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ABSTRACT 
We study processing and authentication of long-running queries 
on outsourced data streams. In this scenario, a data owner (DO) 
constantly transmits its data to a service provider (SP), together 
with additional authentication information. Clients register 
continuous range queries to the SP. Whenever the data change, 
the SP must update the results of all affected queries and inform 
the clients accordingly. The clients can verify the correctness of 
the results using the authentication information provided by the 
DO. Compared to conventional databases, stream environments 
pose new challenges such as the need for fast structure updating, 
support for continuous query processing and authentication, and 
provision for temporal completeness. Specifically, in addition to 
the correctness of individual results, the client must be able to 
verify that there are no missing results in between updates.  

We face these challenges through several contributions. Since 
there is no previous work, we first present a technique, called 
REF, that achieves correctness and temporal completeness but 
incurs false transmissions, i.e., the SP has to inform clients 
whenever there is a data update, even if their results are not 
affected. Then, we propose CADS, which minimizes the 
processing and transmission overhead through an elaborate 
indexing scheme and a virtual caching mechanism. Finally, we 
extend CADS to the case where multiple owners outsource their 
data to the same SP. The SP integrates all data in a single 
authentication process, independently of the number of DOs.  

1.  INTRODUCTION 
Database outsourcing [HIM02] has recently received considerable 
attention. According to this model, a data owner (DO) outsources 
its database to one (or more) specialized service providers (SPs) 
that have the necessary computational power and tools to support 
advanced query processing. Clients issue their queries directly to 
the SP. Outsourcing provides several benefits for all parties 
involved: (i) the DO does not need to acquire or dedicate the 
resources necessary for running a full-scale DBMS, (ii) the SP 
can achieve economies of scale by serving multiple owners, and 
(iii) the clients can obtain the data by a SP that is close in terms of 
network latency. Furthermore, the system robustness is improved 
because the DO ceases to be the single point of failure. However, 

since the SP is not the real owner of the data, it must be able to 
prove (to the users) the soundness and completeness of the query 
results. Soundness ensures that all the records returned originate 
from the DO and no spurious records exist. Completeness 
guarantees that all the tuples that satisfy the query are present in 
the result set. We refer to these two terms collectively as 
correctness.  

Existing systems, presented in Section 2, use the general 
framework of Figure 1.1. The DO obtains, through a (trusted) key 
distribution center, a private and a public key. The private key is 
known only to the DO, whereas the public one is available to the 
clients. The DO signs the dataset and transmits it along with the 
signature (created using its private key) to the SP. The SP keeps 
the data and the signature locally. In order to facilitate query 
processing, the dataset is indexed by an authenticated data 
structure (ADS). This is similar to a conventional index, but it 
contains additional information for proving the correctness of the 
results. When a client issues a query, the SP generates a 
verification object (VO) by accessing the ADS. The VO contains 
the result set along with the authentication information necessary 
for proving correctness. The SP sends the VO and the 
corresponding signature to the client. The client can verify 
correctness by matching the received signature against the VO and 
the public key of the owner.  Alternative implementations of the 
framework differ on the choice of signature techniques, ADS, and 
verification processes. Furthermore, most systems necessitate the 
maintenance of identical copies of the ADS at the DO. 
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Figure 1.1 Authentication framework for outsourced databases  

All previous work in the database literature focuses on disk-
resident and relatively static datasets. On the other hand, 
increasing monitoring of transactions, ecological parameters, 
homeland security, RFID chips etc., establishes new and highly 
dynamic environments for data outsourcing. As an example 
assume a SP that receives current stock values from one or more 
stock exchanges. Subscribers register long-running queries at the 
SP. Whenever a stock update influences a query, the 
corresponding client is immediately informed. In addition to the 
timely delivery of query results, it is crucial for the subscribers of 
such a system to be able to establish their correctness. As a 
second application, consider a web-based SP that collects item 
prices from different outlets, but is not allowed to publish them 
(in order to avoid direct competition leading to discounts). A 
client looking for a bargain registers his/her price range (e.g., 
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below $500) for an item (e.g., Sony PS3) as a query. Each time an 
outlet posts a price in the desired range, the SP sends the 
corresponding verification object to the client that is able to 
automatically verify it.    

In the database literature, authenticated query processing has 
been traditionally linked with outsourcing. However, similar 
concepts also apply in situations where the DO and the clients 
communicate directly. Consider, for instance, a sensor network 
where a sink collects temperature readings from various sensors. 
Clients (e.g., environmental agencies, fire departments) register 
continuous range queries to the sink (e.g., report sensors with 
temperature reading in the range [45-50]). Assuming that the 
network is unreliable, authentication is necessary for establishing 
the correct transmission of the results before taking action. As an 
alternative, a server may gather intelligence data from satellites, 
and authentication is required for detection of attacks on the 
communication channel. In both cases, the sink/server plays the 
combined role of the DO and the SP in the framework of Figure 
1.1. For consistency with previous work, we follow that 
framework (assuming distinct DO and SP), but the proposed 
methods can be used for authentication without outsourcing.   

The dynamic nature of the data and the potentially large 
number of long-running queries pose several challenges. First, a 
system for continuous authentication on data streams must 
accommodate very fast updates and, at the same time, support 
efficient query processing. Second, it must include effective 
mechanisms for minimizing the communication cost with the 
clients, and their verification effort. Third, the SP may have to 
integrate data from several stream sources (e.g., stock exchanges, 
outlets, servers) in a single authentication process. Finally, in 
addition to correctness, the clients must be able to verify temporal 
completeness, i.e., confirm that they receive all result changes that 
are relevant to their queries. We aim at solving the above 
problems with the following contributions:  

1. Due to the lack of previous work on authenticated data 
streams, we first present a technique, called REF, used as a 
benchmark in our evaluation. REF achieves correctness and 
temporal completeness but incurs false transmissions, i.e., 
the SP has to inform clients whenever there is a data update, 
even if their results are not affected.  

2. We propose CADS, a technique that minimizes the 
processing and transmission overhead through an elaborate 
indexing scheme and a virtual caching mechanism. Both 
CADS and REF are main memory-based in order to achieve 
real-time query evaluation and fast structure updating. 

3. We extend CADS for situations where a SP hosts stream data 
from several owners, but each query involves a single 
verification process.  

4. We show through extensive experiments that CADS 
outperforms REF significantly in all aspects. Furthermore, its 
efficiency permits its application in highly dynamic 
environments involving numerous clients and a large volume 
of data.    

The rest of the paper is organized as follows. Section 2 surveys 
the basics on cryptography and the related bibliography. Section 3 
presents REF and Section 4 focuses on CADS. Section 5 deals 
with multiple owners. Section 6 experimentally evaluates CADS 
and compares it against REF. Finally, Section 7 concludes the 
paper with directions to future work. 

2.  BACKGROUND 
A one-way, collision-resistant hash function is a computationally 
efficient mapping h: {0,1}* → {0,1}l. The output of h is called 
digest and has fixed length l. The function is such that, given a 
digest y = h(M), it is computationally hard (i) to derive the 
message M from y, and (ii) to find another message M' such that y 
= h(M'). In this work we employ SHA1 [NIST95], which takes 
variable-length inputs and produces 20-byte digests. In the sequel, 
the term hash function (h) implies a one-way, collision-resistant 
hash function. 

A public-key digital signature scheme is used to verify that a 
message is not falsified (integrity), and that it originates from the 
party that signs it (authenticity). Our techniques adopt RSA 
[RSA78]. The digital signature generated using RSA has a typical 
size of 128 bytes. A key generator creates a private key a and a 
public key (b, c). The signer keeps the private key and publishes 
the public key. To create the digital signature sig of a message M, 
the signer performs operation sig = sign(M, a, c) = h(M)a mod c. 
Given sig and the signer’s public key, the verifier can confirm the 
authenticity of M by checking if verify(M, sig, b, c) = sigb mod c 
equals h(M).  

Mykletyn et al. [MNT04] devise two schemes that aim at 
reducing the communication cost and the verification time, when 
multiple signatures are to be transferred and verified at once. Both 
schemes allow aggregating multiple signatures into a single one 
that can be verified almost as fast as an individual signature. The 
first scheme is called Condensed-RSA and uses RSA for 
aggregating signatures generated by a single signer. The second is 
called BGLS and is based on the usage of elliptic curves and 
bilinear mappings to aggregate signatures generated by different 
signers. BGLS is expensive and elliptic curves are not as widely 
used as RSA.  

The Merkle Hash Tree (MH-Tree) [M89] is a main-memory 
binary tree originally proposed for efficient authentication of 
equality queries in a database sorted on the query attribute. Every 
record corresponds to a leaf node that stores the hash value of the 
binary representation of the record. The tree is constructed 
bottom-up, with each internal node storing the hash value of the 
concatenation of the hash values of its children. The owner signs 
the hash value stored in the root of the tree. Consider that a client 
asks for record r3 in the MH-Tree of Figure 2.1. The SP accesses 
the tree to locate the record. During the tree traversal, apart from 
record r3, it inserts into the VO the hash value stored in the sibling 
of every visited node (i.e., h12 and h4). Having the VO, signature 
sig and the owner’s public key, the client can verify the 
authenticity of the result by reconstructing the hash value of the 
root as h1234 = h(h12|h(h(r3)|h4)) and matching it against sig (‘|’ 
denotes concatenation). 

r1 r2 r3 r4

h1=h(r1) h2=h(r2) h3=h(r3) h4=h(r4)

h12=h(h1|h2) h34=h(h3|h4)

h1234=h(h12|h34)sig = sign(h1234)

records

 
Figure 2.1 Example of the Merkle Hash Tree 

Devanbu et al. [DGMS03] utilize the MH-Tree for answering 
one-dimensional range queries, satisfying soundness and 
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completeness. They also extend their method to multiple 
dimensions, combining the MH-Tree with the Range Search Tree 
[BKOS97]. Martel et al. [MND+04] develop a generalized 
framework for creating efficient authenticated versions of a broad 
class of data structures. Finally, Goodrich et al. [GTTC03] 
introduce techniques for authenticating data structures that 
represent graphs and geometric objects. 

The first disk-based authenticated structure that provides 
soundness, but not completeness is the VB-Tree [PT04], which is 
a B+-Tree augmented with signed digests. Signature chaining 
[PJRT05, NT06] guarantees both soundness and completeness, 
but has several drawbacks. First the owner must construct a 
number of signatures equal to the dataset cardinality and transmit 
them to the SP. The SP must store these signatures, each 
consuming 128 bytes (comparable to the size of a typical record). 
The large space overhead also affects the cost of query 
processing. Finally, the transmission of a result to the client 
contains a signature for each tuple. The client has to verify all 
these signatures, which can be a rather expensive process. 
Signature aggregation can be used to reduce the communication 
and verification cost.   

The current state-of-the-art, disk-based, authenticated 
structure is the Merkle B-Tree (MB-Tree) [LHKR06]. The MB-
Tree is basically a B+-Tree that hierarchically organizes digests, 
following the concept of the MH-Tree. Every internal node stores 
entries E of the form (E.p, E.k, E.h), where E.p points to a child 
node Nc, E.k is the B+-Tree search key and E.h is a hash value 
computed on the concatenation of the hash values of the entries 
contained in Nc. An entry in a leaf node is associated with the 
hash value of a record. The owner signs the hash of the 
concatenation of the hash values contained in the root of the tree. 
The EMB-Tree [LHKR06] embeds a MH-Tree inside each MB-
Tree node in order to reduce the VO size. 

Under the data stream paradigm, tuples generated by various 
sources are collected at a data stream management system 
(DSMS), where users register continuous queries. When a new 
tuple arrives, all relevant queries are re-evaluated. Query 
processing is usually performed by routing tuples through 
operator trees, where operators closely resemble their traditional 
counterparts such as selections or joins. Depending on the 
application characteristics, DSMSs adopt different models 
regarding the validity of tuples. A popular model assumes a 
sliding window of a given time frame w, i.e., a tuple s expires w 
time units after its arrival. In this case, all arrivals in the system 
that correspond to insertions and deletions are implicit. Another 
common model assumes positive-negative tuples, i.e., the DSMS 
receives a negative tuple –s that takes the same route through the 
operator tree as s, and erases all occurrences of its positive 
counterpart. Surveys of various DSMSs can be found in 
[BBD+02, GO03]. Nevertheless, to the best of our knowledge, 
none of the existing DSMSs considers authentication issues. 

3.  A REFERENCE SOLUTION 
This section introduces a competitor, hereafter called REF (for 
reference solution), used as a benchmark in our experimental 
evaluation. We first assume a SP that collects data from a single 
DO (multiple owners are discussed in Section 5). For simplicity, 
we consider that each tuple r has only two attributes: the primary 
key r.id and the search key r.k (queries are ranges on r.k). 
According to REF, tuples are sorted on the search key and 

indexed by an authenticated structure called the DMH-Tree (for 
Dynamic Merkle Hash-Tree), i.e., a MH-Tree where each node 
has 2 or 3 entries. Figure 3.1 illustrates an example DMH-Tree. 
Each leaf node (level 0) contains 2 or 3 records. For intermediate 
nodes, each entry e is a triplet (e.h, e.k, e.p), where e.k is the 
search key of the first record in the subtree of e, and e.p is a 
pointer to the corresponding child node. The value of e.h depends 
on the level. For level 1, e.h is a hash value on the concatenation 
of all records in the node pointed by e.p; for the upper levels, e.h 
is computed on the concatenation of the hash values of the entries 
in e.p. The DO and the SP maintain identical trees in main 
memory. In addition, the DO computes a value Hroot by hashing 
the concatenation of the hash values contained in the root of the 
tree e.g., in the example of Figure 3.1, Hroot =h(h1,5 | h6,12). Then it 
applies its private key to sign Hroot, using the RSA public key 
cryptosystem. The SP stores a copy of this signature.  

r1,r2,r3 r4,r5

h1,3=h(r1|r2|r3), k1 h4,5=h(r4|r5), k2

h6,8=h(r6|r7|r8), k6 h9,10=h(r9|r10), k9

h1,5=h(h1,3|h4,5), k1 h6,12=h(h6,8|h9,10|h11,12), k6

n1

h11,12=h(r11|r12), k11

leaf level 0 n2 n3 n4 n5

n6

n7

root n8

level 1 

level 2

r6,r7,r8 r9,r10 r11,r12  
Figure 3.1 An example of a DMH-Tree 

The DMH-Tree supports fast (i.e., logarithmic) updates1, based on 
the insertion/deletion algorithms of the B+-tree. Specifically, an 
insertion in a full (i.e., with 3 entries) node causes its split in two 
nodes, each containing 2 entries. On the other hand, a deletion 
from a node n with 2 entries leads to an underflow. Similarly to 
B+-trees, n first tries to borrow an entry from a full sibling node. 
If this is not possible, n is merged with a sibling. Since we do not 
use "right" pointers at the leaf level (as in B+-trees), in our 
context the term sibling signifies the previous or the next node 
under the same parent. In addition, the DMH-Tree can support 
multiple updates at the same timestamp. First, the structure is 
modified to accommodate all updates, without altering any hash 
value, but temporarily marking the visited paths. Then, the 
marked paths are revisited and the hash values are computed 
bottom-up. In this way, the (expensive) hash computations are 
performed only once. 

The DMH-Tree handles snapshot query processing and 
verification as follows. Let q:[qL, qU] be a range query on r.k, 
where qL (qU) is the lower (upper) bound. The SP performs two 
top-down traversals to locate the tuples rL and rU immediately 
before qL and after qU, respectively. These boundary records are 
necessary to enforce completeness, i.e., that the SP does not omit 
results at the range limits. Then it expands q to [rL.k, rU.k] and 
applies the RangeDMH algorithm of Figure 3.2 to compute the 
verification object (VO), which contains the actual result and 
additional data so that the client can establish its correctness. 
Specifically, the VO includes: (i) the hash function of every 
pruned entry, (ii) the tuples in every visited leaf node, (iii) special 
tokens [ and ] that indicate the scope of a node. Consider for 
example a query that retrieves records r5 to r8 in Figure 3.1. The 
                                                                 

 
1 The original MH-Tree requires re-computation of hash values 

and reconstruction of the tree from scratch for every update.  
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expanded query covers tuples r4 to r9. The application of 
RangeDMH to the expanded query yields the VO: [[h1,3 

[r4,r5]][[r6,r7,r8][r9,r10] h11,12]]. Note that the tokens in the VO 
reveal the tree structure, e.g., [h1,3 [r4,r5]] corresponds to the first 
root entry and the remainder to the second one. The SP transmits 
the VO and the owner's signature to the client.  

RangeDMH(DMH_Node n, Expanded query q) 
1.   Append [ to the VO 
2. For each entry e in n 
3.  If n is an intermediate node  
4.  If e intersects the query range // e may contain results   
5.  RangeDMH(e.p, q) // e.p points to child node 
6.  Else append e.h to the VO 
7. Else // n is a leaf node and e is a record 
8. Append e to the VO   
9. Append ] to the VO 

Figure 3.2 Range query in the DMH-Tree 

The verification process at the client utilizes the tree-structure 
information, encapsulated in the VO, to compute the hash value 
Hroot of the root. Figure 3.3 illustrates the pseudo-code of 
ReconstructHroot. The main concept is similar to evaluation of 
parenthesized arithmetic expressions, where the tokens play the 
role of the parentheses. When the algorithm encounters a token ], 
it has all the information (hashes or records) to compute the hash 
value of the node that started at the corresponding [. The hash 
values and records are appended to a buffer B, which after 
termination is used to derive Hroot=h(B). Having Hroot and the 
signature of the DO, the client can establish authenticity and 
correctness using the public key of the DO. ReconstructHroot is 
online, i.e., it performs a single linear scan of the VO. Note that 
the actual results (i.e., records r5 to r8 in the query range) are 
extracted in line 6. In addition, the client receives some boundary 
records (r4, r9, r10) in the VO, which are not part of the result. 
Pang et al. [PJRT05] propose a solution for avoiding disclosure of 
boundary records, when the outsourced database must comply 
with certain access control policies. In this work, we consider that 
clients can issue queries freely without constraints. Nevertheless, 
the solution of [PJRT05] can be applied in conjunction with the 
proposed methods to hide such records, if necessary. 

ReconstructHroot (VerificationObject VO) 
1. Initialize an empty string B 
2. While VO still has entries 
3.  Remove next entry E from VO 
4.  If E is a hash value h OR a record r 
5.   Append E to B 
6.   If E is a record r that satisfies the query, Report r 
7.  If E is [, Append ReconstructHroot(VO) to B 
8.  If E is ], Return hash(B) 

Figure 3.3 Algorithm for reconstructing Hroot 

Proof of soundness: Suppose that a record r in leaf node n is 
bogus or modified. Because h is collision-resistant, the hash value 
of n (stored in the parent node) is different from that of the owner. 
The change propagates all the way to the root. Therefore, the 
reconstructed Hroot is also different from the original, and the 
signature verification fails.  

Proof of completeness: Given the boundary records, the client 
can detect that a result is missing, because the reconstructed Hroot 
will not match the owner's signature. The only complication 

occurs when there are no boundary tuples, i.e., when the query 
contains the first and/or last record in the database. To cover this 
case, previous schemes [PJRT05, LHKR06] include two fictitious 
records at the beginning and the end of the dataset. Our approach 
does not require fictitious tuples. For ease of explanation, we 
consider that there is no left boundary (the case of right boundary 
is symmetric). Assume that the SP sends the complete result. Due 
to the depth-first traversal of RangeDMH, the first non-token 
entry of the VO is the first record r1 satisfying the query. 
Although r1 is not a boundary, the client can verify completeness 
since the re-constructed Hroot matches the signature. Now consider 
that (i) the first non-token entry of the VO includes a hash value 
h1 and (ii) the first record in the VO (after h1) is r2 (satisfying the 
query). The existence of h1 implies that there are records 
preceding r2. Therefore, the client detects that boundary records 
should be included, and their absence raises an alarm about 
possible violation of completeness.  

Next, we extend REF to capture long-running queries on 
streams. Whenever there is a data modification, the DO alters its 
tree and forwards the update(s) to the SP in the form of a data 
stream, according to the positive-negative model 2 . The 
transmission of a new record r from the DO to the SP is denoted 
as (+<r.id, r.k>), and the deletion of an existing record as (-r.id). 
An update on r corresponds to a deletion (-r.id) followed by the 
insertion of the new values. In addition to the actual data, each 
transmission contains a DO signature and two timestamps: LT is 
the current time and ST is the time of the previous transmission. 
The signature incorporates the new Hroot, LT and ST. The two 
timestamps are necessary so that the clients can detect temporal 
attacks, i.e., situations where the SP avoids reporting some result 
updates. Specifically, we say that an authentication scheme 
satisfies temporal completeness, if it is impossible for the SP to 
omit sending a result change to the client, without the latter 
detecting it. 

Upon receiving an update from the DO, the SP modifies its 
own copy of the DMH-Tree accordingly. Then, it generates a new 
VO for every running query (by processing the query using 
RangeDMH) and sends it to the corresponding client. The client 
can reconstruct the signed root of the updated DMH-Tree and 
verify it using the DO's public key. Furthermore, using LT and ST, 
it can confirm that the results are current and there is no missing 
update. Note that temporal completeness in REF necessitates VO 
generation even for queries whose results are not affected by the 
update. We illustrate this through an example. Assume that at 
time τ =1, a client C obtains a result. At τ =2, the SP receives a 
new record r1, but it does not inform C. At τ =3, r1 is deleted and 
a new tuple r2 becomes part of the result. The SP sends to C a 
new VO including r2, LT=3 and ST=2. C detects that there was an 
update at time 2, but it cannot determine if its query was affected 
or not. The only way that clients can be sure about the temporal 
completeness of their results, is if the SP transmits a new VO and 
signature to every client for every timestamp that there is an 
update.  

Proof of temporal completeness: Suppose that at time τ the SP 
omits sending the VO for an update affecting the client’s result. 
                                                                 

 
2 The proposed methods can also be used with sliding windows. 

We apply the positive-negative model since it is more general. 
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At a later time τ' the client receives a new VO from the SP. The 
client will detect the omission by noticing that the time of the 
previous update (included in the new VO) is ST > τ. The only 
potential vulnerability regards the situation where the client does 
not receive any VO for a long time, in which case it cannot be 
sure whether the last results are still up-to-date. This problem can 
be solved using the concept of query freshness [LHKR06], 
according to which the DO revokes old signatures at periodic time 
intervals.  

Although REF guarantees correctness and temporal 
completeness, it incurs false transmissions of VOs for queries 
whose result is not affected by the latest data updates. This 
imposes significant CPU cost to the SP (for computing the VOs) 
and to the clients (for verifying them). Furthermore, it leads to 
excessive network overhead. The proposed CADS method avoids 
these problems by integrating sophisticated indexing schemes and 
query processing algorithms. 

4. CONTINUOUS AUTHENTICATION ON DATA 

STREAMS 
Section 4.1 summarizes the index structures utilized by CADS. 
Section 4.2 describes the initial result computation. Section 4.3 
presents the monitoring algorithm for continuously updating the 
query results. 

4.1 Indexing Scheme 
Let D be the domain of the query attribute r.k. We decompose D 
into m disjoint partitions. Without loss of generality, we select m 
to be a power of two. Records are distributed into the partitions 
according to their search key (k) values. CADS includes two types 
of structures: (i) tuples in each partition are indexed by a TMH-
Tree (Temporal Merkle Hash-Tree); (ii) all partitions are indexed 
by a DPM-Tree (Domain Partition Merkle-Tree). Figure 4.1 
illustrates the indexing scheme. The intuition behind the 
framework is that fixed partitions are necessary to avoid false 
transmissions by localizing the effect of data updates. The 
embedded TMH-Tree in each partition alleviates the effects of 
skewness in the data. For instance, in the extreme case that all 
data fall in a single partition, CADS behaves similarly to REF. 

(q1.id, q1.rg, q1.t)

(q2.id, q2.rg, q2.t)

...

QT

q2.id q4.id ...P1.IL

P1 P2 PmPm-1...

R1, LT1, ST1, H1

h(H1 | H2), max(LT1, LT2) h(Hm-1 | Hm), max(LTm-1, LTm)

...

...

HDPM, TDPM

h1, k1, t1

H1 = h(ST1 | h(h1 | h2 | h3))

h2, k2, t2 h3, k3, t3

Domain D

... ... ... ... ... ...

DPM-Tree

TMH1

r1 r2 r3

sig = h(HDPM | TDPM | L | U)a mod c

Private key: a
Public key: (b,c)

...

TMH-Tree
for partition P1

lower bound L U upper bound

R2, LT2, ST2, H2 Rm-1, LTm-1, STm-1, Hm-1 Rm, LTm, STm, Hm

Figure 4.1 Indexing and book-keeping structures 

The TMH-Tree is a modified DMH-Tree that incorporates 
temporal information used by a virtual caching mechanism (to be 
discussed in Section 4.3). Specifically, every entry e in an 
intermediate node is a tuple (e.h, e.k, e.p, e.t), where e.h, e.k, e.p, 
have the same meaning as in the DMH-Tree (see Section 3), and 
e.t is a timestamp that signifies the latest (i) record 
insertion/deletion/update that occurred in the subtree of e, or (ii) 
movement of e to another node due to a split/merge operation. 
Each partition P is associated with a tuple (P.R, P.LT, P.ST, P.H), 
where: P.R is a pointer to the root of the corresponding TMH-
Tree indexing the tuples of P; P.LT (P.ST) is the timestamp of the 
last (second last) update that occurred in P (P.LT ≥ P.ST); P.H is 
a hash value computed on the concatenation of P.ST with the hash 
value (Hroot) of P.R.  

The DPM-Tree is a binary tree that organizes hash values in a 
way similar to the MH-Tree. It is constructed bottom-up as 
follows. Each leaf node corresponds to a partition tuple (P.R, 
P.LT, P.ST, P.H). An adjacent pair Pi, Pi+1 of leaves generates an 
internal node N at the next level that stores (N.H, N.T), where N.H 
= h(Pi.H | Pi+1.H) and N.T = max(Pi.LT, Pi+1.LT). The tree 
construction continues recursively in the same manner until the 
root. Intuitively, every internal node contains hashed information 
about the records in the partitions covered by its subtree, and the 
latest timestamp signifying updates in these partitions. Both the 
SP and the DO maintain the aforementioned authentication 
structures. Let HDPM (TDPM) be the hash value (timestamp) in the 
root of the DPM-Tree, and L (U) the lower (upper) bound of 
domain D. The owner computes h(HDPM, TDPM, L, U), signs it 
(using its private key), and sends it to the SP, which keeps it 
locally (together with the above structures).  

The indexing scheme can support multiple updates at the same 
timestamp as follows. The TMH-Trees are first modified, as 
discussed in Section 3, without altering any hash or timestamp 
value, and the visited paths are marked. When an entry is deleted 
from a full intermediate node (i.e., there is no underflow), it is 
replaced with a dummy value, so that the order of the remaining 
entries in the node remains the same. Then, the marked paths are 
revisited and the hash values and timestamps are computed 
bottom-up, only once. Finally, a single depth-first traversal of the 
DPM-Tree locates the leaf nodes that correspond to the affected 
partitions and computes the appropriate hashes and timestamps 
bottom-up.  

CADS also maintains some book-keeping structures regarding 
the queries. In particular, the SP stores every running query q in a 
table QT as a record of the form (q.id, q.rg, q.t), where (i) q.id is a 
unique identifier, (ii) q.rg is the query range, and (iii) q.t is the 
timestamp of q’s last VO update. Each partition P is associated 
with an influence list P.IL, which stores the identifiers of the 
running queries that overlap with P. QT is organized as a hash 
table on q.id in order to support fast search for queries. Table 4.1 
summarizes the notation, grouping symbols by category.  

4.2 Initial Result Computation 
The initial result computation corresponds to a snapshot 
authenticated query, i.e., the user can establish correctness, but 
does not need to verify temporal completeness. Given a new 
query q, the SP calls RangeDPM(root, q, D) shown in Figure 4.2, 
which performs a depth-first traversal of the DPM-Tree. Every 
node N conceptually corresponds to an interval N.I, which is the 
union of the partitions covered by the node’s subtree (for the root 

139



N.I =[L,U]). If q does not overlap with N.I, the hash value N.H is 
inserted into the VO. Otherwise, computeIntervals (line 3) splits 
N.I into two equal intervals I1 and I2, corresponding to the two 
sub-trees of N, and the traversal continues recursively. When 
reaching a leaf node Nl, if q does not overlap with Nl.I, Nl.H is 
included into the VO. Otherwise, Nl.ST is inserted into the VO and 
RangeTMH is invoked, after expanding q (line 13) to include the 
boundary records, as discussed in Section 3. RangeTMH is similar 
to RangeDMH (in Figure 3.2) except that it adds to the VO a 
dummy value for each empty intermediate entry found during the 
traversal (the functionality of dummy values will become clear in 
Section 4.3). The tokens begin_TMH and end_TMH are appended 
to the VO to signify the VO components needed for reconstructing 
Nl.H. After the VO is generated, the SP inserts a new entry for q 
in QT, with q.t set to TDPM. Finally, q.id is added to the influence 
lists (IL) of all partitions that overlap q. 

RangeDPM(DPM_Node N, Query q, Interval I) 
1.   If N is an intermediate node // in the DPM-Tree 
2. If q overlaps with I // i.e., N.I 
3.  (I1, I2) = computeIntervals(I) 
4.  Append [ to the VO 
5.  RangeDPM(N.left_child, q, I1) 
6.  RangeDPM(N.right_child, q, I2) 
7.  Append ] to the VO 
8. Else append N.H to the VO 
9. Else // N is a leaf node that corresponds to a partition P 
10.  Append begin_TMH to the VO 
11.   If q overlaps with I 
12.  Append N.ST to the VO // N.ST = P.ST   
13.  q΄ = ExpandQuery(q, N.R) // N.R is the root P.R of the 
14.     Call RangeTMH(N.R, q΄)   // TMH-Tree for partition P 
15.   Else append N.H to the VO // q does not overlap with I 
16. Append end_TMH to the VO 

Figure 4.2 Range query in the DPM-Tree 

Figure 4.3 illustrates an initial VO generation for a query q with 
range [50, 75], assuming that D=[1, 80] and m=4. The SP starts 
by traversing the DPM-Tree. Since q does not overlap with N5.I 
(=[1, 40]), H5 (i.e., N5.H) is appended to the VO. The traversal 
continues with N6 and reaches leaf N3, corresponding to partition 
P3. Since q overlaps with P3, N3.ST (=P3.ST) is appended to the 

VO. Then, the TMH-Tree of P3 (TMH3) is traversed to locate the 
left boundary record r4 (r4.k=48). Because q covers the right 
endpoint of P3, it is not necessary to find its right boundary; 
hence, q is expanded to q΄:[48, 75]. RangeTMH is called for 
TMH3 with q΄ as an argument. The entries in the root of TMH3 are 
checked sequentially. Since the first entry does not overlap q΄, h1 
is appended to the VO. On the contrary, node n2 must be visited 
and its records (r4, r5) are inserted into the VO. A dummy value is 
appended in place of the third (empty) entry of n3. Finally, the 
leaf N4 of the DPM-Tree is visited and a partial VO is generated in 
a similar way, after appending N4.ST to the VO and expanding q 
to q΄:[50, 76]. The complete VO is shown at the top of Figure 4.3. 
The SP sends the VO to the client, with D, TDPM and sig. 

HDPM

H5 H6

H1 H4H2 H3

VO: [H5, [begin_TMH, N3.ST, [h1, [r4, r5 ] , dummy], end_TMH, 
begin_TMH, N4.ST, [[r6, r7, r8], [r9, r10 ] , h'3 ], end_TMH]]

h1 48 h2

41, r1.id
42, r2.id
47, r3.id

48, r4.id
59, r5.id

h'1 76 h'2 79 h'3

62, r6.id
63, r7.id
64, r8.id

76, r9.id
77, r10.id

79, r11.id
80, r12.id
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U=80
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Figure 4.3 Example of initial result computation 

Given the VO and D, the client verifies its correctness, by 
computing the hash value HDPM at the root of the DPM-Tree using 
ReconstructHDPM(VO, D), shown in Figure 4.4. The functionality 
of the algorithm is similar to that of ReconstructHroot (Figure 3.3), 
except that that ReconstructHDPM uses intervals to determine the 
extents of each partition on-the-fly. After the SP computes HDPM, 
it hashes it with TDPM and D, and matches it against the signature 
of the owner. The actual results are extracted during the 
verification process.   

Proof of soundness: Suppose that a record is bogus or 
modified in partition P. Because the hash function is collision-
resistant, the P.H value computed by the client is different than 
that of the owner. Therefore, the reconstructed HDPM is also 
different from the original, and the signature verification fails.  

Proof of completeness: Let P be a partition that overlaps with 
query q. If the partial VO corresponding to the TMH-Tree 
associated with P is included in the VO, the client can verify the 
completeness of the results residing in P, as shown in the proof of 
completeness for REF. The complication is how the client can 
determine that the VO actually contains components of P's sub-
tree. For instance, a malicious SP can include only P.H in the VO, 
hiding potential results in P without affecting correctness. The 
client obtains the authenticated bounds (D:[L,U]) of the domain 
along with the VO. With this information, ReconstructHDPM 
computes the interval (P.I) covered by P, when the begin_TMH 
token that corresponds to P is encountered (lines 16-19). If P.H 
follows the token, then completeness is violated and the client is 
alarmed (lines 10-11). 

General symbols 
r: record r.id: primary key of r 
r.k: search key of r D: domain of search key 
L,(U): lower (upper) bound of D m: number of partitions 
P: partition P.IL: influence list of P 
P.R: root of TMH-Tree of P P.H: hash value on P.R and P.ST
P.LT: time of last update in P P.ST: time of second last update 

TMH-Tree symbols 
n: TMH-Tree node e: node entry 
e.h: hash value in e e.k: search key value in e 
e.p: pointer to child node of e e.t: time of last modification in e

DPM-Tree symbols 
sig: signature on HDPM, TDPM, D N: DPM-Tree node 
N.H: hash value in N  N.T: timestamp in N 
HDPM: hash value in the root TDPM: timestamp in the root 

Query symbols 
q: query q.id: unique identifier of q 
q.rg: range of q q.t: time of last VO creation for q

Table 4.1 Summary of symbols 
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ReconstructHDPM (VerificationObject VO, Interval I) 
1. Initialize an empty string buffer B  
2. Remove next entry E from VO 
3. If E is begin_TMH  
4.  Remove next entry E from VO 
5.  If E is an ST value 
6.    Append E to B 
7.   Append ReconstructHroot(VO) to B 
8.    Remove next entry E from VO // E is end_TMH 
9.   Return hash(B) 
10.  Else // E is a P.H value 
11.   If the query overlaps with I, completeness is violated 
12.   Else  
13.    Remove next entry E’ from VO // E’ is end_TMH 
14.    return E // i.e., P.H 
15. If E is a hash value H, return H 
16. If E is [  
17.  (I1, I2) = computeIntervals(I) 
18.  Append ReconstructHDPM(VO, I1) to B 
19.  Append ReconstructHDPM(VO, I2) to B 
20. If E is ], return hash(B) 

Figure 4.4 The algorithm for reconstructing HDPM 

The above discussion focuses on a single query. If there are 
several running queries in the system, the SP could process them 
independently, by calling RangeDPM for each query. This 
however, would lead to high processing cost due to multiple tree 
traversals. Instead, CADS applies RangeDPM only once, and 
checks each visited node against all running queries.  

4.3 The Query Monitoring Algorithm 
Considering that the initial result has been computed, we describe 
its continuous monitoring in the presence of data updates. Recall 
from Section 3 that, in order to achieve temporal completeness, 
REF performs false transmissions that lead to large 
communication overhead, high processing cost at the SP, and 
redundant verification effort at the clients. In the sequel, we 
present a solution that minimizes the false transmissions. 
Moreover, motivated by the observation that an updated VO 
shares common components with the previous one, we propose a 
virtual caching mechanism (VCM) that further reduces the 
communication cost. The term virtual is due to the fact that the SP 
does not store the VO for any query, which could lead to 
excessive memory consumption (proportional to the number of 
queries). Each client keeps in its own cache only a single VO. 

When the SP receives a list of updates from the DO, it first 
determines the set of affected partitions in which at least one 
update occurs. Let AQ be the set of affected queries stored in the 
influence lists of these partitions. The SP will create new VOs 
only for the queries in AQ (as opposed to all queries for REF). 
Note that, depending on the granularity of the partitioning, false 
transmissions may still occur for queries that intersect an affected 
partition, without being influenced by the update(s). VO 
generation is performed by a modified version of RangeDPM. 
Specifically, when a node N is visited, its timestamp (N.T) is 
checked against q’s timestamp (q.t). Recall that (i) N.T is the time 
of the last update in any partition under N, and (ii) q.t is the time 
of the last update in the VO of q. If q.t ≥ N.T, then all updates in N 
have been sent to the client during a previous transmission. 
Therefore, the VO components needed for reconstructing N.H are 
already present in the client’s cache and up-to-date. A special 

token Hit is appended to the VO to signify that the client must 
retrieve these components from its own cache. Otherwise (q.t < 
N.T), the process is identical to the one used for the initial 
computation. Similar modifications apply to RangeTMH.  

The SP sends the updated VO to the client along with a new 
signature and TDPM. The client executes CombineVO (Figure 4.5) 
in order to merge the components contained in the updated VO 
(newVO) with the ones in the cache (cachedVO). The resulting 
VO is then stored in the client’s cache (i.e., it becomes the new 
cachedVO). CombineVO scans the two VOs in parallel, retrieving 
an entry En (Ec) from newVO (cachedVO) at each step. An 
important invariant is that En and Ec must always correspond to 
the same item. The algorithm distinguishes four cases. If En and 
Ec have the same type (i.e., they are both hash values, records, 
dummies or tokens), En is appended to the new VO (lines 4-5). In 
the second case (lines 6-8), En is a non-token value and Ec is [. 
This implies that newVO contains updated information about the 
sub-tree starting at [. Therefore, En is added to VO, and all entries 
of cachedVO up to the matching ] (signifying the end of the sub-
tree) are deleted in order to retain synchronization between En and 
Ec. Lines 9-11 capture the reverse case, where a non-token value 
in cachedVO is replaced by a sub-tree in newVO. All entries 
between [ and ] in newVO that correspond to this sub-tree are 
inserted into VO. Finally (lines 12-16), if En is Hit, the matching 
value or sub-tree of cachedVO is appended to VO. With the new 
VO, the client recomputes HDPM and verifies it against the new 
signature.  

CombineVO (newVO, cachedVO) 
1. Initialize VO to empty 
2. While newVO still has entries // also for cachedVO 
3.  Remove next entry En from newVO and Ec from cachedVO 
4.  If En and Ec have the same type 
5.   Append En to VO 
6.  Else if En is a hash or record or dummy value and Ec is [ 
7.   Append En to VO 
8.   Remove all entries from cachedVO until matching ]   
9.  Else if En is [ and Ec is a hash or record or dummy value 
10.   Append En to VO 
11.   Remove all entries from newVO until matching ] and 

append them to VO 
12.  Else if En is Hit 
13.   If Ec is a hash value, append Ec to VO 
14.   Else if Ec is [ or begin_TMH 
15.    Append Ec to VO 
16.    Remove all entries from cachedVO until matching 

] or end_TMH and append them to VO 
17. Return VO 

Figure 4.5 The CombineVO algorihtm 

Figure 4.6 illustrates the concepts of monitoring and VCM by 
continuing the example of Figure 4.3, assuming that the initial 
result computation occurred at time τ =1 (q.t=1). The diagram also 
includes the timestamps inside the nodes and the entries. At τ =2 
there is at least one change in P2 (N2.T=2), but since P2 does not 
overlap with the query range, the SP does not perform VO 
generation and transmission. At τ =3, there are 3 deletions (of r6, 
r7 and r8) and one update (r10.k changes from 77 to 74) in P4, and 
one insertion of a new record rn in P1. Because P4 intersects with 
the query, a new VO is generated. RangeDPM first visits the root 
of the DPM-Tree and then node N5 (N5.T =3), whose interval does 
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not overlap q. Since N5.T > q.t, N5.H is different (due to the 
insertion of rn) from the cached value and is appended to newVO. 
The traversal continues with N6 and reaches leaf N3. Because 
N3.LT = 1 = q.t, all the components needed to reconstruct N3.H are 
already in cachedVO and a Hit token is added to newVO. Then, 
RangeDPM proceeds to N4, where N4.LT=3 > q.t. Thus, the 
corresponding TMH-Tree (TMH4) must be traversed, after 
expanding q to q΄:[50,76].  

Because in TMH4 the three records (r6, r7, r8) originally stored 
in leaf n'1 are deleted, a merge operation has been performed 
between n'1 and n'2. This has reduced the number of entries in the 
parent node n4, and a dummy value replaces the (deleted) first 
entry, which is appended to the VO. The timestamp of the second 
entry (3) is larger than q.t, which signifies that at least one update 
has occurred in n'2 after q.t. Therefore, all its records are added to 
the VO. Finally, a Hit token is inserted for the third entry, because 
h'3 has not been altered since τ=1. Note that dummy values are 
important for synchronization between the newVO and cachedVO 
during the execution of CombineVO. 

HDPM, 3

H5, 3 H6, 3

H1, 3 H4, 3H2, 2 H3, 1

cachedVO : [H5, [begin_TMH, N3.ST, [h1, [r4, r5 ], dummy], end_TMH, 
begin_TMH, N4.ST, [[r6, r7, r8], [r9, r10 ], h3' ], end_TMH]]
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Figure 4.6 Query monitoring example  

Proof of temporal completeness. Suppose that the initial 
computation of a query q occurs at a time τ and the VO is sent to 
the client. The client successfully verifies its correctness and 
stores it as cachedVO. Now assume that at τ' (>τ) one (or more) 
update(s) takes place in some partition P that overlaps with q, but 
the SP does not send a new VO to the client. Subsequently, 
another update occurs that affects q. This time the SP generates 
newVO and sends it to the client (along with new sig and TDPM). 
We distinguish two cases: (i) the newVO contains a partial VO 
corresponding to P, thus also P.ST. The client compares P.ST 
with the cached TDPM (=τ). Since P.ST > τ, at least a potential 
result update (at P.ST) was omitted and the client is alarmed. (ii) 
newVO contains a Hit token that corresponds to P. Since the 
actual P.ST is different than the one included in cachedVO, the 
client reconstructs a false P.H value and soundness is violated.  

5.  MANAGING MULTIPLE OWNERS 
All existing techniques in the database outsourcing literature 
consider the existence of a single owner. However, there is a 
variety of applications (recall the examples of Section 1) in which 

a SP collects multiple related datasets, each outsourced by a 
different DO. Let K be the number of DOs. A straightforward 
extension of CADS in such applications would be to maintain 
independent indexing schemes and generate separate VOs for each 
owner. We refer to this solution as CADSK. The drawback of 
CADSK is that the query processing cost at the SP and the 
network overhead for transferring the VOs are linearly correlated 
with K. In order to avoid this problem, we propose a version of 
CADS, called CADS1, that integrates the data of all owners in a 
single authentication process with one VO, independently of the 
number of DOs. Section 5.1 describes CADS1, and Section 5.2 
compares it analytically with CADSK.  

5.1 CADS1 
The domain D and the number of partitions m are common for all 
owners and the SP. Each DOj maintains its own data using an 
indexing scheme similar to the one of Figure 4.1. Let Pi,j be the i-
th partition at owner DOj. The data in Pi,j are indexed by a TMH-
Tree TMHi,j. All partitions are indexed by a DPM+-Tree, which is 
a modification of the DPM-Tree. Specifically, a leaf node 
corresponds to a partition tuple (Pi,j.R, Pi,j.LT, Pi,j.ST, Pi,j.H), 
where all attributes have the same meaning as in the DPM-tree. 
An adjacent pair Pi,j, Pi+1,j of leaves generates an internal node N 
at the next level that stores (N.H, N.T), where N.H = (Pi,j.H · 
Pi+1,j.H) mod c, and N.T = max(Pi,j.LT, Pi+1,j.LT). That is, the only 
difference between the two structures regards the hash values of 
intermediate nodes (in the DPM-Tree, N.H = h(Pi.H | Pi+1.H)). 
The modular product stored in the root of the DPM+-Tree of 
owner DOj is HDPMj= ∏m

i=1Pi,j.H (mod c).  

Every owner DOj signs HDPMj and sends its signature sigj to 
the SP along with its records. Note that sigj does not entail any 
knowledge about the data of the other owners. However, the 
signing process involves some modifications with respect to 
CADS. Specifically, a trustworthy key distribution center assigns 
to each owner DOj a private key aj and a public key (bj, c), i.e., all 
public keys have the same 3  component c. Given HDPMj, DOj 
creates sigj = h(HDPMj)

aj mod c. A client can confirm the 
authenticity of HDPMj by checking if sigbj mod c equals h(HDPMj). 

The SP maintains, for each partition Pi, the TMH-Trees of all 
owners separately. The hash value of Pi is Pi.H = ∏K

j=1 Pi,j.H (mod 
c), where K is the number of owners. A single DPM+-Tree 
indexes all partitions. Specifically, the value N.H in an internal 
node N is the modular product of the hash values in the child 
nodes. The product in the root of the DPM+-Tree is HDPM= 
∏m

i=1Pi.H . Note that, due to the commutative and associative 
properties of modular multiplication, HDPM can be written as: 
∏K

j=1∏
m
i=1Pi,j.H (mod c)= ∏K

j=1 HDPMj (mod c). This fact is exploited 
by the verification process at the client.  

We describe the VO generation and verification algorithms of 
CADS1 using Figure 5.1, where m=4 and there are two owners, 
DO1 and DO2. The query q overlaps partitions P1 and P2. For 
simplicity, we omit all temporal information from the example 
(and the structures) as its use is identical to the case of a single 
owner. Furthermore, we focus on a snapshot query, since the 
                                                                 

 
3 Note that using a single component c for all owners does not 

compromise the private key of any DO according to RSA. 
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monitoring mechanism is the same as CADS. The SP calls 
RangeDPM, which performs a pre-order traversal of the DPM+-
Tree, reaching leaf node N1. The two TMH-Trees that are 
associated with partition P1 (one per owner) are visited and the 
two partial VOs (VO_TMH1,1 and VO_TMH1,2) are appended to 
the VO. Next, RangeDPM visits node N2 and, similarly, adds 
VO_TMH2,1 and VO_TMH2,2 to the VO. Finally, because q does 
not overlap with N6, H6 is inserted into the VO. The SP transmits 
to the client the VO, D, as well as the signatures sig1, sig2 in a pre-
determined order, which is known to the client.   

HDPM = H5 · H6 (mod c)

H5 = H1 ·H2 (mod c)

H1 H2 H3 H4

H6 = H3 ·H4 (mod c)

P1 P2 P3 P4

q

N5 N6

N1 N2 N3 N4

VO: [[begin_TMH, VO_TMH1,1, VO_TMH1,2, end_TMH, 
begin_TMH, VO_TMH2,1, VO_TMH2,2, end_TMH], H6]

DPM+-Tree

TMH1,1

TMH1,2

TMH2,1

TMH2,2  
Figure 5.1 VO generation for multiple owners  

The client first computes P1,1.H and P1,2.H from VO_TMH1,1 and 
VO_TMH1,2, respectively, using ReconstructHroot. Then, it 
performs their modular multiplication and produces P1.H (i.e., 
H1). In a similar way, it computes H2. H5 is derived by 
multiplying H1 with H2. Finally, it reconstructs the product of the 
root as: HDPM= H5 · H6 (H6 was received as part of the VO). The 

client also obtains (from the SP) sig1 =H
a1

DPM1  mod c and sig2 

=H
a2

DPM2 mod c, where a1 and a2 are the private keys of DO1 and 
DO2.

 Since HDPM = HDPM1 · HDPM2 mod c, in order to verify 
authenticity, it suffices to prove that the reconstructed HDPM is 
equal to sig1

b1 · sig2
b2 mod c, where (b1,c) and (b2,c) are the public 

keys of DO1 and DO2. In general for K owners, the results are 
sound, iff the re-constructed HDPM equals sig1

b1 · … · sigK
bK mod c.  

Proof of soundness: Let Si,j be the set of records in Pi owned 
by DOj. A malicious SP can attack CADS1 if it can find m·K sets 
of records S'i,j such that: (i) the modular product of their 
respective P'i,j.H values is identical to HDPM and (ii) there is at 
least one pair (i, j) satisfying S'i,j ≠ Si,j. This, however, is 
impossible, due to collision-resilience of the hash function in the 
signature scheme. Now assume that the SP can determine m·K 
values P'i,j.H (with at least one P'i,j.H ≠ Pi,j.H) such that their 
modular product yields HDPM. Because the hash function is one-
way, it is computationally infeasible for the SP to find m·K sets of 
records S'i,j yielding these hash values. The proofs of 
completeness and temporal completeness are identical to the case 
of a single owner and omitted.  

5.2 Analytical Comparison of CADS1 and CADSK 
Similar to the single owner case, CADS1 combines all queries in a 
single traversal of the DPM+-Tree that checks each visited node 
against every query. Therefore, it is faster than CADSK in terms 
of query processing. Next, we compare the two methods 
analytically on space consumption, VO size and verification cost. 
Table 5.1 summarizes the symbols used in the analysis, as well as 
their typical values. These values were obtained based on the 

hardware and software settings of our experiments, using the 
Crypto++ library. Our measurements are similar to those of the 
library benchmarks [Crypto]. Sh=20 bytes is the digest size of 
SHA1 [NIST95] (one-way, collision-resistant) hash function. Sm 
is the size of the modular product, which equals the signature size. 
We use RSA with 128 bytes signatures, which, currently is the 
minimum size that guarantees security.    

Symbol Meaning Typical Value 
Cv CPU cost of verify signature operation 115 μsec 
Ch CPU cost of hash operation 1.1 μsec 
Cm CPU cost of multiply operation 44 μsec 
Sh size of a hash value 20 bytes 
Sm size of a modular product 128 bytes 

Table 5.1 Symbols and values in the analysis 

Let N be a node of the DPM+-Tree whose subtree covers an 
interval I of domain D. In CADSK, the SP maintains K DPM-
Trees and, therefore, there are K nodes that correspond to the 
same I, each storing a hash value of size Sh. In CADS1, the SP 
maintains a single DPM+-Tree and stores one modular product of 
size Sm in N. In order for CADS1 to start outperforming CADSK in 
terms of memory consumption, the number of owners should be 
lower bounded by the following formula: 

K K m
h m

h

S
S S

S

⎡ ⎤
⋅ ≥ ⇔ ≥ ⎢ ⎥

⎢ ⎥
 (5.1) 

Given the typical values Sh=20 bytes, Sm=128 bytes from table 
5.1, CADS1 incurs less memory consumption than CADSK for K 
≥ 7. The same lower bound applies to the VO size, because during 
the VO generation (i) in CADSK the SP includes K hash values 
into the VO for every pruned node of the DPM-Tree, whereas (ii) 
in CADS1, it includes one modular product for every pruned node 
of the DPM+-Tree. 

Next we analyze the verification cost at the client, excluding 
the reconstruction of P.H values, which is common in CADSK 
and CADS1. Let Eover be the number of partitions overlapping 
with the query, and Eh/m the number of hash values (modular 
products) that are needed for reconstructing the root of the DPM-
Tree (DPM+-Tree). In CADSK, the client has to reconstruct K 
DPM-Tree root hashes by performing Eh/m hash operations (each 
costing Ch = 1.1 μsec) per tree, and to verify all trees. Thus, the 
cost of verification in CADSK is:  

K /K Kh m h vVC E C C= ⋅ ⋅ + ⋅  (5.2) 

In CADS1, the client has to reconstruct a single DPM+-Tree root 
with cost Eh/m · Cm (Cm = 44 μsec). Also for every partition Pi that 
overlaps with the query, it has to compute the hash value of the 
corresponding DPM+-Tree leaf by multiplying K Pi.H values 
(one per owner) at a cost of Eover · (K-1) · Cm. While verifying the 
reconstructed HDPM, the client first raises each signature to the 
power of the respective owner’s public key component bj. The 
overhead of each exponentiation is almost equal to that of  
verifying a single signature. Therefore, the total cost of 
exponentiation is K · Cv. Finally, the client multiplies the K 
signatures together at a cost of (K-1) · Cm. Summing up the 
aforementioned factors yields the following equation for the total 
verification cost of CADS1: 

1 / (K 1) K (K 1)h m m over m v mVC E C E C C C= ⋅ + ⋅ − ⋅ + ⋅ + − ⋅  (5.3) 

Combining equations (5.2) and (5.3), we derive equation (5.4) 
that lower bounds the value of K, after which CADS1 starts to 
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outperform CADSK in terms of verification cost. Note that this 
equation does not take into account implementation issues. 
Specifically, CADSK executes functions ReconstructHDPM and 
CombineVO K times, which involve numerous recursive calls. As 
we show in the experimental evaluation, CADS1 outperforms 
CADSK even for small values of K.  

/

/

( 1))
K

( 1)
m h m over

h h m m over

C E E

C E C E

⎡ ⎤− −
≥ ⎢ ⎥− +⎢ ⎥

 (5.4) 

6.  EXPERIMENTAL EVALUATION 
We deployed REF and CADS on a P4 3GHz CPU with 2GBytes 
of RAM, using the Crypto++ library [Crypto]. Each record 
consumes 100 bytes and its search key ranges from 0 to 106. For 
generality, we repeat each experiment on two datasets: (i) in UNI 
the initial search key distribution is uniform; (i) in SKD the search 
keys follow the Zipfian distribution (with the skew parameter set 
to 0.8, so that 77% of the records fall in 20% of the data space). 
Each experiment is a simulation of 100 timestamps. At every 
timestamp, updates arrive at a rate AR. An update involves a 
deletion of a random tuple and an insertion of a new one with the 
same id but with a different search key. To produce the new 
value, a random number is generated in range [-103, +103] and 
added to the old one. Consequently, the dataset cardinality DC is 
constant at all times. We monitor QC running queries, which are 
uniformly distributed in the dataspace and their result set size is 
approximately 0.1% of DC. Finally, after a fine tuning step we set 
the number of partitions m of CADS to 8192 for both datasets. 
Table 6.1 summarizes the system parameters under investigation, 
along with their ranges and default values (per timestamp). 
Section 6.1 compares CADS against REF, and Section 6.2 
evaluates CADS1 and CADSK in the presence of multiple owners. 

Parameter Default  Range 
Data cardinality (DC) 100K 10K, 50K, 100K, 200K, 500K 

Query cardinality (QC) 1K 100, 500, 1K, 2K, 5K 
Update rate (AR) 100 10, 50, 100, 200, 500 

Table 6.1 System parameters 

6.1 Single Owner 
First, we assess the effect of the data cardinality DC, after setting 
the other parameters to their default values (QC = 1K, AR = 100). 
Figure 6.1 illustrates the total query processing time (milli-
seconds) per timestamp at the SP. The overhead of REF is 
significantly higher because it has to process all the running 
queries. On the other hand, CADS re-evaluates only the queries 
whose result changes, plus a small number of queries that overlap 
affected partitions (although their results do not change). The cost 
of REF increases logarithmically with DC due to the DMH-Tree. 
CADS is not very sensitive to DC because of the virtual caching 
mechanism (VCM). Specifically, when a visited node has not 
been altered with respect to the previous transmission, the 
traversal of its sub-tree is entirely skipped.  
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Figure 6.1 Query processing time vs. DC 

Figure 6.2 shows the total VO size (Mbytes) for all queries, 
transmitted by the SP per timestamp as a function of DC. The 
communication overhead of REF increases linearly because, since 
the selectivity is fixed, the number of records in the result is linear 
to the cardinality. All these records are transferred to the client at 
each timestamp. In CADS, the growth of the result is absorbed by 
the VCM. Specifically, since QC and AR are fixed and 
independent of DC, the size of the result matters mainly for the 
first transmission. For SKD, the VO size of CADS increases 
slightly faster because of the unbalanced nature of the partitions. 
In particular, an update in a dense partition may invalidate a large 
part of the client’s cache.  
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Figure 6.2 VO size vs. DC 

Figure 6.3 depicts the verification time (milli-seconds) per 
timestamp at each client. REF imposes a heavy burden on the 
clients because, due to the false transmissions, the client must 
verify its query at every timestamp. Note that the performance 
gap between CADS and REF does not increase as fast as in the 
previous diagrams, because even if a partial VO is in the cache, 
the client still needs to combine it with the new VO components 
and match it against the signature.  
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Figure 6.3 Verification time vs. DC 

Figure 6.4 compares the two methods on memory consumption. 
REF and CADS consume about the same space, which is 
dominated by the records. Specifically, 75%-80% of the space 
overhead is due to the stored tuples and most of the rest due to the 
hash values. The additional information of CADS (query book 
keeping, influence lists, etc.) is negligible.  
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Figure 6.4 Index size vs. DC 

The second set of experiments evaluates the effect of the query 
cardinality (QC) for DC = 100K, and AR = 100. The query 
processing cost of both methods increases due to different 
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reasons. In REF, each query is evaluated at each timestamp. In 
CADS, the number of queries affected by an update (and 
therefore have to be re-evaluated) is proportional to QC. The VO 
size in Figure 6.6 follows similar trends for the same reasons.  
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Figure 6.6 VO size vs. QC 

The last set of experiments in this section assesses the effect of 
the update rate (AR), after fixing DC to 100K and QC to 1K. 
Figure 6.7 shows the total query processing cost per timestamp at 
the SP. REF is insensitive to the update rate because, in order to 
achieve temporal completeness, the SP has to generate and 
transmit a new VO for all the queries, independently of the 
number of updates. The fluctuations in its performance are caused 
by changes in the data distribution. On the other hand, the cost of 
CADS increases because the number of affected queries is 
proportional to AR. This is also reflected in the VO size of CADS, 
shown in Figure 6.8. As expected, AR does not affect the VO size 
of REF. Note that the cost of update handling at the SP is 
negligible compared to that of query processing. Specifically, 
both CADS and REF consume around 15ms for AR = 500, 
whereas, as shown in Figure 6.7, the corresponding query 
processing costs are about 300ms (for CADS) and 800ms (for 
REF). 
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Figure 6.9 depicts the verification time at the client. The diagrams 
are similar to those in Figures 6.7 and 6.8, except that the curves 
converge faster. This is due to the absence of the caching effect. 
Specifically, although the processing cost and the VO size are 
reduced by VCM, the client still has to verify the affected queries. 

REF CADS 

0

0.5

1

1.5

2

2.5

3

10 50 100 200 500

CPU time (ms)

AR

 
0

0.5

1

1.5

2

2.5

3

10 50 100 200 500

CPU time (ms)

AR

(a) UNI (b) SKD 
Figure 6.9 Verification time vs. AR 

Summarizing this section, CADS exhibits considerably lower 
query processing time than REF, enabling the SP to serve 
numerous running queries without compromising the quality of 
service. It also incurs a significant reduction of the 
communication overhead, a fact that makes it suitable for wireless 
networks, and, in general, environments where transmission is 
expensive. Finally, CADS minimizes the verification burden, 
which is important for clients (i.e., PDAs) with limited resources.  

6.2 Multiple Owners 
In this section we compare CADS1 with CADSK varying the 
number of owners (K), after setting the other parameters to the 
default values (DC = 100K, QC = 1000, AR = 100). For each 
experiment, we divide the records equally among owners, so that 
each owner maintains approximately DC/K alive tuples per 
timestamp. Updates are split accordingly, i.e., each update 
originates from every DO with the same probability.  

Figure 6.10 illustrates the total query processing time at the 
SP per timestamp. CADS1 is better than CADSK in all cases 
because it requires one traversal of a single DPM+-Tree. Recall 
that during this traversal, every visited node is checked against all 
running queries. On the other hand, CADSK necessitates the 
traversal of K distinct DPM-Trees, one for each owner.  
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Figure 6.10 Query processing time vs. K 

Figure 6.11 shows the total VO size transmitted per timestamp. 
For CADSK the VO size is proportional to K due to the hash 
values of the distinct DPM-Trees (although the number of results 
is independent of K). CADS1 is rather insensitive because K 
affects the VO overhead only for the TMH-Trees, but not for the 
DPM+-Tree. Recall that CADS1 includes in the VO a modular 
product of size 128 bytes for each pruned DPM+-Tree node. 
Although this modular product is larger than a hash value (20 
bytes), it is independent of K. Therefore, as predicted by the cost 
models of Section 5.2, CADS1 starts outperforming CADSK when 
K exceeds 7.  
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Figure 6.11 VO size vs. K 

Figure 6.12 depicts the verification time per client per timestamp. 
The performance gain of CADS1 with respect to CADSK increases 
with K, because in CADS1 a client performs a single verification 
process independently of the value of K. The cost of this process 
increases with K, but not as fast as that of individual verifications.   
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Figure 6.12 Verification time vs. K 

Finally, Figure 6.13 depicts the index size at the SP. For 4 DOs, 
CADS1 consumes slightly more space because the modular 
product is between 6 and 7 times larger than a hash value. 
However, the space overhead of CADSK increases with K because 
of the distinct DPM-Trees that must be maintained for each DO. 
Recall from Figure 6.4 that, although the authentication 
information is relatively small (20%-25%) compared to the total 
index size, when multiplied by a large value of K, it constitutes a 
considerable fraction of the total space consumption.  
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Figure 6.13 Index size vs. K 

Concluding this section, CADS1 outperforms CADSK on all 
aspects and the performance gain increases with the number of 
DOs. It is worth pointing out that CADS1 scales very well with K 
meaning that, in practice, it could be used in applications 
involving numerous DOs.  

7.  CONCLUSION 
This paper constitutes the first work addressing continuous query 
processing and authentication on data streams. We assume a SP 
that collects information from one or more data owners and at the 
same time processes queries originating from numerous clients. 
The SP returns to the clients the query results, as well as 
verification information necessary to establish their correctness. 
In addition, the clients must be able to prove temporal 
completeness, i.e., that there is no result omission in-between 
subsequent updates. We first propose REF, a method that 

achieves these goals at the expense of false transmissions. To 
solve this problem, we introduce CADS, which reduces (i) the 
processing cost at the SP, (ii) the communication overhead 
between the SP and the clients, and (iii) the verification effort at 
the client. Finally, we extend CADS to multiple owners and show 
that substantial gains can be achieved by integrating the data of 
different owners in one index and a single verification process.  

In the future, we plan to adapt our techniques to spatio-
temporal data streams. In this setting, the SP (e.g., a location 
based service) collects the positions of continuously moving users 
from one or more owners (e.g., mobile phone operators). Clients 
(e.g., local businesses) issue spatial (e.g., range, nearest neighbor, 
etc.) queries to the SP and must be able to verify the results before 
contacting (e.g., sending offers, e-coupons, etc.) users in their 
vicinity. CADS could be applied after replacing the single-
dimensional partitions with a multidimensional indexing scheme.  
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