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ABSTRACT
Estimating the cardinality (i.e. number of distinct elements)
of an arbitrary set expression defined over multiple distributed
streams is one of the most fundamental queries of interest.
Earlier methods based on probabilistic sketches have focused
mostly on the sketching algorithms. However, the estima-
tors do not fully utilize the information in the sketches and
thus are not statistically efficient. In this paper, we develop
a novel statistical model and an efficient yet simple estimator
for the cardinalities based on a continuous variant of the well
known Flajolet-Martin sketches. Specifically, we show that,
for two streams, our estimator has almost the same statisti-
cal efficiency as the Maximum Likelihood Estimator (MLE),
which is known to be optimal in the sense of Cramer-Rao
lower bounds under regular conditions. Moreover, as the
number of streams gets larger, our estimator is still com-
putationally simple, but the MLE becomes intractable due
to the complexity of the likelihood. Let N be the cardinal-
ity of the union of all streams, and |S| be the cardinality
of a set expression S to be estimated. For a given relative
standard error δ, the memory requirement of our estimator
is O(δ−2|S|−1N log log N), which is superior to state-of-the-

art algorithms, especially for large N and small |S|
N

where
the estimation is most challenging.

1. INTRODUCTION
Massive and distributed data streams are increasingly preva-

lent in many modern applications. In a backbone IP network
composed of hundreds or even thousands of nodes, packets
arrive and depart at the nodes at very high speed. In a web
content delivery system composed of many servers (such
as Akamai), the user requests to websites are distributed
among the servers based on the user location and server
loads. Other application domains that give rise to these
massive and distributed streams include financial applica-
tions and sensor networks.

Due to their massive and distributed nature, query an-
swering for these data streams poses a unique challenge. Of-
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ten, exact query computation is infeasible due to the mem-
ory requirement and the communication overhead. Thus
approximate query answering that can provide probabilis-
tic guarantees becomes the only viable option. One of the
most fundamental queries of interest is to estimate the cardi-
nality (i.e., number of distinct elements) of an arbitrary set
expression defined over multiple distributed streams. (Note:
the notion of set in this paper means a stream of elements
and it allows multiple appearance of the same elements.)
For instance, in the context of IP network management, the
number of distinct flows in a network sharing the same char-
acteristics is of high interest to network operators, where a
packet flow can be defined as a sequence of packets that
have the same 5-tuple, IP addresses/ports of the two com-
municating peers and the protocol. Moreover, the flow ID
of a packet can be derived from the 5-tuple. The number of
distinct common flows between a node pair i and j, which
is a special case of the traffic matrix, can be formulated as
the stream cardinality of Ti ∩ Tj , where Ti and Tj are the
streams of packet flow IDs seen at node i, j respectively.
The traffic matrix is used by the network operators for net-
work provisioning and optimization. Another example is
the total number of distinct flows to a particular destina-
tion, i.e, ∪iTi, where Ti is the stream of packet flow IDs to
the same destination seen at node i. A significant increase of
the cardinality of ∪iTi may indicates an underlying network
anomaly such as a Denial of Service (DoS) attack.

In general, let Tj , 1 ≤ j ≤ J , denote the distributed
streams under consideration. Let ∪,∩, \ represent the set
union, intersection and difference, respectively. We use |·| to
denote the cardinality of a set. For a stream expression that
involves an arbitrary combination of unions, intersections,
and/or differences of Tj , 1 ≤ j ≤ J, (e.g., (T1 ∪ T2)∩ T3\T4),
our objective is to estimate its cardinality and provide prob-
abilistic guarantees of the estimation accuracy whereas min-
imize the computational overhead and the memory usage.

There have been a few proposals in the literature for an
approximate answer of the cardinality queries of stream ex-
pressions. These methods seek to develop estimators based
on compact sketches of the distributed streams. Such sketches
can be sampling based [15], or hash based probabilistic sketches
[6, 19, 13, 12]. Comparison between some of these methods
has been made by [19], which showed that the probabilistic
approaches have a performance advantage over the sampling
based approaches.

The works that are more relevant to ours are those based
on probabilistic sketches. For a single stream cardinality
counting, Flajolet and Martin [11] proposed an estimator
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using a hash-based synopsis data structure with O(log N)
space where N is the true cardinality. To date, the Flajolet-
Martin (FM) technique remains one of the most effective
approaches to the single stream cardinality counting prob-
lem, and has seen several applications [7, 14]. In [8], the FM
method is further improved by reducing the space require-
ment to only O(log log N); other enhancements can also be
found by [1, 3, 12].

To extend the one-stream cardinality counting algorithms
to set expressions over multiple streams, a straightforward
solution is to re-express the cardinality using the cardinali-
ties of stream unions, and count the cardinality of each set
union, where the set union cardinalities can be estimated
easily. This is the approach adopted by [6, 19] using an im-
proved version of the FM algorithm [8] and the bitmap algo-
rithms [9] which solves the one-stream cardinality problem.
More recently, [13] proposed a novel 2-level hash algorithm
for estimating stream expression cardinalities that does not
simply use one-stream cardinality algorithms. This is fur-
ther improved in [12] by reducing the per bucket storage.
Their approach can be applied to general update streams
instead of the insert only streams for most of other algo-
rithms.

These probabilistic sketch based solutions largely focus on
deriving novel sketching algorithms. But little attention has
been paid to develop statistically efficient estimators. As a
result, their estimators do not fully utilize the information
contained in the sketches. For example, the estimators pro-
posed by [19, 6] based on one-stream cardinality algorithms
do not fully explore the correlation information between the
sketches of different streams and thus are quite inefficient.
We defer the detailed theoretical justifications to Section 5.

Popularized by the Fisher information theory and cele-
brated Cramer-Rao lower bound [4], statistical efficiency is
one of the most fundamental concepts in statistical infer-
ence. It measures the quality of an estimator by comparing
its variance to the Cramer-Rao lower bound that is the lower
bound of variance for unbiased estimators, achievable under
regular conditions. It has been shown that the Maximum-
Likelihood Estimator (MLE) is asymptotically efficient as
it can achieve the Cramer-Rao lower bound with increasing
sample sizes. However, in many cases, MLE is computation-
ally expensive or even intractable if the likelihood function
is complex. Such cases call for alternative methods for de-
riving statistically efficient estimators. The focus of this
paper is to bring formal statistical inference techniques to
the forefront of the stream expression cardinality problem,
and develop simple yet statistically efficient estimators that
are superior to existing ones.

1.1 Our Contributions
Let S be a stream expression under study, N be the car-

dinality of the union of all streams, and p = |S|/N be the
proportion of |S|. Let δ be a specified value of the relative
standard error that is desirable. Our contributions can be
summarized as follows.

1. Using a continuous variant of the FM sketches, we de-
velop a statistically efficient yet simple proportional-
union estimator for the stream expression cardinality
problem. We show that the memory requirement of
our estimator is O(δ−2p−1 log log N), where the log log N
order is achieved by discretizing a continuous version
of the FM sketches.

2. For cardinalities defined over two streams, we formally
analyze the statistical efficiency of our proportional-
union estimator, as compared to the Maximum Likeli-
hood Estimator (MLE). We show that the proportional-
union estimator has almost the same statistical effi-
ciency as the MLE, yet is computationally much sim-
pler than MLE. For cardinality defined over higher
number of streams, our estimator is still computation-
ally simple, but the MLE becomes intractable due to
the complexity of the likelihood.

3. We demonstrate both analytically and by simulation that
our proportional-union estimator has a superior per-
formance compared to existing methods by [19, 6, 13,
12]. We show that for algorithms [19, 6] based on one
stream cardinality counting, the required memory for
a given relative standard error δ grows proportional to
p−2 for a large value of p−1 whereas our method is p−1

scaling. On the other hand, for the given ε value, the
required memory for [12] (an improved version of [13])
grows proportionally to O(log2 N) for a large N , which
is larger than O(log log N) required by ours. These dif-
ferences are significant for large N and small p where
the query is more challenging. Furthermore, the re-
sults from our Internet trace driven simulation validate
our theoretical analysis very well.

Finally, we note that although our estimator has a supe-
rior performance over existing methods, we only handles the
insert only stream but not general update stream as [13, 12]
do.

1.2 Paper Outline
The rest of this paper is organized as follows. In Section

2, we review some basic statistical concepts and describe
a continuous variant of the FM sketches that our proposed
method is based on. In Section 3, we develop a proportional-
union estimator from the continuous FM sketches, and char-
acterize its performance analytically. In Section 4, we an-
alyze the statistical efficiency of the proportional-union es-
timator by comparing it with the maximum likelihood es-
timator for expressions over two streams. Section 5 gives
a systematic analytic performance comparison between the
existing methods and the proposed method, which shows
that our method is superior. This is further demonstrated
in Section 6 using simulation studies, and empirical evalu-
ations of a real network traffic matrix estimation example.
Finally, we concludes in Section 7.

1.3 Notations
There are a few notations that are used throughout the

paper. We use P (·) to present the probability function, E(·)
and var(·) to present the expectation and variance of a ran-
dom variable, corr(·, ·) or cov(·, ·) to represent the correla-

tion or covariance between two random variables, and
d−→

to represent the convergence in distribution. We also use
.
= to represent definitions and a ≈ b to represent a/b ≈ 1.
We use Exp(r) to represent an exponential distribution with
rate r and Normal(µ, σ2) to represent a Gaussian distribu-
tion with mean µ and variance σ2. We use log to denote
logarithm with base 2 unless it is specified.

2. PRELIMINARIES
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In this section, we first give a brief introduction of some
statistical concepts that are used later in the paper, includ-
ing the notion of statistical efficiency. Then we describe a
continuous variant of the Flajolet-Martin (FM) sketch that
we use to develop an efficient proportional-union estimator
for stream expression cardinalities.

2.1 Statistical Inference and Efficiency of Es-
timators

Let fθ(x) be a probability density/mass function for a
random variable x parameterized by θ. Given a random
sample of size n, say x1, x2, ..., xn, from fθ(·), the likelihood
function L(θ) of θ is given by

L(θ) = Πn
i=1fθ(xi).

Let I(θ) be the Fisher information defined by

I(θ) =
1

n
E

"„
∂

∂θ
log L(θ)

«2
#

, (1)

and let bθ be an unbiased estimator of θ based on the given
sample x1, x2, ..., xn. Under regular conditions, the variance

of bθ is then bounded by the reciprocal of the Fisher infor-
mation I(θ), i.e.,

var
“
bθ
”
≥ 1

I(θ)
.

This is the well-known Cramer-Rao inequality, also known
as the Cramer-Rao lower bound (CRB) [4]. Now define the

efficiency of bθ using the Cramer-Rao lower bound by

eff(bθ) =
1/I(θ)

var(bθ)
. (2)

From the Cramer-Rao inequality, eff(bθ) ≤ 1. A good sta-

tistical method seeks to find an efficient estimator bθ that has
a large value of efficiency. One such method is the popular
Maximum Likelihood Estimate (MLE). The MLE of θ, say

θ̂MLE , is defined as the maximizer of L(θ), i.e.,

θ̂MLE = argmaxθL(θ).

It can be shown that as the number of samples increases to
infinity, the MLE is asymptotically unbiased and efficient,
i.e., it achieves the Cramer-Rao lower bound.

2.2 Continuous Flajolet-Martin Sketches for
Single Stream Cardinality Counting

In a seminal paper [11], Flajolet and Martin proposed an
estimator for counting distinct values in a single stream, us-
ing a hash-based probabilistic sketches with O(log N) space
where N is the true cardinality. In the original version of the
Flajolet-Martin (FM) sketching algorithm, a hash function
is used to map an element in the stream to an integer that
follows a geometric distribution. Here we describe a con-
tinuous variant of the algorithm by replacing the geometric
random number with a uniform random number. We use
the continuous variant here to simplify the statistical analy-
sis that we present later. To generate independent replicates
of the statistics used for counting the cardinalities, we also
employ a technique referred to as stochastic averaging in
[8] by randomly distributing the elements over an array of
buckets.

For a single stream T , let [M ] be the data domain of its
element t. In the IP flow counting example, t is the packet
flow ID, and [M ] is the set of all possible values of flow IDs.
We generate the continuous FM sketch Y [k], k = 1, . . . , m,
an array of size m, as follows. First, we initialize Y [k] with
1 for all k. Let h : [M ] → {1, · · · , m} be a universal hash
function that maps an element uniformly over an array of m
buckets, and let g : [M ]→ [0, 1] be a universal hash function
that maps the element t to a uniform random number in
[0, 1], independent of h. For each incoming element t, let
k = h(t) be the bucket that t is mapped to, then we update
Y [k] by

Y [k] ← min(Y [k], g(t)). (3)

A bucket value will remain as 1 if no element is hashed to
that bucket. Algorithm 1 summarizes the continuous FM
sketch generation for stream T .

Algorithm 1 Continuous FM Sketch for a Stream T
1: Initialize a hash array Y of size m with values 1.
2: for each incoming element t of T do

3: Hash t into a bucket k = h(t) uniformly, where k ∈
{1, 2, . . . ,m}

4: Generate a random number g(t) uniformly on the interval
[0, 1].

5: Update Y [k] by min(Y [k], g(t)).

6: Return Y at the end of the stream.

Let µ = m−1|T | be the mean number of distinct items in
each bucket for T . The following lemma characterizes the
statistical properties of the continuous FM sketch Y [k], k =
1, . . . , m. The proof is provided in the appendix.

Lemma 1. For a large m, Y [k] follows approximately a
right censored exponential distribution with rate µ, i.e.,

P (Y [k] ≥ y) ≈ e−µy, for y ∈ [0, 1],

and P (Y [k] = 1) ≈ e−µ. In addition,

corr(Y [k], Y [j]) ≈ − 1

|T | , for k 6= j.

Obviously, when µ is large, Y [k], k = 1, . . . , m approximates
an independent sample of m exponential random variables
with rate µ.

By ignoring the weak dependence among {Y [k], 1 ≤ k ≤
m}, the likelihood function of µ can be written as

L(µ) = e−µ
Pm

k=1 I(Y [k]=1)
Y

Y [k]<1

µe−µY [k],

where I(·) is the indicator function. Thus the MLE of µ and
hence |T | are given by

bµ =

Pm
k=1 I(Y [k] < 1)Pm

k=1 Y [k]
, c|T | = mbµ. (4)

Lemma 2. As m goes to infinity,

√
m

 c|T |
|T | − 1

!
d−→Normal

`
0, (1 − e−µ)−1

´
.

Note that for a large µ, say µ > 10, the limiting variance in
Lemma 2 is approximately 1, which is close to the original
FM algorithm reported in [10].
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Finally we note that [16] have also considered using con-
tinuous random numbers for the FM sketches, but their
sketch is based on higher order statistics instead of the min-
imal statistic described in the above. In addition, their es-
timators are not based on likelihood.

We assume throughout that two universal hash functions
h and g are available that produce random independent
numbers. To be more realistic, similar to [13], we may need
to use t-wise independent hashing [2, 17, 5] which requires
additional storage cost for storing an appropriate seed. Here
t depends on desired accuracy, which we do not pursue de-
tailed analysis in this paper.

3. PROPORTIONAL UNION METHOD
Below we develop a novel method for estimating the car-

dinality of a general stream expression. To make the de-
scription clearer, we first demonstrate our method for a set
expression over two streams T1, T2, and then generalize it to
arbitrary number of streams Tj , j = 1, . . . , J .

3.1 Set Expressions over Two Streams
We first state a simple lemma that we use to derive our

proportional-union estimation method.

Lemma 3. Let E1 = min(E1, 1) and E2 = min(E2, 1)
be two right censored exponentials, where E1 ∼ Exp(r1),
E2 ∼ Exp(r2), and E1 is independent of E2. Then

min(E1, E2) ∼ min(Exp(r1 + r2), 1),

and

P (E1 = min(E1, E2)) = e−(r1+r2) + (1 − e−(r1+r2))
r1

r1 + r2
.

To formally present our proportional-union method, we
first introduce some notations. For each stream Tj , j = 1, 2,
let Yj [k], 1 ≤ k ≤ m be the corresponding continuous FM
sketch, obtained using Algorithm 1 with the same hash func-
tions h and g. The stream union T1 ∪ T2 can be partitioned
into three subsets, T1 ∩T2, T1\T2, and T2\T1 (shown in Fig-
ure 1). Let X0[k], X1[k], X2[k], (k = 1, . . . , m) be the virtual
continuous FM sketches corresponding to the subsets T1∩T2,
T1\T2, and T2\T1, respectively, obtained also by Algorithm
1 but not observable. To simplify the presentation, in the
following, we shall omit [k] when we refer to these sketches.

Notice that T1 = (T1 ∩ T2) ∪ (T1\T2), and similarly, T2 =
(T1 ∩ T2) ∪ (T2\T1) (again see Figure 1), it is obvious that

Y1 = min(X0, X1), Y2 = min(X0, X2). (5)

Furthermore, by Lemma 1, when m is large enough such
that (1 − m−1)m ≈ e−1, X0, X1, X2 approximates a right
censored exponential, i.e.,

X0 ∼ min(1, Exp
`
m−1|T1 ∩ T2|

´
),

X1 ∼ min(1, Exp(m−1|T1\T2|)),
X2 ∼ min(1, Exp(m−1|T2\T1|)).

Let N = |T1 ∪ T2| and ε = exp(−N/m). Applying Lemma
3, we have

P (Y1 = Y2) = P (min(X0, X1) = min(X0, X2))

= P (X0 = min(X0, X1, X2))

≈ ε + (1 − ε)N−1|T1 ∩ T2|. (6)

Here we use the fact that P (X1 = X2 < 1) = 0. This
immediately leads to the following theorem. We omit the
proof for the other two probability approximations as their
proofs are very similar.

Figure 1: Proportions of set expression cardinalities

Theorem 1. Suppose that m is large enough such that
(1−m−1)m ≈ e−1. Let N = |T1 ∪T2|, and ε = exp(−N/m).
Then

P (Y1 = Y2) ≈ ε + (1 − ε)N−1|T1 ∩ T2|,
P (Y1 < Y2) ≈ (1 − ε)N−1|T1\T2|,
P (Y1 > Y2) ≈ (1 − ε)N−1 |T2\T1| . (7)

Theorem 1 motivates a proportional-union estimate for
the cardinality |T1 ∩ T2|, |T1\T2| and |T2\T1|. For example,
when N is large enough such that ε is negligible, from The-
orem 1, |T1 ∩T2| ≈ NP (Y1 = Y2). Therefore, an estimate of
|T1 ∩ T2| can be obtained using the product of estimates of
|T1 ∪ T2| and P (Y1 = Y2). Notice that the continuous FM
sketch (Algorithm 1) of the stream union T1 ∪ T2 is exactly
the bucket-wise minimum min(Y1, Y2), therefore, |T1 ∪ T2|
can be easily estimated by using Equation 4 on the new
sketch. Furthermore, P (Y1 = Y2) can be estimated empiri-
cally from the observed sketch-pair (Y1, Y2).

Let bN be the estimate of N by using Equation 4 on the
continuous FM sketch of the stream union T1∪T2, defined by
min(Y1, Y2). Then for a large N such that ε is negligible, the
cardinalities |T1 ∩T2|, |T1\T2|, and |T2\T1| can be estimated
by

̂|T1 ∩ T2|
(PU)

= bN · bP (Y1 = Y2)

̂|T1\T2|
(PU)

= bN · bP (Y1 < Y2)

̂|T2\T1|
(PU)

= bN · bP (Y2 < Y1),

(8)

where bP represents the empirical probabilities based on the
observed sketch pair (Y1[k], Y2[k]), k = 1, . . . , m. We call this
as the proportional-union estimator in this paper. When ε =
exp(−N/m) is not negligible, one can invert Equation 7 to
obtain the proportional-union estimator of the cardinalities.

3.2 Set Expressions over Multiple Streams
Now we generalize the proportional-union method to esti-

mate the cardinality of a set expression over multiple streams,
Tj , j = 1, 2, · · · , J, with J > 2. Let Yj [k], k = 1, . . . , m be
the corresponding continuous FM sketches by Algorithm 1
for stream Tj . As before, to simplify the presentation, we
shall omit [k] when we refer the sketches at a bucket location
k. Define

Y∪ = min(Y1, · · · , YJ). (9)
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Obviously, Y∪ is the continuous FM sketch for the stream
union ∪J

j=1Tj . The following is an extension of Theorem 1
on P (Y1 = Y2) to the case of multiple streams.

Theorem 2. Suppose m is large enough such that (1 −
m−1)m ≈ e−1. Let N = | ∪J

j=1 Tj |, and ε = exp(−N/m).
Then for 1 ≤ d ≤ J,

P (Y1 = Y2 = · · · = Yd = Y∪) ≈ ε + (1− ε)N−1| ∩d
j=1 Td|. (10)

Proof. For simplicity, we prove the result for the case
J = 3 and d = 2: the generalization to arbitrary J and d
values is straightforward.

Figure 2 shows a diagram of the three streams T1, T2, T3
under consideration. Notice that the stream union can be
partitioned into 7 exclusive subsets numbered from 0 to 6:
for example, the subset numbered by 0 denotes ∩3

j=1Tj . Let
Xj be the virtual continuous FM sketch for the subset j,
j = 0, · · · , 6. Then by the set relations (see Figure 2), we
have Y1 = min(X0, X4, X5, X1), Y2 = min(X0, X4, X6, X2)
and Y3 = min(X0, X5, X6, X3). Since min(X0, X4) con-
tributes to both Y1 and Y2, it is easy to verify that Y1 = Y2

is equivalent to min(X0, X4) = min(Y1, Y2). Hence

P (Y1 = Y2 = Y∪) = P (min(X0, X4) = Y∪)

= P (min(X0, X4) = min(Xj , 0 ≤ j ≤ 6)).

For a large m such that (1 − m−1)m ≈ e−1, by Lemma
1, min(X0, X4) and min(Xj , 0 ≤ j ≤ 6) follow right cen-
sored exponential distributions with rate m−1|T1 ∩ T2| and
m−1| ∪3

j=1 Tj |, respectively. Now the result follows readily
from Lemma 3.

Figure 2: Diagram of set expressions over three
streams

Suppose that S is a set expression over the J streams,
whose cardinality is the subject of interest. To complete the
generalization of the proportional-union method for |S|, we
need two additional techniques for dealing with set expres-
sions, which we shall illustrate using an example. Consider
S = T1\((T2∩T3)∪T4). The first technique is to remove the
set differences appeared in the expression using the relation

|A\B| = |A| − |A ∩ B|.

Notice that we can use this repeatedly if there are multiple
set differences. In our example, this implies

|T1\((T2 ∩ T3) ∪ T4)| = |T1| − |(T1 ∩ ((T2 ∩ T3) ∪ T4))|.

Now without the loss of generality, we can assume that the
set expression only involves unions and intersections. The

second technique is to rewrite the set expression in terms of
intersections of set unions, i.e,

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

In our example, this implies

T1 ∩ ((T2 ∩ T3) ∪ T4) = T1 ∩ (T2 ∪ T4) ∩ (T3 ∪ T4).

Notice that the continuous FM sketch of a set union of d
streams is exactly the minimum of the d individual FM
sketches. Let

pS = |S|/N
be the proportion of |S| in the total union. Applying The-
orem 2 with the sketches Yj replaced by the sketches corre-
sponds to the set unions, we can derive a close approxima-
tion of pS . In our example, we have (for simplicity assuming
ε ignorable)

N−1|T1| ≈ P (Y1 = Y∪),

N−1|T1 ∩ ((T2 ∩ T3) ∪ T4)|
≈ P (Y1 = min(Y2, Y4) = min(Y3, Y4) = Y∪),

and thus

pS = N−1|T1\((T2 ∩ T3) ∪ T4)|
≈ (P (Y1 = Y∪) − P (Y1 = min(Y2, Y4) = min(Y3, Y4) = Y∪)) .

Let bN be the estimate of N by Y∪, and let bpS be the
empirical proportion based on the observed sketch tuple of
the J streams. When N is large enough such that ε =
exp(−N/m) is negligible, the proportional-union estimate
of |S| can be obtained in a straightforward way as in the
two stream case:

c|S|
(PU)

= bN · bpS .

Note that ε can be estimated by e−N̂/m. When ε is not
negligible, one can invert the proportion equation derived
from the above procedure to obtain the proportional-union
estimator of |S| correspondingly.

The following result states that the relative standard er-
ror for the proportional-union estimator grows linearly with
p−1
S . The proof is given in the appendix.

Theorem 3. The relative standard error (RSE) of the
proportional-union estimator for a set expression S is:

E

0
@c|S|

(PU)

|S| − 1

1
A

2

≈ 1

mpS
.

3.3 Memory Requirement
For the stream expression S, let δ be a specified value

of the relative standard error of our proportional-union es-
timate of |S|. From Theorem 3, the required number of
buckets for a given δ is

m ≈ δ−2p−1
S .

Let E be a unit exponential random variable, and λj =
|Tj |/m, j = 1, . . . , J . Notice that by Lemma 1, the continous
FM sketch Yj for Tj is a right censored exponential,

Yj ∼ min(λ−1
j E, 1). (11)
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Since λj ∼ O(N), this implies that Yj requires O(log N)
storage bits. In the following, we describe a procedure that
can reduce the per-bucket storage of the sketch statsitics Yj

from log N to log log N , by storing log Yj instead.
Notice that by Equation 11,

log Yj ∼ min(0,− log(λj) + log E). (12)

Assume log log λj is an integer. Thus log λj requires log log λj

storage bits, and log Y requires at most log log(N) + a stor-
age bits, where the a bits are used for storing the decimals of
log E (for reference, we note that the 0.1% and 99.9% quan-
tiles of log E are -6.907 and 1.933 respectively). Therefore,
now the per-bucket storage is at most O(log log N), and the
total required memory is δ−2p−1

S (log log N + a).
From experimental studies presented in Section 6, we ob-

serve that a = 10 bits is enough for storing the decimals
of log E so that the overal accuracy of the cardinality esti-
mate is not compromised. This can be further justified using
a careful bias analysis of the probability approximation of
pS (e.g. Equation 7 and 10.) Consider S = T1 ∩ T2 over
the J streams, and p = pS = P (Y1 = Y2 = Y∪) for exam-

ple. Let p(I) be the new probability based on the discretized
sketches Yj , j = 1, . . . , J described above. It can be shown
that p ≤ p(I) ≤ p + 2−a+1. Therefore if a = 10, the differ-
ence in the probabilities is at most 0.002, which is negligible
for practical purposes.

Finally, we make note of a direct method for computing
the logarithmic sketch log Yj . By Algorithm 1, we can write

Yj = min(1, U1, · · · , UB),

where B is a Binomial random number representing the
number of distinct elements that are mapped to the bucket,
and each Ui is a uniform random number in [0, 1]. Notice
that − log Ui follows a unit exponential distribution, there-
fore

log Yj = −max(0,− log U1, · · · ,− log UB).

Thus, to generate the logarithmic continuous FM sketches,
we can replace the uniform random number generator g(·) by
a unit exponential random number generator (with decimal
truncated into a bits) and replace the minimum update by
maximum. In this way, we can avoid taking the logarithm in
the sketch generation. Now the initial values for the buckets
become 0 instead of 1.

4. EFFICIENCY OF THE PROPORTIONAL
UNION METHOD

In this section, we investigate the efficiency of our pro-
posed proportional-union method, using the formal statis-
tical methods described in Section 2.1. We derive the like-
lihood of the continuous FM sketches for the case of two
streams, obtain the MLE of the cardinality parameters, and
then compare its asymptotic variance with that of the proportional-
union method. As we have explained earlier, MLE is asymp-
totically most efficient as it can achieve the Cramer-Rao
lower bound. For a set expression S whose cardinality is the
subject of interest here, again let p = |S|/N be the propor-
tion of the cardinality of S in the total union. We show that
in the two stream case, our proportional-union method is as
efficient as that of MLE when p is small. As shown below,
the MLE for the case of two streams is quite involved but

manageable, however the MLE for the case J > 2 is much
more complicated and we do not investigate it in this paper.

We adopt the same notation that we use in Section 3.1.
Furthermore, we define

λ0 = |T1 ∩ T2|/m, λ1 = |T1\T2|/m, λ2 = |T2\T1|/m,

as the unknown cardinality parameters, and let

θ = (λ0, λ1, λ2)
T .

To simplify the presentation, in the following, we omit [k]
when we refer the continuous FM sketches Y1[k], Y2[k], X0[k],
X1[k], X2[k] at a bucket location k. By Lemma 1 and the
relation in Equation 5, for y1, y2 ∈ [0, 1], we have

P (Y1 ≥ y1, Y2 ≥ y2)

= P (X0 ≥ max(y1, y2), X1 ≥ y1, X2 ≥ y2)

≈ exp

 
−λ0 max(y1, y2)−

2X

j=1

λjyj

!
,

where “≈” holds since (1 −m−1)m ≈ e−1 for large m. Let
fλ(·) denote the density function of an exponential random
variable with rate λ, i.e. fλ(x) = λe−λx, x ≥ 0. Then the
density function for the continuous FM sketches (Y1, Y2),
i.e., P (Y1 = y1, Y2 = y2), 0 ≤ y1, y2 ≤ 1, can be expressed
as

8
>>>>>><
>>>>>>:

e−(λ0+λ1+λ2), y1 = y2 = 1 (case 1)

e−(λ0+λ2)fλ1(y1), y1 < y2 = 1 (case 2)

e−(λ0+λ1)fλ2(y2), y2 < y1 = 1 (case 3)

λ0e
−(λ0+λ1+λ2)y1 , y1 = y2 < 1 (case 4)

fλ2 (y2)fλ+λ1(y1), y2 < y1 < 1 (case 5)
fλ1 (y1)fλ+λ2(y2), y1 < y2 < 1 (case 6).

(13)

Again from Lemma 1, the sketches at two different bucket
locations (Y1[k], Y2[k]) and (Y1[j], Y2[j]) for j 6= k, are very
weakly dependent. Let l(θ) be the negative logarithmic
likelihood function of the continuous FM sketches (Y1[k],
Y2[k]), k = 1, . . . , m, i.e.,

l(θ) = −
mX

k=1

log{P (Y1[k], Y2[k])}.

The following lemma gives the gradient and Hessian matrix
of l(θ) with respect to θ, noting that the expectation of
the Hessian matrix is the same as the information matrix
I(θ) defined in Equation 1. The proof is based on direct
calculation using Equation 13 and omitted.

Lemma 4. The gradient g = ∂l(θ)
∂θ

is given by

2
4

S3 − m6
λ0+λ2

− m5
λ0+λ1

− m4
λ0

S1 − m2+m6
λ1

− m5
λ0+λ1

S2 − m3+m5
λ2

− m6
λ0+λ2

3
5 (14)

where mi are the number of buckets of case i defined in
Equation 13, S1 =

Pm
k=1 Y1[k], S2 =

Pm
k=1 Y2[k], and S3 =Pm

i=1 max(Y1[k], Y2[k]).

The Hessian matrix H = ∂2l(θ)

∂θ∂θT is a 3×3 symmetric non-
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negative definite matrix with elements Hij given by:
8
>>>>>>>><
>>>>>>>>:

H11 = m6
(λ0+λ2)2

+ m5
(λ0+λ1)2

+ m4

λ2
0

,

H12 = H21 = m5
(λ0+λ1)2

,

H13 = H31 = m6
(λ0+λ2)2

H22 = m2+m6

λ2
1

+ m5
(λ0+λ1)2

,

H23 = H32 = 0,
H33 = m3+m5

λ2
2

+ m6
(λ0+λ2)2

.

(15)

Furthermore if m5 > 0 and m6 > 0, H is strictly positive
definite and thus l(θ) is a strictly convex function. If |T1 ∩
T2| > 0, then the probability

P (m5 > 0, m6 > 0) ≈ 1 −
2X

j=1

„
|Tj |
N

«m

+

„
|T1 ∩ T2|

N

«m

is almost 1 for large m.

Unlike the proportional-union estimate, the MLE of θ that
minimizes l(θ) does not have a closed-form solution. By
Lemma 4, l(θ) is strictly convex with probability almost 1,
and hence, its unique minimum can be located using a simple

Newton-Rapson algorithm. Let bθ(MLE) be the MLE of θ by
minimizing l(θ), then the MLE of cardinalities is simply
„

̂|T1 ∩ T2|
(MLE)

, ̂|T1\T2|
(MLE)

, ̂|T2\T1|
(MLE)

«
= mbθ(MLE). (16)

In our experience through simulation and experimental stud-
ies, the Newton-Rapson iteration typically requires only a
few steps (less than 5) before convergence is reached.

The following theorem gives the asymptotic distribution

for the relative accuracy of bθ(MLE). The proof is given in
the appendix.

Theorem 4. Let pS = |S|/N . For λ0 > 0 and large
λ0 + λi, i = 1, 2, as m goes to infinity, we have for S =
T1 ∩ T2, T1 − T2 and T2 − T1,

√
m

0
@c|S|

(MLE)

|S| − 1

1
A → Normal

„
0,

1

pS(1 + b)
)

«
,

where b is a small number given in Equation 19 in the ap-
pendix.

Comparing the relative standard error of the MLE (Theo-
rem 4 above) and that of the proportional-union estimate
(Theorem 3), the efficiency of proportional-union estimate
as compared to MLE, defined by the ratio of their MSEs
(i.e., Equation 2) is

eff

„
c|S|

(PU)
«

=
1

1 + b
,

which is close to 1 for a small pS , see the appendix for de-
tails. Therefore, the proportion-union estimate has almost
the same efficiency as MLE.

5. COMPARISONS WITH EXISTING METH-
ODS

In this section, we compare our proportional-union method
with two existing methods for the stream expression cardi-
nality estimation problem, both of which use hash based
probabilistic sketches. In the first approach [19, 6], the car-
dinality of an arbitrary stream expression is expressed as

sums/differences of the cardinalities of set unions, and the
cardinality of each set union is counted using existing algo-
rithms developed for single stream cardinality counting. In
the second approach [13, 12], a novel 2-level hash sketching
algorithm is used to directly estimate the cardinality of an
arbitrary set expression over more general update streams.
We discuss performance limitations of both approaches and
and demonstrate analytically that our proportional-union
method is superior. Further empirical evidence for this is
reported in the next section.

5.1 Algorithms based on One Stream Cardi-
nality Counting

We give a brief description of the approach adopted by [19,
6]. Both are based on single stream cardinality counting:
the difference is that the LLog-bitmap method by [6] used
a combination of the LogLog algorithm [8] (an improved
version of the FM sketch) and the bitmap sketch [9], and
[19] used only the bitmap sketch. Although their approach
is developed only for the cardinality estimation over two
streams, specifically, |T1 ∩ T2|, in the context of IP traffic
matrix estimation, the generalization to multiple streams is
straightforward.

Notice that

|T1 ∩ T2| = |T1|+ |T2| − |T1 ∪ T2|. (17)

Therefore, |T1 ∩ T2| can be estimated from the three cardi-
nalities, |T1|, |T2| and |T1 ∪ T2|. Let Yj be the probabilistic
sketch for stream Tj , j = 1, 2. It turns out that for both
the original FM sketch [10], and bitmap sketch [9], the cor-
responding probabilistic sketch for the stream union T1 ∪T2
is simply Y∪[k] ≡ min(Y1[k], Y2[k]). Now the estimation of
|T1∩T2| is straightforward by using the FM or bitmap cardi-
nality counting algorithm for individual streams T1, T2 and
T1 ∪ T2.

Despite its mathematical simplicity, their approach does
not fully explore the correlation among the stream sketches,
and thus it is quite inefficient. Let S = T1 ∩ T2 be the

set expression of interest and c|S|
(1D)

be the estimate of |S|
using a one-stream cardinality counting algorithm (e.g. FM
or bitmap sketch) described above. Let N = |T1 ∪ T2|. The
following theorem states that the relative mean-square-error

of c|S|
(1D)

grows quadratically with N/|S| which is much
worse than N/|S| scaling of our method (Theorem 3). In
fact the result can be easily generalized to the intersections
of multiple streams.

Theorem 5. For S = T1 ∩ T2 and an estimator c|S|
(1D)

based on a sketch of size m (such as FM or bitmap sketch),

E

0
@c|S|

(1D)

|S| − 1

1
A

2

= O(m−1p−2
S ),

where pS = |S|/N . In particular, if a continuous FM sketch
(Algorithm 1) is used here, then as m→∞,

√
m

0
@c|S|

(1D)

|S| − 1

1
A d−→ Normal

`
0, αp−2

S

´
,

where α is given in Equation 20 in the appendix.

Proof. A simple heuristic is that if |Tj | are known, i.e.

d|Tj | = |Tj |, then c|S|
(1D)

can be improved and var( ̂|T1 ∩ T2|) =
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var( ̂|T1 ∪ T2|), i.e., O(m−1N2). Below is a formal proof.

Let εj =
√

m(
d|Tj |

|Tj |
− 1), j = 1, 2 and ε3 =

√
m(

̂|T1∪T2|
|T1∪T2|

−
1), then var(εj) = O(1). Let pj = |S|

|Tj |
, j = 1, 2. We

have
c|S|

(1D)

|S|
− 1 = m−1/2

“P2
j=1 p−1

j εj + p−1
S ε3

”
. Using

the fact that for any two random variables ξ, η, var(ξ) =
E (var(ξ|η)) + var (E(ξ|η)) ≥ E (var(ξ|η)), we have

var

0
@c|S|

(1D)

|S|

1
A ≥ 1

m
p−2
S E (var (ε3|ε1, ε2)) .

Notice that E (var (ε3|ε1, ε2)) = 0 if and only if ε3 is a func-

tion of ε1, ε2 with probability 1, or equivalently, ̂|T1 ∪ T2| is a

function of d|T1| and d|T2|. But this can not be true, because
two marginal cardinalities are not sufficient for predicting

the union cardinality. Thus var

„
c|S|

(1D)

|S|

«
= O( 1

m
p−2
S ). The

first result follows. The proof of the second result is given
in the appendix.

5.2 Two-level Hash Method
The 2-level hash method is proposed first by [13] for es-

timating the cardinality of a set expression over update
streams, which allow item deletion as well as insertion. The
2-level hash sketch has a hierarchical structure with two lev-
els: after generating a string of log N binary bits for each
distinct item, the first level uses the original FM sketch with
O(log N) bits to store the location of the least-significant bit
(LSB) in the string; for each value of LSB, the second level
uses an array of size O(log N) to count the number of 1s in
each bit using strings with the given LSB value. As a re-
sult, the 2-level hash sketch for a stream requires O(log3 N)
storage per bucket. This is improved in [12] by reducing
the space requirement for the second level hash to O(log N)
per bucket instead. The novelty of the 2-level hash is that
it allows one to identify buckets with a single distinct item
for general set expressions. It has been shown by [13] that
the mean square error for their estimate is O(m−1p−1

S ), the
same order as our proportional-union method. However,
their per-bucket storage is significantly higher: O(log2 N)
instead for the O(log log N) required by our method. Intu-
itively, the 2-level hash method is quite inefficient because
the estimate is solely based on the information regarding to
those buckets that contain a single distinct element.

5.3 Performance Comparison
Table 1 summarizes the analytic performance comparison

for all three methods, LLog-bitmap [6], 2-level-hash [12],
and our proporitional-union method, in terms of relative
standard error and memory units. To be specific, we also
give a concrete example of the required memory for esti-
mating the cardinality of S = T1 ∪ T2 when |S| = 105,
p−1 = N/|S| = 50. To achieve a relative standard error
0.035, our proportional-union method requires 40 Kbytes,
while the LLog-bitmap and 2-level-hash require 640 Kbytes
and 7 Mbytes, respectively.

6. EXPERIMENTAL STUDY
In this section, we present empirical studies of our propor-

tional union method and compare it with the two existing
methods described in the previous section [19, 6, 13, 12].

The objective is to demonstrate further that our method
significantly outperforms existing ones in practical scenar-
ios. Three experiments are reported below. The first two
are synthetic simulations for estimating the cardinalities of
|T1 ∩ T2| and |T1 ∩ T2\T3|. In the last experiment, we ap-
ply our proportional-union method to estimate the traffic
matrix of the core network in a tier-1 service provider.

6.1 Synthetic Simulation: |T1 ∩ T2|
Let N be the cardinality of the stream union, and p is

the cardinality proportion of |T1 ∩ T2| in N . The simulation
setup is as follows. To investigate the effect of the inverse
proportion p−1 on the estimation accuracy, we fix the car-
dinality of the union at N = 3 · 107, and let the inverse
proportion p−1 vary from from 2 to 300. Therefore, as p−1

increases, |T1∩T2| decreases. We choose m = 105 buckets for
the proportional-union method, and allocate 15 bits for each
bucket, where 10 bits are devoted for storing the decimals
of the logarithm of the continuous FM sketch as described
in Section 3.3. Therefore, the total memory is 1.5Mbits, or
188 Kbytes.

To complete the setup, we also let |T1\T2| = r|T2\T1|, and
fix r = 2. This is done purely for convenience, since as indi-
cated by Theorem 3, the performance of the proportional-
union estimate would not be affected by the value of r. Now
for each p−1, we simulate T1, T2 for 100 times, and obtain
estimate of |T1 ∩ T2| using four methods: LLog-bitmap by
[6], 2-level-hash by [12], MLE and our proportional-union
method. We do not implement the methods by [19, 13]
since they are earlier versions of [6] and [12]. We allocate
5 bits per bucket for LLog-Bitmap, 800 bits per bucket for
2-level-hash (25 bits for the first level hash and 32 bits for
each first level bit in the second level hash). The MLE uses
the same sketches as the proportion-union method.

For each method, define the empirical value of the relative
standard error from the 100 runs by

bδ =

vuut 1

100

100X

k=1

“
relative.error(k)

”2

,

where relative.error(k) is the observed relative error of the
estimate in each run. Figure 3 reports the value of bδ as a
function of the inverse proportion p−1 for the four methods,
all of which use the same amount memory 188Kbytes. The
results show that the proportional-union estimates and the
MLE are very close to each other, and has a better per-
formance comparing to the LLog-bitmap and 2-level-hash
methods. For example, when p−1 = 100, the relative stan-
dard errors are 0.03 for both proportional-union and MLE,
0.10 for LLog-bitmap, and 0.52 for 2-level hash. The 2-level-
hash method is the worst performer simply because the per-
bucket storage is much higher than the rest of methods (only
250 bucket for 188 Kbytes memory). This is supported by

Figure 4, where again we show bδ as a function of p−1 for the
four methods. However, this time, we kept the number of
buckets the same at m = 104. Notice that even in this case,
the 2-level-hash method is still a few factors worse than our
proportional-union method, even though it is better than.
LLog-bitmap.

By Theorem 3, 4, and 5, we expect a linear increase of the
relative standard error as a function of p−1 for the LLog-
bitmap method, and a square root increase for the other
three methods. However, due to the statistical variability
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Algorithm Relative Standard error Memory units |T1 ∩ T2| = 105, p−1 = 50, δ = 0.035

Loglog-bitmap O(m− 1
2 p−1) log log(N) (bits) 640 Kbytes

2-level-hash O(m− 1
2 p− 1

2 ) log2(N) (bits) 7 Mbytes

PU (mp)−
1
2 log log(N) + 10 (bits) 40 Kbytes

MLE (mp(1 + b))−
1
2 log log(N)+10 (bits) 40 Kbytes

Table 1: Performance comparison of three methods: LLog-bitmap, 2-level-hash and our proportional-union,
in terms of accuracy and memory requirement (m: number of buckets, p = |S|/N : the proportion of the
cardinality stream expression in total union, δ: relative standard error).

in the simulation, this relationship is sometimes obscure in
Figure 3 and 4, for example in the case of the 2-level-hash
method. Finally we note that since the memory require-
ment for the 2-level hash is O(log2 N) but the others are
O(log log N), the relative performance of 2-level hash may
become worse for larger N and better for smaller N .
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Figure 3: Relative standard errors of four methods
for estimating |T1 ∩ T2| as a function of the inverse
proportion N/|T1 ∪ T2| with N = 3 · 107 and mem-
ory 188 Kbytes: the solid line is for proportional-
union method, the dashed and dot-dashed lines are
for the 2-level-hash and LLog-bitmap methods, and
the MLE is in a dotted line and almost overlaps with
the solid line for the proportional-union. The rela-
tive standard errors are computed based on 100 runs
for each case.

6.2 Synthetic Simulation: |T1 ∩ T2\T3|
The simulation setup is similar to the previous one. We fix

N = 3 · 107 and vary p−1 from 6 to 300. For the rest of sub-
sets in the division of the total union (subsets labeled 1 to 6
in Figure 2), we let them have equal cardinalities. For each
p−1, we simulate T1, T2, T3 for 100 times according to the
specification, and obtain estimates of |T1∩T2\T3| using three
methods: LLog-bitmap, 2-level-hash and our proportional-
union. Notice that we left out the MLE method since it
cannot be easily obtained due to the complexity of the like-
lihood. The memory allocation for each method is the same
as in the previous experiment over two streams (a total of
188 Kbytes).
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Figure 4: Relative standard errors of four methods
for estimating |T1 ∩ T2| as a function of the inverse
proportion N/|T1∪T2| with fixed N = 3 ·107 and array
size m = 104: the solid line is for the proportional-
union method, the dashed and dot-dashed lines are
for the 2-level-hash and LLog-bitmap methods, and
the MLE is in a dotted line and almost overlaps
with the solid line for the proportional-union. The
relative standard errors are computed based on 100
runs for each case.

Figure 5 reports the value of bδ as a function of the inverse
proportion p−1 for the three methods. The results show
that the proportional-union estimates is better comparing
to both the LLog-bitmap and 2-level hash methods. In fact,
by comparing Figure 5 and 3, we notice that the performance
of our proportional-union method is very similar under two
scenarios for the same value of p−1, which is consistent with
our asymptotic results in Theorem 3.

Figure 4 also shows bδ as a function of p−1, but with a fixed
number buckets m = 104. Same as the previous experiment,
we conclude that our proportional-union method is the best
and 2-level-hash method is the second if we do not consider
per-bucket storage.

6.3 Network Traffic Matrix Estimation
In this study, we evaluate our proportional-union method

in the traffic matrix estimation problem for the core network
of a tier-1 service provider, where each element of traffic
matrix is the number of distinct flows between an origin-
destination (OD) pair in the network.
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Figure 5: Relative standard errors of four methods
for estimating |S| = |T1∩T2\T3| as a function of the in-
verse proportion N/|S|, with N = 3 · 107 and memory
188 Kbytes: the solid line is for the proportional-
union method, the dashed and dot-dashed lines for
the 2-level-hash and LLog-bitmap methods. The rel-
ative standard errors are computed based on 100
runs for each case.

Our traffic data from the tier-1 network provider includes
the traffic volume in bytes on MPLS paths in every five min-
utes and the routing matrix for all MPLS paths that lists
all the links on every path. From this, we can derive the
OD traffic volume between any pair of origin and destina-
tion links by summing up the volume of the MPLS paths
that traverse both links. However, the data from the service
provider does not have any flow or packet level information,
and therefore cannot be directly used as input to our algo-
rithms.

In order to generate realistic flow level traces, we related
some Internet packet traces to the byte volume matrix from
the service provider as follows. We first preprocess the
packet trace and group them at the flow level. For each
MPLS path, we assign flows from the packet traces until
the sum of the volume from all flows is no less than the traf-
fic volume of the MPLS path from the traffic matrix. After
this process, every flow is assigned to one MPLS path whose
total volume is close to the value in the traffic matrix. We
use the packet traces that are collected by [18]. There are
about 1800 OD link pairs that contain OD traffic.

For each OD link pair, we apply our proportional-union
method to estimate the OD flow counts in a 5-minute inter-
val. We allocated a memory of 1M bits for the continuous
FM sketch at each link with 15 bits per bucket as above, and
compared the estimated OD flow counts for all link pairs to
the ground truth.

Figure 7 reports the histogram of the inverse proportion
p−1 of the OD flow counts in the union of OD flows where
the five vertical lines show the 10%, 25%, 50%, 75% and
90% quantiles. For example, 50% of OD link pairs has a
value beyond 64, 37% beyond 256 and 25% beyond 1024.
By the synthetic simulation study for |T1 ∩ T2|, there is a
clear advantage of our method when the inverse proportion
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Figure 6: Relative standard errors of four methods
for estimating |S| = |T1 ∩ T2\T3|, as a function of the
inverse proportion N/|S|, with N = 3·107 and m = 104:
the solid line is for the proportional-union method,
the dashed and dot-dashed lines for the 2-level-hash
and LLog-bitmap methods. The relative standard
errors are computed based on 100 runs for each case.

is beyond 256, and this advantage will only grow with larger
values of p−1.

Figure 8 shows the estimated OD flow counts with respect
to the ground truth, where the two dashed lines show 10%
off the ground truth values. Results show that the relative
errors of our flow counts estimation for more than half of the
OD pairs are less than 1%, and more than 90% OD pairs
are within 10%.

7. CONCLUSION
In this paper, we have developed a simple proportional-

union estimator for general stream expression cardinalities
based on a variant of the well known Flajolet-Martin sketches.
We have shown that for a set expression over two streams,
it has almost the same statistical efficiency as the maximum
likelihood estimator, which is the most efficient estimator
achieving the Cramer-Rao lower bound asymptotically. For
cardinalities defined over a larger number of streams, our
proportional-union method is still simple to implement, but
the MLE becomes intractable due to the complexity of the
likelihood. We have demonstrated both analytically and by
experimental studies, that our proportional-union estimator
has a superior performance compared to state-of-the-art al-
gorithms, especially for large N and small |S|/N . Here S is
the stream expression of interest and N is the cardinality of
the union of the streams defining S.

8. APPENDIX

8.1 Proof of Lemma 1
Let B[k] denote the number of distinct items hashed into

the kth bucket and let U1, · · · , UB[k] be the uniform random
numbers associated with these items. Then B[k] follows the
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Figure 7: Histogram of the inverse proportion p−1 =
N/|Ti∩Tj | for all link pairs (i, j) which have OD traffic.

Binomial distribution Binomial(|T |, 1
m

) and
Y [k] = min(1, U1, · · · , UB[k]). Thus for any y ∈ [0, 1],

P (Y [k] ≥ y) =

|T |X

i=0

(1 − y)iP (B[k] = i)

= E
h
(1− y)B[k]

i

= (1 − y

m
)|T | ≈ e−µy,

where the approximation is due to (1− y
m

)m/y ≈ e−1. Then
the density function of Y [k] at y ∈ (0, 1) is approximately
fλ(y) = λe−λy. This verifies the marginal distribution of
Y [k].

For the correlation structure of Y [k], 1 ≤ k ≤ m, notice
that for any 1 ≤ j 6= k ≤ m, (B[j], B[k], |T |−B[j]−B[k]) fol-
lows a multinomial distribution Multinomial(|T |, ( 1

m
, 1

m
, 1−

2
m

)). Using the Multinomial properties, we have

E (Y [j]) = E

»
1

1 + Bj

–

=
m

|T | + 1
(1− (1− 1

m
)|T |+1) (18)

and

E (Y [j]Y [k]) = E

»
1

(1 + Bj)(1 + Bk)

–

=
m2

(|T |+ 1)(|T |+ 2)

×
»
1 − 2(1− 1

m
)|T |+2 + (1 − 2

m
)|T |+2

–

Thus using (1− 1
m

)m ≈ e−1, we have

cov (Y [j], Y [k]) = E (Y [j]Y [k]) − E (Y [j]) · E (Y [j])

≈ −µ−2(1 − e−µ)m−1[µ−1 − 2e−µ].

Similary it can be shown that var(Y [j]) ≈ µ−2(1 − e−µ).
Hence, corr(Y [j], Y [k]) ≈ −|T |−1(1− 2µe−µ).

True OD flow counts (log10 scale)
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Figure 8: Estimation of OD flow counts by our
proportional-union method.

8.2 Proof of Lemma 2
Let µ = |T |/m. Notice that

√
m

 c|T |
|T |

− 1

!

=
m−1/2

Pm
k=1 (I(Y [k] < 1) − µY [k])

µm−1
Pm

k=1 Y [k]
.

By the Law of Large Nunmbers, m−1
Pm

k=1 Y [k] → E[Y ],
which by (18) is approximately equal to µ−1(1 − e−µ). Fur-

ther, E (I(Y < 1)− µY ) ≈ 1
|T |

`
1− e−µ

´
and

E (I(Y < 1) − µY )2 ≈ 1 − e−µ. Thus by the Central Limit
Theorem and the Slusky Theorem, the numerator is approxi-
mately Gaussian with mean m−1/2µ−1(1−e−µ) and variance

1 − e−µ. Thus for large m,
√

m
“d|T |

|T |
− 1
”

is approximately

Gaussian with mean 0 and variance
`
1 − e−µ

´−1
.

8.3 Proof of Theorem 3
Let ε1 =

√
m
“

N̂
N
− 1
”

and ε2 =
√

m
“

p̂S

pS
− 1
”
. Assuming

that e−N/m ≈ 0, by Theorem 3, ε1 ≈ Normal(0, 1) and by
the Central Limit Theorem, (ε1, ε2) has a limit bivariate

Gaussian distribution and ε2 ≈ N
“
0, 1−pS

pS

”
. Thus

√
m

0
@c|S|

(PU)

|S| − 1

1
A =

√
m

 
N̂ · p̂S

N · pS
− 1

!

=
p̂S

pS
ε1 + ε2.

Using the fact that for two independent exponential ran-
dom variables E1, E2 with rate λ1, λ2, the correlation be-
tween min(E1, E2) and I(E1 = min(E1, E2)) is equal to 0, it
can be shown that the correlation between ε1 and ε2 is ig-
norable. Note that p̂S/pS ≈ 1. By the Slusky Theorem, the

limit distribution of p̂S

pS
ε1 + ε2 is asymptotic normal with

mean 0 and variance 1 + 1−pS

pS
= N

|S|
.
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8.4 Proof of Theorem 4
Let Λ = λ0 + λ1 + λ2. After some calculation, one can

show that the Fisher information matrix I(θ) .
= 1

m
E(H(θ))

is given with elements
8
>>>>>>><
>>>>>>>:

I11 = ( λ1
(λ0+λ2)2

+ λ2
(λ0+λ1)2

+ 1
λ
)Λ−1

I22 = ( 1
λ1

+ λ2
(λ0+λ1)2

Λ−1

I33 = ( 1
λ2

+ λ1
(λ0+λ2)2

)Λ−1

I12 = I21 = λ2
(λ0+λ1)2

Λ−1

I13 = I31 = λ1
(λ0+λ2)2

Λ−1

I23 = I32 = 0.

From Fisher information theory [4], the MLE estimate of λ is
asymptotically unbiased with a variance given by (I−1(θ))11.
By inverting I, we have

(I−1)11 =
Λλ0

1 + b
,

where

b =
σ1

σ1σ2 + (1 + σ2)2
+

σ2

σ1σ2 + (1 + σ1)2
(19)

with σj = λjλ
−1, j = 1, 2. The result then follows.

8.5 Proof of Theorem 5 (cont)
Let S = T1 ∩ T2. Let pS = |S|

|T1∪T2|
and pj = |S|

|Tj |
, j = 1, 2.

Then the relative error w.r.t. the intersection cardinality
estimator can be expressed as follows:

√
m

0
@c|S|

(1D)

|S| − 1

1
A =

2X

j=1

p−1
j εj − p−1

S ε∪,

where σj εj denotes the relative error corresponding to d|Tj |,
i.e. εj =

√
m

„
d|Tj |

|Tj |
− 1

«
, and ε∪ =

√
m
“

̂|T1∪T2|
|T1∪T2|

− 1
”
. By

Lemma 2, when e−|Tj |/m are ignorable, εj and ε∪ approxi-
mately follow Normal (0, 1). Further calculation gives that

cov(ε1, ε2) ≈ pS

and for j = 1, 2,

cov(εj , ε∪) ≈ pSp−1
j .

Thus
√

m

„
c|S|

(1D)

|S|
− 1

«
approximately follows Normal with

mean 0 and variance αp−2
S , where

α = 1 +

2X

j=1

p−2
j p2

S(1− 2p2
S) + 2p−1

S p1p2 > 0. (20)
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