
Security in Outsourcing of Association Rule Mining

W. K. Wong
The University of

Hong Kong
wkwong2@cs.hku.hk

David W. Cheung
The University of

Hong Kong
dcheung@cs.hku.hk

Edward Hung
The Hong Kong

Polytechnic University
csehung@comp.polyu.edu.hk

Ben Kao
The University of

Hong Kong
kao@cs.hku.hk

Nikos Mamoulis
The University of

Hong Kong
nikos@cs.hku.hk

ABSTRACT

Outsourcing association rule mining to an outside service
provider brings several important benefits to the data owner.
These include (i) relief from the high mining cost, (ii) mini-
mization of demands in resources, and (iii) effective central-
ized mining for multiple distributed owners. On the other
hand, security is an issue; the service provider should be pre-
vented from accessing the actual data since (i) the data may
be associated with private information, (ii) the frequency
analysis is meant to be used solely by the owner. This paper
proposes substitution cipher techniques in the encryption of
transactional data for outsourcing association rule mining.
After identifying the non-trivial threats to a straightforward
one-to-one item mapping substitution cipher, we propose a
more secure encryption scheme based on a one-to-n item
mapping that transforms transactions non-deterministically,
yet guarantees correct decryption. We develop an effective
and efficient encryption algorithm based on this method.
Our algorithm performs a single pass over the database and
thus is suitable for applications in which data owners send
streams of transactions to the service provider. A compre-
hensive cryptanalysis study is carried out. The results show
that our technique is highly secure with a low data trans-
formation cost.

1 Introduction

Association rule mining aims at the discovery of itemsets
that co-occur frequently in transactional data. Centralized
mining has been well studied in the past (e.g., see [2], [12]).
The problem has a large worst-case complexity, a fact that
motivates business to outsource the mining process to ser-
vice providers, who have developed efficient, specialized so-
lutions. The data owner, apart from the mining cost relief,
has additional motives for outsourcing. First, it requires
minimal computational resources, since the owner is only re-
quired to produce and to send the transactions to the miner.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

This makes the outsourcing model also attractive to applica-
tions in which data owners produce transactions as streams
and they have limited resources to maintain them. Second,
assume that the owner has multiple production sources of
transactions, e.g., consider a chain of supermarkets which
generate transactions at different locations. All transactions
can be sent to a single provider for mining association rules.
The provider could compute association rules that are local
to the individual stores or global rules for the whole orga-
nization. Therefore, the cost of transferring transactions
among the sources and performing the global mining in a
distributed manner is saved.

On the other hand, the service provider becomes a sin-
gle point of security attack. If the service provider is not
trusted, he should be prevented from accessing the actual
data because the data may be associated with private infor-
mation. In addition, even if the items (e.g., store products)
are public, the computed association rules are property of
the owner and they are meant to be known only to him.
Therefore, protecting both raw data and the resulting as-
sociation rules from the service provider is a key issue in
outsourcing of data mining.

There are two approaches that can protect sensitive in-
formation. The first is to apply an encryption function that
transforms the original data to a new format [13, 7, 14]. The
second is to apply data perturbation, which modifies the orig-
inal raw data randomly [3]. The perturbation approach is
less attractive since it can only provide approximate results;
on the other hand, the use of encryption allows the exact
rules to be recovered. In this paper we propose and evaluate
appropriate encryption techniques for outsourcing of associ-
ation rules mining. In order for an encryption to be appro-
priate for the problem, the following conditions should be
satisfied. First, there should be a correct, complete, and de-
terministic decryption method that transforms the associa-
tion rules found in the encrypted database to the true associ-
ation rules in the original database. Second, the encryption
and decryption processes must be reasonably fast; otherwise,
owners may choose to apply association rules mining locally
(if cost is the only concern). Third, the encryption method
must be secure enough to prevent the service provider (or an
attacker) from recovering the original transactions and the
true association rules among the actual items by processing
the encrypted data.

We adopt the idea of substitution ciphers [10, 18, 9] in
transaction encryption. A direct application of this idea is

111

DB

DB

Transformation Decryption

Association
rules

Mining process

Association
rules

Data
Owner

Figure 1: The architecture of the scheme

to replace each original item by a unique symbol (one-to-one
item mapping); for example, the instances of a specific item
(e.g., “bread”) in transactions are substituted by a unique
integer (e.g., 54). One possibility to enhance the security is
to use a one-to-n item mapping as the substitution function;
for example, “bread” is substituted by a set of integers (e.g.,
{54, 103}). As we will prove later, in order for decryption
to be done unambiguously, the substitution of an item must
contain at least one unique symbol. For example, the num-
ber 54 should not appear in any substitution of any item
besides that of “bread”. Our result thus shows that sim-
ple one-to-n substitutions are in fact no more secure than
one-to-one substitution. Motivated by this discovery, we
propose a non-deterministic one-to-n substitution scheme.
In our scheme, random “fake” items are added to the trans-
formed transactions. We will show that the use of fake items
in non-deterministic one-to-n substitutions greatly enhances
security.

Figure 1 is an overview of the outsourcing scheme. The
data owner applies a one-pass transformation technique to
encrypt the original transactions, which are sent to the ser-
vice provider (miner). The miner computes the strong asso-
ciation rules for the transformed data, which are sent back
to the owner. The owner then uses a decryption process to
convert the rules to actual association rules involving the
original items.

2 Related Work

Privacy protection is an important issue in data mining.
Businesses usually do not want to share their own private
(statistical) information with service providers [6]. A stream
of past research has focused on protecting privacy against
third-party players in distributed data mining [15, 19, 11].
These studies are not directly related to the problem we
study in this paper, since our interest is to protect data and
results against a service provider, who alone should perform
the mining task.

Different data mining models (such as association-rule
mining, decision tree classification, etc.) have different secu-
rity requirements. Specialized approaches for the protection
of sensitive information under different models have been
designed [16, 3, 21]. In our case, we need a simple scheme
that enables a third-party miner to find association rules in
a transformed database while preventing it from accessing
the private information in the original database. The per-
turbation technique proposed in [8] can be adapted for our
problem. However, this solution returns only approximate

results. Also, the miner knows the exact number of itemsets
(and their frequencies) that will be used by the owner (i.e.,
the actual support of the perturbed itemsets). This can be
considered a breach of privacy. On the other hand, our data
encryption technique ensures the accuracy of the results and
at the same time hides from the miner the original number
of items and the exact frequencies of the itemsets.

Substitution cipher is a well-known method that is used
in the encryption of plain text. Each letter in the text is
replaced by another letter. Although the number of possi-
ble substitutions (i.e., letter orderings) is very large (26!),
the encryption is in fact not difficult to break if a dictio-
nary of words with their expected frequencies is available
[10, 18, 9]. Due to the extreme size of the search space, ad-
versaries usually resort to local search techniques to break
the cipher. Genetic algorithms [20] have been widely used
in cryptanalysis to attack security schemes [4, 5, 18]. In
order to validate the security of our encryption scheme, we
evaluate its resiliency to attacks by a genetic algorithm.

3 Problem Definition

Let I be a set of items and T be a database of transactions.
A transaction ti is a subset of I. (In our model, ti could
be ∅). A transaction ti contains an itemset X if and only if
X ⊆ ti.

Definition 1. (Support Count of Itemset) The support
count of an itemset X in the database T , denoted suppT (X),
is the number of transactions in T that contain the itemset
X.

Given a support threshold s%, an itemset X is large if
and only if suppT (X) ≥ |T | × s%, where |T | is the number
of transactions in T . An association rule X ⇒ Y has s%
support and c% confidence if s% of transactions in T con-
tain X

S
Y and c% of the transactions that contain X also

contain Y where X, Y ⊆ I. The problem of mining associ-
ation rules is to discover all the association rules that have
support and confidence greater than the given support and
confidence thresholds, respectively.

Association rules are discovered by dividing the problem
into two subproblems [1]. The first is to find all of the large
itemsets in T (i.e., all itemsets whose supports are not less
than the support threshold). The second is to find the as-
sociation rules from the discovered large itemsets. For each
large itemset Y and every subset X of Y , “X ⇒ (Y −X)”

is a strong association rule if its confidence (i.e., suppT (Y)

suppT (X)
)

is not smaller than the confidence threshold.
Assume that a party powner owns a set of transactions T ,

where each transaction ti ∈ T is a subset of I. Another
party (service provider) pminer acts as a third-party miner
to help powner to compute the set of strong association rules
Γ in T . The problem is to find a transformation PT that
encrypts each transaction in T , and that it possesses the
following two properties:

1. Let T ′ be the set of encrypted transactions computed
by powner by applying PT on T , i.e., T ′ = PT (T); let Γ′

be the set of strong association rules in T ′ (computed
by pminer); there exists a recovery function PR such
that PR(Γ′) = Γ.

2. pminer cannot find out T , PT , or PR from T ′.

112

If such a transformation PT is used by powner to encrypt
the transactions in T , pminer can only compute Γ′. Since
pminer does not know PT or PR, he cannot derive Γ from
Γ′. On the other hand, powner knows PT and PR, and hence
can recover the entire set of valid association rules Γ from Γ′.
In Property 2, we assume pminer can leverage background
knowledge to guess PT and PR, if he attempts to attack
the encrypted data. (We will discuss in detail the role of
background knowledge in Section 6.1).

4 Item Mapping
A simple encryption method is to directly apply a sub-
stitution cipher m: I → J , which is a one-to-one map-
ping from the original set I of items to another dictionary
J , where |I| = |J |. A transaction ti is transformed to
M(ti) = {m(x) | x ∈ ti}. For example, consider the trans-
action ti = {bread, chocolate} and assume that m(bread) =
165 and m(chocolate) = 54. Then, ti is transformed to
M(ti) = {54, 165}. This scheme allows the association rule
mining algorithm of pminer to be applied with 100% accu-
racy. Since pminer knows only the transformed transactions,
the original transactions cannot be directly determined.

Substitution ciphers are considered to be insecure for the
encryption of languages like English text. Given a reason-
able long piece of text, the mappings between letters can be
easily found by frequency analysis. Exemplary algorithms
for attacking substitution ciphers include relaxation[17], ge-
netic algorithms[18] and scatter search[10]. Unlike encryp-
tion of text, item substitutions for association-rule mining
are more secure because:

1. the number of possible mappings is much larger (|I|!);

2. pminer may not have the knowledge of the relative fre-
quencies of items; in this case, when attempting to
guess the transformation, pminer will have no informa-
tion to verify the validity of the guessed mappings.

On the other hand, this simple scheme may not be secure
enough in some applications. First, the probability to get
the correct mapping of an item by a random guess is 1

|I| ,

which could be considered too large. In addition, pminer

knows the number of large itemsets and their distribution
which are private statistics to powner. Finally, if pminer has
some background knowledge, like the global frequencies of
the real items from other databases (e.g., the actual frequen-
cies of itemsets mined from another supermarket), he could
easily attack the simple one-to-one substitution scheme.

4.1 Fake items and one-to-n mappings

To increase the difficulty to break a substitution cipher and
to protect the statistical information of the large itemsets,
we can add fake items to the transformation. Under this
scheme, we add a set of fake items F to the dictionary J (i.e.,
|J | = |I| + |F |) and use the mapping M(ti) = {m(x) | x ∈
ti}
S

F ′ to transform each transaction ti. Here F ′ is a ran-
dom (i.e., non-deterministic) subset of F . In this way, the
probability of a correct random guess of the mapping m(x)
for some x ∈ I is decreased to 1

|I|+|F | . Also, even if pminer

has some rough estimates of the relative frequencies of item-
sets, he will have difficulties in finding out the distribution of
the true large itemsets in T and in recovering the mapping.

Besides adding fake items to the cipher, we can map an
item to more than one item, i.e., we can use a one-to-n

mapping instead of a one-to-one mapping. Intuitively, a one-
to-n mapping cipher should be more difficult to break than
a one-to-one mapping cipher. In the following, we study the
correctness and effectiveness of one-to-n mapping ciphers.

Definition 2. (Item Mapping) Given a set of items I
and another set of items B, where |B| ≥ |I|, we say m :
I → 2B is a one-to-n item encryption mapping if for all
x, y ∈ I where x 6= y, m(x) 6= m(y). (For short, we call m
a one-to-n item mapping).

Example 1. I = {a, b, c}, B = {1, 2, 3, 4, 5}. A possible
item encryption mapping m is defined as follows:1

m(a) = {1, 4, 5}

m(b) = {2}

m(c) = {3, 5}

Note that, the intersection of the mappings of the items
may not be empty. For example, 5 occurs in the mapping
of a and the mapping of c. Similar to item mapping, we can
define an itemset mapping based on a given one-to-n item
mapping.

Definition 3. (Itemset Mapping) Given a one-to-n item
mapping m : I → 2B, for an itemset X = {x1, x2, ..., xn} ⊆
I, we define an itemset mapping M : 2I → 2B such that
M(X) = m(x1)

S
m(x2)

S
...
S

m(xn).

Definition 4. (Inverse Itemset Mapping) Given a one-
to-n item mapping m : I → 2B, let J = {Y ⊆ B | ∃X ⊆
I, M(X) = Y }. We define the inverse itemset mapping
M−1 : J → 2I of M such that M−1(Y) = {x ∈ I | m(x) ⊆
Y }, for Y ∈ J .

Example 2. Here we show some examples of an itemset
mapping and its inverse that is derived from the item map-
ping used in Example 1.

• Itemset mapping

M({a, b}) = {1, 2, 4, 5}
M({a, c}) = {1, 3, 4, 5}
M({b, c}) = {2, 3, 5}

• Inverse itemset mapping

M−1({1, 3, 4, 5}) = {a, c}
M−1({1, 2, 3, 4, 5}) = {a, b, c}
M−1({1, 2, 3}) is not defined (because {1, 2, 3} 6∈ J)

Note that given an item mapping m and its associated
itemset mapping M , there is no guarantee that the inverse
mapping (M−1) correctly reverts M . In other words, if we
encrypt an itemset X by M , M−1 may not be able to de-
crypt M(X) correctly. In particular, if there is an item x ∈ I
such that m(x) is a subset of the mappings of other items,
there can be an encrypted transaction which is decrypted to
a superset of the original transaction.

1This mapping will be used as the default mapping for the
other examples used in the rest of this paper unless otherwise
specified.

113

Example 3. Consider the following one-to-n item map-
ping m where I = {a, b, c} and B = {1, 2, 3}.

m(a) = {1, 2}

m(b) = {2, 3}

m(c) = {1, 3}

Let t = {a, b}. We have t′ = M(t) = {1, 2, 3}. M−1(t′) =
{a, b, c}. So, M−1(M(t)) 6= t, therefore M−1 decrypts M(t)
incorrectly.

In the following, we develop a result which guarantees the
correctness of a one-to-n mapping cipher.

Definition 5. (Admissible Item Mapping) A one-to-n
item mapping m : I → 2B is admissible if ∀x ∈ I,
m(x)−

S
y∈I−{x} m(y) 6= ∅.

Intuitively, if m is an admissible item mapping, for any
x ∈ I, there always exists an item e ∈ m(x) such that e /∈
m(y) for all y ∈ I − {x}.

Theorem 1. Given an itemset mapping M that is based
on a one-to-n item mapping m, the cipher defined by M can
be decrypted correctly by the inverse of M , i.e., ∀X ⊂ I,
M−1(M(X)) = X if and only if m is admissible.

Proof. Suppose m is not admissible. Then, there ex-
ist an item x and items y1, y2, ..., yk such that x 6= yi,
∀i = 1, .., k and m(x) ⊆ m(y1)

S
m(y2)

S
...
S

m(yk). Con-
sider the itemset X = {y1, y2, ..., yk}, and Y = M(X), since
Y = m(y1)

S
m(y2)

S
...
S

m(yn), m(x) ⊆ Y . As a result,
x ∈ M−1(Y). Since x /∈ X, M−1(Y) 6= X. The decryp-
tion is incorrect. Suppose m is admissible. For any itemset
X = {x1, x2, ..., xk}, let Y = M(X) and Z = M−1(Y).
xi ∈ Z because m(xi) ⊆ Y for i = 1, 2, ..., k. Thus X ⊆ Z.
Since m is admissible, ∀y ∈ I − X, m(y) − Y 6= ∅. Hence
y /∈ M−1(Y). Thus Z ⊆ X and so X = Z.

Theorem 2. Consider an admissible one-to-n item map-
ping m, which is applied on a transaction database T =
{t1, t2, ..., tn} and which generates the encrypted database
T ′ = {M(t1), M(t2), ..., M(tn)}. For any itemset X ⊂ I,

suppT (X) = suppT ′
(M(X)).

Proof. Let T = {t1, t2, ..., tn} be the transaction data-
base. Let trT (X) denote the set of transactions in T that
contain X. Note that suppT (X) = |trT (X)|. Consider an
arbitrary itemset X ⊆ I, where X = {x1, x2, ..., xk}.

If ti ∈ trT (X), we have X ⊆ ti and thus M(X) ⊆ M(ti),

so M(ti) ∈ trT ′
(M(X)).

If ti 6∈ trT (X), then X 6⊆ ti. Hence, there exists an xi such
that xi 6∈ ti. Now if m(xi) ⊆ M(ti) then by the definition
of M−1, we have xi ∈ M−1(M(ti)). Since m is admissible,
By Theorem 1, M−1(M(ti)) = ti and thus xi ∈ ti, which
leads to a contradiction. Therefore, m(xi) 6⊆ M(ti). So,
M(X) =

S
j∈[x1,xk] m(xj) 6⊆ M(ti). This implies M(ti) 6∈

trT ′
(M(X)).

As a result, |trT (X)| = |trT ′
(M(X))| and thus suppT (X)

= suppT ′
(M(X)).

For an admissible one-to-n item mapping m from a set I
to a set B, each mapping of an I-item must contain at least
one unique B-item. Let U ⊂ B be the set of these unique
B-items (the minimum size of U is |I|). An I-item may
be m-mapped to one B-item (|B|C1 possible mappings) up
to |B| − |I| + 1 B-items (|B|C|B|−|I|+1 possible mappings).
Therefore, the probability of making a correct guess for a
mapping of an item is 1

|B|C1+|B|C2+···+|B|C|B|−|I|+1
, which

is much smaller than that in the case of a one-to-one item
mapping.

4.2 Transaction transformation

We have shown that a one-to-n mapping cipher, based on
an admissible item mapping m, is correct. In this section
we show that an admissible one-to-n mapping cipher can
be decrypted by a one-to-one mapping. Since a one-to-one
mapping is relatively easy to break, a simple one-to-n map-
ping is not adequate for secure encryption. Motivated by
this result, we introduce a powerful transaction transforma-
tion scheme that can significantly strengthen the security of
admissible one-to-n mapping ciphers.

Definition 6. (Coverage of Item Mappings and Itemset
Mappings) Given two itemset mappings, M1 : 2I → 2D1

and M2 : 2I → 2D2 , M1 covers M2, denoted by M1 ⇒ M2,
if and only if ∀X ⊆ I, M−1

2 (Y) = M−1
1 (Y

T
D1) where

Y = M2(X).
Given two item mappings m1 : I → D1 and m2 : I → D2,

we construct two itemset mappings M1 and M2 from the
two item mappings, Mi(t) =

S
x∈t mi(x),∀t ⊆ I for i = 1,

2. We say that m1 covers m2, denoted by m1 ⇒ m2, if and
only if M1 ⇒ M2.

Example 4. I = {a, b, c}, D = {1, 2, 3}. An item mapping
m′ : I → D is defined as follow:

m′(a) = {1}

m′(b) = {2}

m′(c) = {3}

Let M be the itemset mapping constructed using m in Ex-
ample 1 and M ′ be the itemset mapping constructed using
m′. We consider all possible subsets of I.

If Y = M(∅) = ∅, then M ′−1(Y
T

D) = ∅ = M−1(Y).

If Y = M({a}) = {1, 4, 5}, then M ′−1(Y
T

D) = {a}
= M−1(Y).

If Y = M({b}) = {2}, then M ′−1(Y
T

D) = {b}
= M−1(Y).

...

If Y = M({a, b, c}) = {1, 2, 3, 4, 5}, then M ′−1(Y
T

D)
= {a, b, c} = M−1(Y).

Hence, M ′ ⇒ M .

Intuitively, if an item mapping m2 is covered by another
mapping m1, the encryption done by m2 can be simulated
by m1. Hence, the cryptanalysis against m2 can be done as if
the encryption was done by m1. In particular, an adversary
can recover the original data if he is able to find m1, even if
he fails to find m2.

114

Theorem 3. Given an admissible one-to-n item mapping
m and a transaction database T = {t1, t2, ..., tn}, let T ′ =
{M(t1), M(t2), ..., M(tn)} be the encrypted database. ∀x ∈
I, if |m(x)| ≥ 2, then there exist an item e ∈ m(x) such that

suppT ′
(m(x)) = suppT ′

(e).

Proof. Since m is admissible, for any item x ∈ I, there
exists a unique item e in m(x)−

S
y∈I−{x} m(y). If a transac-

tion t contains x, we have m(x) ⊆ M(t) and thus e ∈ M(t) in
the encrypted database T ′. If transaction t does not contain
x, M(t) ⊆

S
y∈I−{x} m(y) and thus e 6∈ M(t). Therefore,

suppT ′
(e) = suppT (x) = suppT ′

(m(x)).

Theorem 4. Given an admissible one-to-n item mapping
m, there exists a one-to-one item mapping m′ such that
m′ ⇒ m.

Proof. Given an admissible one-to-n item mapping m :
I → 2B , we will construct a one-to-one item mapping m′ :
I → D, where D ⊂ B, that covers m. We use M , M−1

(resp. M ′, M ′−1) to denote the itemset mapping and in-
verse itemset mapping of m (resp. m′). For each item
x ∈ I, if |m(x)| = 1, set m′(x) = m(x); if |m(x)| ≥ 2,

from Theorem 3, ∃e ∈ m(x) such that suppT ′
(m(x)) =

suppT ′
(e) and e ∈ m(x) −

S
y∈I−{x} m(y). In this case,

set m′(x) = e. Also, let D =
S

x∈I m′(x). For every item-
set X = {x1, x2, ..., xn} ⊆ I, let Y = M(X) =

Sn
i=1 m(xi).

We have M−1(Y) = X. Note that M ′−1(S) is defined for
all S ⊆ D because m′ is a one-to-one item mapping. Let
Z = M ′−1(Y

T
D). By construction, m′(x) ⊆ m(x) for all

x ∈ I, and m′(xi) ⊆ M(X) = Y for i = 1 to n. Therefore,
X ⊆ M ′−1(Y

T
D) = Z. On the other hand, for any item

e ∈ I − X, m′(e) −
S

x∈I−{e} m(x) 6= ∅. Hence e /∈ Z and

thus Z ⊆ X. Therefore, Z = X and m′ ⇒ m.

Theorem 4 is a counter-intuitive result. It implies that
a one-to-n item mapping cipher is no better than a one-to-
one item mapping cipher. When an adversary attempts to
break the encryption of an admissible one-to-n mapping, it
can attack the encryption as if it were done by a one-to-one
mapping. In Example 1, c is mapped to {3, 5} and {3} is

the unique item in m(c), and suppT (c) = suppT ′
(3, 5) =

suppT ′
(3). Hence decryption derived from the mapping

c → {3, 5} can be replaced by a decryption derived from
the one-to-one mapping c → {3} in the encryption. So, the
security of an admissible one-to-n mapping is only as high as
that provided by a one-to-one mapping. One way to elim-
inate this undesirable feature of a one-to-n mapping is to
add B-items and fake items randomly into the transforma-
tion of transactions. In the above example, if the item {3}
is added to some transactions in T ′, it will make suppT ′

(3)

larger and it is no longer possible to deduce suppT ′
(3, 5)

from suppT ′
(3).

Definition 7. (Transaction Transformation) Given an
admissible one-to-n item mapping m : I → 2B, and a set of
items F (fake items), where F

T
B = ∅, we define a transac-

tion transformation N as a mapping from 2I to 2B
S

F which
maps a transaction t ∈ 2I to M(t)

S
E, where E is a random

subset (including ∅) of B
S

F , i.e., N(t) = M(t)
S

E.

Note that the random itemset E added to the transfor-
mation of a transaction t is non-deterministic. Two transac-
tions t1, t2 with the same content (i.e., t1 = t2) give M(t1) =

M(t2). However, it could happen that N(t1) 6= N(t2) due
to different extra items E added to their mappings. On the
other hand, we need to ensure that this randomness does not
affect the correctness of the cipher based on the mapping m.

Definition 8. (Inverse Transaction Transformation and
Valid Transaction Transformation) Given N is a transac-

tion transformation, let t′ ∈ 2B
S

F , we define the inverse
transaction transformation N−1(t′) = {x ∈ I | m(x) ⊆ t′}.
Note that N−1(t′) = M−1(t′) when t′ ∈ J where J = {Y ⊆
B | ∃X ⊆ I, M(X) = Y }. We say that the transaction
transformation N is valid if the transformed transactions
can be decrypted correctly, i.e., N−1(N(t)) = t,∀t ⊆ I.

A valid transaction transformation can easily be obtained
by setting E to ∅ for all transactions. However, as explained
in Theorem 4, such a transformation can be decrypted by a
one-to-one mapping. Given a transaction t, a good transac-
tion transformation N should consider all possible subsets
E of B

S
F when it adds extra items to M(t), provided that

the addition of E would still allow correct decryption. We
formulate this requirement by defining the concept of “com-
plete” transformation and extend the definition of coverage
to include transaction transformations.

Definition 9. (Coverage of transaction transformation)
Given an itemset mapping, M : 2I → 2D1 and a transaction
transformation N : 2I → 2D2 , M covers N , denoted by
M ⇒ N , if and only if ∀X ⊆ I, N−1(Y) = M−1(Y

T
D1)

where Y = N(X).

Definition 10. (Complete Transaction Transformation)
Given a valid transaction transformation N , for all t ⊆ I,
let N̂(t) be the set of all possible values returned by N(t).
We say that N is a complete transformation iff ∀t ⊆ I,
∀E ⊆ B

S
F , if N−1(M(t)

S
E) = t then M(t)

S
E ∈ N̂(t).

In other words, any transformation (M(t)
S

E) of a trans-
action t that can be correctly decrypted has the potential of
being returned by N(t).

Example 5. Consider the one-to-n cipher defined in Ex-
ample 1. Suppose t = {c} and F = ∅. So, we have M(t) =
{3, 5}. Here are some examples of E under a valid N :

E = {1} and N(t) = {1, 3, 5}; or

E = {4} and N(t) = {3, 4, 5}.

Some examples of E that lead to an invalid N :

E = {1, 4} and N(t) = {1, 3, 4, 5}; N−1(N(t)) = {a, c}.

E = {2} and N(t) = {2, 3, 5}; N−1(N(t)) = {b, c}.

If N is complete, any subset of {1, 2, 3, 4, 5} (a total of
25 = 32 sets) can be returned by N . For t = {c}, one can
easily verify that outE(t) = {∅, {1}, {4}} is the set of all
possible E under a valid N . So, when N transforms t, an
E in outE(t) will be picked in a non-deterministic fashion
to construct N(t) = M(t)

S
E. Conversely, as long as E is

picked from outE(t), N is valid with respect to t.

Theorem 5. Given a valid transaction transformation N
applied on a transaction database T = {t1, t2, ..., tn} to gen-
erate T ′ = {N(t1), N(t2), ..., N(tn)}. For any itemset X ⊆
I, suppT (X) = suppT ′

(M(X)).

115

Proof. Let T = {t1, t2, ..., tn} be the transaction data-
base. Let trT (X) be the set of transactions in T such that
X ⊆ t. Note that suppT (X) = |trT (X)|. Consider an arbi-
trary itemset X ⊆ I, where X = {x1, x2, ..., xk}.

If ti ∈ trT (X), we have X ⊆ ti. This implies M(x) ⊆
M(ti) and hence M(x) ⊆ N(ti). So, N(ti) ∈ trT ′

(M(X)).

If ti 6∈ trT (X), then X 6⊆ ti. Now, if N(ti) ∈ trT ′
(M(X)),

M(X) ⊆ N(ti). So, X ⊆ N−1(N(ti)) and thus X ⊆ ti

(since N is valid). This leads to a contradiction and thus

N(ti) 6∈ trT ′
(M(X)).

As a result, |trT (X)| = |trT ′
(M(X))|. So, suppT (X) =

suppT ′
(M(X)).

Theorem 6. If N is a valid and complete transaction
transformation obtained from an admissible one-to-n map-
ping m such that m is not a one-to-one mapping, there does
not exist a one-to-one itemset mapping M ′ that covers N .

Proof. Assume there is a one-to-one itemset mapping
M ′ : 2I → 2D such that M ′ ⇒ N . Since m is not a one-
to-one item mapping, there exists an item x ∈ I such that
|m(x)| ≥ 2. Let m(x) = {y1, y2, ..., yn} for some n ≥ 2.
Consider the empty itemset ∅. Since N is valid, we have
N−1(N(∅)) = ∅. Since M ′ ⇒ N , we can use M ′−1 to de-
cipher N , i.e., M ′−1(N(∅)

T
D) = N−1(N(∅)) = ∅. Let

Ei = {yi} for i = 1, 2, ..., n. We will show that N−1(Ei) = ∅.
If there exists an item e ∈ N−1(Ei), by definition of inverse
transaction transformation, m(e) ⊆ Ei ⊂ m(x). Hence, we
have an item e whose mapping (m(e)) is a proper subset of
that of another item x. This contradicts to the fact that m
is an admissible mapping. By contradiction, N−1(Ei) = ∅
and therefore, N−1(Ei) = N−1(N(∅)).

Since N−1(Ei) = N−1(N(∅)), when we apply the non-
deterministic transformation N to ∅, Ei is a possible output
for N(∅) given that N is complete. If M ′ ⇒ N , we can use
M ′ to decrypt N(∅). Thus, M ′−1(Ei

T
D) = ∅. Since M ′

is a one-to-one mapping, we have Ei

T
D = ∅. Therefore,

yi 6∈ D for i = 1, 2, ..., n. Now consider M ′−1(N({x})
T

D).
Note that by definition, N({x}) = M({x})

S
E where E

is a subset of B
S

F and it is always possible to set E
to the empty set because N is complete. In that case,
N({x}) = {y1, y2, ..., yn}. Since yi 6∈ D, M ′−1(N({x})

T
D)

= M ′−1(∅) = ∅. Note that N−1(N({x})) = {x} (because
N is valid). Therefore, M ′−1(N({x})

T
D) 6= N−1(N({x}).

M ′ cannot cover N .

The importance of Theorem 6 is that a valid and com-
plete transaction transformation derived from a one-to-n
item mapping is more secure than a one-to-one mapping;
it is not possible to simulate such a transformation by a
one-to-one mapping. We are not simply performing substi-
tution, the transaction transformation process becomes non-
deterministic but yet it guarantees correctness of the decryp-
tion of the cipher. Note that the number of possible trans-
formed transactions is 2|B

S
F | which is much larger than

the number of possible original transactions (2|I|). Since an
adversary can no longer simulate a one-to-n item mapping
by a one-to-one item mapping, in general, we can fully uti-
lize the search space of a one-to-n item mapping to increase
the cost of attack and prevent the adversary to easily guess
the correct mapping. We will report a set of experiments
in Section 7.1.1 that compare the strength of a one-to-one
item mapping against a one-to-n item mapping in terms of
how difficult it is to break the ciphers.

Note that in our proof, we assumed that a database may
contain empty transactions. In case there are no empty
transactions in the physical dataset, the owner may choose
to add some empty transactions randomly. This increases
the number of transactions slightly. To obtain accurate sup-
port counts, the support threshold should be decreased ac-
cordingly.

5 Algorithms
In this section we first introduce an intuitive algorithm for
generating a one-to-n mapping scheme m. Then, we describe
an algorithm that generates a valid and complete transaction
transformation T ′ from an original database T based on the
mapping m. Finally, we describe a decryption technique for
the association rules generated at pminer.

5.1 Generate one-to-n item mappings

We now present an algorithm for generating admissible one-
to-n item mapping m : I → B. B is divided into two sets of
items, U and C. U is a set of items (called unique items),
each of which is a unique item in a mapping. C is a set
of items (called common items) which is shared among the
mappings. U

T
C = ∅. For simplicity, we set |U | = |I|.

First, we generate the unique item of each mapping; each
original item in I is associated with a unique random item
in U . Next, we add the common items into the mappings.
For each item ci in C, we randomly pick b mappings, where
the expected value of b is given by the parameter NB . We
then add ci into each of the picked mappings. Thus, NB

allow us to control the occurrences of each item ci among
the mappings. Algorithm 1 is a pseudocode for this process.

Algorithm 1 Algorithm to generate one-to-n admissible
mappings
Require: I, the original items
Require: U , the unique items
Require: C, the common items
Require: NB , expected number of mappings extended

generate a random permutation in U
for xi in I do

fetch ui in U at i-th location
initialize m(xi) to {ui}

end for
for cj in C do

generate b with expected mean NB

randomly pick b mappings from {xi → m(xi), i = 1,, |I|}
for each picked mapping xi → m(xi) do

m(xi) = m(xi)
S
{cj}

end for
end for
return m

5.2 Transaction transformation

We now present an algorithm for generating a valid and com-
plete transaction transformation from a one-to-n admissible
mapping. For every transaction t, the itemset mapping M(t)
is extended to N(t) = M(t)

S
E. The key is to construct a

random E without affecting the decryption result; we need
to prevent N(t) from containing m(x) for any x /∈ t; other-
wise, such x will appear in N−1(t). To avoid this to happen,
we must ensure that some items in m(x) are excluded from
E.

Let et be the transformed transaction of t. Initially et =
M(t). To create E, we process the items x ∈ I − t itera-
tively. Conceptually, we process one mapping x → m(x) in
each iteration. All items in m(x) are candidates to be added
to E. However, some items in m(x) may have been added to

116

et already and some may have been identified as unsuitable
to be added in a previous iteration (because they result in
incorrect decryption). We use bt to record the list of items
identified as unsuitable to be included in et. The items of
m(x) that have been included into the transformed transac-
tion in previous iterations can be found in m(x)

T
(et
S

E).
Those that have been identified as not suitable can be found
in m(x)

T
bt. So dt = m(x)− et−E − bt are the remaining

candidates. Note that by considering only items in dt, we
have ensured that the decryption of mappings that have al-
rady been processed will not be affected. This is because
dt consists of items that are not contained in the map-
pings that have been processed in previous iterations. If
|m(x)

T
bt| ≥ 1, some items in m(x) are already marked un-

suitable. In this case, all members in dt can be safely added
to E without making N invalid. We pick a random subset
st ⊆ dt and add st to E. If |m(x)

T
bt| = 0, then a proper

subset st ⊂ dt is picked to be added to E (otherwise N(t)
would be incorrectly decrypted to contain x). In both cases,
the remaining candidates in dt− st are added to bt, so that
they will not be included in any E in subsequent iterations
(and thus to prevent the entire m(x) from being added to
et).

The expected size of E
T

B is an input parameter NE .
The algorithm first generates ne in [0, |B−M(t)|] such that
its expected value is NE . The algorithm continues adding
items until we fill the quota or all mappings are processed.
Finally, a subset of nf fake items from F with expected size
NF is randomly picked to extend the transaction. Algorithm
2 is a pseudocode of our valid and complete transformation
algorithm.

Algorithm 2 Algorithm to generate a valid and complete
transformation for a transaction t
Require: m : I → 2B , an admissible one-to-n item mapping
Require: t, input transaction
Require: F , fake items
Require: NE , expected size of E

T
B

Require: NF , expected size of E
T

F
{et denotes the resulting transformation N(t) = M(t)

S
E of t}

et = ∅
for each item i ∈ t do

et = et
S

m(i)
end for
{E contains the items to be added to et}
{bm contains the items x ∈ I − t such that items in m(x) have
been considered as candidates for insertion into E}
{bt contains the items in B identified as not suitable to be added
to et}
E = bm = bt = ∅
generate ne in [0, |B −M(t)|] with expected mean NE

while |E| < ne and |I| − |t| − |bm| > 0 do
pick item x ∈ I − t− bm {x is selected to be processed}
bm = bm

S
x

dt = m(x)− et− E − bt
st = ∅
if |m(x)

T
bt| ≥ 1 then

if |dt| ≥ 1 then
randomly pick st such that st ⊆ dt

end if
else if |dt| ≥ 2 then

randomly pick st such that st ⊂ dt
end if
E = E

S
st

bt = bt
S

(dt− st)
end while
et = et

S
E

{Adding fake items}
generate nf with expected mean NF

pick a set sf ⊆ F with size equal to nf

et = et
S

sf
return et

Example 6. We use the mapping m in Example 1 to per-
form transaction transformation. We assume F = {6, 7}.
Suppose t = {b}, and we are to compute N(t) with Algo-
rithm 2. Before processing any item, et = M(t) = {2}. In
the first iteration, assume a and the mapping a → {1, 4, 5}
are picked for processing. No items in m(a) = {1, 4, 5} were
processed before. So dt = {1, 4, 5} is the set of candidates.
Suppose coin tossing determines subset st = {1}. Then,
E = {1} and bt = {4, 5}.

In the second iteration, c and the mapping c → {3, 5}
are picked. Then dt = {3} and this reveals that only
3 in m(c) = {3, 5} was not processed before. Note that
|m(c)

T
bt| = 1, hence we proceed to toss coin to pick a

subset from dt. Assume st = {3} is picked, then E = {1, 3}
and bt remains unchanged.

Since there are no more items x /∈ t left, E is finalized
to {1, 3} and et becomes {1, 2, 3}. We proceed to pick fake
items in F and assume {7} is picked, then et = {1, 2, 3, 7}.
So, the resulting transformation is N({b}) = {1, 2, 3, 7}.
Note that N−1(N({b}) = {b}.

Theorem 7. Given an admissible one-to-n item mapping
m, Algorithm 2 generates a valid and complete transaction
transformation.

Proof. First, we will prove the transformation is valid.
Given an admissible one-to-n item mapping m, for any trans-
action t, Algorithm 2 returns t′ = N(t) = M(t)

S
E for some

E ⊂ B
S

F . Since M(t) ⊆ t′, t ⊆ N−1(t′). Suppose the de-
cryption on t′ is not correct, i.e., N−1(t′)− t 6= ∅. Let x be
an item in N−1(t′) but not t, we will show that m(x) cannot
be contained entirely in t′ and hence a contradiction.

Since x /∈ t, but m(x) ⊆ t′, x → m(x) must have been
processed at an iteration i of Algorithm 2. Since m is admis-
sible, m(x) has a unique item which has not been processed
at any iteration before i. Note that once an item is added to
bt, i.e., it is marked not suitable, it will never be added into
E. Hence, once an item in m(x) is added to bt, m(x) will not
be contained in t′. Now we look at several cases when x is
being processed in iteration i. First, assume |m(x)

T
bt| ≥ 1,

then some item in m(x) is in bt and m(x) cannot be a subset
of t′. If |m(x)

T
bt| = 0 and dt ≥ 2, a proper subset of dt is

added to E and the nonempty difference (dt−st) is added to
bt. Hence m(x) cannot be a subset of t′. Finally, if |dt| = 1,
then dt contains the unique element in m(x). In this case,
st = ∅ and nothing is added to E but dt is added to bt, i.e.,
the unique element of m(x) is in bt. Hence m(x) cannot be
a subset of t′ in all cases. By contradiction, N−1(t′) must
equal to t and the transformation is valid.

Next, we show that the transformation is complete. Given
an input transaction t, Algorithm 2 first adds M(t) into et.
Note that et contains all those items in the transformed
transaction generated before the while loop. For the trans-
formation to be complete, the algorithm should be able to
generate any t′ ⊆ B

S
F such that N−1(t′) = t. Consider

any t′ where N−1(t′) = t, and let X = t′ −M(t). X repre-
sents the items the algorithm adds into E in the while loop.
We first show by induction that X

T
B can be generated in

the while loop.
Let R be the required items we need to add to E where

E is the variable in the while loop holding the added items,
i.e., R = X

T
B − E. Let the induction statement S(n)

be: the algorithm can generate R where |R| = n given that
R
T

bt = ∅. Consider the base case S(0), R = ∅ and there is

117

no need to add any item into E. So, S(0) is true. Assume
S(0), S(1), ..., S(k) is true. Consider S(k + 1), since the
algorithm has not filled up the quota, the algorithm goes into
the while loop. Note that if y ∈ R, ∃x ∈ I−t−bm such that
y ∈ m(x) and x will be selected in the top of the while loop.
Let K = m(x)

T
R = {e1, e2, ..., ej}. dt = m(x)−et−E−bt.

Since x 6∈ t and N−1(t′) = t, so x 6∈ N−1(t′). Therefore
m(x) 6⊆ t′, m(x)−R = ∅. In the following steps of the loop,
with some coin tossing results, the algorithm picks st = K
and adds dt − K to bt. Since (m(x) − K)

T
(R − K) = ∅,

items in (R − K) are not in bt. The remaining problem is
S((k +1−|K|)). Since |K| ≥ 1, S(k +1) is true. By MI, the
algorithm can generate X of any possible sizes with initial
E = ∅.

The last part to is show the algorithm can generate the
required X

T
F . This is obvious since the algorithm can pick

any possible subset of F for different coin tossing results.
So, the algorithm generate the required X. In conclusion,
Algorithm 2 is complete and valid.

5.3 Association rule recovery

A valid transaction transformation ensures that the decry-
pted result is correct; it also ensures that powner can “trans-
late” the association rules mined by pminer correctly.

Theorem 8. Given a valid transaction transformation N
on a transaction database T = {t1, t2, ..., tn}, which gener-
ates T ′ = {N(t1), N(t2), ..., N(tn)}. Let M be the admissible
itemset mapping that N is generated from, and let X, Y be
two itemsets in I. X ⇒ Y is an association rule in the orig-
inal database T if and only if M(X) ⇒ M(Y) − M(X) is
an association rule in the encrypted database T ′.

Proof. Let Z = X
S

Y . By Theorem 5, suppT (X) =

suppT ′
(M(X)) and suppT (Z) = suppT ′

(M(Z)). If X ⇒
Y is an association rule in T , X and Z are both large
and suppT (Z) ≥ c% × suppT (X), where c% is the con-
fidence threshold. So, M(X) and M(Z) are both large

and suppT ′
(M(Z)) ≥ c% × suppT ′

(M(X)). This gives us
an association rule M(X) ⇒ M(Z) − M(X) in T ′. Since
M(Z) = M(X)

S
M(Y), M(Z)−M(X) = M(Y)−M(X).

Note that M(Y) − M(X) cannot be further simplified to
M(Y) as M(X) and M(Y) may not be mutually exclusive.
The if part can be proved similarly.

We can easily design an association rule decryption algo-
rithm using Theorem 8. Note that not all association rules in
T ′ are representing a rule in T . Given a rule in T ′, A ⇒ B,
if M−1(A) or M−1(A

S
B) is not defined, it does not re-

sult in any rule in T . If both are defined, we can output
M−1(A) ⇒ M−1(A

S
B)−M−1(A) as a rule in T .

Example 7. Suppose that the encryption is based on the
mapping of Example 1 and that we have found the following
rules in T ′:

1 ⇒ 4 (rejected, M−1({1}) is not defined)

2 ⇒ 1, 3, 5 (rejected, M−1({1, 2, 3, 5}) is not defined)

2 ⇒ 1, 3, 4, 5

M−1({2}) = {b}
M−1({1, 2, 3, 4, 5}) = {a, b, c}

Decrypted rule: b ⇒ ac

2, 3, 5 ⇒ 1, 4

M−1({2, 3, 5}) = {b, c}
M−1({1, 2, 3, 4, 5}) = {a, b, c}
Decrypted rule: bc ⇒ a

Note that M−1({1, 4}) is not defined.

Note that, in this example, there are only two rules in T
while there are four rules in T ′. This is expected, due to
the introduction of additional items in the encryption (i.e.,
|B
S

F | > |I|).
5.4 Cost analysis

Generating mapping and recovering association rules are rel-
atively cheap since they are independent from database size.
Algorithm 1 has a time complexity of O(|I|+ NB × |C|). It
takes O(|I|) time for generating a random permutation and
initializing mapping of items and O(NB × |C|) for inclusion
of common items. The cost of recovering association rules
is O(cd × |AR′|) where AR′ is association rules found by
pminer and cd is the time to compute the inverse of an en-
crypted itemset. For an admissible one-to-n mapping m,
each mapping of item must contain an unique item. Let y
be an unique item in m(x) where x ∈ I. Given an encrypted
itemset X ′, if x ∈ M−1(X ′), y ∈ M−1(X ′). We can make
use the set of unique items to construct a partial inverse
which maps U to I. This gives us a list of candidates which
are possible items in M−1(X ′). We verify each candidate xc

by checking if m(xc) ⊆ X ′ and this gives us the final itemset
X. Finally, we must make sure M(X) = X ′ or M−1(X ′) is
undefined since X ′ 6∈ J . So, cd is bounded by O(|l|) where l
is average length of association rule.

Algorithm 2 can be divided into two parts. The first part
computes M(X) given an input itemset X. It takes O(|X|)
time. The second part generates a random E for the input
itemset X. We used a “quota” approach. The algorithm
iteratively adds items to E and stops when enough items
are added. So, the expected time complexity is linear to the
expected quota (NE + NF) and has a worst case of O(|I|)
(every mapping is processed). In conclusion, it takes O(|T |×
(|t| + NE + NF)) time to transform a database T where |t|
is the average length of transaction.

5.5 Settings of outsourcing parameters

To avoid excessive increase in the mining cost and at the
same time achieve adequate security, we suggest the follow-
ing methodology to set appropriate values for the transfor-
mation parameters. We inject as many additional items
in the transformed transactions as the number F1 of size-
one large itemset in the original database (this number can
be determined by sampling). So, we may set |B

S
F | =

|I|+|F1|. In addition, we control the length of each mapping
not to be too high since a high value will cause the common
items C to have very high frequency compared to the unique
items U and to be easily identified in T ′. A rule of the thumb
is to set NB to be close to 1, which causes common items
to have a similar expected support as the unique items (and
the original database items). With the above settings the
expected support of an item in B, if we only use the one-to-

n itemset mapping, becomes E1
sup = |U|·avsup+|C|·NB ·avsup

|B| ,

where avsup is the average support of an I-item in the orig-

inal database T . avsup can be estimated by
|tavg|
|I| , where

118

|tavg| is the average transaction length in T . The while-
loop of Algorithm 2 adds more B-items to the transformed
transaction, which increases this expected support. Para-
meter NE is estimated to increase E1

sup for each B-item by
NE
|B| . We want this increase to be large enough in order to in-

ject enough randomness and small enough in order to make
mining inexpensive. A good strategy is to set NE

|B| to be a

fraction of E1
sup, or NE = λ× (|U | ·avsup+ |C| ·NB ·avsup),

for certain λ ∈ (0, 1). Similarly, items in F should be given
the same expected support as those of the B-items, which is
(1+λ)×E1

sup. The support of F -items is expected to be NF
|F | .

Therefore, an appropriate value for NF is (1+λ)×E1
sup×|F |.

For example, assuming that |I| = 1000, |tavg| = 10, and
F1 = 200, we can set |B| = 1100, |F | = 100, NB = 1,
E1

sup = avsup = 0.01, λ = 0.5, NE = 5.5, NF = 1.5.

6 Security Analysis

In outsourcing, we need to prevent pminer from recovering
the information on the large itemsets and association rules
in T by using information in the transformed database T ′.
In cryptanalysis against substitution cipher on text, an ad-
versary may use dictionary information to acquire word fre-
quencies to attack the encryption. In association rule min-
ing, we may have the advantage that dictionary information
might be unavailable to attackers. However, there could be
background knowledge that an adversary can use to guess
the information on association rules and large itemsets. For
example, the large itemsets and rules in an individual su-
permarket can be similar to some extent to those of the
entire industry, which might have been published. In this
case, public knowledge would become background knowl-
edge to the attacker. In the following, we study the impact
of this type of background knowledge on the proposed secu-
rity scheme.

6.1 Background knowledge

We assume the adversary has acquired the knowledge of a
subset of large itemsets and their corresponding supports.
The accuracy of this knowledge may vary. We formally de-
fine the notion of background knowledge as follows.

Definition 11. (Background Knowledge) Let L be the
set of large itemsets in T . An (α, β)-knowledge of T is a sub-
set of L, such that (i) the subset contains α% of the itemsets
in L and (ii) the adversary has a count for each itemset X
in this subset, which is in the range of suppT (X)∗ (1±β%).

Based on an (α, β)-knowledge, an adversary can perform
frequency analysis and recover some of the mappings and
attempt to decrypt the database. Our goal is to compare
the relative strength of one-to-one mappings and one-to-n
mappings under the attack of an adversary with a given
(α, β)-knowledge.

7 Experimental Evaluation

In this section, we present an experimental evaluation that
demonstrates the security and cost effectiveness of the pro-
posed encryption scheme. In the experiments, we used syn-
thetically generated transactional databases using the IBM
data generator. All the programs are implemented in Java.
The experiment is done on a Pentium 4 2.26GHz computer
with 512 MB RAM running on Windows.

7.1 Security analysis

In order to measure the security of the proposed approach,
we carried out two sets of experiments. The first one studies
the effectiveness of a one-to-n item mapping based transac-
tion transformation over a one-to-one item mapping, if the
attacker knows the frequencies of all itemsets in the database
(and attempts to identify the identities of the items). The
second one assesses the security of our scheme for different
background (α, β)-knowledges.

7.1.1 One-to-one item mapping vs one-to-n item
mapping

For the first experiment, we implemented and used a genetic
algorithm (GA) for cryptanalysis [18]. We compare two en-
cryption strategies: one-to-one item mapping vs one-to-n
item mapping with transaction transformation. The first
strategy replaces every item in a transaction by a unique
item of a different dictionary. Some fake items are added
to each transaction. The second strategy implements the
one-to-n mapping based transaction transformation of Algo-
rithm 2. Note that the adversary attacks the second strategy
as if it was encrypted by a pure one-to-n item mapping.

We generated two synthetic databases with 100k transac-
tions each. One of the databases has 20 items (|I| = 20)
and the other one has 35 items (|I| = 35). Note that the
number of items we used here is relatively small because the
time required for each step of GA is exponential to number
of items and the experiment already takes a long time to fin-
ish for the 35-items case. For the one-to-one item mapping,
the size of fake items is 5. For the one-to-n item mapping,
we randomly generate a set of items B, where |B| = |I|+ 5,
i.e, there are 5 common items. We set NB to 2, and limit
the size of each mapping to 2, i.e., |m(x)| ≤ 2 for x ∈ I. No
fake items are added.

GA considers only the frequencies of itemsets up to bi-
grams (groups of two items). Given the exact counts of the
original itemsets in T , GA attempts to identify the map-
pings of the items in the encryption in 100 runs. During each
run, 100 candidate mappings are generated and evaluated.
The fitness function is defined by the average count differ-

ence: −
P

X⊂Iand|X|≤2 |suppT (X)− suppT ′
(M ′(X))| where

M ′ is a candidate mapping. We execute GA with two dif-
ferent mapping initialization methods. In the first method,
we initialize the candidate mappings to some “good” val-
ues (i.e., we assume that GA is lucky enough to start with
some true assignments). Each mapping of an item in such a
good initial candidate tosses a coin. If it is head, the correct
mapping of the item is included in the candidate; otherwise,
the candidate mapping of the item is randomly assigned.
The second candidate initialization method is done totally
in random. We study the converging power of GA under
two initialization schemes.

The crossover operator in each (subsequent to the initial)
step of GA generates a new candidate mapping from two
randomly chosen parents, i.e., candidate mappings from the
previous step. The probability of a parent to be chosen is
associated with its fitness. In the generated candidate (off-
spring), each item randomly chooses one of the two parents
and inherits its mapping from the chosen parent. Finally,
each item in the offspring has a probability to “mutate”. A
mutation operation assigns a new randomly generated map-
ping to the item.

Tables 1 and 2 show the results of this GA experiment

119

for |I| = 20 and |I| = 35, respectively. Both one-to-one
and one-to-n item mappings result in an encrypted database
with the same number of items, i.e., both schemes create an
encrypted database with |I| + 5 different items. However,
the one-to-n item mapping shows a higher resistance against
GA in the experiments. Note that even after 100 iterations,
GA cannot converge to an accurate mapping. For |I| = 35
and if we start from a random candidate mapping, GA can
identify only one item correctly. Even if GA starts with a
very lucky guess (half of the assignments are given), it can
only identify 2 additional items in the one-to-n encryption,
while all items are eventually identified in the one-to-one
encryption. This is explained by the fact that, since each
original item may map to more than one items, GA needs
to search a larger space of possible mappings, compared to
the one-to-one case.

Apart from being less accurate, GA is also significantly
slower when attacking the one-to-n mapping. In the exper-
iment, we fix the length of each mapping to 2 and thus we
need to prepare the information up to 4-itemset if we carry
out frequency analysis using bigrams in the original data-
base. This results in a large difference in the amount of
time for GA to prepare the possible mappings and to count
the frequencies of them, compared to the one-to-one scheme
(see the second line of each table). In addition, due to the
large number of itemsets, decryption of itemsets for the one-
to-n case takes more time (see the third line of each table).
Thus, each iteration of GA against a one-to-n item mapping
takes more time compared to attacking a one-to-one scheme.
This result indicates that if the adversary has limited time
to attack, he will be able to execute GA for fewer iterations
against a one-to-n item mapping and it is likely that GA
cannot converge to an accurate mapping.

We assessed how fast GA converges to its solution and
also the appropriateness of the fitness function in modeling
the accuracy of a candidate assignment for both one-to-one
and one-to-n schemes. Figure 2 shows the value of fitness
function of the best candidate at each run for the 20 items
case, while Figure 3 shows this value for the 35 items case.
If GA starts with a random initial population, although it
shows a similar progress in both one-to-one and one-to-n
item mappings in terms of fitness value, the actual accuracy
of the best candidate mapping for one-to-n case is much
lower (compare with the number of correct guesses in Ta-
bles 1 and 2). This happens because the space of possible
one-to-n mappings is huge and it is possible to find many
candidate mappings having similar (i.e., slightly lower) fit-
ness value. This makes it very difficult for GA to identify
the correct mapping for an item. In the case of a good ini-
tial population, GA starts with a fairly good solution, since
the correct mappings for half of items have already been
found. In this case, GA converges very fast to the actual
mappings in the one-to-one cases. (These are identified in
13 and 5 runs for the 20 and 35 items cases, respectively.)
Also, GA’s progress is much slower in the one-to-n case be-
cause it is more difficult to find the correct mapping for the
incorrectly assigned items in the initial population due to
the large search space. The initial boost in the fitness value
is due to the effectiveness of the crossover operator in the
early stages; each candidate has a different set of individ-
ual items that are correctly mapped and crossover helps to
bring them together in a single candidate.

Summing up, in this section we have shown that a one-to-

-3000

-2500

-2000

-1500

-1000

-500

0

1 11 21 31 41 51 61 71 81 91

Number of iterations

Fi
tn

es
s

va
lu

e(
th

ou
sa

nd
s)

1-to-1(good)
1-to-1(random)
1-to-n(good)
1-to-n(random)

-4000
-3500
-3000
-2500
-2000
-1500
-1000

-500
0

1 11 21 31 41 51 61 71 81 91

Number of iterations

Fi
tn

es
s

va
lu

e(
th

ou
sa

nd
s)

1-to-1(good)
1-to-1(random)
1-to-n(good)
1-to-n(random)

Figure 2: Fitness of the best candidate per iteration
for |I| = 20

-3000

-2500

-2000

-1500

-1000

-500

0

1 11 21 31 41 51 61 71 81 91

Number of iterations

Fi
tn

es
s

va
lu

e(
th

ou
sa

nd
s)

1-to-1(good)
1-to-1(random)
1-to-n(good)
1-to-n(random)

-4000
-3500
-3000
-2500
-2000
-1500
-1000

-500
0

1 11 21 31 41 51 61 71 81 91

Number of iterations

Fi
tn

es
s

va
lu

e(
th

ou
sa

nd
s)

1-to-1(good)
1-to-1(random)
1-to-n(good)
1-to-n(random)

Figure 3: Fitness of the best candidate per iteration
for |I| = 35

n item mapping has a much resistance to attacks by a genetic
algorithm than a one-to-one mapping and at the same time
brings a much higher cost burden to each iteration of GA.

7.1.2 Security with (α, β)-knowledge

In the second experiment, we used a modified genetic algo-
rithm as an adversary who has acquired an (α, β)-knowledge.
The genetic algorithm we used in this experiment is more
intelligent than the one used in the first experiment because
we assumed the adversary knows the value of β. So, the
adversary can reduce the search space for each mapping of
item. Since the adversary only has information about the
large itemsets, he can only find the mappings for items that
appear in the background knowledge. We define a set of pos-
sible mappings for each item using the value of β. When a
mapping of an item mutates, it randomly picks a number of
samples in the set of possible mappings and performs a local
search to find the best one. So, the adversary (who knows β)
can progress easily. Let K be the set of itemsets for which
the frequencies are known from the background knowledge,
suppK(t) be the support count of itemset t known in the
background knowledge, and M ′ be a candidate mapping.
The fitness function is defined using the average count dif-

ference given by −
P

X∈K |suppK(X)−suppT ′
(M′(X))

|K| .

We set |B| = 1200, |F | = 0, NB = 2.5, and NE = 5 to gen-
erate a test encrypted database which contains 1000 items,
100k transactions and 106 size one large items. We run the
adversary program with α varying from 100% to 50% and β
varying from 0% to 50%. For each set of (α, β)-knowledge,
we check how many item mappings in each candidate are
correct. We measure the accuracy of the adversary with re-
spect to the number of such correct mappings. Let K1 be
the set of size-one itemsets in K. We define mapping accu-
racy as no. of correct item mappings

|K1|
. The mapping accuracy of

the best candidate, if the genetic algorithm is applied with
different values of α and β is shown in Figure 4. If we use
the candidate mapping with the higher mapping accuracy

120

One-to-one item mapping One-to-n item mapping
Candidate Initialization good random good random

Time to compute itemset counts in T ′ 25s 809s
Time spent by genetic algorithm 14s 13s 513s 513s
Number of iterations per second 7.14 7.69 0.19 0.19

Number of correct guesses 20 12 12 3

Table 1: One-to-one vs. one-to-n item mapping on a 100k-transaction database (|I| = 20)

One-to-one item mapping One-to-n item mapping
Candidate Initialization good random good random

Time to compute itemset counts in T ′ 117s 20856s
Time spent by genetic algorithm 78s 81s 5842s 4840s
Number of iterations per second 1.28 1.23 0.017 0.021

Number of correct guesses 35 4 22 1

Table 2: One-to-one vs. one-to-n item mapping on a 100k-transaction database (|I| = 35)

number of mappings Know Rate
100% 90% 80% 70% 60% 50%

0% 100 89.6 77.6 67.9 53.6 45
10% 6.6 2.8 3.7 6.4 0.9 1.8

Diff Rate 20% 2.8 5.7 0.9 0.9 0.9 0
30% 1.9 0 1.9 0.9 3.6 0.9
40% 0 0.9 0 0 0 0
50% 0 0.9 0.9 0 0 0

0

20

40

60

80

100

100% 90% 80% 70% 60% 50%

M
ap

pi
ng

 a
cc

ur
ac

y
(%

)

0%
10%
20%
30%
40%
50%

0

20

40

60

80

100

100% 90% 80% 70% 60% 50%
α value

M
ap

pi
ng

 a
cc

ur
ac

y
(%

)

0%
10%
20%
30%
40%
50%

β value

Figure 4: The accuracy of guessed item mappings in
automated frequency analysis

to decrypt the database, we can measure how much infor-
mation the adversary can correctly recover. Since the adver-
sary does not have the mappings for all items, we consider
only items in K1 to assess accuracy. For each transaction t,
let t′ be the corresponding encrypted transaction. M ′−1 is
the inverse of itemset mapping constructed by the candidate
mapping with the highest mapping accuracy. The accuracy

of a decrypted transaction is measured by M−1(t′)
T

tk
|tk|

where

tk = t
T

K1. The accuracy of the decrypted database is then
assessed by the average decryption accuracy for the trans-
actions for which tk 6= ∅ (i.e., those containing at least one
item in K1). The result is shown in Figure 5.

Figure 4 shows that when the adversary does not have
an accurate values of support counts (when β is more than
0%), the performance of the attack degrades rapidly. This
is because for a higher value of β, the number of possible
mappings for each item greatly increases, as there is a large
number of itemset frequencies in T ′ that are within the range
allowed by β. α limits the number of correct mappings for
the case where β = 0%, but its impact in other cases is
minor. Note that frequency analysis cannot generate ad-
ditional information for items that are not included in the
background knowledge (i.e., if β = 0%, only α items are
identified). Figure 5 shows a similar result; the accuracy
of the database decryption drops rapidly when β increases
from 0%. On the other hand, the database decryption ac-
curacy is generally higher than the mapping accuracy. This
happens because even the mapping of an item is incorrect,
the item may still appear in the decrypted transaction.

100% 90% 80% 70% 60% 50%
0% 100 99.94689 97.4954 98.85895 95.76075 94.83716

10% 25.60404 27.07592 25.77641 31.71206 22.33596 24.62889
20% 23.80072 23.61717 22.92255 16.81647 19.61954 14.17701
30% 19.34779 10.79547 18.40481 14.30986 24.87184 7.563109
40% 12.06108 9.063285 5.848205 8.083728 16.34981 8.175659
50% 11.28724 8.309897 10.28334 10.73643 7.904399 7.589657

0

20

40

60

80

100

100% 90% 80% 70% 60% 50%

D
B

 a
cc

ur
ac

y
(%

) 0%
10%
20%
30%
40%
50%

0

20

40

60

80

100

100% 90% 80% 70% 60% 50%
α value

D
B

 a
cc

ur
ac

y
(%

) 0%
10%
20%
30%
40%
50%

β value

Figure 5: The accuracy on decrypting the database
in automated frequency analysis

7.2 Cost of encryption and mining

To verify the low cost of the proposed one-to-n encryption
scheme in practice, we applied the transaction transforma-
tion algorithm on a set of five databases with varying sizes
(100k to 500k transactions). The total number of items is
|I| = 1000, the average transaction length is 10, and the
databases contain about 400 large itemsets. We run the
transformation algorithm with two sets of input parame-
ters. In both sets, |B| = 1150 and |F | = 50. The first set
of encryptions has a higher expected number of mappings
extended by a common item (NB), a higher expected size
of E

T
B (NE), and a higher number of expected fake items

in F added to a transaction (NF) than the second. In or-
der to assess the cost benefit of outsourcing we also mined
the association rules locally at powner and compared its cost
with that of transforming the data and decrypt the rules
produced by pminer. As we assume that powner is not an
expert in data mining, we used simple implementation of
Apriori for this purpose. The mining task is to discover all
association rules with support threshold 5% and confidence
threshold 75%. Table 3 shows the results of the experiments.

When the problem is outsourced to pminer, powner spends
much less time in preparing the encryption function, apply-
ing the transformation, and decrypting the rules, than he
would spend if he performed the mining locally. In addi-
tion, the cost at powner side is not sensitive to the mining
parameters: only the recovery part is related to the number
of rules, but its cost is very small compared to the transfor-
mation cost. Thus, powner can save a lot more when there
are more large itemsets in the original databases. Additional
benefits of outsourcing are (i) powner does not require high
memory resources (required by Apriori) and (ii) transactions

121

Number of transactions 100k 200k 300k 400k 500k

NB = 4, NE = 8, NF = 2
Time to generate mapping 0.1s 0.1s 0.1s 0.1s 0.1s

powner Time to transform database 6.0s 11.9s 18.3s 23.9s 30.0s
Time to recover association rules 0.2s 0.1s 0.1s 0.1s 0.1s

pminer Time spent in mining 453.8s 1083.0s 1592.9s 2099.9s 2629.6s
NB = 2.5, NE = 4, NF = 1

Time to generate mapping 0.1s 0.1s 0.1s 0.1s 0.1s
powner Time to generate mapping and transform database 2.5s 5.3s 9.3s 10.9s 12.3s

Time to recover association rules 0.2s 0.1s 0.1s 0.2s 0.1s
pminer Time spent in mining 194.6s 488.3s 738.2s 944.8s 1121.9s

Without outsourcing
powner Time spent in mining 79.7s 203.9s 292.9s 383.1s 464.8s

Table 3: Cost of one-to-n item mapping with varying database sizes and parameter settings

can be transformed and sent to pminer progressively, as they
are being created; i.e., powner is not required to have the
complete database before he can start the encryption and
transmission.

On the other hand, the mining overhead at pminer, due to
the transformation, is high compared to the mining cost on
the original data. In this experiment, we ran Apriori also
on the pminer side in order to analyze the cost overhead.
For the case NB = 4, NE = 8, and NF = 2, the size of
the transformed database is about 2.4 that of times of the
original database and the mining time is about 5.6 times of
that of mining the original database. For the case NB = 2.5,
NE = 4, NF = 1, the size and mining time factors are 1.6
and 2.4 respectively. Note that the mining overhead due to
the transformation is not too bad and could be easily han-
dled by pminer, especially if the service provider is equipped
with more sophisticated mining algorithms.

8 Conclusion

In this paper we present a set of encryption methods for
transactional databases that are suitable for outsourcing as-
sociation rule mining. Starting from a simple one-to-one
substitution cipher, which is susceptible to attacks, we de-
veloped a sophisticated transformation algorithm that in-
jects non-deterministic information to the deterministic re-
sults of a one-to-n item mapping scheme. We proved that
our encryption technique cannot be broken by one-to-one
decryption attacks. To test the vulnerability of the pro-
posed scheme against adversaries, we ran a generic algo-
rithm that has background knowledge about the frequencies
of the itemsets. The results show that our encryption tech-
nique is very robust to attacks as opposed to simple one-
to-one ciphers, which can be easily broken with the help of
background knowledge. Finally, we showed through exper-
imentation that the encryption cost is affordable and much
lower than the mining cost if the task were to be performed
at the owner side.

9 References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In SIGMOD, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB, 1994.

[3] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In SIGMOD, 2000.

[4] A. Albasall and A. Wahdan. Genetic algorithm
cryptanalysis of a feistel type block cipher. In ICEEC,
2004.

[5] A. Albassall and A. Wahdan. Genetic algorithm
cryptanalysis of the basic substitution permutation
network. In MWSCAS, 2003.

[6] C. Clifton and D. Marks. Security and privacy
implications of data mining. In SIGMOD Workshop
on Data Mining and Knowledge Discovery, 1996.

[7] G. I. Davida, D. L. Wells, and J. B. Kam. A database
encryption system with subkeys. ACM TODS,
6(2):312–328, 1981.

[8] A. Evfimievski, R. Srikant, R. Agrawal, and
J. Gehrke. Privacy preserving mining of association
rules. In SIGKDD, 2002.

[9] W. Forsyth and R. Safavi-Naini. Automated
cryptanalysis of substitution ciphers. Cryptologia,
17(4):407–418, 1993.

[10] M. A. Garici and H. Drias. Cryptanalysis of
substitution ciphers using scatter search. In IWINAC,
2005.

[11] B. Gilburd, A. Schuster, and R. Wolff. A new privacy
model and association-rule mining algorithm for
large-scale distributed environments. In VLDB, 2005.

[12] G. Grahne and J. Zhu. Efficiently using prefix-trees in
mining frequent itemsets. In FIMI, 2003.

[13] J. He and M. Wang. Cryptography and relational
database management systems. In IDEAS, 2001.

[14] B. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and
Y. Wu. A framework for efficient storage security in
rdbms. In EDBT, 2004.

[15] M. Kantarcioglu and C. Clifton. Privacy-preserving
distributed mining of association rules on horizontally
partitioned data. TKDE, 16(9):1026–1037, 2004.

[16] E. Mykletun, M. Narasimha, and G. Tsudik.
Authentication and integrity in outsourced databases.
ACM TOS, 2(2):107–138, 2006.

[17] S. Peleg and A. Rosenfeld. Breaking substitution
ciphers using a relaxation algorithm. Communications
of the ACM, 22(11):598–605, 1979.

[18] R. Spillman, M. Janssen, B. Nelson, and M. Kepner.
Use of a genetic algorithm in the cryptanalysis of
simple substitution ciphers. Cryptologia,
XVII(1):31–44, 1993.

[19] J. Vaidya and C. Clifton. Secure set intersection
cardinality with application to association rule mining.
Journal of Computer Security, 13(4):593–622, 2005.

[20] D. Whitley. A genetic algorithm tutorial. Statistics
and Computing, 4:65–85, 1994.

[21] X. Xiao and Y. Tao. Anatomy: Simple and effective
privacy preservation. In VLDB, 2006.

122

