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ABSTRACT
Uncertain data are inherent in some important applications.
Although a considerable amount of research has been dedi-
cated to modeling uncertain data and answering some types
of queries on uncertain data, how to conduct advanced anal-
ysis on uncertain data remains an open problem at large. In
this paper, we tackle the problem of skyline analysis on un-
certain data. We propose a novel probabilistic skyline model
where an uncertain object may take a probability to be in
the skyline, and a p-skyline contains all the objects whose
skyline probabilities are at least p. Computing probabilis-
tic skylines on large uncertain data sets is challenging. We
develop two efficient algorithms. The bottom-up algorithm
computes the skyline probabilities of some selected instances
of uncertain objects, and uses those instances to prune other
instances and uncertain objects effectively. The top-down
algorithm recursively partitions the instances of uncertain
objects into subsets, and prunes subsets and objects ag-
gressively. Our experimental results on both the real NBA
player data set and the benchmark synthetic data sets show
that probabilistic skylines are interesting and useful, and
our two algorithms are efficient on large data sets, and com-
plementary to each other in performance.

1. INTRODUCTION
Uncertain data are inherent in some important applica-

tions, such as environmental surveillance, market analysis,
and quantitative economics research. Uncertain data in
those applications are generally caused by data randomness
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and incompleteness, limitations of measuring equipment, de-
layed data updates, etc. Due to the importance of those
applications and the rapidly increasing amount of uncertain
data collected and accumulated, analyzing large collections
of uncertain data has become an important task. However,
how to conduct advanced analysis on uncertain data, par-
ticularly skyline analysis as will be addressed in this study,
remains an open problem at large.

1.1 Motivating Examples
Many previous studies (e.g., [4, 6, 14, 20, 24, 23, 26, 29,

32]) showed that skyline analysis is very useful in multi-
criteria decision making applications. As an example, con-
sider analyzing NBA players using multiple technical statis-
tics criteria (e.g., the number of assists and the number of
rebounds). Ideally, we want to find the perfect player who
can achieve the best performance in all aspects. Unfortu-
nately, such a player does not exist. The skyline analysis
here is meaningful since it discloses the tradeoff between
the merits of multiple aspects.

A player U is in the skyline if there exists no another
player V such that V is better than U in one aspect, and
is not worst than U in all other aspects. Skyline analysis
on the technical statistics data of NBA players can identify
excellent players and their outstanding merits.

We argue that skyline analysis is also meaningful on un-
certain data. Consider the skyline analysis on NBA players
again. Since the annual statistics are used as certain data
in the previous studies [24], it has never been addressed in
the skyline analysis that players may have different perfor-
mances in different games. If the game-by-game performance
data are considered, which players should be in the skyline
and why?

For example, let us use the number of assists and the
number of rebounds, both the larger the better, to examine
the players. The two measures may vary substantially player
by player and game by game. Uncertainty is inherent due to
many factors such as the fluctuations of players’ conditions,
the locations of the games, and the support from audience.
How can we define the skyline given the uncertain data?

While a skyline analysis using the real NBA game records
will be reported in Section 6, here we plot a few games of 5
synthesis players in Figure 1 to illustrate several important
issues.

The traditional method represents an attribute of each
player using an aggregate function such as the mean or the
median, and computes the skyline over such aggregate val-
ues. However, such aggregate values cannot capture the
performance distribution information, and the skyline com-

15



N
um

be
r 

of
 a

ss
is

ts

Number of reboundsO

Arbor
Bob
Carl
Dell
Eddy

b

a

Figure 1: A set of synthesis players.

puted using such aggregate values may not be meaningful.
First, performances in different games may vary differ-

ently. For example, in Figure 1, player Arbor’s performances
are quite consistent while Eddy’s performances are quite di-
verse. Although Eddy’s performance in one game (point b in
the figure) is better than Arbor’s performances in all games
in both the number of assists and the number of rebounds,
Arbor is generally better than Eddy in the number of assists
if all games they played are considered.

Second, some outliers may bias the aggregate of a player.
For example, Bob is good in general, but he has an outlier
game (point a) of poor performance in both measures.

In order to handle the uncertain data, a näıve approach
is to compute the skyline on the game records instead of
the players. However, the game records can be regarded as
the samples of the players’ performances and the samples
cannot be complete. A skyline game record may be just an
exception of a player (e.g., point b of Eddy in Figure 1).
Thus, the skyline of game records may not be meaningful
for comparing players.

There can be a large number of players over years and
each player may play many games in his career. Therefore,
the efficiency of skyline analysis on uncertain data matters.

There are many other application examples for skyline
analysis on uncertain data. For example, to evaluate the ef-
fect of therapies in medical practice, test cases are collected,
and a few measures are used. Generally, the measures may
vary, sometimes even substantially, among the test cases of
one therapy. Uncertainty is inherent due to the incomplete-
ness of the samples and many other factors (e.g., the phys-
ical conditions of patients). Finding the skyline therapies
on the uncertain data helps to identify good therapies and
understand the tradeoff among multiple factors in question.

In summary, uncertain data pose a few new challenges for
skyline analysis and computation. Specifically, we need a
meaningful yet simple model for skylines on uncertain data.
Moreover, we need to develop efficient algorithms for such
skyline computation.

1.2 Challenges and Our Contributions
In this paper, we address two major challenges about sky-

line analysis and computation on uncertain data.

Challenge 1: Modeling Skylines on Uncertain Data

In a set of uncertain objects, each object has multiple
instances, or alternatively, each object is associated with a
probability density function. A model about skylines on
uncertain data needs to answer two questions: How can we
capture the dominance relation between uncertain objects?
and What should be the skyline on those uncertain objects?

Our contributions. We introduce the probabilistic na-
ture of uncertain objects into the skyline analysis. Essen-

tially, to compare the advantages between two objects, we
calculate the probability that one object dominates the other.
Based on the probabilistic dominance relation, we propose
the notion of probabilistic skyline. The probability of an ob-
ject being in the skyline is the probability that the object is
not dominated by any other objects.

Given a probability threshold p (0 ≤ p ≤ 1), the p-skyline
is the set of uncertain objects each of which takes a proba-
bility of at least p to be in the skyline.

Comparing to the traditional skyline analysis, probabilis-
tic skyline analysis is more informative on uncertain objects.
For example, in a case study (details in Section 6) using the
game-by-game technical statistics of 1, 313 NBA players in
339, 721 games, the 0.2-skyline includes 14 players. Among
them, Hakeem Olajuwon and Kobe Bryant are not in the
traditional skyline where only the aggregate statistics are
used. The reason is that their performances vary a lot over
games. On the other hand, some players that are in the tra-
ditional skyline have a low skyline probability such as Gary
Payton (0.126) and Lamar Odom (0.102). This information
cannot be obtained using the traditional skyline analysis.

To the best of our knowledge, this paper is the first study
conducting the skyline analysis using the detailed instances
of uncertain objects.

Challenge 2: Efficient Computation of Probabilistic

Skylines

Computing a probabilistic skyline is much more compli-
cated than computing a skyline on certain data. Partic-
ularly, in many applications, the probability density func-
tion of an uncertain object is often unavailable explicitly.
Instead, a set of instances are collected in the hope of ap-
proximating the probability density function. Thus, it is
challenging to compute probabilistic skylines on uncertain
objects each of which is represented by a set of instances.

In this paper, we focus on the discrete case of probabilis-
tic skylines computation, i.e., each uncertain object is rep-
resented by a set of instances, while some of our ideas can
be applied to the continuous case as well.

First, each uncertain object may have many instances.
We have to process a large number of instances. Second, we
have to consider many probabilities in deriving the proba-
bilistic skylines. For example, as reported in Section 6, a
straightforward method takes more than 1 hour to compute
the 0.3-skyline on the NBA data set. Can we devise efficient
methods to compute probabilistic skylines efficiently?

Our contributions. We develop two algorithms to tackle
the problem. The bottom-up algorithm computes the sky-
line probabilities of some selected instances of uncertain ob-
jects, and uses those instances to prune other instances and
uncertain objects effectively. The top-down algorithm re-
cursively partitions the instances of uncertain objects into
subsets, and prunes subsets and objects aggressively. Our
methods are efficient and scalable. As verified by our ex-
tensive experimental results, our methods are tens of times
faster than the straightforward method.

The rest of the paper is organized as follows. In Section 2,
we propose the notion of probabilistic skylines on uncertain
data. In Sections 3 and 4, we develop the bottom-up and
the top-down methods for probabilistic skyline computation,
respectively. We review the related work in Section 5. A
systematic performance study is reported in Section 6. We
conclude the paper in Section 7.
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Notation Definition

D data space, D = (D1, . . . , Dn)
U, V uncertain objects
u, v instances of uncertain objects
|U | the number of instances of U

u ≺ v instance u dominates instance v

Pr[U ≺ V ] the probability that U dominates V

Pr(U) (Pr(u)) the skyline probability of U (u)
Pr+(·) (Pr−(·)) the upper (lower) bound of Pr(U) or Pr(u)
Umin (Umax) the minimum (maximum) corner of the mini-

mum bounding box of U

u.key the key of an instance, u.key =
Pn

i=1
u.Di

N a node in a partition tree
N.MBB the MBB of a node in a partition tree

Nmin (Nmax) the minimum (maximum) corner of N.MBB

Table 1: The summary of notations.

2. PROBABILISTIC SKYLINES
In this section, we present the probabilistic skyline mode.

For reference, a summary of notations is given in Table 1.

2.1 Skylines on Certain Objects
By default, we consider points in an n-dimensional nu-

meric space D = (D1, . . . , Dn). The dominance relation is
built on the preferences on attributes D1, . . . , Dn. Without
loss of generality, we assume that, on D1, . . . , Dn, smaller
values are more preferable.

For two points u and v, u is said to dominate v, denoted by
u ≺ v, if for every dimension Di (1 ≤ i ≤ n), u.Di ≤ v.Di,
and there exists a dimension Di0 (1 ≤ i0 ≤ n) such that
u.Di0 < v.Di0 .

Given a set of points S, a point u is a skyline point if there
exists no another point v ∈ S such that v dominates u. The
skyline on S is the set of all skyline points.

Example 1 (Dominance and skyline). Consider the
points in Figure 2. According to the definition of dominance,
point c dominates d and e, c dominates b. Points a, c and
f are not dominated by any other points in the set. Thus,
these 3 points form the skyline of this data set.

2.2 Probabilistic Skylines
An uncertain object is conceptually described by a proba-

bility density function (PDF) f in the data space D. Gen-
erally, f(u) ≥ 0 for any point u in the data space D, andR

u∈D
f(u)du = 1.

Practically, the probability density function of an uncer-
tain object is often unavailable explicitly. Instead, a set of
samples are drawn or collected in the hope of approximating
the probability density function. Correspondingly, we model
an uncertain object U as a set of multiple points in the data
space as its instances, denoted by U = {u1, . . . , ul}. It can
be regarded as the discrete case. The number of instances
of an uncertain object U is written as |U | = l.

To keep our model simple, we assume that uncertain ob-
jects are independent. That is, an instance of an object does
not depend on the instances of any other objects. More-
over, we assume that, for an uncertain object, each instance
carries the same probability to happen. Although the rest of
this paper bears the above two assumptions, our model can
be extended to cases where dependencies (e.g., correlations
or anti-correlations) exist among objects and instances carry
different weights. Limited by space, we omit the details.

Now let us extend the dominance relation to uncertain
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objects, and check whether such an extension can straight-
forwardly define skylines on uncertain objects.

Let U and V be two uncertain objects, and f and f ′

be the corresponding probability density functions, respec-
tively. Then, the probability that V dominates U is

Pr[V ≺ U ] =
R

u∈D
f(u)(

R
v≺u

f ′(v) dv) du

=
R

u∈D

R
v≺u

f(u)f ′(v) dv du
(1)

In the discrete case, let U = {u1, . . . , ul1} and V = {v1, . . .,
vl2} be two uncertain objects and their instances. The prob-
ability that V dominates U is given by

Pr[V ≺ U ] =
Pl1

i=1

1

l1
·
|{vj∈V |vj≺ui}|

l2

= 1

l1l2

Pl1
i=1

|{vj ∈ V | vj ≺ ui}|
(2)

Since any two points u and v in the data space must have
one of the following three relations: u ≺ v, v ≺ u, or u and
v do not dominate each other, for two uncertain objects U
and V , Pr[U ≺ V ] + Pr[V ≺ U ] ≤ 1.

Example 2 (Probabilistic dominance relation).
Consider the set of 4 uncertain objects in Figure 3. Ob-
ject C has 3 instances: c1 and c2 are dominated by every
instance of A, and c3 is not dominated by any instance of A.
Thus, the probability that A dominates C is Pr[A ≺ C] = 2

3
.

Similarly, we can calculate Pr[B ≺ C] = 2

3
.

To calculate Pr[A ≺ D], we notice that a1 ≺ d1, a2 ≺ d2,
and a2 ≺ d3. According to Equation (2), we have Pr[A ≺
D] = 1

4×3
× 3 = 1

4
.

Consider the three instances of C. Since c1 is dominated
by every instance of object A, c2 is dominated by every
instance of A and B, and c3 is dominated by every instance
of B, the probability that C is dominated by A or B is 1.
In other words, C cannot be in the skyline.

An important observation here is that, although Pr[A ≺
C] = 2

3
< 1 and Pr[B ≺ C] = 2

3
< 1, the probability of C

being dominated by A or B is 1. Moreover,

Pr[(A 6≺C) ∧ (B 6≺C)] 6=(1−Pr[A ≺ C])·(1−Pr[B ≺ C]).

The observation in Example 2 indicates that the proba-
bilistic dominance relation cannot be used straightforwardly
to define skylines on uncertain objects. Then, what is the
probability that an uncertain object is in the skyline?

Example 3 (Probabilistic skyline). Consider the
objects in Figure 3 again. For object A, every instance of
the object is not dominated by any instances of objects B,
C or D. Thus, the probability that A is dominated by any
object is 0, and the probability that A is in the skyline is 1.
Similarly, the probability that B is in the skyline is also 1.

For object D, instance d1 is dominated by a1, d2 is dom-
inated by a2, b1 and b2, and d3 is dominated by a2. Thus,
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the probability that D is not dominated by any other object
can be calculated as

1

3
× ( D has three instances

(1 − 1

4
) + case of d1

(1 − 1

4
) × (1 − 2

3
) + case of d2

(1 − 1

4
) ) case of d3

= 7

12

Thus, D takes a probability of 7

12
to be in the skyline.

Generally, consider an uncertain object U with proba-
bility density function f . The probability that U appears
at position u in data space D is given by f(u). For any
other object V 6= U with probability density function f ′,
the probability that V dominates u is

R
v≺u

f ′(v)dv. Thus,
the probability that u is not dominated by any other object
is

Q
V 6=U

(1−
R

v≺u
f ′(v)dv). The probability that U is in the

skyline is

Pr(U) =

Z

u∈D

f(u)
Y

V 6=U

(1 −

Z

v≺u

f
′(v)dv)du (3)

Pr(U) is called the skyline probability of U .
In the discrete case, let U = {u1, . . . , ul} be an uncertain

object and its instances. Equation (3) can be written as

Pr(U)=
1

l

lX

i=1

Y

V 6=U

(1 −
|{v ∈ V | v ≺ ui}|

|V |
) (4)

Moreover, for an instance u ∈ U ,

Pr(u) =
Y

V 6=U

(1 −
|{v ∈ V | v ≺ u}|

|V |
) (5)

Pr(u) is the probability that u is not dominated by any
other objects, i.e., u is in the skyline. It is called the skyline
probability of instance u. Equation (4) can be written as

Pr(U) =
1

l

X

u∈U

Pr(u) (6)

Intuitively, let U1, . . . , Um be the set of uncertain objects
in question, where each object Ui (1 ≤ i ≤ m) takes the
probability of 1

|Ui|
to appear as one of its instances. Then,

the number of possible worlds of the data set is
Qm

i=1
|Ui|.

For an instance ui,j ∈ Ui, the probability of ui,j being in
the skyline is the ratio of the number of worlds where ui,j

is in the skyline against all the possible worlds. Moreover,
the probability that Ui is in the skyline is the expectation
of the probability that an instance of Ui is in the skyline.

An uncertain object may take a probability to be in the
skyline. It is natural to extend the notion of skyline to
probabilistic skyline. For a set of uncertain objects S and
a probability threshold p (0 ≤ p ≤ 1), the p-skyline is the
subset of objects in S each of which takes a probability of
at least p to be in the skyline. That is,

Sky(p) = {U ∈ S|Pr(U) ≥ p}.

Problem definition. Given a set of uncertain objects S
and a probability threshold p (0 ≤ p ≤ 1), the problem of
probabilistic skyline computation is to compute the p-skyline
on S.

Particularly, in this paper we tackle the discrete case.
That is, given a set of uncertain objects where each object
is a set of sample instances and a probability threshold p,
compute the p-skyline.

Although we will focus on the discrete case in this paper,
some of our ideas can be applied to handle the general case,
which will be discussed briefly in Section 7.

3. THE BOTTOM-UP METHOD
We develop two methods of computing the p-skyline over

a set of uncertain objects. They both follow the bounding-
pruning-refining iteration.

Bounding: For an instance of an uncertain object, we
compute an upper bound and a lower bound on its skyline
probability. Then, using Equation (6) we obtain an upper
bound and a lower bound on the skyline probability of an
uncertain object.

Pruning: For an uncertain object U , if the lower bound
of Pr(U) is larger than p, the probability threshold, then U
is in the p-skyline. If the upper bound of Pr(U) is smaller
than p, then U is not in the p-skyline.

Refining: If p is between the lower bound and the upper
bound, then we need to get tighter bounds of the skyline
probabilities by the next iteration of bounding, pruning and
refining.

The above iteration goes on until for every uncertain ob-
ject we can determine whether it is in the p-skyline or not.
The two methods we propose differ in how to compute and
refine the bounds and how to prune uncertain objects.

Particularly, in the bottom-up method presented in this
section, we compute and refine the bounds of instances of
uncertain objects by selectively computing the skyline prob-
abilities of a small subset of instances. An uncertain ob-
ject may be pruned using the skyline probabilities of its in-
stances, or those of some other objects. This method is
called bottom-up since the bound computation and refine-
ment start from instances (bottom) and go up to skyline
probabilities of objects.

3.1 Bounding Skyline Probabilities
Given an uncertain object U and an instance u of U , triv-

ially, we have 0 ≤ Pr(U) ≤ 1 and 0 ≤ Pr(u) ≤ 1.

Let Umin = (min
|U|
i=1{ui.D1}, . . . , min

|U|
i=1{ui.Dn}) and Umax

= (max
|U|
i=1{ui.D1}, . . . , max

|U|
i=1{ui.Dn}) be the minimum

and the maximum corners of the minimum bounding box
(MBB for short) of U , respectively. Note that, Umin and
Umax are not necessary two actual instances of U . In this
case, we treat them as virtual instances and define their sky-
line probabilities following equation (5). That is, Pr(Umin) =Q

V 6=U
(1 − |{v∈V | v≺Umin}|

|V |
), and Pr(Umax) =

Q
V 6=U

(1 −
|{v∈V | v≺Umax}|

|V |
).

Lemma 1 (Bounding skyline probabilities). Let
U = {u1, . . . , ul} be an uncertain object where u1, . . . , ul

are the instances of U .
(1) If ui1 ≺ ui2 (0 ≤ i1, i2 ≤ l), then Pr(ui1) ≥ Pr(ui2).

(2) Pr(Umin) ≥ Pr(U) ≥ Pr(Umax)

Proof sketch. Dominance relations on instances are tran-
sitive: for instances x, y, and z, if x ≺ y and y ≺ z, then
x ≺ z. Since ui1 ≺ ui2 , for any instance v of other object
V , if v ≺ ui1 then v ≺ ui2 . Applying this observation to
Equation (5), we have

Pr(ui1) =
Q

V 6=U
(1 −

|{v∈V | v≺ui1
}|

|V |
)

≥
Q

V 6=U
(1 −

|{v∈V | v≺ui2
}|

|V |
)

= Pr(ui2)
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According to item 1 in this lemma, for any ui (1 ≤ i ≤ l),
Pr(Umin) ≥ Pr(ui) ≥ Pr(Umax). Item 2 in the lemma
follows with the above inequality and Equation (6).

Lemma 1 provides a means to compute the upper bounds
and the lower bounds of instances and uncertain objects
using the skyline probabilities of other instances.

According to the first inequality in the lemma, the skyline
probability of an instance can be bounded by those of other
instances dominating or dominated by it. In other words,
when the skyline probability of an instance is calculated, the
bounds of the skyline probabilities of some other instances
of the same object may be refined accordingly.

The second inequality in the lemma indicates that the
minimum and the maximum corners of the MBB can play
important roles in bounding the skyline probability of a set
of instances.

3.2 Pruning Techniques
If the skyline probability of an uncertain object or an in-

stance of an uncertain object is computed, can we use this
information to prune the other uncertain instances or ob-
jects? Following with Lemma 1, we immediately have the
following rule to determine the p-skyline membership of an
uncertain object using its minimum or maximum corners.

Pruning Rule 1. For an uncertain object U and prob-
ability threshold p, if Pr(Umin) < p, then U is not in the
p-skyline. If Pr(Umax) ≥ p, then U is in the p-skyline.

Moreover, we can prune an uncertain object using the up-
per bounds and the lower bounds of the skyline probabilities
of instances.

Pruning Rule 2. Let U be an uncertain object. For each
instance u ∈ U , let Pr+(u) and Pr−(u) be the upper bound
and the lower bound of Pr(u), respectively. If
1

|U|

P
u∈U

Pr+(u) < p, then U is not in the p-skyline. If
1

|U|

P
u∈U

Pr−(u) ≥ p, then U is in the p-skyline.

We can also use the information about one uncertain ob-
ject to prune other uncertain instances or objects. First,
if an instance u of an uncertain object U is dominated by
the maximum corner of another uncertain object V , then u
cannot be in the skyline.

Pruning Rule 3. Let U and V be uncertain objects such
that U 6= V . If u is an instance of U and Vmax ≺ u, then
Pr(u) = 0.

By pruning some instances in an uncertain object using
the above rule, we can reduce the cost of computing the
skyline probability of the object.

When the skyline probabilities of some instances of an
uncertain object are computed, we can use the information
to prune some other uncertain objects.

Pruning Rule 4. Let U and V be two uncertain objects
and U ′ ⊆ U be a subset of instances of U such that U ′

max ¹

Vmin. If |U−U′|
|U|

·minu∈U′{Pr(u)} < p, then Pr(V ) < p and

thus V is not in the p-skyline.
Proof. Figure 4 illustrates the situation. Since Vmin is
dominated by all instances in U ′. An instance of V can be
in the skyline only if U does not appear as any instance in
U ′. Even no instance in (U − U ′) dominates any instance

U

V

U'max

Vmin

U'

Figure 4: An illustra-

tion of Pruning Rule 4.

layer-1
layer-2

layer-3
layer-4

layer-5

Figure 5: The layers of

an uncertain object.

of V , since U ′
max ¹ Vmin and |U−U′|

|U|
·minu∈U′{Pr(u)} < p,

the probability that V is in the skyline still cannot reach the
probability threshold p. Thus V cannot be in the p-skyline.

Formally, since every instance of V is dominated by all
instances in U ′, only when U takes an instance in (U −U ′),
V may have a chance of not being dominated by U . The
probability that an instance of V is not dominated by an

instance of U cannot be more than (1 − |U′|
|U|

) = |U−U′|
|U|

.

Moreover, since U ′
max ¹ Vmin, all instances of objects other

than U and V dominating U ′
max also dominate Vmin.

Thus, Pr(V ) ≤ Pr(Vmin) ≤ (1 − |U′|
|U|

) · Pr(U ′
max) =

|U−U′|
U

· Pr(U ′
max) ≤ |U−U′|

U
· minu∈U′{Pr(u)} < p.

As a special case, if there exists an instance u ∈ U such
that Pr(u) < p and u ¹ Vmin, then Pr(V ) < p and V can
be pruned.

The pruning rule is powerful since even an uncertain ob-
ject partially computed can be used to prune other objects.

3.3 Refinement Strategies
For an uncertain object U , we want to determine whether

U is in the p-skyline by computing the skyline probabilities
of as few instances of U as possible. Finding an optimal sub-
set of instances to compute is a very difficult online problem
since, without computing the probabilities of the instances,
we do not know their distribution. Here, we propose a layer-
by-layer heuristic method.

3.3.1 Layers of Instances
According to the first inequality in Lemma 1, among all

instances of an object U , we can first compute the sky-
line probabilities of the instances that are not dominated
by any other instances, i.e., the skyline instances in the ob-
ject. Those instances are the layer-1 instances, as illustrated
in Figure 5. The skyline probabilities of the instances at
layer-1 can serve as the upper bounds of the skyline proba-
bilities of other instances, and generate an upper bound of
the skyline probability of U .

If the upper bounds using the layer-1 instances are not
enough to qualify or disqualify U in the p-skyline, we need
to refine the upper bounds. We can compute the skyline
probabilities for instances at layer-2 which are dominated
only by instances at layer-1, as shown in Figure 5. Similarly,
we can partition the instances of an object into layers.

Formally, for an uncertain object U , an instance u ∈ U is
at layer-1 if u is not dominated by any other instance in U .
An instance v is at layer-k (k > 1) if, v is not at the 1st, . . . ,
(k − 1)-th layers, and v is not dominated by any instances
except for those at the 1st, . . . , (k − 1)-th layers.

The advantage of partitioning instances of an object into
layers is that, once the skyline probabilities of all instances
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at one layer are calculated, the probabilities can be used as
the upper bounds of the instances at the higher layers.

Lemma 2. In an uncertain object U , let u1,1, . . . , u1,l1 be
the instances at layer-k1, and u2,1, . . . , u2,l2 be the instances
at layer-k2, k1 < k2. Then, for any instance at layer-k2

u2,j2 (1 ≤ j2 ≤ l2), there exists an instance at layer-k1 u1,j1

(1 ≤ j1 ≤ l1) such that Pr(u1,j1) ≥ Pr(u2,j2). Moreover,

maxl1
i=1{Pr[u1,i]} ≥ maxl2

j=1{Pr(u2,j)}.
Proof sketch. Since k1 < k2, instance u2,j2 must be dom-
inated by an instance at layer-k1. Otherwise, u2,j2 is at
layer-k1 or some lower layer. Let u1,j1 be an instance at
layer-k1 that dominates u2,j2 . Then, the first inequality fol-
lows with Lemma 1. The second inequality follows with the
first inequality.

3.3.2 Partitioning Instances to Layers
How can instances of an object be assigned quickly into

layers?
For each instance u, we define the key of the instance

as the sum of its values on all attributes, that is, u.key =Pn

i=1
u.Di. Then, we sort all the instances in the key as-

cending order. This is motivated by the SFS algorithm [10].
The sorted list of instances has a nice property: for instances
u and v such that u ≺ v, u precedes v in the sorted list.

We scan the sorted list once. The first instance has the
minimum key value, and is assigned to layer-1. We compare
the second instance with the first one. If the second one
is dominated, then it is assigned to layer-2; otherwise it is
assigned to layer-1.

Generally, when we process an instance u, suppose at the
time there already exist h layers. We compare u with the
instances currently at layer-⌈h

2
⌉. One of the two cases may

happen. If u is dominated by an instance at that layer, then
u must be at some layer higher than ⌈h

2
⌉. Otherwise, u is

neither dominated by, nor dominates, any instance at that
layer. Then, u must be at that layer or some lower layer.
We conduct this binary search recursively until u is assigned
to a layer.

Lemma 1 indicates that the minimum corner of the MBB
of an uncertain object leads to the upper bounds of the
skyline probabilities of all instances as well as the object
itself. As a special case, we assign this minimum corner as
a virtual instance at layer-0.

The above partitioning method has a nice property: all
instances at a layer are sorted in the key ascending order.

3.3.3 Scheduling Objects
From which objects should we start the skyline probability

computation?
In order to use the pruning rules discussed in Section 3.2

as much as possible, those instances in uncertain objects
that likely dominate many other objects or instances should
be computed early. Heuristically, those instances which are
close to the origin may have a better chance to dominate
other objects and instances.

The instances of an uncertain object are processed layer
by layer. Within each layer, the instances are processed in
the key ascending order. As discussed in Section 3.2, some
pruning rules enable us to use the partial information of
some uncertain objects to prune other objects and instances,
we interleave the processing of different objects.

Technically, all instances of an uncertain object are kept
in a list. The minimum corner of its MBB is treated as a
special instance and put at the head of the list. The heads of

Input: a set of uncertain objects S; probability threshold p;
Output: the p-skyline in S;
Method:
1: SKY = ∅;
2: FOR EACH object U ∈ S DO

3: Pr+(U) = 1; Pr−(U) = 0;
4: compute Umin, the minimum corner of its MBB;

END FOR EACH

5: build an R-tree to store Umin for all U ∈ S;
6: build a heap H on Umin for all U ∈ S;
7: WHILE H 6= ∅ DO

8: let u ∈ U be the top instance in H;
9: IF u is from a non-skyline object THEN NEXT;
10: IF u is dominated by another object THEN

11: GOTO Line 20; // Pruning Rule 3
12: IF u is the minimum corner of U THEN

13: find possible dominating objects of U ; // Section 3.4.1
14: compute Pr(u); // Section 3.4.2
15: IF Pr(u) ≥ p THEN

16: partition instances of U to layers; // Section 3.3.2
17: ELSE U is pruned; // Pruning Rule 1

ELSE

18: compute Pr(u); // Section 3.4.2
19: Pr−(U) = Pr−(U) + 1

|U|
Pr(u);

20: IF u is the last instance at a layer THEN

21: update U.Prmax;

22: Pr+(U) = Pr−(U) + U.Prmax · |eU|
|U|

;

23: IF
|U−U′|

|U|
· minu∈U′{Pr(u)} < p THEN

24: apply Pruning Rule 4 to prune other objects;
25: IF Pr−(U) ≥ p THEN

26: SKY = SKY ∪ {U}; NEXT; // Pruning Rule 2
27: IF Pr+(U) ≥ p THEN

28: insert the next instance of U into H;
END WHILE

29: RETURN SKY ;

Figure 6: The bottom-up algorithm.

lists of all uncertain objects are organized into a heap. We
iteratively process the top instance in the heap. If an object
cannot be pruned after its minimum corner is processed, we
organize the rest of instances in its list in the layer and key
value ascending order. Once an instance from an object is
processed, the object sends the next instance into the heap
if its skyline membership is not determined. The proper
pruning rules are triggered if the conditions are satisfied.

3.4 Algorithm and Implementation
The bottom-up algorithm is shown in Figure 6. We ex-

plain some critical implementation details here.

3.4.1 Finding Possible Dominating Objects
For an object U , we want to find all other objects that

may contain some instances dominating U . Those objects
are called the possible dominating objects of U . The skyline
membership of U depends on only those possible dominating
objects. All other objects that do not contain any instances
dominating U do not need to be considered.

To speed up the search of possible dominating objects, we
organize the minimum corners of MBBs of all objects into
a global R-tree. To find the possible dominating objects
of U , we issue a window query with the origin and Umax

as the opposite corners on the global R-tree. The possible
dominating objects for an object are computed only when
the minimum corner of the object is popped from the heap.

If an object U does not have any possible dominating ob-
jects, then every instance of U is not dominated by any
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instance of other objects. In other words, the skyline prob-
ability of U is 1.

3.4.2 Computing Skyline Probability
To compute the skyline probability Pr(u) for an instance

u ∈ U , we compare u with the possible dominating objects
of U one by one. To facilitate the comparison, we incremen-
tally maintain a local R-tree TV for each object V . TV is
set to empty in the initialization. When an instance u ∈ U
is compared with object V , we insert into TV the instances
in V that have a key value less than u.key, since only those
instances in V may dominate u. Then, we issue a window
query with the origin and u as the opposite corners to com-
pute |{v ∈ V |v ≺ u}|.

After comparing u with all possible dominating objects of
U , by Equation (6), we can calculate Pr(u). We also update
the lower bound of the probability of object U immediately
as Pr−(U) = Pr−(U) + 1

|U|
Pr(u).

Once all instances in a layer are processed, as discussed
in Lemma 2, we set the maximum probability of instances
in this layer to be the upper bound (denoted by U.Prmax)
of the probabilities of instances in the higher layers. More-
over, the upper bound of the probability of U is updated as

Pr+(U) = Pr−(U) + U.Prmax · |eU|
|U|

, where eU ⊆ U is the set

of instances whose probabilities are not calculated yet.

3.4.3 Using Pruning Rule 4
In order to use Pruning Rule 4 to prune other objects,

for each object U , we maintain U ′ as the set of instances
which precede the current processing instance in its instance
list. The skyline probability of those instances are already
computed. Once U ′ satisfies the condition in the rule, we
compute U ′

max, the maximum corner of the MBB of U ′,
and issue a window query on the global R-tree described
in Section 3.4.1 with U ′

max and the maximum corner of the
MBB of all objects in the data set as the opposite corners.
For each minimum corner returned from this query, the cor-
responding uncertain object satisfies the pruning rule and
thus is not in the p-skyline. We note that for each object,
this rule is applied at most once. This is because once this
condition is satisfied, it will be always satisfied afterwards.
But there is no more object can be pruned except for those
pruned at the first time.

3.4.4 Complexity of the Algorithm
It can be immediately verified that the cost of the bottom-

up algorithm is predominated by computing the skyline prob-
abilities of instances as presented in Section 3.4.2. Suppose
that R is the average cost of querying the local R-trees of
possible dominating objects, with all pruning techniques are
applied, for computing the skyline probabilities of instances.
Let Wtotal denote the number of instances whose skyline
probabilities are computed in the algorithm. Then, the av-
erage cost of the algorithm is O(Wtotal · R).

As shown in our experimental results, in practice many in-
stances and objects can be pruned sharply. The bottom-up
algorithm only has to compute a small portion of instances.
That is, Wtotal is much smaller than the total number of in-
stances. Thus, the bottom-up algorithm has good scalability
on large data sets.

4. THE TOP-DOWN METHOD
In this section, we present a top-down method for prob-

abilistic skyline computation. The method starts with the

whole set of instances of an uncertain object. The skyline
probability of the object can be bounded using the maxi-
mum and the minimum corners of the MBB of the object.
To improve the bounds, we can recursively partition the in-
stances into subsets. The skyline probability of each subset
can be bounded using its MBB in the same way. Facilitated
by Equation (6), the skyline probability of the uncertain ob-
ject can be bounded as the weighted mean of the bounds of
subsets. Once the p-skyline membership of the uncertain
object is determined, the recursive bounding process stops.

4.1 Partition Trees
To facilitate the partitioning process, we use a partition

tree data structure for each uncertain object. A partition
tree is binary. Each leaf node contains a set of instances
and the corresponding MBB. Each internal node maintains
the MBB of all instances in its descendants and the total
number of instances.

The construction of a partition tree for an uncertain ob-
ject is somewhat similar to that of kd-trees [2]. We start
with a tree of only one node – the root node which contains
all instances of the object and the MBB. The tree grows in
rounds. In each round, a leaf node with l instances (l > 1)
is partitioned into two children nodes according to one at-
tribute such that the left child and the right child contain
⌈ l

2
⌉ and ⌊ l

2
⌋ instances, respectively.

We take a simple round robin method to choose the at-
tributes to grow a partition tree. The attributes are sorted
into D1, . . . , Dn in an arbitrary order. The root node (level-
0) is partitioned into two children on attribute D1, those
children (level-1) are split into grand-children on attribute
D2, and so on. To split the nodes at level-n, attribute D1 is
used again.

The time complexity to grow one level of the tree for an
uncertain object U is O(|U |). The cost to fully grow a par-
tition tree (i.e., each leaf node contains only one instance)
is O(|U | log2 |U |) since the tree has at most log2 |U | levels.

4.2 Bounding Using Partition Trees
For a node N in a partition tree, we also use N to denote

the set of instances allocated to N . Let N.MBB be the
MBB of the instances allocated to N , and Nmax and Nmin

be the maximum and the minimum corners, respectively.
Then, by Lemma 1, for any instance u ∈ N , the skyline
probability of u can be bounded by

Pr(Nmax) ≤ Pr(u) ≤ Pr(Nmin). (7)

Moreover, if the partition tree of uncertain object U has l
leaf nodes N1, . . . , Nl, then

1

|U |

lX

i=1

|Ni|·Pr(Ni,max) ≤ Pr(U) ≤
1

|U |

lX

i=1

|Ni|·Pr(Ni,min),

(8)
where Ni,max and Ni,min are the maximum and the mini-
mum corners of Ni.MBB, respectively, and |Ni| is the num-
ber of instances in Ni.

Computing the exact skyline probabilities for all corners
can be costly. Instead, we estimate the bounds. To bound
the skyline probabilities for Nmin and Nmax for a node N in
the partition tree of uncertain object U , we query the pos-
sible dominating objects of U (Section 3.4.1). We traverse
the partition tree of each possible dominating object V of U
in the depth-first manner. When a node M in the partition
tree of V is met, one of the following three cases happens.
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Figure 7: Three cases of bounding Pr(N).

First, if Mmax dominates Nmin (as shown in Figure 7(a)),
then Nmin and Nmax are dominated by all instances in M .

Second, if Mmin does not dominate Nmax (as shown in
Figure 7(b)), then all instances in M cannot dominate either
Nmin or Nmax.

Last, if the above two situations do not happen, then some
instances in M may dominate some instances in N (as shown
in Figure 7(c)). If M is an internal node, we traverse the
left and the right children of M recursively. Otherwise, M is
a leaf node. Then, we estimate a lower bound of Pr(Nmax)
by assuming all instances in M dominate Nmax, and an
upper bound of Pr(Nmin) by assuming no instance in M
dominates Nmin.

By traversing all partition trees of the possible dominating
objects, we apply Equation (5) to compute the upper bound
for Pr(Nmin) and the lower bound for Pr(Nmax). With the
two bounds and Inequality (8), we can immediately bound
the skyline probability of object U . We use only the max-
imum and the minimum corners of the MBBs, and never
compute the skyline probability of any one in a subset of
instances.

4.3 Pruning and Refinement Using Partition
Trees

When one level is grown for the partition trees of all uncer-
tain objects whose skyline memberships are not determined,
the possible dominating objects of them are also partitioned
to the same level. For all new leaf nodes grown in this round,
we bound their probabilities by traversing the partition trees
of the corresponding possible dominating objects. We note
that the computation of such bounding for the leaf nodes
which have the same MBB can be shared.

After that, we check whether some uncertain objects or
some leaf nodes in some partition trees may be pruned. That
is, their skyline probabilities do not need to be computed any
more. Pruning those nodes can make the skyline computa-
tion faster.

Consider a node N in the partition tree of uncertain object
U . If there exists another uncertain object V 6= U such
that Nmin is dominated by Vmax, then any instance in N
cannot be in the skyline. In other words, Pr(u) = 0 for
any u ∈ N . We do not need to compute any subset of N
anymore since the instances there cannot contribute to the
skyline probability of U .

Pruning Rule 5. Let N be a node in the partition tree
of uncertain object U . If there exists an object V 6= U such
that Vmax ¹ Nmin, then node N can be pruned.

Moreover, if Pr(Nmin) = Pr(Nmax), according to In-
equality (7), the skyline probability of any instance in N
is determined. N can be pruned.

Input: a set of uncertain objects S; probability threshold p;
Output: the p-skyline in S;
Method:
1: SKY = ∅;
2: FOR EACH object U ∈ S DO

3: initialize a partition tree TU with only the root node;
END FOR EACH

4: let L be the set of all partition trees; i = 0;
5: WHILE L 6= ∅ DO

6: FOR EACH partition tree TU ∈ L DO

7: FOR EACH leaf node N of level-i in TU DO

8: bound Pr(Nmin) and Pr(Nmax); // Section 4.2
9: bound Pr(U); // Inequality (8)
10: IF Pr(U) ≥ p THEN

11: SKY = SKY ∪ {U}; L = L − {TU}; NEXT;
12: ELSE IF Pr(U) < p THEN

13: L = L − {TU}; NEXT; // Pruning Rule 7
ELSE

14: apply Pruning Rules 5 and 6 to N if applicable;
15: partition N to level-(i + 1) if it cannot be pruned;

END FOR EACH

END FOR EACH

16: i = i + 1;
END WHILE

17: RETURN SKY ;

Figure 8: The top-down algorithm.

Pruning Rule 6. Let N be a node in the partition tree
of uncertain object U . If Pr(Nmin) = Pr(Nmax), then for
each u ∈ N , Pr(u) = Pr(Nmin) = Pr(Nmax) and node N
can be pruned.

Last, once the skyline probability of an uncertain object
can be bounded at least p or less than p, then whether the
object is in the p-skyline is determined. We do not need to
compute the probability of this object anymore.

Pruning Rule 7. Let p be the probability threshold. If
the partition tree of an uncertain object U has l leaf nodes
N1, . . . , Nl, and Ni,max and Ni,min are the maximum and
the minimum corners of Ni.MBB, respectively, and
1

|U|

Pl

i=1
|Ni| · Pr(Ni,max) ≥ p, then U is in the p-skyline.

On the other hand, if 1

|U|

Pl

i=1
|Ni| · Pr(Ni,min) < p, then

U is not in the p-skyline. In both cases, the partition tree of
U can be pruned.

After the pruning step using the above rules, only the
partition trees of those uncertain objects which cannot be
determined in the p-skyline or not are left. In such trees,
only those nodes whose skyline probabilities are not deter-
mined survive.

As the refinement steps, we partition those surviving leaf
nodes and their possible dominating objects to one more
level. With the refinement, the bounds of skyline probabili-
ties are tighter.

4.4 Algorithm and Cost Analysis
The top-down algorithm is shown in Figure 8. In the

implementation, we also use an R-tree to index the minimum
corners of the MBBs of all objects so that the search of
possible dominating objects can be conducted efficiently.

Let P be the average cost of querying partition trees of
possible dominating objects for bounding the skyline prob-
abilities of the minimum and maximum corners of MBBs,
and Mtotal be the number of tree nodes whose skyline prob-
abilities are bounded in the algorithm. Then, the average
cost of the algorithm is O(Mtotal · P ).
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As shown in our experimental results, many nodes can be
pruned sharply by the pruning rules. The top-down algo-
rithm only has to grow a small number of tree nodes (i.e.,
Mtotal is small), and has good scalability with respect to
cardinality of the data sets.

5. RELATED WORK
To the best of our knowledge, this is the first study about

skyline analysis on uncertain data. Our study is related to
the previous work on querying uncertain data and skyline
computation.

Modeling and querying uncertain data have attracted con-
siderable attention from database research community
(see [25, 12] and the references therein). Recently, a lot of
work has been engaged to management and query process-
ing of uncertain data in sensor databases [9] and especially
in spatial-temporal databases [8, 11, 28, 17].

Cheng et al. [9] proposed a broad classification of prob-
abilistic queries over uncertain data, and developed novel
techniques for evaluating probabilistic queries. Cheng et
al. [8] are the first to study probabilistic range queries. They
developed two auxiliary index structures to support query-
ing uncertain intervals effectively. Tao et al. [28] investigated
probabilistic range queries on multi-dimensional space with
arbitrary probability density functions. They identified and
formulated several pruning rules and proposed a new access
method to optimize both I/O cost and CPU time. Dai et
al. [11] introduced an interesting concept of ranking prob-
abilistic spatial queries on uncertain data which selects the
objects with highest probabilities to qualify the spatial pred-
icates. On the uncertain data indexed by R-tree, several ef-
ficient algorithms were developed to support ranking prob-
abilistic range queries and nearest neighbor queries. Kriegel
et al. [17] proposed to use probabilistic distance functions
to measure the similarity between uncertain objects. They
presented both the theoretical foundation and some effective
pruning techniques of probabilistic similarity joins.

Different from the previous work on querying uncertain
data, our study introduces skyline queries and analysis to
uncertain data. As shown in Sections 1 and 6, skyline queries
are meaningful for uncertain data and can disclose some in-
teresting knowledge that cannot be identified by the existing
queries on uncertain data.

Computing skylines was first investigated by Kung et
al. [18] in computational geometry. Bentley et al. [3] pro-
posed an efficient algorithm with an expected linear runtime
if the data distribution on each dimension is independent.

Börzsönyi et al. [4] introduced the concept of skylines in
the context of databases and proposed a SQL syntax for
skyline queries. They also developed the skyline computa-
tion techniques based on block-nested-loop and divide-and-
conquer paradigms, respectively. Chomicki et al. [10] pro-
posed another block-nested-loop based computation tech-
nique, SFS (sort-filter-skyline), to take the advantages of
pre-sorting. The SFS algorithm was further significantly
improved by Godfrey et al. [13].

The first progressive technique that can output skyline
points without scanning the whole dataset was delveloped
by Tan et al. [27]. Kossmann et al. [16] presented another
progressive algorithm based on the nearest neighbor search
technique, which adopts a divide-and-conquer paradigm on
the dataset. Papadias et al. [22] proposed a branch-and-
bound algorithm (BBS) to progressively output skyline points
on datasets indexed by an R-tree. One of the most impor-

tant properties of BBS is that it minimizes the I/O cost.
Variations of skyline computation have been explored, in-

cluding computing skylines in a distributed environment [1,
14], continuously processing skyline queries in data
streams [20, 30], computing skylines for partially-ordered
value domains [5], skyline cube computation [24, 32, 31],
computing subspace skylines [29], approximate skyline com-
putation [15, 7, 6], and materializing dominance relation-
ships [19].

All the previous studies on skyline computation and anal-
ysis focus on certain data. Our study extends the skyline
computation and analysis to uncertain data. As shown in
the previous section, extending skyline queries to uncertain
data is far from straightforward. It involves both the devel-
opment of skyline models and the design of novel algorithms
for efficient computation.

6. EMPIRICAL STUDY
In this section, we report an extensive empirical study to

examine the effectiveness and the efficiency of probabilistic
skyline analysis on uncertain data. All the experiments were
conducted on a PC with Intel P4 3.0GHz CPU and 2GB
main memory running Debian Linux operating system. All
algorithms were implemented in C++.

6.1 Effectiveness of Probabilistic Skylines
To verify the effectiveness of probabilistic skylines on un-

certain data, we use a real data set of the NBA game-by-
game technical statistics from 1991 to 2005 downloaded from
www.NBA.com. The NBA data set contains 339, 721 records
about 1, 313 players. We treat each player as an uncertain
object and the records of the player as the instances of the
object. Three attributes are selected in our analysis: num-
ber of points, number of assists, and number of rebounds.
The larger those attribute values, the better.

Table 2 shows the 0.1-skyline players in the skyline prob-
ability descending order. We also conducted the traditional
skyline analysis. We calculated the average statistics for
each player on each attribute. That is, each player has only
one record in the aggregate data set. We computed the sky-
line on the aggregate data set, which is called the aggregate
skyline for short hereafter. All skyline players in the aggre-
gate skyline are annotated by a “*” sign in Table 2. We
obtain several interesting observations.

First, the top-12 players with the largest skyline probabil-
ity are also in the aggregate skyline. All of them are great
players. Those players not only have good average perfor-
mance so that they are in the aggregate skyline, but also
performed outstandingly in some games so that they have a
high skyline probability.

Second, some players that are not in the aggregate skyline
may still have a high skyline probability. There are 22 play-
ers who are not in the aggregate skyline, but have a higher
skyline probability than Odom who is a skyline player in the
aggregate data set.

Olajuwon is an example. In the aggregate data set, he is
dominated by four other players: O’Neal, Barkley, Duncan,
and Webber. In Figure 9, we sample the records of the five
players with rate 5% (so that the figure is readable) and plot
their number of rebounds and number of points. Olajuwon
has some records (e.g., 40 points and 19 rebounds) dominate
most records of other players. On the other hand, he also
has some records (e.g., 0 point and 3 rebounds) that are
dominated by many records of other players. Comparing to
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Name Skyline Name Skyline Name Skyline
Probability Probability Probability

* LeBron James 0.350699 Dwyane Wade 0.199065 Steve Francis 0.131061
* Dennis Rodman 0.327592 Tracy Mcgrady 0.198185 Dirk Nowitzki 0.130301
* Shaquille O’Neal 0.323401 * Grant Hill 0.191164 Paul Pierce 0.127079
* Charles Barkley 0.309311 * John Stockton 0.183591 * Gary Payton 0.126328
* Kevin Garnett 0.302531 David Robinson 0.177437 Baron Davis 0.125298
* Jason Kidd 0.293569 * Stephon Marbury 0.16683 Vince Carter 0.122946
* Allen Iverson 0.269871 * Tim Hardaway 0.166206 Antoine Walker 0.121745
* Michael Jordan 0.250633 * Magic Johnson 0.151813 Steve Nash 0.115874
* Tim Duncan 0.241252 * Chris Paul 0.149264 Andre Miller 0.11275
* Karl Malone 0.239737 Gilbert Arenas 0.142883 Isiah Thomas 0.11076
* Chris Webber 0.22153 Clyde Drexler 0.138993 Elton Brand 0.10966
* Kevin Johnson 0.208991 Patrick Ewing 0.13577 Scottie Pippen 0.108941

Hakeem Olajuwon 0.203641 Rod Strickland 0.135735 Dominique Wilkins 0.104323
Kobe Bryant 0.200272 Brad Daugherty 0.133572 * Lamar Odom 0.101803

Table 2: 0.1-skyline players in skyline probability descending order.
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Figure 9: Olajuwon’s and some other players’ records.
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Figure 10: Ewing’s and Brand’s records.

the four players dominating him, Olajuwon’s performance
has a larger variance.

Comparing to the aggregate skyline, the probabilistic sky-
line finds not only players consistently performing well, but
also outstanding players with large variances in performance.

Third, a player A may have a higher skyline probability
than a player B who dominates A in the aggregate data
set. As an example, Ewing has a higher skyline probability
than Brand, though Ewing is dominated by Brand in the
aggregate data set. We plot a sample with ratio 5% of both
players in Figure 10. Their aggregate values are also shown
in the figure. The performance of Ewing is more diverse
than that of Brand. Ewing played very well in a few games,
which explains why Ewing has a higher skyline probability.

In summary, probabilistic skylines disclose interesting
knowledge about uncertain data which cannot be captured
by traditional skyline analysis, and provide a more compre-
hensive view on advantages of uncertain objects than sky-
lines using only the aggregate of such objects. Interestingly,
we can rank uncertain objects using skyline probabilities,
while the skyline on aggregate of uncertain data cannot re-
flect the differences on the opportunities of uncertain objects
not to be dominated by other objects. This is another sig-
nificant advantage of probabilistic skyline analysis.

6.2 Performance Evaluation
To verify the efficiency and the scalability of our algo-

rithms, we use the NBA real data set as well as synthetic
data sets in anti-correlated, independent, and correlated dis-
tributions. For the synthetic data sets, the domain of each
dimension is [0, 1]. The dimensionality d by default is 4. The
cardinality (i.e., number of uncertain objects) m by default
is 10, 000. We first generated the centers of all uncertain ob-
jects using the benchmark data generator described in [4].
Then, for each uncertain object, we use the center to gen-

erate a hyper-rectangle region where the instances of the
object appear. The edge size of the hyper-rectangle region
follows a normal distribution in range [0, 0.2] with expecta-
tion 0.1 and standard deviation 0.025. The instances of the
object distributed uniformly in the region. The number of
instances of an uncertain object follows uniform distribution
in range [1, l], where l is 400 by default. Thus, in expecta-
tion, each object has l

2
instances, and the total number of

instances in a data set is ml

2
(2, 000, 000 by default). The

probability threshold p is 0.3 unless otherwise specified.

6.2.1 Probabilistic Skyline Size
Figure 11 shows the size of probabilistic skylines (i.e., the

number of objects in a probabilistic skyline) with respect to
three important factors: the probability threshold, the di-
mensionality and the cardinality. Generally, anti-correlated
data sets have the largest skyline size. Correlated data sets
have the smallest skyline size. This is similar to the sit-
uations of skylines on certain objects. As shown in Fig-
ure 11(a), the higher the probability threshold, the smaller
the skyline size. This is because a p-skyline contains a p′-
skyline if p < p′. Figure 11(b) shows the results on the NBA
data set, which is in a consistent trend. Figures 11(c) and
(d) show that the skyline size increases with higher dimen-
sionality and larger cardinality, which is also similar to the
situations of skylines on certain data sets. As the dimen-
sionality increases, the data set becomes sparser. An object
has a better opportunity not to be dominated in all dimen-
sions. As the cardinality increases, more objects may have
chances not to be dominated.

6.2.2 Efficiency and Scalability
Figure 12 investigates the runtime of the algorithms with

respect to the probability threshold. The numbers on the
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Figure 11: The size of p-skyline with respect to probability threshold p, dimensionality d, and cardinality m.
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Figure 12: Scalability with respect to probability threshold.

bars give the exact runtime of algorithms on the data sets.
Three algorithms are evaluated. In addition to the bottom-
up (BU) and the top-down (TD) algorithms described in
the paper, for benchmarking we also made up an exhaustive
algorithm (EX). To compute the p-skyline on a data set,
without any pruning techniques, EX has to compute the
skyline probability for each uncertain object. Therefore, it
is insensitive to the change of probability threshold.

Both BU and TD are much faster than EX. The results
clearly indicate that the pruning techniques in those two
methods significantly save the cost of computing the exact
skyline probabilities of many instances and objects.

Computing skylines on anti-correlated data sets is much
more challenging. In the rest of this section, we focus on
analyzing in detail the performance of BU and TD on anti-
correlated data sets.

Figure 13 compares BU and TD with respect to dimen-
sionality and cardinality. Both algorithms follow similar
trends. The runtime of both algorithms increases when the
dimensionality increases from 2 to 6, but decreases after-
ward. On the one hand, the cost of dominance testing be-
tween two instances, which is the basic operation in both
algorithms, increases as the dimensionality increases. On
the other hand, the average number of possible dominat-
ing objects for an uncertain object decreases since the data
set becomes sparser when the dimensionality increases. The
trend of runtime reflects the compromise of the two factors.

The higher the dimensionality, the sparser the data set.
The larger the cardinality, the denser the data set. Fig-
ure 13 indicates that TD performs better when the data set
is sparser. In sparse data set, the subset instances of un-
certain objects may have a smaller chance to overlap, and
a better chance to be pruned by some subset instances of
other objects. Thus, TD has better performance. On the
other hand, in dense data sets, the skyline probability of
an instance may improve the bounds of the probabilities of
more other instances and objects, and BU performs better.
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Figure 13: Runtime on anti-correlated data sets.

6.2.3 Effectiveness of Pruning Techniques
The performance of BU mainly depends on the efficiency

of pruning instances and objects so that their skyline prob-
abilities do not need to be computed. Figure 14 counts,
for each object, the percentage of instances whose skyline
probabilities are computed by BU. We group the objects by
the percentage in 6 ranges, and count the proportion of each
group in the whole data set. It is clear that more than 90% of
the objects in the NBA, independent, and correlated data
sets are pruned after 20% of the instances are processed.
Even for anti-correlated data sets, the corresponding figure
is 66%. The pruning is more effective on independent and
correlated data sets. That explains the difference of runtime
on synthetic data sets.

Figure 15 counts the percentage of objects pruned by
pruning rules in BU (Section 3.2). Rules 3 is not counted
since it prunes instances only. Every rule takes effect in some
situations. Rules 4 is particularly effective on independent
and correlated data sets where 84% and 97% objects are
pruned, respectively. In those data sets, it is more likely
that an object is completely dominated by another.

Figures 16 and 17 examine the effectiveness of the pruning
techniques in TD. Figures 16(a) and (b) show the runtime
of each round of partitioning on the NBA data set and the
synthetic data sets, respectively. On all data sets, the run-
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Figure 17: Pruning effect in TD – Percentage of

objects pruned in each round.

time increases at first, since after such a round the leaf nodes
not pruned are partitioned into more nodes. The runtime
decreases in the later rounds. This is because the effective-
ness of pruning in TD becomes stronger when the leaf nodes
are smaller, such that the numbers of remaining objects and
nodes decrease significantly.

Figure 17 shows in each round the number of objects
whose probabilistic skyline memberships are determined. On
the NBA data set, rounds 2-8 prune most of the objects,
while on the synthetic data sets, most of the objects are
pruned in the first round. Again, the pruning is more effec-
tive on independent and correlated data sets.

In summary, our two algorithms are effective and efficient
in computing probabilistic skylines. They are also scalable
on large data sets containing millions of instances.

7. DISCUSSION AND CONCLUSIONS
In this paper, we extended the well-known skyline analysis

to uncertain data, and developed two efficacious algorithms
to tackle the problem of computing probabilistic skylines on
uncertain data. Using real data sets and synthetic data sets,
we illustrated the effectiveness of probabilistic skylines and
the efficiency and scalability of our algorithms.

Although we focused on the discrete case, some of our
ideas can be applied to handle the continuous case, i.e.,
each uncertain object is represented by a probability den-
sity function. For example, in the top-down algorithm, for

each uncertain object, we can initially partition the space
into 2 regions such that the probability of the object in each
region is 0.5. Each region can be represented by a bounding
box. We can estimate the skyline probabilities of the bound-
ing boxes and recursively partition the bounding boxes into
smaller ones until the skyline probabilities of uncertain ob-
jects can be determined against the threshold. Limited by
space, we omit the details here.
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