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ABSTRACT
A “plan diagram” is a pictorial enumeration of the executionplan
choices of a database query optimizer over the relational selec-
tivity space. We have shown recently that, for industrial-strength
database engines, these diagrams are often remarkably complex
and dense, with a large number of plans covering the space. How-
ever, they can often be reduced to much simpler pictures, featur-
ing significantly fewer plans, without materially affecting the query
processing quality. Plan reduction has useful implications for the
design and usage of query optimizers, including quantifying redun-
dancy in the plan search space, enhancing useability of parametric
query optimization, identifying error-resistant and least-expected-
cost plans, and minimizing the overheads of multi-plan approaches.

We investigate here the plan reduction issue from theoretical, sta-
tistical and empirical perspectives. Our analysis shows that opti-
mal plan reduction, w.r.t. minimizing the number of plans, is an
NP-hard problem in general, and remains so even for a storage-
constrained variant. We then present a greedy reduction algorithm
with tight and optimal performance guarantees, whose complexity
scales linearly with the number of plans in the diagram for a given
resolution. Next, we devise fast estimators for locating the best
tradeoff between the reduction in plan cardinality and the impact
on query processing quality. Finally, extensive experimentation
with a suite of multi-dimensional TPCH-based query templates on
industrial-strength optimizers demonstrates that complex plan dia-
grams easily reduce to “anorexic” (small absolute number ofplans)
levels incurring only marginal increases in the estimated query pro-
cessing costs.

1. INTRODUCTION
A query optimizer’s execution plan choices, for a given database

and system configuration, are primarily a function of theselec-
tivities of the base relations in the query. In a recent paper [16],
we introduced the concept of a “plan diagram” to denote a color-
coded pictorial enumeration of the plan choices of the optimizer
for a parameterized query template over the relational selectiv-
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ity space. For example, consider QT8, the parameterized two-
dimensional query template shown in Figure 1, based on Query
8 of the TPC-H benchmark, with selectivity variations on theSUP-
PLIER andLINEITEM relations through thes acctbal :varies and
l extendedprice :varies predicates, respectively. The associated
plan diagram for QT8 is shown in Figure 2(a).

select oyear, sum(case when nation = ’BRAZIL’ then volume
else 0 end) / sum(volume)

from (select YEAR(oorderdate) as oyear, l extendedprice *
(1 - l discount) as volume, n2.nname as nation

from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where ppartkey = lpartkey and ssuppkey = lsuppkey
and l orderkey = oorderkey and ocustkey =
c custkey and cnationkey = n1.nnationkey and
n1.n regionkey = rregionkey and snationkey =
n2.n nationkey and rname = ’AMERICA’ and
p type = ’ECONOMY ANODIZED STEEL’ and
s acctbal :variesandl extendedprice :varies

) as all nations

group by oyear

order by oyear

Figure 1: Example Query Template: QT8

In this picture1, produced with the Picasso tool [15] on a com-
mercial database engine, a set of 89 different optimal plans, P1
through P89, cover the selectivity space. The value associated with
each plan in the legend indicates the percentage area covered by
that plan in the diagram – P1, for example, covers about 22% ofthe
space, whereas P89 is chosen in only 0.001% of the space.

As is evident from Figure 2(a), plan diagrams can be extremely
complex and dense, with a large number of plans covering the
space – several such instances spanning a representative set of
query templates based on the TPC-H benchmark, over a suite of
industrial-strength optimizers, are available at [15]. However, it
was also shown in [16] that these dense diagrams could typically
be “reduced” to much simpler pictures featuring significantly fewer
plans,without adversely affecting the query processing quality.

For example, if users were willing to tolerate a minor cost in-
crease of at most 10% for any query point in the diagram relative to
its original (optimizer-estimated) cost, Figure 2(a) could be reduced
to that shown in Figure 2(b), where only 7 plans remain – that is,

1The figures in this paper should ideally be viewed from a color
copy, as the grayscale version may not clearly register the features.
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(a) Plan Diagram (b) Reduced Diagram (Threshold = 10%)

Figure 2: Sample Plan Diagram and Reduced Plan Diagram (QT8)

most of the original plans have been “completely swallowed”by
their siblings, leading to a highly reduced plan cardinality.

The complete graph of the reduced diagram’s plan cardinality as
a function of the cost increase threshold is shown in Figure 3.

Anorexic Plan Diagrams
In [16], it was concluded that “with a modest cost increase, two-
thirds of the plans in a dense plan diagram are liable to be elimi-
nated through plan swallowing”. We make a stronger and signifi-
cantly more impactful claim in this paper: A cost increase thresh-
old of only 20 percentis usually amply sufficient to bring down
theabsolutenumber of plans in the final reduced picture towithin
or around ten. Further, that this applies not just to the 2D tem-
plates considered in [16], but also tohigher-dimensionaltemplates.
In short, that plan diagrams can usually be made “anorexic” in an
absolute sense while retaining acceptable query processing perfor-
mance. This observation is based on our experience with a wide
spectrum of dense plan diagrams ranging from tens to hundreds of
plans, across the suite of industrial-strength optimizers, on TPC-H-
based multi-dimensional query templates.

Carrying out anorexic plan reduction on dense plan diagramshas
a variety of useful implications for improving both the efficiency
of the optimizer and the choice of execution plan, as described in
Section 2. Further, it is possible to achieve this reductionefficiently
since we limit our attention to only the set of plans appearing in the
original plan diagram, anddo not revisit the exponentially large
search space of plan alternatives from which the optimizer made
these choices.

Contributions
We consider here the problem of reducing plan diagrams, fromthe-
oretical, statistical and empirical perspectives. We firstshow that
finding the optimal (w.r.t. minimizing the plan cardinality) reduced
plan diagram is NP-Hard through a reduction from Set Cover.
This result motivates the design of CostGreedy, a greedy algorithm
whose complexity isO(nm), wheren is the number of plans and
m is the number of query points in the diagram(n ≪ m). Hence,
for a given picture resolution, CostGreedy’s performance scaleslin-
early with the number of plans in the diagram, making it much
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Figure 3: Plan Cardinality vs Cost Increase Threshold

more efficient than theO(m2) reduction algorithm of [16]. Fur-
ther, from the reduction quality perspective, CostGreedy provides
a tight performance guarantee ofO(ln m), which cannot be im-
proved upon by any alternative deterministic algorithm.

We also consider a storage-constrained variant of the plan re-
duction problem and find that it retains the hardness of the general
problem. On the positive side, however, we provide Threshold-
Greedy, a greedy algorithm that delivers a performance guarantee
of 0.63 w.r.t. the optimal.

Using extremely coarse characterizations of the cost distribu-
tions of the optimal plans, we develop fast but effective estimators
for determining the expected number of plans retained for a given
threshold. These estimators can also be used to predict the loca-
tion of the best possible tradeoff (i.e. the “knee”) betweenthe plan
cardinality reduction and the cost increase threshold.

Last, through an experimental analysis on the plan diagramspro-
duced by industrial strength optimizers with TPC-H-based multi-
dimensional query templates, we show that (a) plan reduction can
be carried out efficiently, (b) the CostGreedy algorithm typically
gives the optimal reduction or is within a few plans of the opti-
mal, (c) the analytical estimates of the plan-reduction versus cost-
threshold curve are quite accurate, and finally, that (d) a 20% cost
threshold is amply sufficient to bring the plan cardinality to within
or around 10, even for high dimensional query templates – this is
an especially promising result from a practical perspective.
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2. ANOREXIC REDUCTION BENEFITS
The production of anorexic reduced plan diagrams, that is, di-

agrams whose plan cardinality is within/around a small absolute
number (10 is the yardstick used in this paper), has a varietyof
useful implications for improving both the efficiency of theopti-
mizer and the choice of execution plan:

Quantification of Redundancy in Plan Search Space:Plan re-
duction quantitatively indicates the extent to which current
optimizers might perhaps be over-sophisticated in that they
are “doing too good a job”, not merited by the coarseness
of the underlying cost space. This opens up the possibility
of redesigning and simplifying current optimizers to directly
produce reduced plan diagrams, in the process lowering the
significant computational overheads of query optimization.
An approach that we are investigating is based on modifying
the set of sub-plans expanded in each iteration of the dynamic
programming algorithm to (a) include those within the cost
increase threshold relative to the cheapest sub-plan, and (b)
remove, using stability estimators of the plan cost function
over the selectivity space, “volatile” sub-plans; the finalplan
choice is the stablest within-threshold plan.

Enhancement of PQO Usability: A rich body of literature exists
on parametric query optimization(PQO) (e.g.[5, 7, 10, 11,
13]). The goal here is to apriori identify the optimal set of
plans for the entire relational selectivity space at compile
time, and subsequently to use at run time the actual selec-
tivity parameter settings to identify the best plan. A practi-
cal difficulty with PQO, however, is the representation of the
plan optimality boundaries, which could be of arbitrary com-
plexity, making it difficult to identify specifically which plan
from the set of optimal plans is to be utilized for a newly ar-
rived query. A workaround for this problem is suggested in
[11]: For the current user query, evaluate its estimated exe-
cution cost witheach of the plansin the optimal set. Then,
choose the lowest cost plan for executing the query. For this
workaround to be viable, the plan diagram must have, in an
absolute sense, only a small number of plans – this is because
while plan-costing is cheap as compared to query optimiza-
tion [11], the total time taken for many such costings may
become comparable. But, as shown in Figure 2(a), the num-
ber of optimal plans can be very large, unless plan reduction
is applied.

Therefore, a direct benefit of plan reduction is that it makes
PQO viable from an implementation perspective even in the
highly complex world of industrial-strength optimizers.

Identification of Error-Resistant Plans: Plan reduction can help
to identify plans that provide robust performance over large
regions of the selectivity space. Therefore,errors in the un-
derlying database statistics, a situation often encountered by
optimizers in practice [12], may have much less impact as
compared to using the fine-grained plan choices of the origi-
nal plan diagram, which may have poor performance at other
points in the space.

For example, in Figure 2(a), estimated selectivities of around
(14%,1%) leads to a choice of plan P70. However, if the
actual selectivities at runtime turn out to be significantlydif-
ferent, say (50%,40%), using plan P70, whose cost increases
steeply with selectivity, would be disastrous. In contrast, this
error would have had no impact with the reduced plan dia-
gram of Figure 2(b), since P1, the replacement plan choice

at (14%,1%), remains the preferred plan for a large range
of higher values, including (50%,40%). Quantitatively, at
(50%, 40%), plan P1 has a cost of 135, while P70 is much
more expensive, aboutthree timesthis value.

In short, the final plan choices become robust to errors that
lie within the optimality regions of the replacement plans.
Such stability of plan choices is especially important for in-
dustrial workloads where often the goal is to identify plans
with stable good overall performance as opposed to selecting
the best local plan with potentially risky performance char-
acteristics [14].

Identification of Least-Expected-Cost Plans:When faced with
unknown input parameter values, today’s optimizers typi-
cally approximate the distribution of the parameter values
using some representative value – for example, the mean or
modal value – and then always choose this “least specific
cost” plan at runtime. It has been shown in [3, 4] that a better
strategy would be to instead optimize for the “least expected
cost” plan, where the full distribution of the input param-
eters is taken into account. Computing the least expected
cost plan not only involves substantial computational over-
head when the number of plans is large, but also assumes that
the various plans being compared are all modeled at the same
level of accuracy, rarely true in practice. With plan reduction,
on the other hand, both the efficiency and the quality of the
comparisons can become substantially better since there are
fewer contending plans.

Minimization of Multi-Plan Overheads: Multi-plan approaches
that dynamically select the best plan at runtime by execut-
ing multiple different plans, either in parallel or sequentially,
were proposed in [1, 12] – plan reduction can help to reduce
the computational overheads of these approaches by mini-
mizing the number of alternative choices.

3. RELATED WORK
To the best of our knowledge, apart from the initial results pre-

sented by us in [16], there has been no prior work on the reduc-
tion of plan diagrams with regard toreal-world industrial-strength
query optimizers and query templates. However, similar issues
have been considered in the PQO literature in the context of sim-
plified optimizers and basic query workloads. Specifically,in the
pioneering work of [2], a System-R style optimizer with left-deep
join-tree search space and linear cost models was built, thework-
load comprising of pure SPJ query templates with star or linear
join-graphs and one-dimensional selectivity variations.Within this
context, their experimental results indicate that, for a given cost
increase threshold, plan reduction is more effective with increasing
join-graph complexity. They also find that “if the increase threshold
is small, a significant percentage of the plans have to be retained.”
For example, with a threshold of 10%, more than 50% of the plans
usually have to be retained. However, this conclusion is possibly
related to the low plan cardinality (less than 20) in all of their origi-
nal plan diagrams. In contrast, our results indicate that onthe dense
plan diagrams seen in real-world environments, where the number
of plans can be in the hundreds, not only is the reduction verysub-
stantial even for a 10% cost increase, but even more strikingly, that
the reduced plan cardinality is small inabsolute terms.

Subsequently, in [10, 11], a Volcano-style optimizer was mod-
eled, and SPJ query templates with two, three and four-dimensional
relational selectivities were evaluated. In their formulation, the cost

1083



increase threshold cannot be guaranteed in the presence of nonlin-
ear cost functions, a common feature in practice, and is usedonly
as a heuristic. Even with this relaxation, the final number ofplans
with a threshold of 10% can be large – for example, a 4D query
template with 134 original plans is only reduced to 53 with the
DAG-AniPOSP algorithm and to 29 with AniPOSP. Our work dif-
fers in that (a) we guarantee to maintain the cost increase threshold
for every individual query point, and (b) the observed reductions
are substantially higher.

Finally, we provide for the first time, efficiency and qualityguar-
antees for the reduction algorithms, as well as cardinalityestima-
tors for the reduced plan diagram.

4. THE PLAN REDUCTION PROBLEM
In this section, we define the Plan Reduction Problem, hereafter

referred to as PlanRed, and prove that it is NP-Hard through are-
duction from the classical Set Cover Problem [8]. For ease ofexpo-
sition, we assume in the following discussion that the source SQL
query template is 2-dimensional – the extension to higher dimen-
sions is straightforward.

4.1 Preliminaries
The input to PlanRed is a Plan Diagram, defined as follows:

Definition 1. Plan Diagram
A Plan DiagramP is a 2-dimensional[0, 100%] selectivity space

S, represented by a grid of points where:

1. Each pointq(x, y) in the grid corresponds to a unique query
with (percentage) selectivitiesx, y in the X and Y dimen-
sions, respectively.

2. Each query pointq in the grid is associated with an optimal
plan Pi (as determined by the optimizer), and a costci(q)
representing the estimated effort to executeq with planPi.

3. Corresponding to each planPi is a unique colorLi, which is
used to color all the query points that are assigned toPi.

The set of all colors used in the plan diagramP is denoted byLP .
Also, we usePi to both denote the actual plan, as well as the set of
query points for whichPi is the plan choice – the interpretation to
use will be clear from the context.

With the above framework, PlanRed is defined as follows:

Definition 2. PlanRed
Given an input plan diagramP, and a cost increase thresholdλ

(λ ≥ 0), find a reduced plan diagramR that has minimum plan
cardinality, and for every planPi in P,

1. Pi ∈ R, or

2. ∀ query pointsq ∈ Pi, ∃Pj ∈ R, such that
cj(q)

ci(q)
≤ (1 + λ)

That is, find the minimum-sized “cover” of plans that is sufficient
to recolorP (using only the colors inLP ) without increasing the
cost of any re-colored query point (i.e. whose original planis re-
placed by a sibling plan) by more than the cost increase threshold.
Obviously, forλ → 0, R will be almost identical toP, whereas for
λ → ∞, R will be completely covered by a single plan.

In the above definition, we need to be able to evaluatecj(q),
the cost of executing query pointq with the substitute choicePj .
However, this feature is not available in all database systems, and
therefore we use a bounding technique instead to limit the value of

cj(q). This means that the reductions discussed here areconser-
vativesince, in principle, it may be possible to reduce the diagram
even more – such enhanced reductions will only further support the
conclusions drawn later in this paper.

The specific bounding technique we use is based on assuming
the following:

Plan Cost Monotonicity (PCM): The cost distribution of each of
the plans featured in the plan diagramP is monotonically
non-decreasing over the entire selectivity space S.

Intuitively, what the PCM condition states is that the queryexecu-
tion cost of a plan is expected to increase with base relationselec-
tivities. For most query templates, this is usually the casesince an
increase in selectivity corresponds to processing a largeramount of
input data. In this situation, the following rule applies:

Definition 3. Cost Bounding Rule
Consider a pair of query points,q1(x1, y1) with optimal planP1

having costc1(q1), and q2(x2, y2) with optimal planP2 having
costc2(q2). Then the cost of executing queryq1 with planP2, i.e.
c2(q1), is upper bounded byc2(q2) if x2 ≥ x1, y2 ≥ y1.

That is, when considering the recoloring possibilities fora query
point q1, only those plan colors that appear in thefirst quadrant,
relative toq1 as the origin, should be considered. The reason for
restricting attention to the first quadrant is that only a vacuous state-
ment can be made about the costs of plans from other quadrants,
namely that they lie in the interval [c1(q1),∞).

Moreover, if there exists a differently colored pointq2 in the first
quadrant whose cost is within theλ threshold w.r.t. the optimal
cost ofq1, thenq1 can be recolored with the color ofq2 without
violating the query processing quality guarantee. That is,condition
2 of Definition 2 is replaced by the stronger requirement

∀ query pointsq ∈ Pi, ∃Pj ∈ R, such that∃r ∈ Pj

with r in first quadrant ofq and
cj(r)

ci(q)
≤ (1 + λ).

Handling non-PCM templates. When a query template features
negation operators (e.g “set difference”) or short-circuit opera-
tors (e.g. “exists”), the PCM condition may not hold. However,
as long as the template exhibits monotonicity (non-decreasing or
non-increasing) along each of the selectivity axes, the above Cost
Bounding Rule still applies with an appropriate choice of reduction
quadrant, as shown in Table 1 for the 2D case.

Table 1: Reduction Quadrants
Cost Behavior Cost Behavior Reduction
X dimension Y dimension Quadrant

Non-decreasing Non-decreasing I
Non-increasing Non-decreasing II
Non-increasing Non-increasing III
Non-decreasing Non-increasing IV

In the remainder of the paper, we consider only the common sit-
uation of plan diagrams for which the PCM condition applies.Fur-
ther, any plan diagram that has more than 10 plans is characterized
asdense. We usen andm to denote the number of plans and the
number of query points inP, respectively. The diagram resolutions
in the X and Y axes are denoted bym1 andm2, respectively, with
m = m1 × m2. Lastly, BottomLeftis used to denote the(1, 1)
point andTopRight is used to denote the point with coordinates
(m1, m2) in P.
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4.2 The Set Cover Problem
The classical Set Cover problem is defined as follows:

Definition 4. Set Cover Problem
Given a finite universal setU , and a collectionS =

{S1, S2, . . . Sn} of subsets ofU such that
Sn

i=1 Si = U , find the
minimum cardinality subsetC ⊆ S, such thatC coversU i.e. all
elements ofU belong to some subset inC.

Let I = (U, S) denote an instance of a Set Cover problem. From
a given instanceI , create a new instanceI ′ = (U ′, Snew) such
that:

1. S′ = {e′}, wheree′ is an element not inU

2. U ′ = U
S

S′, Snew = S
S{S′}

Let C′ be an optimal solution ofI ′. It is easy to see thatC =
C′ \ {S′} is an optimal solution of the original instanceI . There-
fore, we will assume henceforth in this section that the Set Cover
instance is of the formI ′.

LEMMA 1. Given a set cover instanceI ′, addition of a new
elemente to U ′, to subsetS′, and to zero or more subsets in
{S1, S2, . . . , Sn}, does not change the optimal solution ofI ′.

PROOF. Let C = {S′, Si1 , Si2 , . . . , Sik
} be the optimal solu-

tion of I ′ before the addition of the elemente. After addinge to I ′,
C still coversU ′, sincee ∈ S′.

To see thatC continues to be the optimal solution ofI ′ after
addinge, assume the contrary. LetC′ be a cover forU ′ with |C′| <
|C|. Removee from all subsets inC′ that containe. NowC′ covers
U ′\{e}. This contradicts our selection ofC as the optimal solution
of I ′ before the addition ofe.

4.3 Reducing Set Cover to PlanRed
Algorithm Reduce in Figure 4 converts an instance of Set Cover

to an instance of PlanRed. It takes as input the instanceI ′

and thresholdλ and outputs a plan diagram and another instance
Inew = (Unew , S′

new) of Set Cover.
The data structures used in the algorithm are as follows:

1. cur(q): integer denoting smallesti such that query pointq ∈
Si (i.e. denotes current plan ofq in the plan diagram)

2. belong(q): list storing all j, such thatq ∈ Sj and j 6=
cur(q) (denotes the set of plans that can be used instead of
the current plan in the reduced plan diagram)

3. cost(q): value indicating the cost ofq in the plan diagram

4. color(q): integer denoting the color (equivalently, plan) ofq
in the plan diagram

In addition, the valuen+1 is used to denote the setS′, i.e.Sn+1 =
S′ in cur andbelong.

Algorithm Reduce works as follows: Consider a Set Cover in-
stanceI ′ = (U ′, Snew). For each subsetSi ∈ Snew, a unique
color Li which represents the planPi is created. Each element
q ∈ U ′ represents a query point inP, and let q be in sub-
setsSi1 , Si2 , . . . Sik

for eachSij
∈ Snew , j = 1, 2, . . . k and

i1 < i2 < . . . < ik. PlanPi1 is chosen as the representative forq
and becomes the plan with whichq is associated. For each of the
other subsets in whichq is present, a new query pointr is created
and placed to the right ofq in the grid, with its color corresponding
to the subset it represents and its cost being(1 + λ) times the cost
of q. Intuitively this means that planPi1 can be replaced by plans

Reduce (Set CoverI′)

1. Initialize Inew = I′; ∀q ∈ U ′, setbelong(q) = NULL

2. For each elementq ∈ U ′

(a) Letq belong to setsSi1 , Si2 , . . . , Sik
; 1 ≤ i1 < i2 <

· · · < ik ≤ n + 1

(b) Setcur(q) = i1

(c) Add i2, i3, . . . , ik to belong(q)

3. Let m = |U ′|; mx = maxq(|belong(q)|) + 2, q ∈ U ′; i=1;
Initialize cost

4. Createn + 1 colorsL1, L2, . . . , Ln+1

5. Create anm × mx grid

6. For each elementq ∈ U ′

(a) Addq at point(i, 1) in the grid

(b) Setcolor(q) = cur(q); cost(q) = cost; cost = cost ∗
(1 + λ); p = 2

(c) For eachj ∈ belong(q)

i. Create elementr. Setcur(r) = j

ii. ∀z, z ∈ belong(q) s.t.z > j, addz to belong(r)

iii. Add (n + 1) to belong(r)

iv. Add r at position(i, p) in the grid.p = p + 1

v. Setcolor(r) = j, cost(r) = cost

vi. Add r to instanceInew s.t. r ∈ Sj , if j = cur(r)
or j ∈ belong(r)

(d) Create elementt. Set cur(t) = n + 1, belong(t) =
NULL

(e) cost = cost ∗ (1 + λ)

(f) Add t at position(i, p) in the grid

(g) Setcolor(t) = n + 1; cost(t) = cost; cost = cost ∗
(1 + λ)

(h) Add t to Inew

(i) Seti = i + 1

7. For every empty point in the grid:

(a) Create a new elementq. Set cur(q) = n +
1, belong(q) = NULL.

(b) Addq to the empty point. Setcolor(q) = n + 1

(c) Set cost(q) = cost of row’s rightmost point with color
Ln+1

(d) Addq to Inew

8. End Algorithm Reduce

Figure 4: Algorithm Reduce

Pij
, j = 2, 3 . . . k. Then, a query pointt is created having planP ′

corresponding to the subsetS′ with a cost(1 + λ)2 times the cost
of q – this point is added to the right of all the points that were pre-
viously created forq. This means thatt can in turn replace all the
other points that were created forq, but notq itself. (Note that this
process is identical to the element addition process of Lemma 1.)
When moving from the last element of one row to the first element
of the next row, the cost is further increased by a factor of(1 + λ).

Starting from the bottom row and moving upwards, the above
procedure is repeated for each element, resulting in each element
and its associated generated points being assigned to different rows
in the plan diagram. Finally, for each empty point in the grid, a new
query pointq is created having planP ′ corresponding to the subset
S′ with a cost equal to the cost of the rightmost point in its row
with the planP ′. An example of this reduction, withλ = 10%,
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Figure 5: Example of Algorithm Reduce

is shown in Figure 5, where each point is represented by a square
block. The blocks in the first column of the output plan diagram
represent the elements originally inU , while the remaining blocks
are added during the reduction process. The values in the blocks
represent the costs associated with the corresponding points, and
each subset is associated with a color, as shown in the legend.

We now show that Algorithm Reduce does indeed produce a grid
(i.e. plan diagram) whose optimal solution gives the optimal so-
lution to the Set Cover instance used, and hence that PlanRedis
NP-Hard.

LEMMA 2. The grid G produced by Algorithm Reduce is an
instance of PlanRed.

PROOF.

1. Each point inG is associated with a color (equivalently, plan)
and a cost.

2. For any point(x, y) on G, wherex andy represent the row
and column respectively, letc = cost associated with(x, y).
At point (x, y+1), the cost associated is eitherc or c∗(1+λ).
At point (x+1, y) the cost is greater thanc∗(1+λ) because
Algorithm Reduce increases the cost by a factor of(1 + λ)
while moving from one row to the next. Therefore, the cost
bounding rule of Definition 3 holds.

Hence the gridG satisfies the conditions necessary for the Plan
Diagram of PlanRed.

LEMMA 3. The optimal solution for the instance of the plan
diagram generated by Algorithm Reduce gives the optimal solution
for the Set Cover instanceI ′ used as input to the algorithm.

PROOF. Consider the plan diagram gridG and the Set Cover
instanceInew = (Unew , S′

new) that is the output of the algorithm.
For every pointq(x, y) on the grid that can be recolored, there must
exist a point with that color to the right ofq(x, y) with cost eitherc
or c ∗ (1+λ) wherec is the cost ofq(x, y). Also, the color’s index
will be in thebelong list of the element corresponding to that point.

For each such pointq(x, y), there is an elementr in Inew, such
thatr belongs to the subsetsSj ∈ S′

new , whenevercur(q) = j or
j ∈ belong(q). Hence, from the above property, if pointq(x, y)
has colorLi in the reduced plan diagramR, then the corresponding
element inInew will be an element of setSi.

Therefore, ifR has colors (plans)LR = {Li1 , Li2 , . . . , Lik
},

since every point is colored with some color inLR, its corre-
sponding element inInew will belong to some subset inCnew =
{Si1 , Si2 , . . . , Sik

}. Therefore,Cnew coversUnew . Hence, we
just need to show that ifLR is the optimal color set (with least
number of colors), thenCnew is the optimal set cover forInew.

To prove the above, assume the contrary, i.e. thatC′

new =
{Sj1 , Sj2 , . . . , Sjl

}, l < k is the optimal cover ofUnew . By
construction of the grid, every point in the grid corresponding to
an element inSji

i ∈ {1, 2, ...l} can be colored with colorLji
.

Apply this color to the point in the grid and set the cost of this
point to be the cost of the point with the matching color to itsright.
After recoloring the grid in this manner, we get a new color set
L′

R = {Lj1 , Lj2 , . . . , Ljl
} that covers the whole grid with

|L′

R| < |LR|. This contradicts the assumption thatLR was the
optimal color set. Hence, the optimal solution to the grid gives the
optimal solution for the set cover instanceInew.

The newly created elements that are added toI ′ to createInew

by the algorithm are in accordance with Lemma 1. Hence the op-
timal solution forI ′ is the same as the optimal solution ofInew.
Thus the optimal solution for the instance of plan diagram gener-
ated by Algorithm Reduce gives the optimal solution for the Set
Cover instanceI ′ used as its input.

Armed with the above lemmas, we now state the main theorem:

THEOREM 1. The Plan Reduction Problem is NP-Hard.

PROOF. It can be seen that

1. Algorithm Reduce has polynomial time complexityO(nm).

2. ForI ′ = (U ′, Snew), the grid created has in the worst case
|U ′| ∗ (|Snew |) elements with|Snew | plans. It is a valid plan
diagram. (Lemma 2)

3. The optimal solution for Set Cover InstanceI ′ can be ob-
tained by the optimal solution of the plan diagram generated
by the algorithm. (Lemma 3)

Hence the theorem.

As an aside, restricting the above problem to permit a plan to
be swallowed only if it can be entirely replaced by asinglesibling
plan does not lower the problem complexity [9].

4.4 Storage-budgeted Plan Reduction
In practice, it is often the case that a fixed storage budget ispro-

vided to hold the set of plans for a query template.
This problem can be viewed as thedual of PlanRed, in terms

of exchanging the constraint and the objective, and is defined as
follows:

Definition 5. Storage-budgeted Plan Reduction Problem
Given a plan diagramP and storage constraint of retaining at

mostk plans, find thek plans to be chosen so as to minimize the
maximum cost increase of the query points in the reduced plandi-
agramR.

A Karp Reduction [8] is used in [9] to prove the following theo-
rem:

THEOREM 2. The Storage-budgeted Plan Reduction Problem
is NP-Hard.
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CostGreedy (Plan DiagramP, Threshold λ)

1. For each pointq from TopRight to BottomLeft do

(a) setcur(q) = color(q)

(b) updatebelong(q) with plans that are inq’s first quadrant
with cost within the given threshold

2. Letm = m1 × m2.

3. Createn setsS = {S1, S2, . . . Sn} corresponding to then
plans.

4. LetU = {1, 2, . . . m} correspond to them query points.

5. Define∀i = 1 . . . n, Si = {j : i ∈ belong(r) or i = cur(r)
for query pointr corresponding toj, ∀j = 1 . . . m}

6. LetI = (U, S), I be an instance of the Set Cover problem.

7. LetLn be the color of theTopRight point. Remove setSn and
all its elements fromI.

8. Apply Algorithm Greedy Setcover toI. Let C be the solution.

9. C = C
S

{Sn}

10. Recolor the grid with colors corresponding to the sets inC and
update new costs appropriately. If a point belongs to more than
one subset, use color that results in least cost increase.

11. End Algorithm CostGreedy

Figure 6: CostGreedy

5. GREEDY PLAN REDUCTION
Given the hardness results of the previous section, it is clearly

infeasible to provide optimal plan reduction, and therefore we turn
our attention to developing efficient greedy algorithms.

We first consider AreaGreedy, the reduction algorithm proposed
in [16], where the greedy heuristic is based on plan areas. Then
we present CostGreedy, a new reduction algorithm that is greedy
on plan costs. Its computational efficiency and reduction quality
guarantees are quantified for PlanRed. We then present Thresh-
oldGreedy, a greedy reduction that has strong performance bounds
for the storage-budgeted variant. As before, for ease of exposition,
we assume thatP is 2-dimensional – the algorithms can be easily
generalized to higher dimensions, while the theoretical results are
independent of the dimensionality.

5.1 The AreaGreedy Algorithm
The AreaGreedy algorithm [16] first sorts the plans featuring in

P in ascending order of their area coverage. It then iterates through
this sequence, starting with the smallest-sized plan, checking in
each iteration whether the current plan can be completely swal-
lowed by the remaining plans – if it can, then all its points are re-
colored using the colors of the swallower plans, and these points are
added to the query sets of the swallowers. A detailed description of
the algorithm is available in [9].

By inspection, AreaGreedy clearly has a time complexity of
O(m2), wherem is the number of query points inP. With respect
to reduction quality, letAG denote the solution obtained by Area-
Greedy, and letOpt denote the optimal solution. Then, the upper

bound of the approximation factor
|AG|
|Opt| is at least0.5

√
m [9].

5.2 The CostGreedy Algorithm
We propose here CostGreedy, a new greedy reduction algo-

rithm, which provides significantly improved computational effi-
ciency and approximation factor as compared to AreaGreedy.

Consider an instance of PlanRed that has anm1 × m2 grid with

Greedy Setcover (Set CoverI)

1. SetC = ∅

2. WhileU 6= ∅ do:

(a) Select setSj ∈ S, such that|Sj | = max(|Si|);∀Si ∈ S
(in case of tie, select set with smallest index)

(b) U = U \ Sj , S = S \ {Sj}

(c) C = C
S

{Sj}

3. ReturnC

4. End Algorithm Greedy Setcover

Figure 7: Algorithm Greedy Setcover

n plans andm = m1 × m2 query points. By scanning through
the grid, we can populate thecur andbelong data structures (in-
troduced in Section 4.3) for every point. This is done as follows:
For each query pointq with planPi in the grid, setcur(q) to bei,
and add tobelong(q) all j such thatPj can replaceq. Using this,
a Set Cover instanceI = (U, S) can be created with|U | = m and
|S| = n. HereU will consist of elements that correspond to all
the query points andS will consists of sets corresponding to the
plans in the plan diagram. The elements of each set will be theset
of query points that can be associated (under theλ constraint) with
the plan corresponding to that set.

The following lemma shows that the reduction solution forP can
be obtained from the Set Cover instance created above.

LEMMA 4. The optimal solution of the created Set Cover in-
stanceI gives the optimal reduction solution to the plan diagram
P that is used to create the instance.

PROOF. Let C = {Si1 , Si2 , . . . Sik
} be the optimal solution of

I . For each query pointq in P, if it belongs to a subsetSij
∈ C,

then colorq with color Lij
. This is a valid coloring because the

elementq will be in subsetSij
only if q can be replaced by plan

Pij
. Hence,LR = {Si1 , Si2 , . . . Sik

} colors all points inP.
To show thatLR is optimal, assume that there existsL′

R =
{Li1 , Li2 , . . . Lil

} which covers all plans in the plan diagram with
l < k. The coverC′ = {Si1 , Si2 , . . . Sil

} is a cover ofI , since
if a point can be colored withLij

∈ L′

R, then it will belong to the
corresponding setSij

. AsL′

R covers all points in the plan diagram,
C′ coversU . This contradicts the assumption thatC is the optimal
cover ofI . Hence the lemma.

Lemma 4 is explicitly used in the design of CostGreedy, shown
in Figure 6. In Lines 1 through 6, an instanceI = {U, S} of
Set Cover is created. Then, in Line 8, CostGreedy calls Algorithm
Greedy Setcover, shown in Figure 7, which takes this input instance
and outputs the coverC ⊆ S.

By definition, the TopRight query point inP cannot be re-colored
since there are no points in its first quadrant. Therefore, its color
in P has to perforce also appear inR. Hence, we remove its corre-
sponding set from the Set Cover instance (Line 7) before applying
Algorithm Greedy Setcover, and then add it to the solution atthe
end (Line 9).

In the above process, a swallowed point is recolored onlyonce,
in marked contrast to AreaGreedy where a swallowed point maybe
recolored multiple times before settling on its final color [9].

5.2.1 Complexity Analysis
In the following theorem we show that the time complexity of

CostGreedy isO(nm). Since it is guaranteed thatn ≤ m, and
typically n ≪ m, this means that CostGreedy is significantly more
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efficient than AreaGreedy, whose complexity isO(m2). Further, it
also means that for a given diagram resolution, the performance is
linear in the number of plans inP.

THEOREM 3. The time complexity of CostGreedy isO(mn),
wherem andn are the number of query points and plans, respec-
tively, in the input plan diagramP.

PROOF. Let P be anm1 × m2 grid. While populating the
belong andcur lists, we maintain another two-dimensional array
mincost of dimensionm1 × n. This array is used to store the
minimum costs of the query points corresponding to each planap-
pearing in the partial-column located above each cell in therow
above the one that is currently being processed. The initialvalues
in mincost are all∞.

We start the scan of the grid from right to left, beginning with
the top row of the grid. For each pointq with planPk at columni
in the current row, if it can be replaced by any other planPj , then
mincost[i][Pj ] should be within the increase threshold of the cost
of q. Hence, through a single scan ofmincost[i], we can populate
belong(q). Then the cost ofq is updated formincost[i][Pk ]. Since
the values in columnmincost[i] are candidates for the minimum
values in columni − 1, mincost[i − 1] is updated with the value
min(mincost[i], mincost[i − 1]).

With the above procedure, when moving to the next row to be
processed, eachmincost[i] column will automatically contain the
minimum costs of all the plans appearing in the first quadrantof
the query point at theith column of the previous row. When a
query point at columni is being processed, due to the cumulative
updation of the costs of the plans visited on that row,mincost[i]
will be updated with the minimum costs of all the plans in that
point’s first quadrant.

So each query point requires2n processing iterations, and there
arem query points. Hence the time required for populating the data
structurescur andbelong is of the orderO(mn).

Obtaining the Set Cover instance from the above data structures
takesO(mn) time, and the Algorithm Greedy Setcover also has a
time complexity ofO(mn). Thus the CostGreedy has an overall
time complexity ofO(mn). Hence the theorem.

5.2.2 Approximation Factor
We now assess the approximation factor that can always be guar-

anteed by CostGreedy with respect to the optimal.

LEMMA 5. CostGreedy has an approximation factor
|CG|
|Opt| = O(ln m), wherem is the number of query points inP.

PROOF. It has been shown in [6, 19] that Algorithm Greedy Set-

cover (GS) has an approximation factor
|GS|
|Opt| ≤ H(m), where

m is the cardinality of the universal set, andH(m) is themth har-
monic number. The input to GS can have at most(m−1) elements
in its universal set (this occurs when the TopRight query point has
a unique color not shared by any other point in the entire diagram).
Therefore,

|CG|
|Opt| =

|GS|
|Opt| ≤ H((m − 1)) = O(ln m) (1)

Tightness of Bound. It is shown in [19] that given anyk, l where
|Greedy| = k and |Opt| = l, a Set Cover instance can be gen-
erated with(k + l) sets andm elements such thatm ≥ G(k, l),

whereG(k, l) is a recursively defined greedy number:

G(l, l) = l

G(k + 1, l) = ⌈ l

l − 1
∗ G(k, l)⌉

It is also shown in [19] that the following tight bound oflnm for
Set Cover can be achieved using such a construction whenm =
G(k, l):

ln m − ln lnm − 0.31 ≤ k

l
≤ ln m − ln ln m + 0.78 (2)

These results are used in the following lemma.

LEMMA 6. The bound specified by Lemma 5 is tight.

PROOF. The construction process in [19] of the above-
mentioned Set Cover instance, withm = G(k, l), is such that every
element belongs to exactlytwo sets. For a given(k, l), first con-
struct the Set Cover instance employing the construction in[19].
Using this instance create another Set Cover instance of theform
I ′ with (k+ l+1) sets and(m+1) elements, as mentioned in Sec-
tion 4.2. When Algorithm Reduce is applied to this new instance, it
creates a grid withm′ = 3∗ (m+1) elements. This is because, for
each element, since it is in two sets, it can be colored by two colors
in the plan diagram. One of these will represent its current plan,
and for the other plan, a new element will be created and added
to its right. Then, yet another element will be created to itsright
which can replace this newly created element and having the color
representing the plan corresponding to the setS′. Hence, each of
them + 1 rows will have 3 elements.

From Equation 2 we know that

|Greedy|
|Opt| ≥ ln m − ln ln m − 0.31 (3)

Sincem =
m′

3
− 1 it is easy to see that

|Greedy|
|Opt| = Θ(ln m′)

Optimality of the Bound. It has been shown in [6] that the
bound ofO(ln m) for Set Cover is the best possible bound below
which Set Cover cannot be approximated efficiently, unless NP has
slightly super-polynomial-time algorithms. This result is used in
the following theorem:

THEOREM 4. The bound specified by Lemma 5 is the best pos-
sible threshold below which PlanRed cannot be approximatedeffi-
ciently (unless NP has slightly super-polynomial-time algorithms).

PROOF. Assume that there exists some deterministic algorithm,
DetX, that improves on the bounds ofO(ln m) for PlanRed. Then,
for the instance of the grid created from a Set Cover instance, we
will have a reduced bound. This means we can get a reduced bound
on Set Cover by reducing it into a plan diagram and applyingDetX
to it. But this would contradict the result of [6].

5.3 The ThresholdGreedy Algorithm
We now turn our attention to developing an efficient greedy algo-

rithm for the Storage-budgeted variant (Section 4.4) of thePlanRed
problem. Specifically, we present ThresholdGreedy, a greedy algo-
rithm that selects plans based on maximizing the benefits obtained
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ThresholdGreedy (PlanDiagramP, Budget k)

1. LetP1 be the plan of theTopRight query point.

2. SetC = {P1}

3. λ = cost(TopRight)
cost(BottomLeft)

4. for i = 2 to k do

(a) For each plan inP calculate the benefit of choosing that
plan in addition to the plans inC. Let Pj correspond to
the plan that gives the maximum benefit.

(b) LetBen correspond to the benefit provided byPj

(c) SetC = C
S

{Pj}

(d) Setλ = λ − Ben

5. Recolor the grid with colors corresponding to the sets inC and
update new costs appropriately. If a point has multiple recoloring
choices, use color resulting in least cost increase.

6. End Algorithm ThresholdGreedy

Figure 8: Algorithm ThresholdGreedy

by choosing them. The benefit of a plan is defined to be the extent
to which it decreases the cost thresholdλ of R when it is chosen,
which means that at each step ThresholdGreedy greedily chooses
the plan whose selection minimizes the effectiveλ.

The least number of plans that can be inR is a single plan
which corresponds to the plan of the TopRight query point
in P. This can be always achieved by setting the cost in-
crease thresholdλ to equal the ratio between the costs of the
TopRight and BottomLeft query points inP, i.e. λSinPlan =
cost(TopRight)/cost(BottomLeft).

We bootstrap the selection algorithm, shown in Figure 8, by
first choosing this plan and subsequently choosing additional plans
based on their relative benefits. LetBenopt andBengreedy be the
total benefit of choosingk plans by the optimal and greedy algo-
rithms, respectively. This means that the final cost increase thresh-
old with the optimal selection isλSinPlan −BenOpt, and with the
threshold greedy solution isλSinPlan − BenTG. The following
theorem quantifies the approximation factor of ThresholdGreedy
(proof in [9]):

THEOREM 5. Given a storage budget ofk plans, letBenopt

be the benefit obtained by the optimal solution’s selection,and
BenTG be the benefit obtained by the ThresholdGreedy algo-
rithm’s selection. Then

BenTG

BenOpt

≥ 1 − (
k − 1

k
)k

For k = 10, which we consider to be a reasonable budget in prac-
tice, the above ratio works out to about 0.65, while fork → ∞,
the ratio asymptotically goes down to 0.63. In an overall sense, this
means that ThresholdGreedy is always guaranteed to provideclose
to two-thirds of the optimal benefit.

6. ESTIMATORS FOR PLAN REDUCTION
Our experience has been that CostGreedy takes only about a

minute to carry out a single reduction on plan diagrams that have in
the order of a million query points. While this appears sufficiently
fast, it is likely that users may need to iteratively try out several re-
ductions with different cost increase thresholds in order to identify
the one appropriate for their purpose. For example, the usermay
wish to identify the “knee” of the tradeoff between plan cardinality

AvgEst (Plan Diagram P, Threshold λ)

1. LetCost(i),∀i = 1 . . . n denote the average cost of PlanPi

2. SetU = {1, 2, . . . n}

3. SetSi = {1, 2, . . . n}, ∀i = 1 . . . n

4. for each planPi do

(a) For all plansPj such thatCost(j) < Cost(i) or Cost(j)
is not within the threshold ofCost(i), setSj = Sj \ {i}

5. Apply Algorithm Greedy Setcover toI. Let C be the solution.

6. return|C|

7. End Algorithm AvgEst

Figure 9: Algorithm AvgEst

reduction and the cost threshold – that is, the location which gives
the maximum reduction with minimum threshold.

In the above situations, using the CostGreedy method repeatedly
to find the desired setting may prove to be cumbersome and slow.
Therefore, it would be helpful to design fast but accurate estima-
tors that would allow users to quickly narrow down their focus to
the interesting range of threshold values. In the remainderof this
section, we present such estimators.

Our first estimator, AvgEst, takes as input the plan diagramP and
a cost increase thresholdλ, and returns the estimated number of
plans in the reduced plan diagramR obtained with that threshold.
It uses the average of the costs of all the query points associated
with a plan, to summarize the plan’s cost distribution. All these
averages can be simultaneously computed with a single scan of P.
AvgEst then sets up an instance of Set Cover, as shown in Figure 9,
with the number of elements equal to the number of plans, and the
set memberships of plans is based on their representative average
costs satisfying theλ threshold. On this instance, the Greedy Set
Cover algorithm, introduced earlier in Figure 7, is executed. The
cardinality of the solution is returned as an estimate of thenumber
of plans that will feature inR.

Our second estimator, AmmEst, uses in addition to the average
value, the minimum and maximum cost values of the query points
associated with a plan. That is, each plan is effectively represented
by three values. Subsequently, the algorithm is identical to AvgEst,
the only change being that the check for set membership of a plan
is based on not just the average value but on all three representative
values (min, max and avg) satisfying the membership criterion.

By iteratively running the estimator for various cost thresholds,
we can quickly plot a graph of plan cardinality against threshold,
and the knee of this curve can be used as the estimated knee. Our
measurements show that this estimation process executes orders of
magnitude faster than calculating the knee using CostGreedy. Fur-
ther, this estimate can be used as a starting point to find the actual
knee which is likely to be in the neighborhood, as shown in the
following experimental results.

7. EXPERIMENTAL RESULTS
Having considered the theoretical and statistical aspectsof plan

reduction in the previous sections, we now move on to presenting
our experimental results. The testbed is the Picasso optimizer vi-
sualization tool [15], executing on a Sun Ultra 20 workstation with
4GHz processor, 4GB main memory and 240GB hard disk, running
Windows XP Pro. Through the GUI of the Picasso tool, users can
submit a query template, the grid resolution at which the instances
of this template should be uniformly distributed across theselectiv-
ity space, the parameterized relations (axes) and their attributes on
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Table 2: Computational Efficiency (QT8, Resolution=100)
Algorithm Original Reduced Time

Plans (λ = 10%)
OptRed 50 7 4 hours

AreaGreedy 50 7 2.8 sec
CostGreedy 50 7 0.1 sec

which the diagrams should be constructed, and the choice of query
optimizer. With this information, the tool automatically generates
the associated SQL queries, submits them to the optimizer togen-
erate the plans, and finally produces the color-coded plan diagrams.

We conducted our plan reduction experiments over dense plan
diagrams produced from a variety of multi-dimensional TPCH-
based query templates evaluated over a suite of industrial-strength
database query optimizers. The templates were instantiated at a va-
riety of grid resolutions, based on the experimental objectives and
ensuring viable diagram production times. We also confirmedthat
all the plan diagrams were in compliance with the plan cost mono-
tonicity condition, described in Section 4.1.

A gigabyte-sized database was created using the TPC-H bench-
mark’s synthetic generator – while the benchmark models only uni-
formly distributed data, we extended the generator to also produce
skewed data distributions. The optimizers were all operated at their
default optimization levels and resource settings. To support the
making of informed plan choices, commands were issued to col-
lect statistics on all the attributes featuring in the querytemplates,
and the plan selections were determined using the “explain”feature
of the optimizers. It is important to note here that in all ourexper-
iments, the optimizers are treated as “black boxes” and there is no
attempt to customize or fine-tune their behavior.

As mentioned above, we have experimented with a variety of
query templates – however, due to space limitations, we present
here the detailed results only for the sample two-dimensional
QT8 query template described in the Introduction, and its higher-
dimensional variants, on a representative optimizer. Summary re-
sults for other templates and optimizers, which are very similar in
flavor, are also included.

7.1 Computational Efficiency
We start off by first quantitatively evaluating the runtimesof the

two greedy algorithms, AreaGreedy (from [16]) and CostGreedy
(proposed in this paper), as compared to the time taken to produce
OptRed, the computationally-hard optimal solution. A sample set
of results is shown in Table 2 for QT8 instantiated at a grid reso-
lution of 100 per dimension2, and reduction carried out at a cost
increase threshold of 10%. We see here that even for this rela-
tively coarse-grained situation, OptRed takes several hours to com-
plete. In contrast, AreaGreedy takes only a few seconds, while
CostGreedy is an order-of-magnitude better than AreaGreedy, fin-
ishing in a small fraction of a second.

The substantial improvement of CostGreedy with regard to Area-
Greedy is, as per the discussion in Section 5, due to itsO(nm)
complexity being significantly lower than theO(m2) of Area-
Greedy, asn ≪ m in practice (recall thatn is the number of plans
andm is the total number of query points inP).

7.2 Plan Reduction Quality
Turning our attention to the reduction quality, we see in Table 2

that AreaGreedy and CostGreedy are identical to OptRed, allthree

2The QT8 plan diagram in the Introduction was obtained with a
resolution of 300, resulting in a higher plan cardinality.

0 5 10 15 20
0

10

20

30

40

50

Cost Increase Threshold (%)

N
u
m

b
e
r 

o
f 
P

la
n
s

 

 

AreaGreedy
CostGreedy
OptRed

Figure 10: Reduction Quality (QT8, Res=100)

producing reduced plan diagrams with 7 plans (in fact, the plans
themselves are also the same in this case). The closeness to the
optimal holds across the entire operational range of cost increase
thresholds, as shown in Figure 10, which presents the reduced plan
cardinalities for the three algorithms as a function of the threshold
(only a few representative points were obtained for the Optimal due
to its extremely high computational overheads).

Another point to note in Figure 10 is the initial steep exponen-
tial decrease in the number of plans with increasing threshold –
we have found this to be a staple feature of all the dense plan dia-
grams that we have investigated, irrespective of the specific query
template, data distribution, memory availability, or database opti-
mizer that produced the dense diagram. These settings may de-
termine whether or not a dense plan diagram is produced, but if
produced, subsequently the reduction process produces consistent
results. This trend is clearly seen in Tables 3 and 4, which cap-
ture the reduction behavior of two popular commercial optimizers,
Optimizer A and OptimizerB, with various TPC-H-based query
templates on which they produced dense plan diagrams.

Further, while increasing the grid resolution may increasethe
number of plans in the original plan diagram (due to unearthing
of new small-sized plans between the ones found at coarser res-
olutions), virtually all of these new plans are swallowed ata low
threshold itself. This follows from the fact that these plans, be-
ing optimal over a small region, tend to have costs close to those
of their neighbors and are therefore likely to be easily swallowed.
This means that for practical threshold settings, the final plan cardi-
nality in the reduced diagram is essentially “scale-free” with regard
to resolution.

Table 3: Optimizer A (Res=100)
TPC-H Query Original Reduced Plans Reduced Plans

Template Plans (λ = 10%) (λ = 20%)
2 43 12 8
5 23 6 5
8 50 7 4
9 38 4 3
10 17 4 3

The above results were obtained with uniformly distributeddata.
When skewed data was used instead, the observed results did not
materially change since data skew primarily affects the constants
used to obtain a particular selectivity, but has comparatively little
impact on the optimizer’s selectivity-driven plan choices.

7.3 Scaling with Dimensions
The above results were obtained on a 2D query template, and we
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Table 4: Optimizer B (Res=100)
TPC-H Query Original Reduced Plans Reduced Plans

Template Plans (λ = 10%) (λ = 20%)
2 22 8 6
5 15 2 2
8 20 3 3
9 37 10 7
10 12 3 3
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Figure 11: Scaling with Dimensions

now move to evaluating the effect of increased template dimension-
ality. Specifically, evaluating the behavior with 3D and 4D versions
of the QT8 template (created through the addition of selectivity
predicates onc acctbal ando totalprice).

The results are shown in Figure 11 for 2D with resolutions of
100 and 300 per dimension, 3D with resolution 100 per dimension,
and 4D with resolution 30 per dimension. We see here that while
the number of plans in the original plan diagram goes up steeply
with increasing dimensionality, the reduction behavior isqualita-
tively similar across all the templates. Further, as shown in Table 5,
the reduction behavior is remarkably stable: First, the location of
the knee varies only marginally, occurring in the neighborhood of
10%. Second, the threshold required to bring the reduced plan car-
dinality down to 10 plans is within 20%, a very practical value from
a user perspective, even in a 4D setting. Again, this seems tosug-
gest that for practical threshold settings, the final plan cardinality
in the reduced diagram is essentially “scale-free” with regard to
dimension.

7.4 Estimator Performance
Our next experiment studies the quality of theknee estimates

provided by the estimators. The results are shown in Figure 12 and
indicate that AvgEst and AmmEst are reasonably accurate despite
using extremely coarse characterizations of the cost distributions of
plans in their optimality regions. Further, their orders-of-magnitude
runtime efficiency relative to the CostGreedy algorithm, for itera-
tively computing the knee, is quantitatively captured in Table 6.

Table 5: Multi-dimensional Query Templates
Dim- Original Knee Cost Knee 10-plan Cost
ension Plans Threshold Plans Threshold
2(100) 50 8% 9 7%
2(300) 89 9% 7 7%

3 190 11% 10 11%
4 243 13% 14 20%
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Figure 12: Knee Estimates

The estimator performance in characterizing the full plot of re-
duced plan cardinality versusλ is shown in Figures 13(a)–13(d) for
2D-100, 2D-300, 3D-100 and 4D-30, respectively, the CostGreedy
performance being used as the yardstick. We see here that, ingen-
eral, the simple AvgEst estimator provides estimates that are closer
to CostGreedy than AmmEst– however, an advantage of AmmEst
is that it producesconservativeestimates, whereas AvgEst can on
occasion slightly overestimate the degree of plan reduction, as is
seen in Figures 13(a) and 13(b).

Table 6: Running Time of Estimators vs CostGreedy
TPC-H Query Estimator Time (ms) CostGreedy Time (ms)

Template (for Knee) (for Knee)
2 25 2733
5 8 1675
8 26 3648
9 71 2382
10 12 546

7.5 Effect of Memory Availability
In all the above results, the query parameterization was on the

selectivities of the base relations. Another parameter that is well-
known to have significant impact on plan choices is the amountof
system memory available for query processing (e.g. Nested Loops
joins may be favored in low-memory environments, whereas Hash
Joins may be a more attractive alternative in memory-rich situa-
tions). In fact, plan costs can be highly non-linear or evendiscon-
tinuousat low memory availabilities [3, 4].

We conducted experiments wherein the memory was varied from
the full system memory to the minimum permitted by the engine
(in our setup, this corresponded to going from 4GB to 16MB).
We found that the memory budget certainly had significant im-
pact on the spatial layouts and cardinalities of the plan diagrams
– for example, the plan diagram cardinalities went up significantly
with decreased memory. However, the basic observation thatdense
plan diagrams can be reduced to a few plans with low cost increase
thresholds remained unchanged. In short, while memory has asig-
nificant impact on theoptimizationprocess, it does not seem to
materially affect thereductionprocess.

8. CONCLUSIONS
In this paper, we investigated from a variety of perspectives, the

problem of reducing the dense plan diagrams produced by modern
query optimizers, without adversely affecting the query processing
quality. Our analysis shows that while finding the optimal reduc-
tion is NP-hard, the CostGreedy algorithm proposed here is able
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(a) Est-2D (100)
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(b) Est-2D (300)
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(c) Est-3D
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(d) Est-4D

Figure 13: Estimator Performance

to efficiently provide a tight and optimal performance guarantee.
Further, the experimental assessment on commercial optimizers in-
dicates that in practice CostGreedy is always within a plan or two
of the optimal, frequently giving the optimal itself. The AvgEst and
AmmEst estimators are able to rapidly provide a fairly accurate as-
sessment of the tradeoff between reduced plan cardinality and the
cost threshold, helping users to focus on the interesting threshold
ranges. Finally, the experimental study indicates that thegraph of
cardinality versus threshold is typically steep and that the number
of plans in the reduced plan diagram is likely to be brought down
to anorexic levels (within/around ten) with thresholds of around
twenty percent even for high-dimensional query templates.These
results are even more striking when we consider that they arecon-
servativesince a cost bounding rule was used, rather than the actual
costs of replacement plans at query points.

In closing, our study has shown that plan reduction can be carried
out efficiently and can bring down the plan cardinality to a manage-
able number of plans while maintaining acceptable query process-
ing quality. It has also shown that while the optimization process
is sensitive to many parameters including query construction, data
distribution, memory resources, etc., the reduction process on the
other hand is relatively indifferent to these factors. We expect that
these results would be of value to optimizer designers and users. In
our future work, we plan to extend the analysis to the richer query
templates of the recently announced TPC-DS benchmark [22].
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