
CADS: Continuous Authentication on Data Streams

Stavros Papadopoulos Yin Yang Dimitris Papadias

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{stavros, yini, dimitris}@cse.ust.hk

ABSTRACT
We study processing and authentication of long-running queries
on outsourced data streams. In this scenario, a data owner (DO)
constantly transmits its data to a service provider (SP), together
with additional authentication information. Clients register
continuous range queries to the SP. Whenever the data change,
the SP must update the results of all affected queries and inform
the clients accordingly. The clients can verify the correctness of
the results using the authentication information provided by the
DO. Compared to conventional databases, stream environments
pose new challenges such as the need for fast structure updating,
support for continuous query processing and authentication, and
provision for temporal completeness. Specifically, in addition to
the correctness of individual results, the client must be able to
verify that there are no missing results in between updates.

We face these challenges through several contributions. Since
there is no previous work, we first present a technique, called
REF, that achieves correctness and temporal completeness but
incurs false transmissions, i.e., the SP has to inform clients
whenever there is a data update, even if their results are not
affected. Then, we propose CADS, which minimizes the
processing and transmission overhead through an elaborate
indexing scheme and a virtual caching mechanism. Finally, we
extend CADS to the case where multiple owners outsource their
data to the same SP. The SP integrates all data in a single
authentication process, independently of the number of DOs.

1. INTRODUCTION
Database outsourcing [HIM02] has recently received considerable
attention. According to this model, a data owner (DO) outsources
its database to one (or more) specialized service providers (SPs)
that have the necessary computational power and tools to support
advanced query processing. Clients issue their queries directly to
the SP. Outsourcing provides several benefits for all parties
involved: (i) the DO does not need to acquire or dedicate the
resources necessary for running a full-scale DBMS, (ii) the SP
can achieve economies of scale by serving multiple owners, and
(iii) the clients can obtain the data by a SP that is close in terms of
network latency. Furthermore, the system robustness is improved
because the DO ceases to be the single point of failure. However,

since the SP is not the real owner of the data, it must be able to
prove (to the users) the soundness and completeness of the query
results. Soundness ensures that all the records returned originate
from the DO and no spurious records exist. Completeness
guarantees that all the tuples that satisfy the query are present in
the result set. We refer to these two terms collectively as
correctness.

Existing systems, presented in Section 2, use the general
framework of Figure 1.1. The DO obtains, through a (trusted) key
distribution center, a private and a public key. The private key is
known only to the DO, whereas the public one is available to the
clients. The DO signs the dataset and transmits it along with the
signature (created using its private key) to the SP. The SP keeps
the data and the signature locally. In order to facilitate query
processing, the dataset is indexed by an authenticated data
structure (ADS). This is similar to a conventional index, but it
contains additional information for proving the correctness of the
results. When a client issues a query, the SP generates a
verification object (VO) by accessing the ADS. The VO contains
the result set along with the authentication information necessary
for proving correctness. The SP sends the VO and the
corresponding signature to the client. The client can verify
correctness by matching the received signature against the VO and
the public key of the owner. Alternative implementations of the
framework differ on the choice of signature techniques, ADS, and
verification processes. Furthermore, most systems necessitate the
maintenance of identical copies of the ADS at the DO.

DO

data

DO signature

SP
authenticated
structure

DO signature

Client

query

DO signature

public key
VO

authenticated
structure

private key

Figure 1.1 Authentication framework for outsourced databases

All previous work in the database literature focuses on disk-
resident and relatively static datasets. On the other hand,
increasing monitoring of transactions, ecological parameters,
homeland security, RFID chips etc., establishes new and highly
dynamic environments for data outsourcing. As an example
assume a SP that receives current stock values from one or more
stock exchanges. Subscribers register long-running queries at the
SP. Whenever a stock update influences a query, the
corresponding client is immediately informed. In addition to the
timely delivery of query results, it is crucial for the subscribers of
such a system to be able to establish their correctness. As a
second application, consider a web-based SP that collects item
prices from different outlets, but is not allowed to publish them
(in order to avoid direct competition leading to discounts). A
client looking for a bargain registers his/her price range (e.g.,

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.

VLDB ’07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

135

below $500) for an item (e.g., Sony PS3) as a query. Each time an
outlet posts a price in the desired range, the SP sends the
corresponding verification object to the client that is able to
automatically verify it.

In the database literature, authenticated query processing has
been traditionally linked with outsourcing. However, similar
concepts also apply in situations where the DO and the clients
communicate directly. Consider, for instance, a sensor network
where a sink collects temperature readings from various sensors.
Clients (e.g., environmental agencies, fire departments) register
continuous range queries to the sink (e.g., report sensors with
temperature reading in the range [45-50]). Assuming that the
network is unreliable, authentication is necessary for establishing
the correct transmission of the results before taking action. As an
alternative, a server may gather intelligence data from satellites,
and authentication is required for detection of attacks on the
communication channel. In both cases, the sink/server plays the
combined role of the DO and the SP in the framework of Figure
1.1. For consistency with previous work, we follow that
framework (assuming distinct DO and SP), but the proposed
methods can be used for authentication without outsourcing.

The dynamic nature of the data and the potentially large
number of long-running queries pose several challenges. First, a
system for continuous authentication on data streams must
accommodate very fast updates and, at the same time, support
efficient query processing. Second, it must include effective
mechanisms for minimizing the communication cost with the
clients, and their verification effort. Third, the SP may have to
integrate data from several stream sources (e.g., stock exchanges,
outlets, servers) in a single authentication process. Finally, in
addition to correctness, the clients must be able to verify temporal
completeness, i.e., confirm that they receive all result changes that
are relevant to their queries. We aim at solving the above
problems with the following contributions:

1. Due to the lack of previous work on authenticated data
streams, we first present a technique, called REF, used as a
benchmark in our evaluation. REF achieves correctness and
temporal completeness but incurs false transmissions, i.e.,
the SP has to inform clients whenever there is a data update,
even if their results are not affected.

2. We propose CADS, a technique that minimizes the
processing and transmission overhead through an elaborate
indexing scheme and a virtual caching mechanism. Both
CADS and REF are main memory-based in order to achieve
real-time query evaluation and fast structure updating.

3. We extend CADS for situations where a SP hosts stream data
from several owners, but each query involves a single
verification process.

4. We show through extensive experiments that CADS
outperforms REF significantly in all aspects. Furthermore, its
efficiency permits its application in highly dynamic
environments involving numerous clients and a large volume
of data.

The rest of the paper is organized as follows. Section 2 surveys
the basics on cryptography and the related bibliography. Section 3
presents REF and Section 4 focuses on CADS. Section 5 deals
with multiple owners. Section 6 experimentally evaluates CADS
and compares it against REF. Finally, Section 7 concludes the
paper with directions to future work.

2. BACKGROUND
A one-way, collision-resistant hash function is a computationally
efficient mapping h: {0,1}* → {0,1}l. The output of h is called
digest and has fixed length l. The function is such that, given a
digest y = h(M), it is computationally hard (i) to derive the
message M from y, and (ii) to find another message M' such that y
= h(M'). In this work we employ SHA1 [NIST95], which takes
variable-length inputs and produces 20-byte digests. In the sequel,
the term hash function (h) implies a one-way, collision-resistant
hash function.

A public-key digital signature scheme is used to verify that a
message is not falsified (integrity), and that it originates from the
party that signs it (authenticity). Our techniques adopt RSA
[RSA78]. The digital signature generated using RSA has a typical
size of 128 bytes. A key generator creates a private key a and a
public key (b, c). The signer keeps the private key and publishes
the public key. To create the digital signature sig of a message M,
the signer performs operation sig = sign(M, a, c) = h(M)a mod c.
Given sig and the signer’s public key, the verifier can confirm the
authenticity of M by checking if verify(M, sig, b, c) = sigb mod c
equals h(M).

Mykletyn et al. [MNT04] devise two schemes that aim at
reducing the communication cost and the verification time, when
multiple signatures are to be transferred and verified at once. Both
schemes allow aggregating multiple signatures into a single one
that can be verified almost as fast as an individual signature. The
first scheme is called Condensed-RSA and uses RSA for
aggregating signatures generated by a single signer. The second is
called BGLS and is based on the usage of elliptic curves and
bilinear mappings to aggregate signatures generated by different
signers. BGLS is expensive and elliptic curves are not as widely
used as RSA.

The Merkle Hash Tree (MH-Tree) [M89] is a main-memory
binary tree originally proposed for efficient authentication of
equality queries in a database sorted on the query attribute. Every
record corresponds to a leaf node that stores the hash value of the
binary representation of the record. The tree is constructed
bottom-up, with each internal node storing the hash value of the
concatenation of the hash values of its children. The owner signs
the hash value stored in the root of the tree. Consider that a client
asks for record r3 in the MH-Tree of Figure 2.1. The SP accesses
the tree to locate the record. During the tree traversal, apart from
record r3, it inserts into the VO the hash value stored in the sibling
of every visited node (i.e., h12 and h4). Having the VO, signature
sig and the owner’s public key, the client can verify the
authenticity of the result by reconstructing the hash value of the
root as h1234 = h(h12|h(h(r3)|h4)) and matching it against sig (‘|’
denotes concatenation).

r1 r2 r3 r4

h1=h(r1) h2=h(r2) h3=h(r3) h4=h(r4)

h12=h(h1|h2) h34=h(h3|h4)

h1234=h(h12|h34)sig = sign(h1234)

records

Figure 2.1 Example of the Merkle Hash Tree

Devanbu et al. [DGMS03] utilize the MH-Tree for answering
one-dimensional range queries, satisfying soundness and

136

completeness. They also extend their method to multiple
dimensions, combining the MH-Tree with the Range Search Tree
[BKOS97]. Martel et al. [MND+04] develop a generalized
framework for creating efficient authenticated versions of a broad
class of data structures. Finally, Goodrich et al. [GTTC03]
introduce techniques for authenticating data structures that
represent graphs and geometric objects.

The first disk-based authenticated structure that provides
soundness, but not completeness is the VB-Tree [PT04], which is
a B+-Tree augmented with signed digests. Signature chaining
[PJRT05, NT06] guarantees both soundness and completeness,
but has several drawbacks. First the owner must construct a
number of signatures equal to the dataset cardinality and transmit
them to the SP. The SP must store these signatures, each
consuming 128 bytes (comparable to the size of a typical record).
The large space overhead also affects the cost of query
processing. Finally, the transmission of a result to the client
contains a signature for each tuple. The client has to verify all
these signatures, which can be a rather expensive process.
Signature aggregation can be used to reduce the communication
and verification cost.

The current state-of-the-art, disk-based, authenticated
structure is the Merkle B-Tree (MB-Tree) [LHKR06]. The MB-
Tree is basically a B+-Tree that hierarchically organizes digests,
following the concept of the MH-Tree. Every internal node stores
entries E of the form (E.p, E.k, E.h), where E.p points to a child
node Nc, E.k is the B+-Tree search key and E.h is a hash value
computed on the concatenation of the hash values of the entries
contained in Nc. An entry in a leaf node is associated with the
hash value of a record. The owner signs the hash of the
concatenation of the hash values contained in the root of the tree.
The EMB-Tree [LHKR06] embeds a MH-Tree inside each MB-
Tree node in order to reduce the VO size.

Under the data stream paradigm, tuples generated by various
sources are collected at a data stream management system
(DSMS), where users register continuous queries. When a new
tuple arrives, all relevant queries are re-evaluated. Query
processing is usually performed by routing tuples through
operator trees, where operators closely resemble their traditional
counterparts such as selections or joins. Depending on the
application characteristics, DSMSs adopt different models
regarding the validity of tuples. A popular model assumes a
sliding window of a given time frame w, i.e., a tuple s expires w
time units after its arrival. In this case, all arrivals in the system
that correspond to insertions and deletions are implicit. Another
common model assumes positive-negative tuples, i.e., the DSMS
receives a negative tuple –s that takes the same route through the
operator tree as s, and erases all occurrences of its positive
counterpart. Surveys of various DSMSs can be found in
[BBD+02, GO03]. Nevertheless, to the best of our knowledge,
none of the existing DSMSs considers authentication issues.

3. A REFERENCE SOLUTION
This section introduces a competitor, hereafter called REF (for
reference solution), used as a benchmark in our experimental
evaluation. We first assume a SP that collects data from a single
DO (multiple owners are discussed in Section 5). For simplicity,
we consider that each tuple r has only two attributes: the primary
key r.id and the search key r.k (queries are ranges on r.k).
According to REF, tuples are sorted on the search key and

indexed by an authenticated structure called the DMH-Tree (for
Dynamic Merkle Hash-Tree), i.e., a MH-Tree where each node
has 2 or 3 entries. Figure 3.1 illustrates an example DMH-Tree.
Each leaf node (level 0) contains 2 or 3 records. For intermediate
nodes, each entry e is a triplet (e.h, e.k, e.p), where e.k is the
search key of the first record in the subtree of e, and e.p is a
pointer to the corresponding child node. The value of e.h depends
on the level. For level 1, e.h is a hash value on the concatenation
of all records in the node pointed by e.p; for the upper levels, e.h
is computed on the concatenation of the hash values of the entries
in e.p. The DO and the SP maintain identical trees in main
memory. In addition, the DO computes a value Hroot by hashing
the concatenation of the hash values contained in the root of the
tree e.g., in the example of Figure 3.1, Hroot =h(h1,5 | h6,12). Then it
applies its private key to sign Hroot, using the RSA public key
cryptosystem. The SP stores a copy of this signature.

r1,r2,r3 r4,r5

h1,3=h(r1|r2|r3), k1 h4,5=h(r4|r5), k2

h6,8=h(r6|r7|r8), k6 h9,10=h(r9|r10), k9

h1,5=h(h1,3|h4,5), k1 h6,12=h(h6,8|h9,10|h11,12), k6

n1

h11,12=h(r11|r12), k11

leaf level 0 n2 n3 n4 n5

n6

n7

root n8

level 1

level 2

r6,r7,r8 r9,r10 r11,r12
Figure 3.1 An example of a DMH-Tree

The DMH-Tree supports fast (i.e., logarithmic) updates1, based on
the insertion/deletion algorithms of the B+-tree. Specifically, an
insertion in a full (i.e., with 3 entries) node causes its split in two
nodes, each containing 2 entries. On the other hand, a deletion
from a node n with 2 entries leads to an underflow. Similarly to
B+-trees, n first tries to borrow an entry from a full sibling node.
If this is not possible, n is merged with a sibling. Since we do not
use "right" pointers at the leaf level (as in B+-trees), in our
context the term sibling signifies the previous or the next node
under the same parent. In addition, the DMH-Tree can support
multiple updates at the same timestamp. First, the structure is
modified to accommodate all updates, without altering any hash
value, but temporarily marking the visited paths. Then, the
marked paths are revisited and the hash values are computed
bottom-up. In this way, the (expensive) hash computations are
performed only once.

The DMH-Tree handles snapshot query processing and
verification as follows. Let q:[qL, qU] be a range query on r.k,
where qL (qU) is the lower (upper) bound. The SP performs two
top-down traversals to locate the tuples rL and rU immediately
before qL and after qU, respectively. These boundary records are
necessary to enforce completeness, i.e., that the SP does not omit
results at the range limits. Then it expands q to [rL.k, rU.k] and
applies the RangeDMH algorithm of Figure 3.2 to compute the
verification object (VO), which contains the actual result and
additional data so that the client can establish its correctness.
Specifically, the VO includes: (i) the hash function of every
pruned entry, (ii) the tuples in every visited leaf node, (iii) special
tokens [and] that indicate the scope of a node. Consider for
example a query that retrieves records r5 to r8 in Figure 3.1. The

1 The original MH-Tree requires re-computation of hash values

and reconstruction of the tree from scratch for every update.

137

expanded query covers tuples r4 to r9. The application of
RangeDMH to the expanded query yields the VO: [[h1,3

[r4,r5]][[r6,r7,r8][r9,r10] h11,12]]. Note that the tokens in the VO
reveal the tree structure, e.g., [h1,3 [r4,r5]] corresponds to the first
root entry and the remainder to the second one. The SP transmits
the VO and the owner's signature to the client.

RangeDMH(DMH_Node n, Expanded query q)
1. Append [to the VO
2. For each entry e in n
3. If n is an intermediate node
4. If e intersects the query range // e may contain results
5. RangeDMH(e.p, q) // e.p points to child node
6. Else append e.h to the VO
7. Else // n is a leaf node and e is a record
8. Append e to the VO
9. Append] to the VO

Figure 3.2 Range query in the DMH-Tree

The verification process at the client utilizes the tree-structure
information, encapsulated in the VO, to compute the hash value
Hroot of the root. Figure 3.3 illustrates the pseudo-code of
ReconstructHroot. The main concept is similar to evaluation of
parenthesized arithmetic expressions, where the tokens play the
role of the parentheses. When the algorithm encounters a token],
it has all the information (hashes or records) to compute the hash
value of the node that started at the corresponding [. The hash
values and records are appended to a buffer B, which after
termination is used to derive Hroot=h(B). Having Hroot and the
signature of the DO, the client can establish authenticity and
correctness using the public key of the DO. ReconstructHroot is
online, i.e., it performs a single linear scan of the VO. Note that
the actual results (i.e., records r5 to r8 in the query range) are
extracted in line 6. In addition, the client receives some boundary
records (r4, r9, r10) in the VO, which are not part of the result.
Pang et al. [PJRT05] propose a solution for avoiding disclosure of
boundary records, when the outsourced database must comply
with certain access control policies. In this work, we consider that
clients can issue queries freely without constraints. Nevertheless,
the solution of [PJRT05] can be applied in conjunction with the
proposed methods to hide such records, if necessary.

ReconstructHroot (VerificationObject VO)
1. Initialize an empty string B
2. While VO still has entries
3. Remove next entry E from VO
4. If E is a hash value h OR a record r
5. Append E to B
6. If E is a record r that satisfies the query, Report r
7. If E is [, Append ReconstructHroot(VO) to B
8. If E is], Return hash(B)

Figure 3.3 Algorithm for reconstructing Hroot

Proof of soundness: Suppose that a record r in leaf node n is
bogus or modified. Because h is collision-resistant, the hash value
of n (stored in the parent node) is different from that of the owner.
The change propagates all the way to the root. Therefore, the
reconstructed Hroot is also different from the original, and the
signature verification fails.

Proof of completeness: Given the boundary records, the client
can detect that a result is missing, because the reconstructed Hroot
will not match the owner's signature. The only complication

occurs when there are no boundary tuples, i.e., when the query
contains the first and/or last record in the database. To cover this
case, previous schemes [PJRT05, LHKR06] include two fictitious
records at the beginning and the end of the dataset. Our approach
does not require fictitious tuples. For ease of explanation, we
consider that there is no left boundary (the case of right boundary
is symmetric). Assume that the SP sends the complete result. Due
to the depth-first traversal of RangeDMH, the first non-token
entry of the VO is the first record r1 satisfying the query.
Although r1 is not a boundary, the client can verify completeness
since the re-constructed Hroot matches the signature. Now consider
that (i) the first non-token entry of the VO includes a hash value
h1 and (ii) the first record in the VO (after h1) is r2 (satisfying the
query). The existence of h1 implies that there are records
preceding r2. Therefore, the client detects that boundary records
should be included, and their absence raises an alarm about
possible violation of completeness.

Next, we extend REF to capture long-running queries on
streams. Whenever there is a data modification, the DO alters its
tree and forwards the update(s) to the SP in the form of a data
stream, according to the positive-negative model 2 . The
transmission of a new record r from the DO to the SP is denoted
as (+<r.id, r.k>), and the deletion of an existing record as (-r.id).
An update on r corresponds to a deletion (-r.id) followed by the
insertion of the new values. In addition to the actual data, each
transmission contains a DO signature and two timestamps: LT is
the current time and ST is the time of the previous transmission.
The signature incorporates the new Hroot, LT and ST. The two
timestamps are necessary so that the clients can detect temporal
attacks, i.e., situations where the SP avoids reporting some result
updates. Specifically, we say that an authentication scheme
satisfies temporal completeness, if it is impossible for the SP to
omit sending a result change to the client, without the latter
detecting it.

Upon receiving an update from the DO, the SP modifies its
own copy of the DMH-Tree accordingly. Then, it generates a new
VO for every running query (by processing the query using
RangeDMH) and sends it to the corresponding client. The client
can reconstruct the signed root of the updated DMH-Tree and
verify it using the DO's public key. Furthermore, using LT and ST,
it can confirm that the results are current and there is no missing
update. Note that temporal completeness in REF necessitates VO
generation even for queries whose results are not affected by the
update. We illustrate this through an example. Assume that at
time τ =1, a client C obtains a result. At τ =2, the SP receives a
new record r1, but it does not inform C. At τ =3, r1 is deleted and
a new tuple r2 becomes part of the result. The SP sends to C a
new VO including r2, LT=3 and ST=2. C detects that there was an
update at time 2, but it cannot determine if its query was affected
or not. The only way that clients can be sure about the temporal
completeness of their results, is if the SP transmits a new VO and
signature to every client for every timestamp that there is an
update.

Proof of temporal completeness: Suppose that at time τ the SP
omits sending the VO for an update affecting the client’s result.

2 The proposed methods can also be used with sliding windows.

We apply the positive-negative model since it is more general.

138

At a later time τ' the client receives a new VO from the SP. The
client will detect the omission by noticing that the time of the
previous update (included in the new VO) is ST > τ. The only
potential vulnerability regards the situation where the client does
not receive any VO for a long time, in which case it cannot be
sure whether the last results are still up-to-date. This problem can
be solved using the concept of query freshness [LHKR06],
according to which the DO revokes old signatures at periodic time
intervals.

Although REF guarantees correctness and temporal
completeness, it incurs false transmissions of VOs for queries
whose result is not affected by the latest data updates. This
imposes significant CPU cost to the SP (for computing the VOs)
and to the clients (for verifying them). Furthermore, it leads to
excessive network overhead. The proposed CADS method avoids
these problems by integrating sophisticated indexing schemes and
query processing algorithms.

4. CONTINUOUS AUTHENTICATION ON DATA

STREAMS
Section 4.1 summarizes the index structures utilized by CADS.
Section 4.2 describes the initial result computation. Section 4.3
presents the monitoring algorithm for continuously updating the
query results.

4.1 Indexing Scheme
Let D be the domain of the query attribute r.k. We decompose D
into m disjoint partitions. Without loss of generality, we select m
to be a power of two. Records are distributed into the partitions
according to their search key (k) values. CADS includes two types
of structures: (i) tuples in each partition are indexed by a TMH-
Tree (Temporal Merkle Hash-Tree); (ii) all partitions are indexed
by a DPM-Tree (Domain Partition Merkle-Tree). Figure 4.1
illustrates the indexing scheme. The intuition behind the
framework is that fixed partitions are necessary to avoid false
transmissions by localizing the effect of data updates. The
embedded TMH-Tree in each partition alleviates the effects of
skewness in the data. For instance, in the extreme case that all
data fall in a single partition, CADS behaves similarly to REF.

(q1.id, q1.rg, q1.t)

(q2.id, q2.rg, q2.t)

...

QT

q2.id q4.id ...P1.IL

P1 P2 PmPm-1...

R1, LT1, ST1, H1

h(H1 | H2), max(LT1, LT2) h(Hm-1 | Hm), max(LTm-1, LTm)

...

...

HDPM, TDPM

h1, k1, t1

H1 = h(ST1 | h(h1 | h2 | h3))

h2, k2, t2 h3, k3, t3

Domain D

...

DPM-Tree

TMH1

r1 r2 r3

sig = h(HDPM | TDPM | L | U)a mod c

Private key: a
Public key: (b,c)

...

TMH-Tree
for partition P1

lower bound L U upper bound

R2, LT2, ST2, H2 Rm-1, LTm-1, STm-1, Hm-1 Rm, LTm, STm, Hm

Figure 4.1 Indexing and book-keeping structures

The TMH-Tree is a modified DMH-Tree that incorporates
temporal information used by a virtual caching mechanism (to be
discussed in Section 4.3). Specifically, every entry e in an
intermediate node is a tuple (e.h, e.k, e.p, e.t), where e.h, e.k, e.p,
have the same meaning as in the DMH-Tree (see Section 3), and
e.t is a timestamp that signifies the latest (i) record
insertion/deletion/update that occurred in the subtree of e, or (ii)
movement of e to another node due to a split/merge operation.
Each partition P is associated with a tuple (P.R, P.LT, P.ST, P.H),
where: P.R is a pointer to the root of the corresponding TMH-
Tree indexing the tuples of P; P.LT (P.ST) is the timestamp of the
last (second last) update that occurred in P (P.LT ≥ P.ST); P.H is
a hash value computed on the concatenation of P.ST with the hash
value (Hroot) of P.R.

The DPM-Tree is a binary tree that organizes hash values in a
way similar to the MH-Tree. It is constructed bottom-up as
follows. Each leaf node corresponds to a partition tuple (P.R,
P.LT, P.ST, P.H). An adjacent pair Pi, Pi+1 of leaves generates an
internal node N at the next level that stores (N.H, N.T), where N.H
= h(Pi.H | Pi+1.H) and N.T = max(Pi.LT, Pi+1.LT). The tree
construction continues recursively in the same manner until the
root. Intuitively, every internal node contains hashed information
about the records in the partitions covered by its subtree, and the
latest timestamp signifying updates in these partitions. Both the
SP and the DO maintain the aforementioned authentication
structures. Let HDPM (TDPM) be the hash value (timestamp) in the
root of the DPM-Tree, and L (U) the lower (upper) bound of
domain D. The owner computes h(HDPM, TDPM, L, U), signs it
(using its private key), and sends it to the SP, which keeps it
locally (together with the above structures).

The indexing scheme can support multiple updates at the same
timestamp as follows. The TMH-Trees are first modified, as
discussed in Section 3, without altering any hash or timestamp
value, and the visited paths are marked. When an entry is deleted
from a full intermediate node (i.e., there is no underflow), it is
replaced with a dummy value, so that the order of the remaining
entries in the node remains the same. Then, the marked paths are
revisited and the hash values and timestamps are computed
bottom-up, only once. Finally, a single depth-first traversal of the
DPM-Tree locates the leaf nodes that correspond to the affected
partitions and computes the appropriate hashes and timestamps
bottom-up.

CADS also maintains some book-keeping structures regarding
the queries. In particular, the SP stores every running query q in a
table QT as a record of the form (q.id, q.rg, q.t), where (i) q.id is a
unique identifier, (ii) q.rg is the query range, and (iii) q.t is the
timestamp of q’s last VO update. Each partition P is associated
with an influence list P.IL, which stores the identifiers of the
running queries that overlap with P. QT is organized as a hash
table on q.id in order to support fast search for queries. Table 4.1
summarizes the notation, grouping symbols by category.

4.2 Initial Result Computation
The initial result computation corresponds to a snapshot
authenticated query, i.e., the user can establish correctness, but
does not need to verify temporal completeness. Given a new
query q, the SP calls RangeDPM(root, q, D) shown in Figure 4.2,
which performs a depth-first traversal of the DPM-Tree. Every
node N conceptually corresponds to an interval N.I, which is the
union of the partitions covered by the node’s subtree (for the root

139

N.I =[L,U]). If q does not overlap with N.I, the hash value N.H is
inserted into the VO. Otherwise, computeIntervals (line 3) splits
N.I into two equal intervals I1 and I2, corresponding to the two
sub-trees of N, and the traversal continues recursively. When
reaching a leaf node Nl, if q does not overlap with Nl.I, Nl.H is
included into the VO. Otherwise, Nl.ST is inserted into the VO and
RangeTMH is invoked, after expanding q (line 13) to include the
boundary records, as discussed in Section 3. RangeTMH is similar
to RangeDMH (in Figure 3.2) except that it adds to the VO a
dummy value for each empty intermediate entry found during the
traversal (the functionality of dummy values will become clear in
Section 4.3). The tokens begin_TMH and end_TMH are appended
to the VO to signify the VO components needed for reconstructing
Nl.H. After the VO is generated, the SP inserts a new entry for q
in QT, with q.t set to TDPM. Finally, q.id is added to the influence
lists (IL) of all partitions that overlap q.

RangeDPM(DPM_Node N, Query q, Interval I)
1. If N is an intermediate node // in the DPM-Tree
2. If q overlaps with I // i.e., N.I
3. (I1, I2) = computeIntervals(I)
4. Append [to the VO
5. RangeDPM(N.left_child, q, I1)
6. RangeDPM(N.right_child, q, I2)
7. Append] to the VO
8. Else append N.H to the VO
9. Else // N is a leaf node that corresponds to a partition P
10. Append begin_TMH to the VO
11. If q overlaps with I
12. Append N.ST to the VO // N.ST = P.ST
13. q΄ = ExpandQuery(q, N.R) // N.R is the root P.R of the
14. Call RangeTMH(N.R, q΄) // TMH-Tree for partition P
15. Else append N.H to the VO // q does not overlap with I
16. Append end_TMH to the VO

Figure 4.2 Range query in the DPM-Tree

Figure 4.3 illustrates an initial VO generation for a query q with
range [50, 75], assuming that D=[1, 80] and m=4. The SP starts
by traversing the DPM-Tree. Since q does not overlap with N5.I
(=[1, 40]), H5 (i.e., N5.H) is appended to the VO. The traversal
continues with N6 and reaches leaf N3, corresponding to partition
P3. Since q overlaps with P3, N3.ST (=P3.ST) is appended to the

VO. Then, the TMH-Tree of P3 (TMH3) is traversed to locate the
left boundary record r4 (r4.k=48). Because q covers the right
endpoint of P3, it is not necessary to find its right boundary;
hence, q is expanded to q΄:[48, 75]. RangeTMH is called for
TMH3 with q΄ as an argument. The entries in the root of TMH3 are
checked sequentially. Since the first entry does not overlap q΄, h1
is appended to the VO. On the contrary, node n2 must be visited
and its records (r4, r5) are inserted into the VO. A dummy value is
appended in place of the third (empty) entry of n3. Finally, the
leaf N4 of the DPM-Tree is visited and a partial VO is generated in
a similar way, after appending N4.ST to the VO and expanding q
to q΄:[50, 76]. The complete VO is shown at the top of Figure 4.3.
The SP sends the VO to the client, with D, TDPM and sig.

HDPM

H5 H6

H1 H4H2 H3

VO: [H5, [begin_TMH, N3.ST, [h1, [r4, r5] , dummy], end_TMH,
begin_TMH, N4.ST, [[r6, r7, r8], [r9, r10] , h'3], end_TMH]]

h1 48 h2

41, r1.id
42, r2.id
47, r3.id

48, r4.id
59, r5.id

h'1 76 h'2 79 h'3

62, r6.id
63, r7.id
64, r8.id

76, r9.id
77, r10.id

79, r11.id
80, r12.id

L=1
P1 P2 P3 P4

TMH3

DPM-Tree

TMH4

N7

N5 N6

N1 N2 N3 N4

n3

n1 n2

n4

n'1 n'2 n'3

Included in the VO

q
50 75

U=80

q'
48 76

41 62

Figure 4.3 Example of initial result computation

Given the VO and D, the client verifies its correctness, by
computing the hash value HDPM at the root of the DPM-Tree using
ReconstructHDPM(VO, D), shown in Figure 4.4. The functionality
of the algorithm is similar to that of ReconstructHroot (Figure 3.3),
except that that ReconstructHDPM uses intervals to determine the
extents of each partition on-the-fly. After the SP computes HDPM,
it hashes it with TDPM and D, and matches it against the signature
of the owner. The actual results are extracted during the
verification process.

Proof of soundness: Suppose that a record is bogus or
modified in partition P. Because the hash function is collision-
resistant, the P.H value computed by the client is different than
that of the owner. Therefore, the reconstructed HDPM is also
different from the original, and the signature verification fails.

Proof of completeness: Let P be a partition that overlaps with
query q. If the partial VO corresponding to the TMH-Tree
associated with P is included in the VO, the client can verify the
completeness of the results residing in P, as shown in the proof of
completeness for REF. The complication is how the client can
determine that the VO actually contains components of P's sub-
tree. For instance, a malicious SP can include only P.H in the VO,
hiding potential results in P without affecting correctness. The
client obtains the authenticated bounds (D:[L,U]) of the domain
along with the VO. With this information, ReconstructHDPM
computes the interval (P.I) covered by P, when the begin_TMH
token that corresponds to P is encountered (lines 16-19). If P.H
follows the token, then completeness is violated and the client is
alarmed (lines 10-11).

General symbols
r: record r.id: primary key of r
r.k: search key of r D: domain of search key
L,(U): lower (upper) bound of D m: number of partitions
P: partition P.IL: influence list of P
P.R: root of TMH-Tree of P P.H: hash value on P.R and P.ST
P.LT: time of last update in P P.ST: time of second last update

TMH-Tree symbols
n: TMH-Tree node e: node entry
e.h: hash value in e e.k: search key value in e
e.p: pointer to child node of e e.t: time of last modification in e

DPM-Tree symbols
sig: signature on HDPM, TDPM, D N: DPM-Tree node
N.H: hash value in N N.T: timestamp in N
HDPM: hash value in the root TDPM: timestamp in the root

Query symbols
q: query q.id: unique identifier of q
q.rg: range of q q.t: time of last VO creation for q

Table 4.1 Summary of symbols

140

ReconstructHDPM (VerificationObject VO, Interval I)
1. Initialize an empty string buffer B
2. Remove next entry E from VO
3. If E is begin_TMH
4. Remove next entry E from VO
5. If E is an ST value
6. Append E to B
7. Append ReconstructHroot(VO) to B
8. Remove next entry E from VO // E is end_TMH
9. Return hash(B)
10. Else // E is a P.H value
11. If the query overlaps with I, completeness is violated
12. Else
13. Remove next entry E’ from VO // E’ is end_TMH
14. return E // i.e., P.H
15. If E is a hash value H, return H
16. If E is [
17. (I1, I2) = computeIntervals(I)
18. Append ReconstructHDPM(VO, I1) to B
19. Append ReconstructHDPM(VO, I2) to B
20. If E is], return hash(B)

Figure 4.4 The algorithm for reconstructing HDPM

The above discussion focuses on a single query. If there are
several running queries in the system, the SP could process them
independently, by calling RangeDPM for each query. This
however, would lead to high processing cost due to multiple tree
traversals. Instead, CADS applies RangeDPM only once, and
checks each visited node against all running queries.

4.3 The Query Monitoring Algorithm
Considering that the initial result has been computed, we describe
its continuous monitoring in the presence of data updates. Recall
from Section 3 that, in order to achieve temporal completeness,
REF performs false transmissions that lead to large
communication overhead, high processing cost at the SP, and
redundant verification effort at the clients. In the sequel, we
present a solution that minimizes the false transmissions.
Moreover, motivated by the observation that an updated VO
shares common components with the previous one, we propose a
virtual caching mechanism (VCM) that further reduces the
communication cost. The term virtual is due to the fact that the SP
does not store the VO for any query, which could lead to
excessive memory consumption (proportional to the number of
queries). Each client keeps in its own cache only a single VO.

When the SP receives a list of updates from the DO, it first
determines the set of affected partitions in which at least one
update occurs. Let AQ be the set of affected queries stored in the
influence lists of these partitions. The SP will create new VOs
only for the queries in AQ (as opposed to all queries for REF).
Note that, depending on the granularity of the partitioning, false
transmissions may still occur for queries that intersect an affected
partition, without being influenced by the update(s). VO
generation is performed by a modified version of RangeDPM.
Specifically, when a node N is visited, its timestamp (N.T) is
checked against q’s timestamp (q.t). Recall that (i) N.T is the time
of the last update in any partition under N, and (ii) q.t is the time
of the last update in the VO of q. If q.t ≥ N.T, then all updates in N
have been sent to the client during a previous transmission.
Therefore, the VO components needed for reconstructing N.H are
already present in the client’s cache and up-to-date. A special

token Hit is appended to the VO to signify that the client must
retrieve these components from its own cache. Otherwise (q.t <
N.T), the process is identical to the one used for the initial
computation. Similar modifications apply to RangeTMH.

The SP sends the updated VO to the client along with a new
signature and TDPM. The client executes CombineVO (Figure 4.5)
in order to merge the components contained in the updated VO
(newVO) with the ones in the cache (cachedVO). The resulting
VO is then stored in the client’s cache (i.e., it becomes the new
cachedVO). CombineVO scans the two VOs in parallel, retrieving
an entry En (Ec) from newVO (cachedVO) at each step. An
important invariant is that En and Ec must always correspond to
the same item. The algorithm distinguishes four cases. If En and
Ec have the same type (i.e., they are both hash values, records,
dummies or tokens), En is appended to the new VO (lines 4-5). In
the second case (lines 6-8), En is a non-token value and Ec is [.
This implies that newVO contains updated information about the
sub-tree starting at [. Therefore, En is added to VO, and all entries
of cachedVO up to the matching] (signifying the end of the sub-
tree) are deleted in order to retain synchronization between En and
Ec. Lines 9-11 capture the reverse case, where a non-token value
in cachedVO is replaced by a sub-tree in newVO. All entries
between [and] in newVO that correspond to this sub-tree are
inserted into VO. Finally (lines 12-16), if En is Hit, the matching
value or sub-tree of cachedVO is appended to VO. With the new
VO, the client recomputes HDPM and verifies it against the new
signature.

CombineVO (newVO, cachedVO)
1. Initialize VO to empty
2. While newVO still has entries // also for cachedVO
3. Remove next entry En from newVO and Ec from cachedVO
4. If En and Ec have the same type
5. Append En to VO
6. Else if En is a hash or record or dummy value and Ec is [
7. Append En to VO
8. Remove all entries from cachedVO until matching]
9. Else if En is [and Ec is a hash or record or dummy value
10. Append En to VO
11. Remove all entries from newVO until matching] and

append them to VO
12. Else if En is Hit
13. If Ec is a hash value, append Ec to VO
14. Else if Ec is [or begin_TMH
15. Append Ec to VO
16. Remove all entries from cachedVO until matching

] or end_TMH and append them to VO
17. Return VO

Figure 4.5 The CombineVO algorihtm

Figure 4.6 illustrates the concepts of monitoring and VCM by
continuing the example of Figure 4.3, assuming that the initial
result computation occurred at time τ =1 (q.t=1). The diagram also
includes the timestamps inside the nodes and the entries. At τ =2
there is at least one change in P2 (N2.T=2), but since P2 does not
overlap with the query range, the SP does not perform VO
generation and transmission. At τ =3, there are 3 deletions (of r6,
r7 and r8) and one update (r10.k changes from 77 to 74) in P4, and
one insertion of a new record rn in P1. Because P4 intersects with
the query, a new VO is generated. RangeDPM first visits the root
of the DPM-Tree and then node N5 (N5.T =3), whose interval does

141

not overlap q. Since N5.T > q.t, N5.H is different (due to the
insertion of rn) from the cached value and is appended to newVO.
The traversal continues with N6 and reaches leaf N3. Because
N3.LT = 1 = q.t, all the components needed to reconstruct N3.H are
already in cachedVO and a Hit token is added to newVO. Then,
RangeDPM proceeds to N4, where N4.LT=3 > q.t. Thus, the
corresponding TMH-Tree (TMH4) must be traversed, after
expanding q to q΄:[50,76].

Because in TMH4 the three records (r6, r7, r8) originally stored
in leaf n'1 are deleted, a merge operation has been performed
between n'1 and n'2. This has reduced the number of entries in the
parent node n4, and a dummy value replaces the (deleted) first
entry, which is appended to the VO. The timestamp of the second
entry (3) is larger than q.t, which signifies that at least one update
has occurred in n'2 after q.t. Therefore, all its records are added to
the VO. Finally, a Hit token is inserted for the third entry, because
h'3 has not been altered since τ=1. Note that dummy values are
important for synchronization between the newVO and cachedVO
during the execution of CombineVO.

HDPM, 3

H5, 3 H6, 3

H1, 3 H4, 3H2, 2 H3, 1

cachedVO : [H5, [begin_TMH, N3.ST, [h1, [r4, r5], dummy], end_TMH,
begin_TMH, N4.ST, [[r6, r7, r8], [r9, r10], h3'], end_TMH]]

41, r1.id
42, r2.id
47, r3.id

48, r4.id
59, r5.id

74 h'2 , 3 79 h'3 , 1

74, r10.id
76, r9.id

79, r11.id
80, r12.id

L=1
P1 P2 P3 P4

TMH3

DPM-Tree

TMH4

N7

N5 N6

N1 N2 N3 N4

n

n1 n2

n4

n'2 n'3

Included in the VO

q
50 75

U=80

q'
48 76

h1,1 48 h2, 1
3

41

In client’s cache

(+<rn.id, 5>)

(-r6.id)
(-r7.id)
(-r8.id)

(-r10.id, +<r10.id, 74>)

= 1

= 3 newVO : [H5, [Hit, begin_TMH, N4.ST, [dummy, [r10, r9], Hit], end_TMH]]

τ

τ

Figure 4.6 Query monitoring example

Proof of temporal completeness. Suppose that the initial
computation of a query q occurs at a time τ and the VO is sent to
the client. The client successfully verifies its correctness and
stores it as cachedVO. Now assume that at τ' (>τ) one (or more)
update(s) takes place in some partition P that overlaps with q, but
the SP does not send a new VO to the client. Subsequently,
another update occurs that affects q. This time the SP generates
newVO and sends it to the client (along with new sig and TDPM).
We distinguish two cases: (i) the newVO contains a partial VO
corresponding to P, thus also P.ST. The client compares P.ST
with the cached TDPM (=τ). Since P.ST > τ, at least a potential
result update (at P.ST) was omitted and the client is alarmed. (ii)
newVO contains a Hit token that corresponds to P. Since the
actual P.ST is different than the one included in cachedVO, the
client reconstructs a false P.H value and soundness is violated.

5. MANAGING MULTIPLE OWNERS
All existing techniques in the database outsourcing literature
consider the existence of a single owner. However, there is a
variety of applications (recall the examples of Section 1) in which

a SP collects multiple related datasets, each outsourced by a
different DO. Let K be the number of DOs. A straightforward
extension of CADS in such applications would be to maintain
independent indexing schemes and generate separate VOs for each
owner. We refer to this solution as CADSK. The drawback of
CADSK is that the query processing cost at the SP and the
network overhead for transferring the VOs are linearly correlated
with K. In order to avoid this problem, we propose a version of
CADS, called CADS1, that integrates the data of all owners in a
single authentication process with one VO, independently of the
number of DOs. Section 5.1 describes CADS1, and Section 5.2
compares it analytically with CADSK.

5.1 CADS1
The domain D and the number of partitions m are common for all
owners and the SP. Each DOj maintains its own data using an
indexing scheme similar to the one of Figure 4.1. Let Pi,j be the i-
th partition at owner DOj. The data in Pi,j are indexed by a TMH-
Tree TMHi,j. All partitions are indexed by a DPM+-Tree, which is
a modification of the DPM-Tree. Specifically, a leaf node
corresponds to a partition tuple (Pi,j.R, Pi,j.LT, Pi,j.ST, Pi,j.H),
where all attributes have the same meaning as in the DPM-tree.
An adjacent pair Pi,j, Pi+1,j of leaves generates an internal node N
at the next level that stores (N.H, N.T), where N.H = (Pi,j.H ·
Pi+1,j.H) mod c, and N.T = max(Pi,j.LT, Pi+1,j.LT). That is, the only
difference between the two structures regards the hash values of
intermediate nodes (in the DPM-Tree, N.H = h(Pi.H | Pi+1.H)).
The modular product stored in the root of the DPM+-Tree of
owner DOj is HDPMj= ∏m

i=1Pi,j.H (mod c).

Every owner DOj signs HDPMj and sends its signature sigj to
the SP along with its records. Note that sigj does not entail any
knowledge about the data of the other owners. However, the
signing process involves some modifications with respect to
CADS. Specifically, a trustworthy key distribution center assigns
to each owner DOj a private key aj and a public key (bj, c), i.e., all
public keys have the same 3 component c. Given HDPMj, DOj
creates sigj = h(HDPMj)

aj mod c. A client can confirm the
authenticity of HDPMj by checking if sigbj mod c equals h(HDPMj).

The SP maintains, for each partition Pi, the TMH-Trees of all
owners separately. The hash value of Pi is Pi.H = ∏K

j=1 Pi,j.H (mod
c), where K is the number of owners. A single DPM+-Tree
indexes all partitions. Specifically, the value N.H in an internal
node N is the modular product of the hash values in the child
nodes. The product in the root of the DPM+-Tree is HDPM=
∏m

i=1Pi.H . Note that, due to the commutative and associative
properties of modular multiplication, HDPM can be written as:
∏K

j=1∏
m
i=1Pi,j.H (mod c)= ∏K

j=1 HDPMj (mod c). This fact is exploited
by the verification process at the client.

We describe the VO generation and verification algorithms of
CADS1 using Figure 5.1, where m=4 and there are two owners,
DO1 and DO2. The query q overlaps partitions P1 and P2. For
simplicity, we omit all temporal information from the example
(and the structures) as its use is identical to the case of a single
owner. Furthermore, we focus on a snapshot query, since the

3 Note that using a single component c for all owners does not

compromise the private key of any DO according to RSA.

142

monitoring mechanism is the same as CADS. The SP calls
RangeDPM, which performs a pre-order traversal of the DPM+-
Tree, reaching leaf node N1. The two TMH-Trees that are
associated with partition P1 (one per owner) are visited and the
two partial VOs (VO_TMH1,1 and VO_TMH1,2) are appended to
the VO. Next, RangeDPM visits node N2 and, similarly, adds
VO_TMH2,1 and VO_TMH2,2 to the VO. Finally, because q does
not overlap with N6, H6 is inserted into the VO. The SP transmits
to the client the VO, D, as well as the signatures sig1, sig2 in a pre-
determined order, which is known to the client.

HDPM = H5 · H6 (mod c)

H5 = H1 ·H2 (mod c)

H1 H2 H3 H4

H6 = H3 ·H4 (mod c)

P1 P2 P3 P4

q

N5 N6

N1 N2 N3 N4

VO: [[begin_TMH, VO_TMH1,1, VO_TMH1,2, end_TMH,
begin_TMH, VO_TMH2,1, VO_TMH2,2, end_TMH], H6]

DPM+-Tree

TMH1,1

TMH1,2

TMH2,1

TMH2,2
Figure 5.1 VO generation for multiple owners

The client first computes P1,1.H and P1,2.H from VO_TMH1,1 and
VO_TMH1,2, respectively, using ReconstructHroot. Then, it
performs their modular multiplication and produces P1.H (i.e.,
H1). In a similar way, it computes H2. H5 is derived by
multiplying H1 with H2. Finally, it reconstructs the product of the
root as: HDPM= H5 · H6 (H6 was received as part of the VO). The

client also obtains (from the SP) sig1 =H
a1

DPM1 mod c and sig2

=H
a2

DPM2 mod c, where a1 and a2 are the private keys of DO1 and
DO2.

 Since HDPM = HDPM1 · HDPM2 mod c, in order to verify
authenticity, it suffices to prove that the reconstructed HDPM is
equal to sig1

b1 · sig2
b2 mod c, where (b1,c) and (b2,c) are the public

keys of DO1 and DO2. In general for K owners, the results are
sound, iff the re-constructed HDPM equals sig1

b1 · … · sigK
bK mod c.

Proof of soundness: Let Si,j be the set of records in Pi owned
by DOj. A malicious SP can attack CADS1 if it can find m·K sets
of records S'i,j such that: (i) the modular product of their
respective P'i,j.H values is identical to HDPM and (ii) there is at
least one pair (i, j) satisfying S'i,j ≠ Si,j. This, however, is
impossible, due to collision-resilience of the hash function in the
signature scheme. Now assume that the SP can determine m·K
values P'i,j.H (with at least one P'i,j.H ≠ Pi,j.H) such that their
modular product yields HDPM. Because the hash function is one-
way, it is computationally infeasible for the SP to find m·K sets of
records S'i,j yielding these hash values. The proofs of
completeness and temporal completeness are identical to the case
of a single owner and omitted.

5.2 Analytical Comparison of CADS1 and CADSK
Similar to the single owner case, CADS1 combines all queries in a
single traversal of the DPM+-Tree that checks each visited node
against every query. Therefore, it is faster than CADSK in terms
of query processing. Next, we compare the two methods
analytically on space consumption, VO size and verification cost.
Table 5.1 summarizes the symbols used in the analysis, as well as
their typical values. These values were obtained based on the

hardware and software settings of our experiments, using the
Crypto++ library. Our measurements are similar to those of the
library benchmarks [Crypto]. Sh=20 bytes is the digest size of
SHA1 [NIST95] (one-way, collision-resistant) hash function. Sm
is the size of the modular product, which equals the signature size.
We use RSA with 128 bytes signatures, which, currently is the
minimum size that guarantees security.

Symbol Meaning Typical Value
Cv CPU cost of verify signature operation 115 μsec
Ch CPU cost of hash operation 1.1 μsec
Cm CPU cost of multiply operation 44 μsec
Sh size of a hash value 20 bytes
Sm size of a modular product 128 bytes

Table 5.1 Symbols and values in the analysis

Let N be a node of the DPM+-Tree whose subtree covers an
interval I of domain D. In CADSK, the SP maintains K DPM-
Trees and, therefore, there are K nodes that correspond to the
same I, each storing a hash value of size Sh. In CADS1, the SP
maintains a single DPM+-Tree and stores one modular product of
size Sm in N. In order for CADS1 to start outperforming CADSK in
terms of memory consumption, the number of owners should be
lower bounded by the following formula:

K K m
h m

h

S
S S

S

⎡ ⎤
⋅ ≥ ⇔ ≥ ⎢ ⎥

⎢ ⎥
 (5.1)

Given the typical values Sh=20 bytes, Sm=128 bytes from table
5.1, CADS1 incurs less memory consumption than CADSK for K
≥ 7. The same lower bound applies to the VO size, because during
the VO generation (i) in CADSK the SP includes K hash values
into the VO for every pruned node of the DPM-Tree, whereas (ii)
in CADS1, it includes one modular product for every pruned node
of the DPM+-Tree.

Next we analyze the verification cost at the client, excluding
the reconstruction of P.H values, which is common in CADSK
and CADS1. Let Eover be the number of partitions overlapping
with the query, and Eh/m the number of hash values (modular
products) that are needed for reconstructing the root of the DPM-
Tree (DPM+-Tree). In CADSK, the client has to reconstruct K
DPM-Tree root hashes by performing Eh/m hash operations (each
costing Ch = 1.1 μsec) per tree, and to verify all trees. Thus, the
cost of verification in CADSK is:

K /K Kh m h vVC E C C= ⋅ ⋅ + ⋅ (5.2)

In CADS1, the client has to reconstruct a single DPM+-Tree root
with cost Eh/m · Cm (Cm = 44 μsec). Also for every partition Pi that
overlaps with the query, it has to compute the hash value of the
corresponding DPM+-Tree leaf by multiplying K Pi.H values
(one per owner) at a cost of Eover · (K-1) · Cm. While verifying the
reconstructed HDPM, the client first raises each signature to the
power of the respective owner’s public key component bj. The
overhead of each exponentiation is almost equal to that of
verifying a single signature. Therefore, the total cost of
exponentiation is K · Cv. Finally, the client multiplies the K
signatures together at a cost of (K-1) · Cm. Summing up the
aforementioned factors yields the following equation for the total
verification cost of CADS1:

1 / (K 1) K (K 1)h m m over m v mVC E C E C C C= ⋅ + ⋅ − ⋅ + ⋅ + − ⋅ (5.3)

Combining equations (5.2) and (5.3), we derive equation (5.4)
that lower bounds the value of K, after which CADS1 starts to

143

outperform CADSK in terms of verification cost. Note that this
equation does not take into account implementation issues.
Specifically, CADSK executes functions ReconstructHDPM and
CombineVO K times, which involve numerous recursive calls. As
we show in the experimental evaluation, CADS1 outperforms
CADSK even for small values of K.

/

/

(1))
K

(1)
m h m over

h h m m over

C E E

C E C E

⎡ ⎤− −
≥ ⎢ ⎥− +⎢ ⎥

 (5.4)

6. EXPERIMENTAL EVALUATION
We deployed REF and CADS on a P4 3GHz CPU with 2GBytes
of RAM, using the Crypto++ library [Crypto]. Each record
consumes 100 bytes and its search key ranges from 0 to 106. For
generality, we repeat each experiment on two datasets: (i) in UNI
the initial search key distribution is uniform; (i) in SKD the search
keys follow the Zipfian distribution (with the skew parameter set
to 0.8, so that 77% of the records fall in 20% of the data space).
Each experiment is a simulation of 100 timestamps. At every
timestamp, updates arrive at a rate AR. An update involves a
deletion of a random tuple and an insertion of a new one with the
same id but with a different search key. To produce the new
value, a random number is generated in range [-103, +103] and
added to the old one. Consequently, the dataset cardinality DC is
constant at all times. We monitor QC running queries, which are
uniformly distributed in the dataspace and their result set size is
approximately 0.1% of DC. Finally, after a fine tuning step we set
the number of partitions m of CADS to 8192 for both datasets.
Table 6.1 summarizes the system parameters under investigation,
along with their ranges and default values (per timestamp).
Section 6.1 compares CADS against REF, and Section 6.2
evaluates CADS1 and CADSK in the presence of multiple owners.

Parameter Default Range
Data cardinality (DC) 100K 10K, 50K, 100K, 200K, 500K

Query cardinality (QC) 1K 100, 500, 1K, 2K, 5K
Update rate (AR) 100 10, 50, 100, 200, 500

Table 6.1 System parameters

6.1 Single Owner
First, we assess the effect of the data cardinality DC, after setting
the other parameters to their default values (QC = 1K, AR = 100).
Figure 6.1 illustrates the total query processing time (milli-
seconds) per timestamp at the SP. The overhead of REF is
significantly higher because it has to process all the running
queries. On the other hand, CADS re-evaluates only the queries
whose result changes, plus a small number of queries that overlap
affected partitions (although their results do not change). The cost
of REF increases logarithmically with DC due to the DMH-Tree.
CADS is not very sensitive to DC because of the virtual caching
mechanism (VCM). Specifically, when a visited node has not
been altered with respect to the previous transmission, the
traversal of its sub-tree is entirely skipped.

REF CADS

0

500

1000

1500

2000

10k 50k 100k 200k 500k

CPU time (ms)

DC

0

500

1000

1500

10k 50k 100k 200k 500k

CPU time (ms)

DC

(a) UNI (b) SKD
Figure 6.1 Query processing time vs. DC

Figure 6.2 shows the total VO size (Mbytes) for all queries,
transmitted by the SP per timestamp as a function of DC. The
communication overhead of REF increases linearly because, since
the selectivity is fixed, the number of records in the result is linear
to the cardinality. All these records are transferred to the client at
each timestamp. In CADS, the growth of the result is absorbed by
the VCM. Specifically, since QC and AR are fixed and
independent of DC, the size of the result matters mainly for the
first transmission. For SKD, the VO size of CADS increases
slightly faster because of the unbalanced nature of the partitions.
In particular, an update in a dense partition may invalidate a large
part of the client’s cache.

REF CADS

0

10

20

30

40

50

60

10k 50k 100k 200k 500k

VO size (MB)

DC

0

10

20

30

40

50

60

10k 50k 100k 200k 500k

VO size (MB)

DC

(a) UNI (b) SKD
Figure 6.2 VO size vs. DC

Figure 6.3 depicts the verification time (milli-seconds) per
timestamp at each client. REF imposes a heavy burden on the
clients because, due to the false transmissions, the client must
verify its query at every timestamp. Note that the performance
gap between CADS and REF does not increase as fast as in the
previous diagrams, because even if a partial VO is in the cache,
the client still needs to combine it with the new VO components
and match it against the signature.

REF CADS

0.5

1

1.5

2

2.5

3

3.5

4

10k 50k 100k 200k 500k
0

CPU time (ms)

DC

0

0.5

1

1.5

2

2.5

3

3.5
4

10k 50k 100k 200k 500k

CPU time (ms)

DC

(a) UNI (b) SKD
Figure 6.3 Verification time vs. DC

Figure 6.4 compares the two methods on memory consumption.
REF and CADS consume about the same space, which is
dominated by the records. Specifically, 75%-80% of the space
overhead is due to the stored tuples and most of the rest due to the
hash values. The additional information of CADS (query book
keeping, influence lists, etc.) is negligible.

REFCADS

0
10
20
30
40
50
60
70

10k 50k 100k 200k 500k

Index size (MB)

DC
0
10
20
30
40
50
60
70

10k 50k 100k 200k 500k

Index size (MB)

DC

(a) UNI (b) SKD
Figure 6.4 Index size vs. DC

The second set of experiments evaluates the effect of the query
cardinality (QC) for DC = 100K, and AR = 100. The query
processing cost of both methods increases due to different

144

reasons. In REF, each query is evaluated at each timestamp. In
CADS, the number of queries affected by an update (and
therefore have to be re-evaluated) is proportional to QC. The VO
size in Figure 6.6 follows similar trends for the same reasons.

REF CADS

1

10

10

10

10

100 500 1000 2000 5000

2

3

4 CPU time (ms)

QC

1

10

10

10

10

100 500 1000 2000 5000

4

3

2

CPU time (ms)

QC

(a) UNI (b) SKD
Figure 6.5 Query processing time vs. QC

REF CADS

0.01

0.1

1

10

100

100 500 1000 2000 5000

VO size (MB)

QC

0.01

0.1

1

10

100

100 500 1000 2000 5000

VO size (MB)

QC

(a) UNI (b) SKD
Figure 6.6 VO size vs. QC

The last set of experiments in this section assesses the effect of
the update rate (AR), after fixing DC to 100K and QC to 1K.
Figure 6.7 shows the total query processing cost per timestamp at
the SP. REF is insensitive to the update rate because, in order to
achieve temporal completeness, the SP has to generate and
transmit a new VO for all the queries, independently of the
number of updates. The fluctuations in its performance are caused
by changes in the data distribution. On the other hand, the cost of
CADS increases because the number of affected queries is
proportional to AR. This is also reflected in the VO size of CADS,
shown in Figure 6.8. As expected, AR does not affect the VO size
of REF. Note that the cost of update handling at the SP is
negligible compared to that of query processing. Specifically,
both CADS and REF consume around 15ms for AR = 500,
whereas, as shown in Figure 6.7, the corresponding query
processing costs are about 300ms (for CADS) and 800ms (for
REF).

REF CADS

0
100
200
300
400
500
600
700
800
900

1000

10 50 100 200 500

CPU time (ms)

AR

 0

200

400

600

800

1000

1200

10 50 100 200 500

CPU time (ms)

AR

(a) UNI (b) SKD
Figure 6.7 Query processing time vs. AR

REF CADS

0

2

4

6

8

10

12

10 50 100 200 500

VO size (MB)

AR

0

2

4

6

8

10

12

10 50 100 200 500

VO size (MB)

AR

(a) UNI (b) SKD
Figure 6.8 VO size vs. AR

Figure 6.9 depicts the verification time at the client. The diagrams
are similar to those in Figures 6.7 and 6.8, except that the curves
converge faster. This is due to the absence of the caching effect.
Specifically, although the processing cost and the VO size are
reduced by VCM, the client still has to verify the affected queries.

REF CADS

0

0.5

1

1.5

2

2.5

3

10 50 100 200 500

CPU time (ms)

AR

0

0.5

1

1.5

2

2.5

3

10 50 100 200 500

CPU time (ms)

AR

(a) UNI (b) SKD
Figure 6.9 Verification time vs. AR

Summarizing this section, CADS exhibits considerably lower
query processing time than REF, enabling the SP to serve
numerous running queries without compromising the quality of
service. It also incurs a significant reduction of the
communication overhead, a fact that makes it suitable for wireless
networks, and, in general, environments where transmission is
expensive. Finally, CADS minimizes the verification burden,
which is important for clients (i.e., PDAs) with limited resources.

6.2 Multiple Owners
In this section we compare CADS1 with CADSK varying the
number of owners (K), after setting the other parameters to the
default values (DC = 100K, QC = 1000, AR = 100). For each
experiment, we divide the records equally among owners, so that
each owner maintains approximately DC/K alive tuples per
timestamp. Updates are split accordingly, i.e., each update
originates from every DO with the same probability.

Figure 6.10 illustrates the total query processing time at the
SP per timestamp. CADS1 is better than CADSK in all cases
because it requires one traversal of a single DPM+-Tree. Recall
that during this traversal, every visited node is checked against all
running queries. On the other hand, CADSK necessitates the
traversal of K distinct DPM-Trees, one for each owner.

CADS CADS1K

0
200
400
600
800

1000
1200
1400
1600
1800
2000

4 8 16 32 64

CPU time (ms)

K

0

200

400

600

800

1000

1200

1400

1600

4 8 16 32 64

CPU time (ms)

K

(a) UNI (b) SKD
Figure 6.10 Query processing time vs. K

Figure 6.11 shows the total VO size transmitted per timestamp.
For CADSK the VO size is proportional to K due to the hash
values of the distinct DPM-Trees (although the number of results
is independent of K). CADS1 is rather insensitive because K
affects the VO overhead only for the TMH-Trees, but not for the
DPM+-Tree. Recall that CADS1 includes in the VO a modular
product of size 128 bytes for each pruned DPM+-Tree node.
Although this modular product is larger than a hash value (20
bytes), it is independent of K. Therefore, as predicted by the cost
models of Section 5.2, CADS1 starts outperforming CADSK when
K exceeds 7.

145

CADS CADS1K

0
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4 8 16 32 64

VO size (MB)

K
0

0.2

0.4

0.6
0.8

1
1.2

1.4

1.6

1.8

4 8 16 32 64

VO size (MB)

K

(a) UNI (b) SKD
Figure 6.11 VO size vs. K

Figure 6.12 depicts the verification time per client per timestamp.
The performance gain of CADS1 with respect to CADSK increases
with K, because in CADS1 a client performs a single verification
process independently of the value of K. The cost of this process
increases with K, but not as fast as that of individual verifications.

CADS CADS1K

0

0.5

1

1.5

2

2.5

3

3.5

4

4 8 16 32 64

CPU time (ms)

K

0

0.5

1

1.5

2
2.5

3
3.5

4

4 8 16 32 64

CPU time (ms)

K

(a) UNI (b) SKD
Figure 6.12 Verification time vs. K

Finally, Figure 6.13 depicts the index size at the SP. For 4 DOs,
CADS1 consumes slightly more space because the modular
product is between 6 and 7 times larger than a hash value.
However, the space overhead of CADSK increases with K because
of the distinct DPM-Trees that must be maintained for each DO.
Recall from Figure 6.4 that, although the authentication
information is relatively small (20%-25%) compared to the total
index size, when multiplied by a large value of K, it constitutes a
considerable fraction of the total space consumption.

CADS CADS1K

0

10

20

30

40

50

60

4 8 16 32 64

Index size (MB)

K
0

10

20

30

40

50

60

4 8 16 32 64

Index size (MB)

K

(a) UNI (b) SKD
Figure 6.13 Index size vs. K

Concluding this section, CADS1 outperforms CADSK on all
aspects and the performance gain increases with the number of
DOs. It is worth pointing out that CADS1 scales very well with K
meaning that, in practice, it could be used in applications
involving numerous DOs.

7. CONCLUSION
This paper constitutes the first work addressing continuous query
processing and authentication on data streams. We assume a SP
that collects information from one or more data owners and at the
same time processes queries originating from numerous clients.
The SP returns to the clients the query results, as well as
verification information necessary to establish their correctness.
In addition, the clients must be able to prove temporal
completeness, i.e., that there is no result omission in-between
subsequent updates. We first propose REF, a method that

achieves these goals at the expense of false transmissions. To
solve this problem, we introduce CADS, which reduces (i) the
processing cost at the SP, (ii) the communication overhead
between the SP and the clients, and (iii) the verification effort at
the client. Finally, we extend CADS to multiple owners and show
that substantial gains can be achieved by integrating the data of
different owners in one index and a single verification process.

In the future, we plan to adapt our techniques to spatio-
temporal data streams. In this setting, the SP (e.g., a location
based service) collects the positions of continuously moving users
from one or more owners (e.g., mobile phone operators). Clients
(e.g., local businesses) issue spatial (e.g., range, nearest neighbor,
etc.) queries to the SP and must be able to verify the results before
contacting (e.g., sending offers, e-coupons, etc.) users in their
vicinity. CADS could be applied after replacing the single-
dimensional partitions with a multidimensional indexing scheme.

ACKNOWLEDGEMENTS
This work was supported by grant HKUST 6184/05E, from Hong
Kong RGC.

REFERENCES
[BBD+02] Babock, B., Babu, S., Datar, M., Motwani, R., Widom, J.

Models and Issues in Data Stream Systems, PODS, 2002.

[BKOS97] de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf,
O. Computational Geometry: Algorithms and Applications.
Springer-Verlag, 1997.

[Crypto] www.eskimo.com/~weidai/benchmark.html

[DGMS03] Devanbu, P., Gertz, M., Martel, C., Stubblebine, S. Authentic
Data Publication Over the Internet. Journal of Computer
Security 11(3): 291-314, 2003.

[GO03] Golab, L., Öszu, T.M. Issues in Data Stream Management.
SIGMOD Record, 32(2): 5–14, 2003.

[GTTC03] Goodrich M., Tamassia R., Triandopoulos N., Cohen R.
Authenticated Data Structures for Graph and Geometric
Searching. CT-RSA, 2003.

[HIM02] Hacıgümüş, H., Iyer, B., Mehrotra, S. Providing Databases as
a Service. ICDE, 2002.

[LHKR06] Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L. Dynamic
Authenticated Index Structures for Outsourced Databases.
SIGMOD, 2006.

[M89] Merkle, R. A Certified Digital Signature. CRYPTO, 1989.

[MND+04] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A.,
Stubblebine, S. A General Model for Authenticated Data
Structures. Algorithmica, 39(1): 21-41, 2004.

[MNT04] Mykletun, E., Narasimha, M., Tsudik, G. Signature
Bouquets: Immutability for Aggregated/Condensed
Signatures. ESORICS, 2004.

[NIST95] National Institute of Standards and Technology. FIPS PUB
180-1: Secure Hash Standard. National Institute of Standards
and Technology, 1995.

[NT06] Narasimha, M., Tsudik, G. Authentication of Outsourced
Databases Using Signature Aggregation and Chaining.
DASFAA, 2006.

[PJRT05] Pang, H., Jain, A., Ramamritham, K., Tan, K.-L. Verifying
Completeness of Relational Query Results in Data
Publishing. SIGMOD, 2005.

[PT04] Pang, H., Tan, K.-L. Authenticating Query Results in Edge
Computing. ICDE, 2004.

[RSA78] Rivest, R. L., Shamir, A., Adleman, L., A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120-126, 1978.

146

