
A General Framework for Modeling and Processing
Optimization Queries

Michael Gibas
Ohio State University

Department of Computer
Science and Engineering

Columbus, OH, USA 43210

gibas@cse.ohio-
state.edu

Ning Zheng
Ohio State University

Department of Industrial and
Systems Engineering

Columbus, OH, USA 43210

zheng.481@osu.edu

Hakan Ferhatosmanoglu
Ohio State University

Department of Computer
Science and Engineering

Columbus, OH, USA 43210

hakan@cse.ohio-
state.edu

ABSTRACT
An optimization query asks for one or more data objects that
maximize or minimize some function over the data set. We
propose a general class of queries, model-based optimization
queries, in which a generic model is used to define a wide va-
riety of queries involving an optimization objective function
and/or a set of constraints on the attributes. This model
can be used to define optimization of linear and nonlinear
expressions over object attributes as well as many existing
query types studied in database research literature. A sig-
nificant and important subset of this general model relevant
to real-world applications include queries where the opti-
mization function and constraints are convex. We cast such
queries as members of the convex optimization (CP) model
and provide a unified query processing framework for CP
queries that I/O optimally accesses data and space par-
titioning index structures without changing the underlying
structures. We perform experiments to show the generality
of the technique and where possible, compare to techniques
developed for specialized optimization queries. We find that
we achieve nearly identical performance to the limited opti-
mization query types with optimal solutions, while providing
generic modeling and processing for a much broader class of
queries, and while effectively handling problem constraints.

1. INTRODUCTION
Motivation and Goal Optimization queries form an

important part of real-world database system utilization,
especially for information retrieval and data analysis. Ex-
ploration of image, scientific, and business data usually re-
quires iterative analyses that involve sequences of queries
with varying parameters. Besides traditional queries, similar-
ity-based analyses and complex mathematical and statisti-
cal operators are used to query such data [16]. Many of
these data exploration queries can be cast as optimization
queries where a linear or non-linear function over object at-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

tributes is minimized or maximized. Additionally, the ob-
ject attributes queried, function parametric values, and data
constraints can vary on a per-query basis.

There has been a rich set of literature on processing spe-
cific types of queries, such as the query processing algo-
rithms for Nearest Neighbors (NN) [19] and its variants [12],
top-k queries [5, 20], etc. These queries can all be consid-
ered to be a type of optimization query with different ob-
jective functions. However, they either only deal with spe-
cific function forms or require strict properties for the query
functions.

Because scientific data exploration and business decision
support systems rely heavily on function optimization tasks,
and because such tasks encompass such disparate query types
with varying parameters, these application domains can ben-
efit from a general model-based optimization framework.
Such a framework should meet the following requirements:
(i) have the expressive power to support existing query types
and the power to formulate new query types, (ii) take advan-
tage of query constraints to proatively prune search space,
and (iii) maintain efficient performance when the scoring
criteria or optimization function changes.

Despite an extensive list of techniques designed specifi-
cally for different types of optimization queries, a unified
query technique for a general optimization model has not
been addressed in the literature. Furthermore, application
of specialized techniques requires that the user know of, pos-
sess, and apply the appropriate tools for the specific query
type. We propose a generic optimization model to define a
wide variety of query types that includes simple aggregates,
range and similarity queries, and complex user-defined func-
tional analysis. Since the queries we are considering do not
have a specific objective function but only have a “model”
for the objective (and constraints) with parameters that
vary for different users/queries/iterations, we refer to them
as model-based optimization queries. In conjunction with a
technique to model optimization query types, we also pro-
pose a query processing technique that optimally accesses
data and space partitioning structures to answer the query.
By applying this single optimization query model with I/O-
optimal query processing, we can provide the user with a
flexible and powerful method to define and execute arbi-
trary optimization queries efficiently. Example optimization
query applications are provided in section 3.3.

Contributions The primary contributions of this work
are listed as follows.

1069

• We propose a general framework to execute convex
model-based optimization queries (using linear and non-
linear functions) and for which additional constraints
over the attributes can be specified without compro-
mising query accuracy or performance.

• We define query processing algorithms for convex model-
based optimization queries utilizing data/space parti-
tioning index structures without changing the index
structure properties and the ability to efficiently ad-
dress the query types for which the structures were
designed.

• We prove the I/O optimality for these types of queries
for data and space partitioning techniques when the
objective function is convex and the feasible region
defined by the constraints is convex (these queries are
defined as CP queries in this paper).

• We introduce a generic model and query processing
framework that optimally addresses existing optimiza-
tion query types studied in the research literature as
well as new types of queries with important applica-
tions.

2. RELATED WORK
There are few published techniques that cover some in-

stances of model-based optimization queries. One is the
“Onion technique” [4], which deals with an unconstrained
and linear query model. An example linear model query
selects the best school by ranking the schools according to
some linear function of the attributes of each school. The so-
lution followed in the Onion technique is based on construct-
ing convex hulls over the data set. It is infeasible for high
dimensional data because the computation of convex hulls is
exponential with respect to the number of dimensions and is
extremely slow. It is also not applicable to constrained linear
queries because convex hulls need to be recomputed for each
query with a different set of constraints. The computation
of convex hulls over the whole data set is expensive and in
the case of high-dimensional data, infeasible in design time.

The Prefer technique [11] is used for unconstrained and
linear top-k query types. The access structure is a sorted list
of records for an arbitrary linear function. Query process-
ing is performed for some new linear preference function by
scanning the sorted list until a record is reached such that
no record below it could match the new query. This avoids
the costly build time associated with the Onion technique,
but does not provide a guarantee on minimum I/O, and still
does not incorporate constraints.

Boolean + Ranking [22] offers a technique to query a
database to optimize boolean constrained ranking functions.
However, it is limited to boolean rather than general convex
constraints, addresses only single dimension access struc-
tures (i.e. can not optimize on multiple dimensions simulta-
neously), and therefore largely uses heuristics to determine
a cost effective search strategy.

While the Onion and Prefer techniques organize data to
efficiently answer a specific type of query (LP), our technique
organizes data retrieval to answer more general queries. In
contrast with the other techniques listed, our proposed so-
lution is proven to be I/O-optimal for both hierarchical
and space partitioned access structures with convex parti-

tion boundaries, covers a broader spectrum of optimization
queries, and requires no additional storage space.

3. QUERY MODEL OVERVIEW

3.1 Background Definitions
Let Re(a1, a2, . . . , an) be a relation with attributes a1, a2,

. . . , an. Without loss of generality, assume all attributes
have the same domain. Denote by A a subset of attributes

of Re. Let gi(~α, A), 1 ≤ i ≤ u, hj(~β, A), 1 ≤ j ≤ v and

F (~θ, A) be certain functions over attributes in A, where u

and v are positive integers and ~θ = (θ1, θ2, . . . , θm) is a vec-

tor of parameters for function F , and ~α and ~β are vector
parameters for the constraint functions.

Definition 1 (Model-Based Optimization Query).
Given a relation Re(a1, a2, . . . , an), a model-based optimiza-

tion query Q is given by (i) an objective function F (~θ, A) ,
with optimization objective o (min or max), (ii) a set of con-
straints (possibly empty) specified by inequality constraints
gi(~α, A) ≤ 0, 1 ≤ i ≤ u (if not empty) and equality con-

straints hj(~β, A) = 0, 1 ≤ j ≤ v (if not empty), and (iii)

user/query adjustable objective parameters ~θ, constraint pa-

rameters ~α and ~β, and answer set size integer k.

Figure 1 shows a sample objective function with both in-
equality and equality constraints. The objective function
finds the nearest neighbor to point a (1,2). The constraints
limit the feasible region to the line passing through x = 5,
where 3 ≤ y ≤ 6. The points b and d represent the best and
worst point within the constraints for the objective function
respectively. Point c could be the actual point in the data-
base that meets the constraints and minimizes the objective
function.

0

1

2

3

4

5

6

7

0
 1
 2
 3
 4
 5
 6

x

y

a

c

b

d

F

Figure 1: Sample Optimization Objective Function

and Constraints F (~θ, A) : (x − 1)2 + (y − 2)2, o(min),

g1(~α, A) : y − 6 ≤ 0, g2(~α, A) : −y + 3 ≤ 0, h1(~β, A) :
x− 5 = 0, k = 1

The answer of a model-based optimization query is a set
of tuples with maximum cardinality k satisfying all the con-
straints such that there exists no other tuple with smaller (if
minimization) or larger (if maximization) objective function
value F satisfying all constraints as well. This definition is

1070

very general, and almost any type of query can be considered
as a special case of model-based optimization query. For in-
stance, NN queries over an attribute set A can be considered

as model-based optimization queries with F (~θ, A) as the dis-
tance function (e.g., Euclidean) and the optimization objec-
tive is minimization. Similarly, top-k queries, weighted NN
queries and linear/non-linear optimization queries can all
be considered as specific model-based optimization queries.
Without loss of generality, we will consider minimization as
the objective optimization throughout the rest of this paper.

Definition 2 (Convex Optimization (CP) Query).
A model-based optimization query Q is a Convex Optimiza-

tion (CP) query if (i) F (~θ, A) is convex, (ii) gi(~α, A), 1 ≤

i ≤ u (if not empty) are convex, and (iii) hj(~β, A), 1 ≤ j ≤ v

(if not empty) are linear or affine.

Notice that the definition of a CP query does not have any
assumptions on the specific form of the objective function.
The only assumptions are that the queries can be formulated
into convex functions and the feasible regions defined by the
constraints of the queries are convex (e.g., polyhedron re-
gions). Therefore, users can ask any form of queries with
any coefficients as long as these assumptions hold. The con-
ditions (i), (ii) and (iii) form a well known type of problem in
Operations Research literature - Convex Optimization prob-
lems. A function is convex if it is second differentiable and
its Hessian matrix is positive definite. More intuitively, if
one travels in a straight line from inside a convex region to
outside the region, it is not possible to re-enter the convex
region.

3.2 Common Query Types Cast into Optimiza-
tion Query Model

Although appearing to be restricted in functions F , gi and
hj , the set of CP problems is a superset of all least square
problems, linear programming problems (LP) and convex
quadratic programming problems (QP) [9]. Therefore, they
cover a wide variety of linear and non-linear queries, includ-
ing NN queries, top-k queries, linear optimization queries,
and angular similarity queries. The formulation of some
common query types as CP optimization queries are listed
and discussed below.
Euclidean Weighted Nearest Neighbor Queries - The
Weighted Nearest Neighbor query asking NN for a point
(a0

1, a
0
2, . . . , a

0
n) can be considered as an optimization query

asking for a point (a1, a2, . . . , an) such that an objective
function is minimized. For Euclidean WNN the objective
function is

WNN(a1, a2, . . . , an) =�
w1(a1 − a0

1)
2 + w2(a2 − a0

2)
2 + . . . + wm(an − a0

n)2 ,

where w1, w2, . . . , wn > 0 are the weights and can be differ-
ent for each query. Traditional Nearest Neighbor queries are
the subset of weighted nearest neighbor queries where the
weights are all equal to 1.
Linear Optimization Queries - The objective function of
a Linear Optimization query is

L(a1, a2, . . . , an) = c1a1 + c2a2 + . . . + cnan

where (c1, c2, . . . , cn) ∈ R
n are coefficients and can be dif-

ferent for different queries, and the constraints form a poly-
hedron. Since linear functions are convex and polyhedrons

are convex, linear optimization queries are also special cases
of CP queries with a parametric function form.
Top-k Queries - The objective functions of top-k queries
are score (or ranking) functions over the set of attributes.
The common score functions are sum and average, but could
be any arbitrary function over the attributes. Clearly, sum
and average are special cases of linear optimization queries.
If the ranking function in question is convex, the top-k query
is a CP query.
Range Queries - A range query asks for all data (a1, a2, . . . ,

an) s.t. li ≤ ai ≤ ui, for some (or all) dimensions i, where
[li, ui]

n is the range for dimension i. Constructing an ob-
jective function as f(a1, a2, . . . , an) = C, where C is any
constant, and constraints

gi = li − ai <= 0, gn+i = ai − ui <= 0, i = 1, 2, · · · , n

Any points that are within the constraints will get the ob-
jective value C. Points that are not within the constraints
are pruned by those constraints. Those points that remain
all have an objective value of C and because they all have
the same maximum(minimum) objective value, all form the
solution set of the range query. Therefore, range queries
can be formed as special cases of CP queries with constant
objective functions applying the range limits as constraints.
Also note that our model can not only deal with the ‘tradi-
tional’ hyper-rectangular range queries as described above,
but also ‘irregular’ range queries such as l ≤ a1 + a2 ≤ u

and l ≤ 3a1 − 2a2 ≤ u

3.3 Optimization Query Applications
Any problem that can be rewritten as a convex optimiza-

tion problem can be cast to our model, and solved using
our framework. In cases where the optimization problem
or objective function parameters are not known in advance,
this generic framework can be used to solve the problem by
efficiently accessing available access structures. We provide
a short list of potential optimization query applications that
could be relevant during scientific data exploration or busi-
ness decision support where the problem being optimized is
continuously evolving.
Weighted Constrained Nearest Neighbors - Weighted
nearest neighbor queries give the ability to assign different
weights for different attribute distances for nearest neighbor
queries. Weighted Constrained Nearest Neighbors (WCNN)
find the closest weighted distance object that exists within
some constrained space. This type of query would be ap-
plicable in situations where attribute distances vary in im-
portance and some constraints to the result set are known. A
potential application is clinical trial patient matching where
an administrator is looking to find the best candidate pa-
tients to fill a clinical trial. Some hard exclusion criteria is
known and some attributes are more important than oth-
ers with respect to estimating participation probability and
suitability.
kNN with Adaptive Scoring - In some situations we may
have an objective function that changes based on the char-
acteristics of a population set we are trying to fill. In such
a case, we will change the nearest neighbor scoring weights
dependent on the current population set. As an example,
again consider the patient clinical trial matching application
where we want to maintain a certain statistical distribution
over the trial participants. In a case where we want half of

1071

the participants to be male and half female, we can adjust
weights of the objective optimization function to increase
the likelihood that future trial candidates will match the
currently underrepresented gender.
Queries over Changing Attributes - The attributes in-
volved in optimization queries can vary based on the iter-
ation of the query. For example, a series of optimization
queries may search a stock database for maximum stock
gains over different time intervals. The attributes involved
in each query will be different.

Weights, constraints, functional attributes, and optimiza-
tion functions themselves can all change on a per-query ba-
sis. A database system that can effectively handle the po-
tential variations in optimization queries will benefit data
exploration tasks. In the examples listed above, each query
or each member of a set of queries can be rewritten as an
optimization query in our model. This demonstrates the
power and flexibility that the user has to define data explo-
ration queries and the examples represent a small subset of
the query types that are possible.

3.4 Approach Overview
We propose the use of Convex Optimization (CP) in or-

der to traverse access structures to find optimal data ob-
jects. The goal in CP is optimize (minimize or maximize)
some convex function over data attributes. The solution can
optionally be subject to some convex criteria over the data
attributes. Additionally, the data attributes may be subject
to lower and upper bounds.

All of the discussed applications can be stated as an ob-
jective function with a objective of maximization or mini-
mization. We can solve a continuous CP problem over a con-
vex partition of space by optimizing the function of interest
within the constraints of that space. Most access structures
are built over convex partitions. Particularly common par-
titions are Minimum Bounding Rectangles (MBRs). Rec-
tangular partitions can be represented by lower and upper
bounds over data attributes and can be directly addressed
by the CP problem bounds. Other convex partitions can be
addressed with data attribute constraints (such as x+y < 5).
If the problem under analysis has constraints in addition to
the constraints imposed by the partition boundaries, they
can also be added to the CP problem as constraints.

Given the function, partition constraints, and problem
constraints, we can use CP to find the optimal answer for the
function within the intersection of the problem constraints
and partition constraints. If no solution exists (problem
constraints and partition constraints do not intersect), the
partition is found to be infeasible for the problem. The
partition and its children can be eliminated from further
consideration. Given a function, problem constraints, and
a set of partitions, the partition the yields the best CP re-
sult with respect to the function under analysis is the one
that contains some space that optimizes the problem under
analysis better than the other partitions. These partition
functional values can be used to order partitions according
to how promising they are with respect to optimizing the
function within problem constraints.

With our technique we endeavor to minimize the I/O op-
erations and access structure search computations required
to perform arbitrary model-based optimization queries. The
access structure partitions to search and evaluate during
query processing are determined by solving CP problems

that incorporate the objective function, model constraints,
and partition constraints. The solution of these CP prob-
lems allows us to prune partitions and search paths that can
not contain an optimal answer during query processing.

The CP literature discusses the efficiency of CP prob-
lem solution. In [17], it is stated that a CP problem can
be very efficiently solved with polynomial-time algorithms.
The readers can refer to [18] for a detailed review on interior-
point polynomial algorithms for CP problems. Current im-
plementations of CP algorithms can solve problems with
hundreds of variables and constraints in very short times on
a personal computer [13]. CP problems can be so efficiently
solved that Boyd and Vandenberghe stated “if you formulate
a practical problem as a convex optimization problem, then
you have solved the original problem.” ([3] page 8). We are
in effect replacing the bound computations from existing ac-
cess structure distance optimization algorithms with a CP
problem that covers the objective function and constraints.
Although such computations can be more complex, we found
very little time difference in the functions we examined.

We focus on query processing techniques by presenting a
technique for general CP objective functions, which can be
applied to existing space or data partitioning-based indices
without losing the capabilities of those indexing techniques
to answer other types of queries. The basic idea of our
technique is to divide the query processing into two phases:
First, solve the CP problem without considering the data-
base, (i.e. in continuous space). This “relaxed” optimization
problem can be solved efficiently in the main memory using
many possible algorithms in the convex optimization litera-
ture. It can be solved in polynomial time in the number of
dimensions in the objective functions and the number of con-
straints ([18]). Second, search through the index by prun-
ing the impossible partitions and access the most promising
pages. Details for our technique for different index types are
provided in the following section.

4. QUERY PROCESSING FRAMEWORK
By solving CP problems associated with the problem con-

straints, partition constraints, and objective function, we
find the best possible objective function value achievable by
a point in the partition. Thus, there exists a lower bound for
each partition in the database that can be used to prune the
data space before retrieving pages from disk. The bounds
can be defined for any type of convex partition (such as
minimum bounding regions) used for indexing the data.

Figure 2 is a functional block diagram of the optimiza-
tion query processing system that shows interactions be-
tween components. Query processing proceeds first by the
user providing an objective function and constraints to the
system. A lightweight query compiler validates the user in-
put, converts the function and constraints into appropriate
format for the query processor, and executes the appropri-
ate query processing algorithm using the specified access
structure. The query processor invokes a CP solver to find
bounds for partitions that could potentially contain answers
to the query. By solving CP subproblems using index par-
tition boundaries as additional constraints, we can ensure
that we access pages in the order of how promising they are.
The user gets back those data object(s) in the database that
answer the query within the constraints.

The generic query processing framework for a CP query is
described below. This framework can be applied to indexing

1072

Database
User Interface

Access

Structures

Query

Processing

Modules

Lightweight

Query Compiler

Convex

Optimization

Solver

Objective

Function

Constraints

Query

Parameters

Compiled

Query

C

P

P

r
o

b

l
e

m

s

C

P

S

o

l
u

t
i
o

n

s

Data

Reads

I
n

d

e
x

A

c
c

e

s
s

e

s

P

a
r

t
i
t

i
o

n

C

o
n

s
t

r
a

i
n

t
s

Data

Objects

Answer Set

Figure 2: Optimization Query System Functional
Block Diagram

structures in which the partitions on which they are built
are convex because the partition boundaries themselves are
used to form the new CP problems.

A popular taxonomy of access structures divides the struc-
tures into the categories of hierarchical and non-hierarchical
structures. Hierarchical structures are usually partitioned
based on data objects while non-hierarchical structures are
usually based on partitioning space. These two families have
important differences that affect how queries are processed
over them. Therefore we provide algorithms for hierarchical
structures in Subsection 4.1 and non-hierarchical structures
in 4.2.

The overall idea is to traverse the access structure and
solve the problem in sequential order of how good partitions
and search paths could be. We terminate when we come to
a partition that could not contain an optimal answer to the
query. The implementations described address a minimiza-
tion objective function and prune based on comparison to
minimum values. Solutions to maximization problems can
be performed by using maximums (i.e. “worst” or upper
bounds) in place of minimums.

The number of results that are returned by the query
processing is dependent on an input k. If the user desires
only the single best result, k = 1. It can however, be an ar-
bitrary value in order to return the k best data objects. For
range queries, if all objects that meet the range constraints
are desired, the value of k should be set to n, the number of
data points. Only the data points within the constrained re-
gion will be returned, and only the points that are within the
lowest-level partitions that intersect the constrained region
will be examined during query processing. Therefore, the
query processing will be at least as I/O-efficient as standard
range query processing over a given access structure.

Now, we describe the implementations of this framework
based on hierarchical and non-hierarchical indexing tech-
niques. In Section 5 we show that both of these algorithms
are in fact optimal, i.e., no unnecessary MBRs (or par-
titions) given an access structure are accessed during the
query processing.

4.1 Query Processing over Hierarchical Ac-
cess Structures

Algorithm 1 shows the query processing over hierarchi-
cal access structures. This algorithm is applicable to any
hierarchical access structure where the partitions at each
tree level are convex. A partial list of structures covered by
this algorithm includes the R-tree, R*-tree, R+-tree, BSP-
tree, Quad-tree, Oct-tree, k-d-B-tree, B-tree, B+-tree, LSD-
tree, Buddy-tree, P-tree, SKD-tree, GBD-tree, Extended k-
D-Tree, X-tree, SS-tree, and SR-tree [7, 2].

The algorithm is analogous to existing optimal NN process-
ing [10], except that partitions are traversed in order of
promise with respect to an arbitrary convex function, rather
than distance. Additionally, our algorithm also prunes out
any partitions and search paths that do not fall within prob-
lem constraints.

We solve a new CP problem for each partition that we
traverse using the objective function, original problem con-
straints, and the constraints imposed by the partition bound-
aries. The algorithm takes as input the convex optimization
function of interest OF , the set of convex constraints C,
and a desired result set size k. In lines 1-3, we initialize the
structures that we maintain throughout a query. We keep a
vector of the k best points found so far as well as a vector
of the objective function values for these points. We keep
a worklist of promising partitions along with the minimum
objective value for the partition. We initialize the worklist
to contain the tree root partition.

CPQueryHierarchical (Objective Function OF ,
Constraints C,k)

notes:

b[i] - the ith best point found so far
F (b[i]) - the objective function value of the ith best point
L - worklist of (partition, minObjVal) pairs

1: b[1]...b[k] ←null.
2: F (b[1])...F (b[k])← +∞
3: L← (root)
4: while L 6= ∅
5: remove first partition P from L

6: if P is a leaf
7: access and compute functions for points in

P within constraints C

8: update vectors b and F if better points
discovered

9: else
10: for each child Pchild of P

11: minObjV al = CPSolve(OF ,Pchild,C)
12: if minObjV al < F (b[k])
13: insert Pchild into L according to

minObjV al

14: end for
15: end if
16: prune partitions from L with minObjV al >

F (b[k])
17: end while
18: return vector b

Algorithm 1: I/O Optimal Query Processing for Hierar-
chical Index Structures.

We then process entries from the worklist until the work-

1073

list is empty. In line 5, we remove the first promising parti-
tion. If this partition is a leaf partition, then we access the
points in the partition and compute their objective function
values. If a point is not within the original problem con-
straints, then it will not have a feasible solution and will
be discarded from further consideration. Points with objec-
tive function values lower than the objective function value
of the kth best point so far will cause the best point and
best point objective function value vectors to be updated
accordingly.

If the partition under analysis is not a leaf, we find its
child partitions. For each of these child partitions, we solve
the CP problem corresponding to the objective function,
original problem constraints, and partition constraints (line
11). This yields the best possible objective function value
achievable within the intersection of the original problem
constraints and partition constraints. If the minimum objec-
tive function value is less than the kth best objective function
value (i.e. it is possible for a point within the intersection
of the problem constraints and partition constraints to beat
the kth best point), then the partition is inserted into the
worklist according to its minimum objective value. If there
is no feasible solution for the partition within problem con-
straints, the partition will be dropped from consideration.

After a partition is processed, we may have updated our
kth best objective function value. We prune any partitions
in the worklist that can not beat this value.

Query Processing Example As an example of query
processing, consider Figure 3 with an optimization objec-
tive of minimizing the distance to the query point within
the constrained region (i.e. constrained 1-NN query). We
initialize our worklist with the root and start by processing
it. Since it is not a leaf, we examine its child partitions A

and B. We solve for the minimum objective function value
for A and do not obtain a feasible solution because A and
the constrained region do not intersect. We do not process
A further. We find the minimum objective function for par-
tition B and get the distance from the query point to the
point where the constrained region and the partition B in-
tersect, point c. We insert partition B into our worklist and
since it is the only partition in the worklist, we process it
next. Since B is not a leaf, we examine its child partitions,
B.1, B.2, and B.3. We find minimum objective function val-
ues for each and obtain the distances from the query point
to point d, e, and f respectively. Since point e is closest, we
insert partitions into the worklist in the order B.2, B.1, and
B.3.

We process B.2 and since it is a leaf, we compute objective
function values for the points in B.2. Point B.2.a is the
closer of the two. This point is designated as the best point
thus far, and the best point objective function is updated.
After processing B.2, we know we can do no worse than the
distance from the query point to B.2.a. Since partition B.3
can not do better than this, we prune it from the worklist.
We examine points in B.1. Point B.1.b is not a feasible
solution (it is not in the constrained region) so it is dropped.
Point B.1.a gets a value which is better than the current
best point. We update the best point to be B.1.a. Since the
worklist is now empty, we have completed the query and
return the best point.

The optimal point for this optimization query this query
is B.1.a. We examine only points in partitions that could
contain points as good as the best solution.

Constrained

Region

Root

A.1

A

B

B.1

B.2

B.3

Query Point

B.2.a

B.1.b

B.1.a

B.3.b

B.3.a

B.2.b

c

d

e

f

Data Space

Figure 3: Example of Hierarchical Query Processing

4.2 Query Processing over Non-hierarchical
Access Structures

In this section, we show that the general framework for CP
queries can also be implemented on top of non-hierarchical
structures. Algorithm 2 can be applied to non-hierarchical
access structures where the partitions are convex. A partial
list of structures where the algorithm can be applied is Lin-
ear Hashing, Grid-File, EXCELL, VA-File, VA+-File, and
Pyramid Technique [7, 2, 21, 6].

We use a two stage approach detailed in Algorithm 2 to
determine which data objects optimize the query within the
constraints. This technique is similar to the technique iden-
tified in [21] for finding NN for a non-hierarchical structure,
but we use the objective function rather than a distance
and also consider original problem constraints to find lower
bounds. We take the objective function, OF , original prob-
lem constraints C, and result set size k as inputs. We initial-
ize the structures to be used during query processing (lines
1-3). In stage 1, we process each populated partition vin the
structure by solving the CP problem that corresponds to the
original objective function and constraints combined with
the additional constraints imposed by the partition bound-
aries (line 5). Those partitions that do not intersect the
constraints will be bypassed. For those that do have a feasi-
ble solution, the lower bound of the CP problem is recorded.
At the end of stage 1, we place unique unpruned partitions in
increasing sorted order based on their lower bound. In stage
2, we process the unpruned partitions by accessing objects
contained by the first partition and computing actual objec-
tive values. We maintain a sorted list of the top-k objects we
have found so far, and continue accessing points contained
by subsequent partitions until a partition’s lower bound is
greater than the kth best value. By accessing partitions in
order of how good they could be, according to the CP prob-
lem, we access only those points in cell representations that
could contain points as good as the actual solution.

4.3 Non-Covered Access Structures
A review of access structure surveys yielded few struc-

tures that are not covered by the algorithms. These include
structures that either do not guarantee spatial locality (i.e.
space filling curves which are used for approximate order-
ing). They include structures built over values computed for
a specific function (such as distance in M-trees. Since at-

1074

CPQueryNonHierarchical (Objective Function OF ,
Constraints C,k)

notes:

b[i] - the ith best point found so far
F (b[i]) - the objective function value of the ith best point
L - worklist of (partition, minObjVal) pairs

Initialize:
1: b[1]...b[k] ←null.
2: F (b[1])...F (b[k])← +∞
3: L← ∅
Stage 1:
4: for each populated partition P

5: minObjV al = CPSolve(OF , P , C)
6: if minObjV al < +∞
7: insert (P , minObjV al) into L according to

minObjV al

Stage 2:
8: for i = 1 to |L|
9: if minObjV al of partition L[i] > F (b[k])
10: break
11: Access objects that partition L[i] contains
12: for each object o

13: if OF (o) < F (b[k])
14: insert o into b

15: update F (b)

Algorithm 2: I/O Optimal Query Processing over Non-
hierarchical Structures.

tribute information is lost, they can not be applied to general
functions over the original attributes). They include struc-
tures that contain non-convex regions (BANG-File, hB-tree,
BV-tree) [7, 2]. Note that M-trees would still work to answer
queries for the functions they are built over and the struc-
tures built with non-convex leaves could still be optimally
traversed down to the level of non-convexity.

5. I/O OPTIMALITY
In this section, we will show that the proposed query

processing technique achieves optimal I/O for each imple-
mentation in Section 4. We denote the objective function
contour which goes through the actual optimal data point in
the database as the optimal contour. This contour also goes
through all other points in continuous space that yield the
same objective function value as the optimal point. The kth

optimal contour would pass through all points in continuous
space that yield the same objective function value as the kth

best point in the database. In the following arguments, we
use the optimal contour, but could replace them with the
kth optimal contour. Following the traditional definition in
[1], we define the optimality as follows.

Definition 3 (Optimality). An algorithm for optimiz-
ation queries is optimal iff it retrieves only the pages that in-
tersect the intersection of the constrained region R and the
optimal contour.

For hierarchical tree based query processing, the proof is
given in the following.

Lemma 1. The proposed query processing algorithm is I/O
optimal for CP queries under convex hierarchical structures.

Proof. It is easy to see that any partition intersecting the
intersection of optimal contour and feasible region R will be
accessed since they are not pruned in any phase of the algo-
rithm. We need to prove only these partitions are accessed,
i.e., other partitions will be pruned without accessing the
pages.

Figure 4 shows different cases of the various position rela-
tions between a partition, R and the optimal contour under 2
dimensions. a is an optimal data point in the data base. We
will use minObjV al(Partition,R) to denote the minimum
objective function value that is computed for the partition
and constraints R.

A: intersects neither R nor the optimal contour.

B: intersects R but not the optimal contour.

C: intersects the optimal contour but not R.

D: intersects the optimal contour and R, but not the in-
tersection of optimal contour and R.

E: intersects the intersection of the optimal contour and
R.

A

B

C

E

D

o

Constrained Region

Optimal contour

Figure 4: Cases of MBRs with respect to R and
optimal objective function contour

A and C will be pruned since they are infeasible regions,
when the CP for these partitions are solved, they will be
eliminated from consideration since they do not intersect the
constrained region and minObjV al(A,R) = minObjV al(C,

R) = +∞. B is pruned because minObjV al(B, R) > F (a)
and E will be accessed earlier than B in the algorithm be-
cause minObjV al(E, R) < minObjV al(B,R). We shall
show that a page in case D is pruned by the algorithm. Let
CP0 be the data partition that contains an optimal data
point, CP1 be the partition that contains CP0, . . ., and CPk

be the root partition that contains CP0, CP1, , CPk−1. Be-
cause the objective function is convex, we have

F (a) ≥ minObjV al(CP0, R) ≥ minObjV al(CP1, R) ≥ . . .

≥ minObjV al(CPk, R)

and

minObjV al(D, R) > F (a) ≥ minObjV al(CP0, R) ≥
minObjV al(CP1, R) ≥ . . . ≥ minObjV al(CPk, R)

1075

During the search process of our algorithm, CPk is re-
placed by CPk−1, and CPk−1 by CPk−2, and so on, until
CP0 is accessed. If D will be accessed at some point dur-
ing the search, then D must be the first in the MBR list
at some time. This only can occur after CP0 has been ac-
cessed because minObjV al(D, R) is larger than constrained
function value of any partition containing the optimal data
point. If CP0 is accessed earlier than D, however, the algo-
rithm prunes all partitions which have a constrained func-
tion value larger than F (a), including D. This contradicts
with the assumption that D will be accessed.

The I/O-optimality relates to accessing data from leaf par-
titions. However, the algorithm is also optimal in terms of
the access structure traversal, that is, we will never retrieve
the objects within an MBR (leaf or non-leaf), unless that
MBR could contain an optimal answer. The proof applies
to any partition, whether it contains data or other parti-
tions.

Similarly, we can prove the I/O optimality of proposed
algorithm over non-hierarchical structures.

Lemma 2. The proposed query processing algorithm is I/O
optimal for CP queries over non-hierarchical convex struc-
tures.

Proof. Figure 5 shows different possible cases of the parti-
tion position. Partitions A,B, C, D, and E are the same as
defined for Figure 4.

Without loss of generality, assume that only these five
partitions contain some data points, and partition E con-
tains an optimal data point, a, for a query F (x, y). Then
an optimal algorithm retrieves only partition E.

Partitions C and A will not be retrieved because they
are infeasible and our algorithm will never retrieve infea-
sible partitions. Partition B will not be retrieved because
partition E will be retrieved before partition B (because
minObjV al(E,R) < minObjV al(B, R)), and the best data
point found in E will prune partition B. Thus, we only need
to show that partition D will not be retrieved.

Because partition D does not intersect the intersection of
the optimal contour and R but E does, minObjV al(D, R) >

minObjV al(E,R). Therefore, partition E must be retrieved
before partition D since the algorithm always retrieves the
most promising partition first, and the data point a is found
at that time. Suppose partition D is also retrieved later.
This means partition D cannot be pruned by data point a,
i.e., F (a) ≥ minObjV al(D, R), which also means the vir-
tual solution corresponding to (minObjV al(D, R)) is con-
tained by the optimal contour (because of the convexity of
function F). Therefore, the virtual solution corresponding
to (minObjV al(D, R)) ∈ D ∩ R∩optimal contour. Hence,
we can find at least one virtual point x∗ (without consider-
ing the database) in partition D such that x∗ is both in R

and the optimal contour. This contradicts the assumption
that partition D does not intersect the intersection of R and
the optimal contour.

6. PERFORMANCE EVALUATION
The goals of the experiments are to show i) that the pro-

posed framework is general and can be used to process a
variety of queries that optimize some objective ii) that the
generality of the framework does not impose significant cpu
burden over those queries that already have an optimal so-

E

o

Constrained Region

Optimal contour

A

B

C

D

Figure 5: Cases of partitions with respect to R and
optimal objective function contour

lution, and iii) that non-relevant data subspace can be ef-
fectively pruned during query processing.

We performed experiments for a variety of optimization
query types including kNN, Weighted kNN, Weighted Con-
strained kNN, and Constrained Weighted Linear Optimiza-
tion. Where possible, we compare cpu times against a non-
general optimization technique. We index and perform que-
ries over four real data sets. One of these is Color Histogram
data, a 64-dimensional color image histogram dataset of
100,000 data points. The vectors represent color histograms
computed from a commercial CD-ROM. The second is Satel-
lite Image Texture (Landsat) data, which consists of 100,000
60-dimensional vectors representing texture feature vectors
of Landsat images [15]. These datasets are widely used for
performance evaluation of index structures and similarity
search algorithms [14, 8]. We used a clinical trials patient
data set and a stock price data set to perform real world
optimization queries.

Weighted kNN Queries Figure 6 shows the perfor-
mance of our query processing over R*-trees for the first
8-dimensions of the histogram data for both kNN and k
weighted NN (k-WNN) queries. The index is built over the
first 8 dimensions of the histogram data and the queries are
generated to find the kNN or k-WNN to a random point in
the data space over the same 8 dimensions. We execute 100
queries for each trial, and randomly assign weights between
0 and 1 for the k-WNN queries. We vary the value of k

between 1 and 100. We assume the index structure is in
memory and we measure the number of additional page ac-
cesses required to access points that could be kNN according
to the query processing. Because the weights are 1 for the
kNN queries, our algorithm matches the I/O-optimal access
offered by traditional R-tree nearest neighbor branch and
bound searching.

The figure shows that we achieve nearly the same I/O per-
formance for weighted kNN queries using our query process-
ing algorithm over the same index that is appropriate for
traditional non-weighted kNN queries. For unconstrained,
unweighted nearest neighbor queries, the optimal contour is
a hyper-sphere around the query point with a radius equal
to the distance of the nearest point in the data set. If in-

1076

0

10

20

30

40

50

60

0
 20
 40
 60
 80
 100
 120

k

p
ag

e
ac

ce
ss

es

k-NN

k-WNN

Figure 6: Accesses, Random weighted kNN vs kNN,
R*-tree, 8-D Histogram, 100k pts

stead, the queries are weighted nearest neighbor queries,
the optimal contour is a hyper-ellipse. Intuitively, as the
weights of a weighted nearest neighbor query become more
skewed, the hyper-volume enclosed by the optimal contour
increases, and the opportunity to intersect with access struc-
ture partitions increases. Results for the weighted queries
track very closely to the non-weighted queries. This indi-
cates that these weighted functions do not cause the optimal
contour to cross significantly more access structure parti-
tions than their non-weighted counterparts. For a weighted
nearest neighbor query, we could generate an index based on
attribute values transformed based on the weights and yield
an optimal contour that was hyper-spherical. We could then
traverse the access structure using traditional nearest neigh-
bor techniques. However, this would require generating an
index for every potential set of query weights, which is not
practical for applications where weights are not typically
known prior to the query. For similar applications where
query weights can vary, and these weights are not known
in advance, we would be better served to process the query
over a single reasonable access structure in an I/O-optimal
way than by building specific access structures for a specific
set of weights.

Figure 7 shows the average cpu times required per query
to traverse the access structure using convex problem solu-
tions for the weighted kNN queries compared to the standard
nearest neighbor traversal used for unweighted kNN queries.

The figure shows that the generic CP-driven solution takes
slightly longer to perform than a specialized solution for
nearest neighbor queries alone. Part of this difference is due
to the slightly more complicated objective function (weighted
versus unweighted Euclidean distance), part is due to the ad-
ditional partitions that the optimal contour crosses, while
the remaining part is due to incorporating data set con-
straints (unused in this example) into computing minimum
partition function values.

Hierarchical data partitioning access structures are not
effective for high-dimensional data sets. As data set dimen-
sionality increases, the partitions overlap with each other
more. As partitions overlap more, the probability that a
point’s objective function value can prune other partitions
decreases. Therefore, the same characteristics that make

0

20

40

60

80

100

120

140

1
 5
 10
 25
 50
 100

k

C
P

U
 T

im
e

(m
s)

k-NN

k-WNN

Figure 7: CPU Time, Random weighted kNN vs
kNN, R*-tree, 8-D Histogram, 100k pts

high-dimensional R-tree type structures ineffective for tra-
ditional queries also make them ineffective for optimization
queries. For this reason, we perform similar experiments for
high-dimensional data using VA-files.

Figure 8 shows page access results for kNN and k-WNN
queries over 60-dimensional, 5-bit per attribute, VA-file built
over the landsat dataset. The experiments assume the VA-
file is in memory and measure the number of objects that
need to be accessed to answer the query.

0

40

80

120

160

200

0
 20
 40
 60
 80
 100
 120

k

o
b

je
ct

 a
cc

es
se

s

k-NN

k-WNN

Figure 8: Accesses, Random weighted kNN vs kNN,
VA-File, 60-D Sat, 100k pts

Similar to the R*-tree case, the results show that the per-
formance of the algorithm is not significantly affected by
re-weighting the objective function. Sequential scan would
result in examining 100,000 objects. If the dataspace were
more uniformly populated, we would expect to see object
accesses much closer to k. However, much of the data in
this data set is clustered, and some vector representations
are heavily populated. If a best answer comes from one of
these vector representations, we need to look at each object
assigned the same vector representation.

1077

It should be noted that while the framework results in
optimal access of a given structure, it can not overcome
the inherent weaknesses of that structure. For example, at
high dimensionality, hierarchical data structures are ineffec-
tive, and the framework can not overcome this. A conse-
quence of VA-File access structures is that, without some
other data reorganization, a computation needs to occur for
every approximated object. As distance computations need
to be performed for each vector in traditional VA-file nearest
neighbor algorithms, following the VA-file processing model
so too must a CP problem be solved for each vector for gen-
eral optimization queries. Times for this experiment reflect
this fact. It takes longer to perform each query but the
ratio of the general optimization query times to the tradi-
tional kNN CPU times is similar to the R*-tree case, about
1.006 (i.e. very little computational burden is added to allow
query generality).

Constrained Weighted Linear Optimization Queries
We also explore Constrained Weighted-Linear Optimization
queries. Figure 10 shows the number of page accesses re-
quired to answer randomly weighted LP minimization queries
for the histogram data set using the 8-D R*-Tree access
structure. We vary k and we vary the constrained area re-
gion fixed at the origin as a 8-D hypercube with the indi-
cated value. We generated 100 queries for each data point
in the form of a summation of weighted attributes over the 8
dimensions. Weights are uniformly randomly generated and
are between the values of -10 and 10.

0

5

10

15

20

25

30

35

40

45

1
 5
 10
 25
 50
 100

k

p
ag

e
ac

ce
ss

es

c = [0,0.01]^8

c = [0,0.1]^8

c =[0, 0.4]^8

Figure 9: Page Accesses, Random Weighted Con-
strained k-LP Queries, R*-Tree, 8-D Color His-
togram, 100k pts

The graph shows interesting results. The number of page
accesses is not directly related to the constraint size. The
rate of increase in page accesses to accommodate differ-
ent values of k does vary with the constraint size. When
weights can be negative, the corner corresponding to the
minimum constraint value for the positively weighted at-
tributes, and the maximum constrained value for the nega-
tively weighted attributes will yield the optimal result within
the constrained region (e.g. corner [0,1,0] would be an opti-
mal minimization answer for a constrained unit cube and a
linear function with a weight vector [+,-,+]). For this data
set, many points are clustered around the origin, leading to
denser packing of access structure partitions near the ori-
gin. Because of the sparser density of partitions around the

point that optimizes the query, we access fewer partitions
when this particular problem is less constrained. However,
the radius of the kth-optimal contour increases more in these
less dense regions than more clustered regions, leading to a
faster increase in the number of page accesses required when
k increases.

Note that the Onion technique is not feasible for this
dataset dimensionality, and it, as well as the other compet-
ing techniques are not appropriate for convex constrained
areas. For comparative purposes, the sequential scan of this
data set is 834 pages.

We should also note what happens when there are less
than k optimal answers in the data set. This means that
there are less than k objects in our constrained region. For
our query processing, we only need to examine those points
that are in partitions that intersect the constrained region.
A technique that did not evaluate constraints prior to or
during query processing will need to examine every point.

Queries with Real Constraints The previous example
showed results with synthetically generated constraints. We
also wanted to explore that constrained optimization prob-
lems for real applications. We performed Weighted Con-
strained kNN experiments to emulate a patient matching
data exploration task described in Section 3.3. To test this,
we performed a number of queries over a set of 17000 real pa-
tient records. We established constraints on age and gender
and queried to find the 10 weighted nearest neighbors in the
data set according to 7 measured blood analytes. Using the
VA-file structure with 5 bits assigned per attribute and 100
randomly selected, randomly weighted queries, we achieved
an average of 11.5 vector accesses to find the k = 10 results.
This means that on average the number of vectors within
the intersection of the constrained space and 10th-optimal
contour is 11.5. It corresponds to a vector access ratio of
0.0007.

Arbitrary Functions over Different Access Struc-
tures In order to show that the framework can be used to
find optimal data points for arbitrary convex functions, we
generated a set of 100 random functions. Unlike nearest
neighbor and linear optimization type queries, the continu-
ous optimal solution is not intuitively obvious by examining
the function. Functions contain both quadratic and linear
terms and were generated over 5 dimensions in the form� 5

i=1
(random() ∗ x2

i − random() ∗ xi), where xi is the data

attribute value for the ith dimension. A sample function,
where coefficients are rounded to two decimal places, is to
minimize 0.91x2

1+0.49x2
2+0.4x2

3+0.55x2
4+0.76x2

5−0.09x1−
0.49x2 − 0.28x3 − 0.91x4 − 0.51x5.

We explored the results of our technique over 5 index
structures. These include 3 hierarchical structures, includ-
ing the R-tree, the R*-tree, and the VAM-split bulk loaded
R*-tree. We explored 2 non-hierarchical structures, the grid
file and the VA-file. For each of these index types, we mod-
ified code to include an optimization function that uses CP
to traverse the index structure using the algorithm appropri-
ate for the structure. We added a new set of 50000 uniform
random data points within the 5-dimension hypercube and
built each of the index structures over this data set.

We ran the set of random functions over each structure
and measured the number of objects in the partitions that
we retrieve. For the hierarchical structures these are leaf
partitions and for the non-hierarchical structures they are
grid cells. For each structure we try to keep the number

1078

partitions relatively close to each other. The number of
partitions for the hierarchical structures is between 12000
and 13000, the grid file 16000, and the VA-File 32000.

Figure 10 shows results over the 100 functions. It shows
the minimum, maximum, and average object access ratio
to guarantee discovery of the optimal answer over the set of
functions. Each index yielded the same correct optimal data
point for each function, and these optimal answers were scat-
tered throughout the data space. Each structure performed
well for these optimization queries, the average ratio of the
data points accessed is below 0.0025 for all the access struc-
tures. Even the worst performing structure over the worst
case function still prunes over 99% of the search space.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

R-tree
 Grid
 VA-File
 R*-tree
 VAM-split R*-

tree

Access Structure

O
b

je
ct

 A
cc

es
s

R
at

io

Minimum

Maximum

Average

Figure 10: Accesses vs. Index Type, Optimiz-
ing Random Function, 5-D Uniform Random, 50k
Points

Results between hierarchical access structures are as ex-
pected. The R*-tree looks to avoid some of the partition
overlaps produced by the R-tree insertion heuristics and
it shows better performance. The VAM-split R*-tree bulk
loads the data into the index and can avoid more partition
overlaps than an index built using dynamic insertion. As ex-
pected, this yields better performance than the dynamically
constructed R*-tree.

The VA-File has greater resolution than the grid-file in
this particular test, and therefore achieves better access ra-
tios.

Incorporating Problem Constraints during Query
Processing The proposed framework processes queries in
conjunction with any set of convex problem constraints. We
compare the proposed framework to alternative methods for
handling constraints in optimization query processing. For
a constrained NN type query we could process the query
according to traditional NN techniques and when we find a
result, check it against the constraints until we find a point
that meets the constraints. Alternatively, we could perform
a query on the constraints themselves, and then perform
distance computations on the result set and select the best
one. Figure 11 shows the number of pages accessed using
our technique compared to these two alternatives as the con-
strained area varies. Constrained kNN queries were per-
formed over the 8-D R*-tree built for the Color Histogram
data set.

In the figure, the R*-tree line shows the number of page
accesses required when we use traditional NN techniques,

0

100

200

300

400

500

600

700

800

900

1000

0
 0.2
 0.4
 0.6
 0.8
 1

Constraint Selectivity

P
ag

e
A

cc
es

se
s

R*-tree

CP

Selectivity

Figure 11: Pages Accesses vs. Constraints, NN
Query, R*-Tree, 8-D Histogram, 100k Points

and then check if the result meets the constraints. As the
problem becomes less constrained, the more likely a discov-
ered NN will fall within the constraints, and we can termi-
nate the search. The Selectivity line is a lower bound on the
number of pages that would be read to obtain the points
within the constraints. Clearly, as the problem becomes
more constrained, the fewer pages will need to be read to
find potential answers. The CP line shows the results for our
framework, which processes original problem constraints as
part of the search process and does not further process any
partitions that do not intersect constraints.

We demonstrate better results with respect to page ac-
cesses except in cases where the constraints are very small
(and we can prune much of the space by performing a query
over the constraints first) or when the NN problem is not
constrained (where our framework reduces to the traditional
unconstrained NN problem). When there are problem con-
straints, we prune search paths that can not lead to feasi-
ble solutions. Our search drills down to the leaf partition
that either contains the optimal answer within the problem
constraints, or yields the best potential answer within con-
straints.

7. CONCLUSIONS
In this paper we present a general framework to model

optimization queries. We present a query processing frame-
work to answer optimization queries in which the optimiza-
tion function is convex, query constraints are convex, and
the underlying access structure is made up of convex parti-
tions. We provide specific implementations of the process-
ing framework for hierarchical data partitioning and non-
hierarchical space partitioning access structures. We prove
the I/O optimality of these implementations. We experi-
mentally show that the framework can be used to answer a
number of different types of optimization queries including
nearest neighbor queries, linear function optimization, and
non-linear function optimization queries.

The ability to handle general optimization queries within
a single framework comes at the price of increasing the com-
putational complexity when traversing the access structure.
We show a slight increase in CPU times in order to perform

1079

convex programming based traversal of access structures in
comparison with equivalent non-weighted and unconstrained
versions of the same problem.

Since constraints are handled during the processing of par-
titions in our framework, and partitions and search paths
that do not intersect with problem constraints are pruned
during the access structure traversal, we do not need to ex-
amine points that do not intersect with the constraints. Fur-
thermore, we only access points in partitions that could po-
tentially have better answers than the actual optimal data-
base answers. This results in a significant reduction in re-
quired accesses compared to alternative methods in the cases
where the inclusion of constraints makes these alternatives
less effective.

The proposed framework offers I/O-optimal access of what-
ever access structure is used for the query. This means that
given an access structure we will only read points from par-
titions that have minimum objective function values lower
than the kth actual best answer. Because the framework
is built to best utilize the access structure, it captures the
benefits as well as the flaws of the underlying structure.
Essentially, it demonstrates how well the particular access
structure isolates the optimal contour within the problem
constraints to access structure partitions. If the optimal
contour and problem constraints can be isolated to a few
leaf partitions, the access structure will yield nice results.
However, if the optimal contour crosses many partitions, the
performance will not be as good. As such, the framework
can be used to measure page access performance associated
with using different indexes and index types to answer cer-
tain classes of optimization queries, in order to determine
which structures can most effectively answer the optimiza-
tion query type. Database researchers and administrators
can use this technique as a benchmarking tool to evaluate
the performance of a wide range of index structures available
in the literature.

To use this framework, one does not need to know the
objective function, weights, or constraints in advance. The
system does not need to compute a queried function for all
data objects in order to find the optimal answers. The tech-
nique provides optimization of arbitrary convex functions,
and does not incur a significant penalty in order to pro-
vide this generality. This makes the framework appropriate
for applications and domains where a number of different
functions are being optimized or when optimization is being
performed over different constrained regions and the exact
query parameters are not known in advance.

8. REFERENCES
[1] S. Berchtold, C. Böhm, D. A. Keim, and H.-P.

Kriegel. A cost model for nearest neighbor search in
high-dimensional data space. PODS, pages 78–86,
1997.

[2] Christian Bohm, Stefan Berchtold, and Daniel A.
Keim. Searching in high-dimensional spaces: Index
structures for improving the performance of
multimedia databases. ACM Comput. Surv.,
33(3):322–373, 2001.

[3] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY. USA,
2004.

[4] Y-C. Chang, L. Bergman, V. Castelli, C-S. Li, M-L.
Lo, and R. J. Smith. The onion technique: indexing

for linear optimization queries. ACM SIGMOD, 2000.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. Journal of
Computer and System Sciences, 2003.

[6] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El
Abbadi. Vector approximation based indexing for
non-uniform high dimensional data sets. In CIKM ’00.

[7] Volker Gaede and Oliver Gunther. Multidimensional
access methods. ACM Comput. Surv., 30(2):170–231,
1998.

[8] A. Gionis, P. Indyk, and R. Motwani. Similarity
searching in high dimensions via hashing. In
Proceedings of the Int. Conf. on Very Large Data
Bases, pages 518–529, Edinburgh, Sootland, UK,
September 1999.

[9] M. Grant, S. Boyd, and Y. Ye. Disciplined convex
programming. Kluwer (Nonconvex Optimization and
its Applications series), Dordrecht, 2005. In press.

[10] Gisli R. Hjaltason and Hanan Samet. Ranking in
spatial databases. In Symposium on Large Spatial
Databases, pages 83–95, 1995.

[11] V. Hristidis, N. Koudas, and Y. Papakonstantinou.
PREFER: A system for the efficient execution of
multi-parametric ranked queries. In SIGMOD
Conference, 2001.

[12] F. Korn and S. Muthukrishnan. Influence sets based
on reverse nearest neighbor queries. In SIGMOD,
2000.

[13] M. S. Lobo. Robust and Convex Optimization with
Applications in Finance. PhD thesis, The Department
of Electrical Engineering, Stanford University, March
2000.

[14] B. S. Manjunath. Airphoto dataset.
http://vivaldi.ece.ucsb.edu/Manjunath/research.htm,
May 2000.

[15] B. S. Manjunath and W. Y. Ma. Texture features for
browsing and retrieval of image data. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 18(8):837–842, August 1996.

[16] R. P. Mount. The Office of Science Data-Management
Challenge. DOE Office of Advanced Scientific
Computing Research, March–May 2004.

[17] Y. Nesterov and A. Nemirovsky. A general approach
to polynomial-time algorithms design for convex
programming. Technical report, Centr. Econ. & Math.
Inst., USSR Acad. Sci., Moscow, USSR, 1988.

[18] Y. Nesterov and A. Nemirovsky. Interior-Point
Polynomial Algorithms in Convex Programming.
SIAM, Philadelphia, PA 19101, USA, 1994.

[19] N. Roussopoulos, S. Kelly, and F. Vincent. Nearest
neighbor queries. In SIGMOD, 1995.

[20] M. Theobald, G. Weikum, and R. Schenkel. Top-k
query evaluation with probabilistic guarantees. VLDB,
2004.

[21] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB, 1998.

[22] Z. Zhang, S. Hwang, K. C.-C. Chang, M. Wang,
C. Lang, and Y. Chang. Boolean + ranking: Querying
a database by k-constrained optimization. In
SIGMOD, 2006.

1080

