ is ca-
pable of exploiting available disk space to give higher preci-
sion. Among the variants experimented with, OptEQ with
the MM estimate or the MAX estimate appears to give good
accuracy in most cases.

In ongoing work, we explore further the relationship be-
tween disk space utilization and estimation accuracy given
by OptEQ. We also plan to extend the current framework
to deal with higher edit distance threshold. While this ex-
tension may not be too essential for database applications,
the extension is essential for applications such as DNA se-
quence matching. At the present time, when the edit dis-
tance threshold is larger than 5, SEPIA can be more effec-
tive than OptEQ. Finally, as q-grams keeps frequencies of
substrings, we plan to augment OptEQ to give selectivity
estimation for substring matching with edit distance.

8. REFERENCES

[1] A. Aboulnaga, A. R. Almeldeen and J. F. Naughton.
Estimating the selectivity of XML path expressions
for Internet scale applications. Proc. VLDB, pp.
591-600, 2001.

[2] R. Agrawal and R. Srikant. Fast Algorithms for
Mining Association Rules. Proc. VLDB, pp. 487–499,
1994.

[3] R. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press/Addison-Wesley,
1999.

[4] S. Burkhardt and J. Karkkianen. One-gapped
q-Gram Filters for Levenshtein Distance, Springer,
LNCS, pp. 225-234, 2002.

[5] S. Burkhardt et al. Q-gram based database searching
using a suffix array (QUASAR), Proc. RECOMB, pp.
77-83, 1999.

[6] S. Chaudhuri, V. Ganti and L. Gravano. Selectivity
Estimation for String Predicates: Overcoming the
Underestimation Problem. Proc. ICDE, pp. 227- 238,
2004.

[7] S. Chaudhuri et al. Robust and Efficient Fuzzy
Match for Online Data Cleaning. Proc. SIGMOD,
pp. 313-324, 2003.

[8] W. Cohen, P. Ravikmar and and S. Fienberg. A
Comparison of String Metrics for Matching Names
and Records. Proc. of KDD Workshop on Data
Cleaning, pp. 73-78, 2003.

[9] R. Dixon and T. Martin. Automatic Speech and
Speaker Recognition. IEEE Press, 1979.

[10] Flamingo Project,
http://www.ics.uci.edu/ flamingo/.

[11] L. Gravano et al. Approximate string joins in a
database (almost) for free. Proc. VLDB, pp. 491-500,
2001.

[12] D. Gusfield. Algorithms on Strings, Trees and
Sequences. Cambridge Univ. Press, 1997.

[13] B. Hore et al. Indexing Text Data under Space
Constraints. Proc. CIKM, pp. 198–207, 2004.

[14] H. V. Jagadish, R. T. Ng and D. Srivastava.
Substring Selectivity Estimation, Proc. PODS, pp.
249-260, 1999.

[15] L. Jin and C. Li. Selectivity Estimation for Fuzzy
String Predicates in Large Data Sets , Proc. VLDB,
pp. 397-408, 2005.

[16] L. Jin et al. Indexing Mixed Types for Approximate
Retrieval, Proc. VLDB, pp. 793-804, 2005.

[17] P. Krishnan, J. S. Vitter and B. Iyer. Estimating
Alphanumeric Selectivity in the Presence of
Wildcards. Proc. SIGMOD, pp. 282-293, 1996.

[18] M. Ley. DBLP,
http://www.fnformatick.uni-tier.de/ ley/db.

[19] L. Lim et al. XPathLearner: An on-line self-tuning
Markov histogram for XML path selectivity
estimation. Proc. VLDB, pp. 442-453, 2002.

[20] G. Navarro. A Guided Tour to Approximate String
Matching. ACM Computing Survey, 33, pp. 31-88,
2001.

[21] G. Navarro and M. Raffinot. Fast and flexible string
matching by combining bit-parallelism and suffix
automata. Journal of Experimental Algorithmics,
volume 5, article 4, 2000.

[22] S. Sarawagi and A. Bhamidipaty. Interactive
Deduplication Using Active Learning. Proc. VLDB,
pp. 269-278, 2002.

[23] Winkler, W. E. The State of Record Linkage and
Current Research Problems. Statistics of Income
Division, Internal Revenue Service Publication
R99/04.

206

