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Abstract 

There is a growing consensus that it is desirable 

to query over the structure implicit in 

unstructured documents, and that ideally this 

capability should be provided incrementally.  

However, there is no consensus about what kind 

of system should be used to support this kind of 

incremental capability.  We explore using a 

relational system as the basis for a workbench for 

extracting and querying structure from 

unstructured data.  As a proof of concept, we 

applied our relational approach to support 

structured queries over Wikipedia.  We show that 

the data set is always available for some form of 

querying, and that as it is processed, users can 

pose a richer set of structured queries.  We also 

provide examples of how we can incrementally 

evolve our understanding of the data in the 

context of the relational workbench. 

 

1. Introduction 

Currently, to find information from the vast amount of 

unstructured data (i.e., text) on the Web, users have to rely 

on a combination of keyword search, browsing, and 

possibly predefined search options.  Although these 

mechanisms are easy to use and often lead to what users 

are looking for eventually, they cannot leverage the 

potentially rich set of structures embedded in text.  For 

example, consider the page about the city Madison in 

Wikipedia [36].  It contains sections of text titled 

“History,” “Geography,” “Demographics,” and so on.  

From the text we might find relationships that we want to 

extract (e.g., “technology companies” such as “Raven  

 Jan Feb ... Dec 

Avg High 
Temp °F (° C) 

23 (-5) 29 (-2) ... 29 (-2) 

Avg Low 
Temp °F (° C) 

6 (-14) 12 (-11) ... 13 (-11) 

Mean Temp  
°F (° C) 

15 (-9) 20 (-7) ... 21 (-6) 

Avg 

precipitation  

in (cm) 

1.14 (2.9) 1.14 (2.9) ... 1.32 (3.35) 

Figure 1.  A portion of the temperature table from the page about 

Madison in Wikipedia.  Though the content has a clear structure, 

users cannot query it using structured queries.   

 
Software” and “Human Head Studios” have headquarters 

located in “Madison”).   Furthermore, the page has “wiki 

tables” that capture explicit structured data, such as one 

that records the city’s monthly average low, average high, 

and mean temperature, and mean precipitation (a portion 

of the table is shown in Figure 1).  The ability to query this 

set of structures is highly desirable.  For example, we may 

want to know how cold Madison gets during winter, by 

averaging the minimum temperature of December, 

January, and February; and if there is also a temperature 

table for the city Seattle, we may want do the same for 

Seattle and compute the difference between the two 

averages.  However, to do so, we need to extract these 

tables and pose structured queries.   

Since unstructured data can practically contain any 

structure, extracting and maintaining a set of structures for 

querying are a constant work in progress for a system.  

Therefore, at any point in time, a user should be able to 

query using as much or little structure as is currently 

known, and should be able to perform increasingly 

sophisticated queries as the system incrementally evolves 

its understanding of the data.   

Unfortunately, there is little consensus about what kind 

of system should be used to support this kind of 

incremental capability.  In this paper, we explore using a 

relational system as the basis for a workbench for 

extracting and querying structure from unstructured data.  

This approach is perhaps surprising because relational 

database systems are often regarded as one of the most 
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rigidly structured alternatives, and their design goals seem 

diametrically opposed to the kind of flexibility required for 

incremental discovery and exploitation of structure.  

However, we show that this is not the case with our 

workbench model, which provides 1) a way to store the 

evolving set of documents and structures, 2) tools that can 

be used to query and to incrementally process the data, and 

3) a way to handle changes in our understanding of the 

data set as it is processed.   

The system we envision allows users to load a set of 

documents without any pre-processing, and begin querying 

the documents immediately using keyword searches. Of 

course, at this point, there is no benefit above that 

provided by a traditional Information Retrieval (IR) 

system.  To extract more information from the collection 

of documents, we need to somehow process the 

documents, store the result of that processing, and make it 

available for querying.  For example, it may be useful to 

run one or more clustering tools over the documents, and 

to record the results of these by labelling the documents 

with cluster identifiers.  It may be useful to extract 

structure from the documents, perhaps in the form of 

attribute-value pairs, and to record the attribute-value pairs 

found in each document. It may also be useful to integrate 

these attribute-value pairs; that is, record that attribute i of 

one document corresponds to attribute j of another 

document. 

It is important that all this information is available for 

querying, in any combination, at any time.  For example, 

users should be able to run keyword searches over 

documents belonging to any combination of clusters and 

restrict the search to documents that satisfy predicates on 

specified attribute values.  Users should also be able to run 

SQL-like queries over the extracted attributes, perhaps 

again limited to documents belonging to specified clusters. 

Also, as more attributes are correlated by integration, the 

results of queries over these attributes (possibly extracted 

with different names in different documents) should 

improve in quality. 

Certainly one could build such a system using many 

different approaches.  One could start from scratch and 

write a stand-alone system that works over file-system 

resident data.  One could adopt an XML-centric approach, 

and place one’s hope in the growing capabilities of XML 

query engines.  These and other approaches could certainly 

be successful.  However, it is our argument that existing 

relational database technology can go a long way toward 

supporting such a system.  Our basic idea is simple: at the 

start, the documents are loaded into the RDBMS in a table 

with only two attributes: id and text.  As clustering tools 

and extracting tools are run over the data, we add 

attributes, and store the results of those tools in the new 

attributes.  Of course, most attributes will be null for most 

documents; however, recent work on managing sparse data 

sets provides evidence that such extremely sparse data sets 

can be efficiently managed by an RDBMS.  As integration 

tools relate sets of attributes, we record these relationships 

(and the lack thereof) in “mapping tables.”  

The workbench we envision supports three basic 

operators – Extract, Integrate, and Cluster – for  

50VARCHAR(50)a4headquarter.city

50VARCHAR(50)a3official flower

50VARCHAR(50)a5headquarter.company

unlimitedTEXTa2DocContent

100VARCHAR(100)a1DocTitle

50VARCHAR(50)a4headquarter.city

50VARCHAR(50)a3official flower

50VARCHAR(50)a5headquarter.company

unlimitedTEXTa2DocContent

100VARCHAR(100)a1DocTitle

name id type size

 

Figure 2.  Attribute catalog. 

 

a3 6 “dahlia
”

“Seattle is the 
largest ...”

55577a2“Seattle, 
Washington”

19a155614t2r17 a3 6 “dahlia
”

“Seattle is the 
largest ...”

55577a2“Seattle, 
Washington”

19a155614t2r17

“Madison is the 

captial of ...”

45767a2“Madison, 

Wisconsin”

18a145768t1r17 “Madison is the 

captial of ...”

45767a2“Madison, 

Wisconsin”

18a145768t1r17

relation id tuple id record length value length valueattr id

 

Figure 3.  Records in interpreted storage format. 

 

processing the data set incrementally.  It uses a modified 

“wide table” to store the data set, and a mapping table and 

a relationship table to store the schematic relationships 

within the set of structures.   

A workbench based on a relational system can offer 

many benefits for supporting structured queries over 

unstructured documents.  First, the data is always available 

for querying.  With full-text indexes, users can start posing 

keyword queries over the set of documents as soon as it is 

loaded into the workbench.  As we obtain more structure 

over time, the data’s utility increases and users can pose 

increasingly sophisticated queries.  Second, the operators 

can be combined and applied repeatedly to keep evolving 

our understanding of the data set.  To handle the evolving 

set of structures, the wide table provides a simple, but 

scalable alternative that does not require complicated 

schema design.  Lastly, in addition to support for querying, 

the workbench can take advantage of other strengths of a 

database, such as concurrency control, recovery, and query 

optimization.   

The reason we call our approach a workbench is that it 

does not do anything by itself – it only provides the tools 

to process, manage, and query the data.  Database 

administrators (DBAs), and perhaps even the users, need 

to decide the parameters of the operators, the choice of 

specific clustering, extraction, and integration algorithms, 

what to do with the output, when they are finished with 

processing, and other relevant issues.  Our goal is to 

provide an environment in which to run these tools, record 

the results, and make the results available for querying. 

As a proof of concept, we applied our approach to 

support structured queries over Wikipedia.  Wikipedia is a 

database of unstructured documents that contain a lot of 

structured data.  However, currently, the only way to query 

documents in Wikipedia is by doing “vanilla” keyword 

search (i.e., with no advanced search options), and 

browsing.  In the case study, we first describe our 

simulation of the workbench.  Next, we provide examples 
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of how we combine the three basic operators to 

incrementally evolve our understanding of the data, and 

show that users can benefit from each stage of this process.  

For example, with just a little effort in extraction, we can 

allow users to specify a scope for their keyword queries to 

improve precision; with more effort, we can allow them to 

build more complex structured queries that include 

arithmetic comparison, aggregation, and even joins.   

The rest of our paper is organized as follows.  Section 

2 presents the data and schema representation adopted in 

the workbench.  Section 3 defines the three operators and 

describes how we use them to evolve our understanding of 

the data in the context of the workbench.  Section 4 

presents our case study on Wikipedia.  Section 5 discusses 

related work.  Section 6 concludes the paper and suggests 

future work.   

2. Schema and Data Representations 

2.1 A Wide, Sparse Table with Complex Attributes 

In considering a storage model for the documents and their 

extracted structures, an important observation is that the 

continuing extraction of heterogeneous structures will 

gradually lead to a sparse data set.  A data set is considered 

sparse when it comprises a large number of attributes, but 

most entities (or documents in our case) have non-null 

values for only a small fraction of all these attributes.   

For storing a sparse data set, Agrawal et al. [4] 

discussed using vertical tables as an alternative to 

horizontal tables with positional storage.  However, 

Beckmann et al. [7] later showed that vertical tables 

generally suffer from complex queries and poor 

performance, and that horizontal tables with interpreted 

storage outperform both vertical tables and positionally 

stored horizontal tables.  More recently, we argued that 

using a multi-table schema to store a sparse data set often 

creates more problems than it solves, and that the right 

approach is to use a wide table [14].  That is, forego 

schema design and store all objects in a single horizontal 

table using the interpreted storage format.   We use this 

same storage model for our workbench.   

Unlike the predominant positional storage format, 

which would cause a huge storage space blow-up by 

storing the null values in a sparse data set, the interpreted 

storage format [13] avoids storing the null values.  

Specifically, the system uses an attribute catalog to record 

for each attribute its name, id, type, and size.  A tuple in 

the interpreted format starts with a header, which contains 

fields such as relation-id, tuple-id, and record length; then, 

for each of its non-null attributes, the tuple stores the 

attribute’s identifier, length field (if the type is of variable 

length), and value.  Attributes that appear in the catalog, 

but not in the tuple, are implicitly null for that tuple.  The 

interpreted storage format is highly flexible for schema 

evolution – we only need to update the system catalog and 

the tuples that have non-null values for these attributes.   

Let us consider how an empty wide table in our 

workbench evolves when we insert the two pages about  

dahlia

official 

flower

[(Seattle, Starbucks), 

(Seattle, Amazon.com), 

...]

[(Madison, Raven 

Software), 

(Madison, Human Head 

Studios), ...]

headquarter(city, 

company)

“Seattle is the 
largest city in the 

Pacific Northwest ...”

“Madison is the 

capital of the U.S. 
state of Wisconsin 

...”

DocContentDocTitle

Seattle, 
Washingon

Madison, 

Wisconsin

dahlia

official 

flower

[(Seattle, Starbucks), 

(Seattle, Amazon.com), 

...]

[(Madison, Raven 

Software), 

(Madison, Human Head 

Studios), ...]

headquarter(city, 

company)

“Seattle is the 
largest city in the 

Pacific Northwest ...”

“Madison is the 

capital of the U.S. 
state of Wisconsin 

...”

DocContentDocTitle

Seattle, 
Washingon

Madison, 

Wisconsin

 

Figure 4.  The wide table after extracting the attribute “official 

flower” and then the relationship “headquarter(city, company).”  

 

Madison and Seattle from Wikipedia.  Each page 

corresponds to a row in the table.  We declare two 

attributes in the catalog.  The first one is the title of the 

page (DocTitle), which we use as a unique identifier for a 

page for the purpose of demonstrating.  The second is the 

content of the page (DocContent).  Clearly, these two 

columns in the table will be dense because every page 

must have non-null values for them.   

The schema grows when we apply an extractor and 

find at least one page containing the target attribute.  For 

example, suppose we run an extractor on the two 

documents and it extracts the value “dahlia” for the 

attribute “official flower” (we allow attribute names to be 

keywords or phrases, just as the elements in a “malleable” 

schema [19]) from the Seattle page.  To reflect this 

knowledge, we add “official flower” to the catalog (Figure 

2), and update the record for Seattle by appending 

information about the new attribute to the end of the 

record (the second record in Figure 3).  Because the 

extractor does not find a value for this attribute from the 

Madison page, we leave the corresponding record 

unaffected.  In Figure 4, the first three columns represent 

the current state of the wide table.  Similarly, if for some 

reason we decide we need to remove the attribute “official 

flower,” we will just need to remove the entry in the 

attribute catalog and update only the records that have a 

non-null value for “official flower.”   

Unfortunately, the conventional practice of first normal 

form – the requirement that each field in the database 

holds an atomic value – would not work well for our 

workbench for two reasons.  First, it is common for an 

extractor to extract multiple instances of the same 

structure.  For example, an extractor for the attribute 

“lake” will extract instances such as “Lake Mendota” and 

“Lake Monona” from the Madison page, and “Lake 

Washington” and “Lake Union” from the Seattle page.  

Storing each instance in a separate column in the wide 

table is unreasonable, especially when there are many 

instances (e.g., Seattle has 22 instances of “sister city”).  

However, if we create a new table for each distinct 

structure, the number of tables will be prohibitively large, 

and a SQL query will likely involve many joins.  Second, 

even if the document contains only one instance of a 

particular structure, the structure can be complex, such as a 

hierarchy or an n-ary relationship.  A concrete example is 

the weather table in Figure 1.  Each temperature value is  
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host id host name mappings 

a6 temp (°F) {a6 = a7 * 9/5 + 32} 

a7 temperature (°C) {a7 = 5/9 * (a6 – 32)} 

Figure 5.  The mapping table to reconcile the two attributes that 

have the same meaning (albeit in different units). 

 

relationship id definition 

r1 {a4, a5} 
Figure 6.  A structure table with only one entry for the 

headquarter(city, company) relation. 

 

associated with three attributes: the month, the semantics 

(minimum or maximum), and the unit (Fahrenheit or 

Celsius).  Although in this case the DBAs could transform 

the table to make it relational and store each attribute in 

the wide table, this solution is inconvenient in the long 

run.  Ideally, having extracted a structure, we would like to 

just store it in a column with as little administration as 

possible.   

To fix these problems, we allow a table in the 

workbench to contain complex attributes (e.g., attributes 

whose values can be lists, arrays, tables, sets of tuples, 

etc.), in keeping with the complex attribute support found 

in object-relational database systems.  Note that we do not 

require that the RDBMS-provided query language know 

how to operate on all of these structures – instead, we 

envision users and/or administrators writing user defined 

functions (UDFs) that “know about” these structures and 

are invoked in users’ queries. Figure 4 shows the wide 

table after we extract instances of the relation 

headquarter(city, company) and store them under one 

column.   

In summary, the wide table provides a simple, but 

flexible way to store the evolving set of structures 

extracted from the documents.  Each document 

corresponds to a row in the wide table.  New structure 

discovered from a document is appended at the end of the 

corresponding row.  Due to the diversity of structure, the 

table can have many attributes, be very sparse, and some 

attributes can have internal structure.   

Some might doubt the scalability of this wide-table 

approach.  One problem is that the number of attributes 

that this wide table can contain is limited by the number of 

bits allocated for the attribute identifier – we currently use 

a 16-bit attribute identifier, which limits the number of 

attributes to 65,536.  As we will see in our case study with 

Wikipedia, depending on the extraction approach, the 

number of attributes can easily exceed this number even 

with just one data source.  For this problem, we note that 

nothing prevents us from allocating, for instance, 32 bits 

for the attr-id.  But more importantly, the main purpose of 

the wide table is to provide convenient and flexible storage 

to cope with the evolution of data.  At the beginning, we 

know nothing about the structure, so everything is stored 

in one table.  However, as we gain a better understanding 

of the data, we may identify subsets of structures that are 

logically different.  At this point, we could optionally 

create views or new tables for these subsets, or “split” the 

wide table.  Deciding whether and when to go beyond the 

“single table” view of the data is an interesting topic for 

future work. 

2.2 Mapping Table and Relationship Table 

The mapping table is a data structure to store mappings for 

different attributes that correspond to the same real-world 

concept.  It is similar in spirit to the mapping tables 

described by Kementsietsidis et al. [27]. In the logical 

view, each row in the mapping table describes a set of 

mappings to a distinct “host” attribute.  A mapping to the 

host is an expression that may include just the identifier of 

another attribute for a simple 1-1 correspondence, or an 

expression if the mapping involves some form of 

conversion or involves more than one attributes (i.e., n-1 

correspondence to the host).  For example, if the weather 

table from the Madison page records the temperature only 

in Fahrenheit with the attribute “temp (°F),” and the 

weather table from the Vienna page records its 

temperature only in Celsius with the attribute “temperature 

(°C),” then we will want to map the two attributes to 

support any query that involves these two measures.  

Figure 5 shows the mapping table after the update.  The 

column “host name” is just for demonstration.   

When a query includes an attribute, the system looks 

up the attribute in the mapping table.  If there is a mapping 

between this attribute and some other attribute, the query 

may need to rewrite the query to also include the matching 

attribute for evaluation.   

The purpose of the relationship table is to record 

complex structures that comprise multiple attributes, such 

as the headquarter(city, company) relation, for possible 

future updates.  In the logical view of this table, each row 

describes a distinct structure with two attributes: a 

relationship identifier and the set of attributes that belong 

to the structure.  Figure 6 shows the entry that defines the 

headquarter relation, whose attributes “city” and 

“company” are also added to the attribute catalog shown in 

Figure 2.  Note that this is not the only way to keep track 

of which attributes belong to which complex structure.  

For example, instead of using a relationship table, we 

could add a column that stores the relationship id of each 

attribute, if applicable, in the attribute catalog.   

3. Operators for Incremental Processing 

of Data 

Two types of evolution can occur in the workbench.  The 

first one is due to the system’s evolving understanding of 

the data.  The second is due to changes to the documents 

such as inserting and deleting documents, and updating the 

contents of existing documents.  In the latter case, deleting 

and updating document contents may cause changes that 

need to be propagated to the set of structures, the mapping 

table, and the relationship table.  We do not consider this 

case in this paper.  Instead, we assume that once a 

document is in the workbench, its content remains 

unchanged.  For the purpose of explanation, in this section, 

we assume that the DBAs are the only ones using these 
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operators, although that is not necessarily the case as we 

could potentially allow user participation in improving the 

structure.  However, addressing how to leverage mass 

collaboration in the context of the workbench is out of the 

scope of this paper. 

We identify three basic operators – Extract, Integrate, 

and Cluster – that the workbench should support.  Just as 

their names suggest, Extract is for extracting structure, 

Integrate is for identifying attributes that correspond to 

the same real-world concept, and Cluster is for clustering 

a set of different attributes based on some similarity 

function.  These operators are the basic building blocks 

that can be combined and applied repeatedly to keep 

evolving the system’s understanding of the data.   

The operators should satisfy three requirements.  First, 

each operator should be able to use different algorithms.  

Second, the DBAs should be able to specify a scope for 

the input on which a chosen method operates.  Third, 

given the output, the DBAs should be able to specify what 

they want to do with it.  We can consider each of these 

operators as a procedure in which a DBA specifies the 

scope of an operator through a query, and the other 

parameters – methods, output, and action with the output – 

in a UDF.  In Section 4.1, we discuss some possible 

parameters for each operator, then in Section 4.2,  we 

describe how the operators can be combined to improve 

performance.   

3.1 Basic Operators 

Extract:  

We classify extraction methods into two types.  The 

first one detects structure such as entity and relationship 

from natural language.  Most IE systems fall into this 

category, such as DIPRE [8], Snowball [2], and KnowItAll 

[21].  The second type extracts structured data embedded 

in text of known format, such as LaTex, XML, and wiki 

markup text [6].  It is a common practice to write ad hoc 

scripts to extract structured data from a specific format.  

Both types of extractors should be considered for use in 

the workbench. 

The output of an extractor is a set of structures.  We 

assume that the schema of a structure is part of the 

extractor’s definition, and that each structure may have 

one or more instances.  The DBAs can either store the 

output in the wide table, or feed it to the Integrate and 

Cluster operators.  Before storing a structure, the system 

should check the attribute catalog and the relationship 

table to see if the structure has been used before.  If there 

is an exact match between an existing structure and the 

newly discovered structure, we store the instances in the 

same column in the wide table.  Otherwise, we have to 

catalog the new structure and store its instances in a new 

column (but in the same row as the corresponding 

document). 

As we will show later, the scope parameter is useful 

for improving the performance of the extractors as the 

system processes the data.  The DBAs can also apply an 

extractor on columns other than DocContent, to extract 

structure of a finer granularity in existing structure (e.g., 

from “date” to “day,” “month,” and “year”).  Finally, 

although the scope is usually specified as a SQL query, in 

the case of Extract, the scope can also be expressed as a 

keyword query to select a set of documents relevant to a 

specific topic.  This approach can be an efficient way to 

filter irrelevant documents for domain-specific extractors, 

as demonstrated by Agichtein et al. [1].   

 

Integrate: 

Integrate takes as input a set of structures from the 

wide table or a previous operator, and returns one or more 

sets of mappings over attributes that correspond to the 

same real-world concept.  Based on schema-matching 

techniques, the chosen method can consider schema-based 

information (e.g., attribute names and clusters of 

attributes), and instance-based information (e.g., data 

contents).  The DBAs have to decide what to do with each 

set of mappings.  They can store the mappings in the 

mapping table.  Alternatively, if the attributes have not yet 

been inserted into the wide table (e.g., they have just been 

generated by Extract), the DBAs may consider collapsing 

the attributes into one attribute in some cases, such as 

when the different attributes are just stems of the same 

word.   

 

Cluster: 

Cluster takes in a set of documents or a set of 

attributes and classifies the input into one or more clusters.  

Although it sounds like Integrate, Integrate identifies 

attributes that are semantically the same, whereas Cluster 
tries to group together different documents or structures 

based on some predefined notion of similarity.  Document 

clustering is a well-studied area in Information Retrieval 

and a variety of approaches can be used for this operator.  

For attribute clustering, one method that we explored in 

previous work is to group together attributes that have 

non-null values in the same tuples [14], which was shown 

to be very promising for sparse data sets.  

The clustering information is useful in a number of 

ways.  For instance, it helps the DBAs decide what views 

to build to optimize SQL queries over the wide table.  As 

mentioned earlier, when there are clear clusters and the 

table approaches the maximum number of attributes it can 

store, the DBAs may want to physically split the wide 

table into multiple tables for the clusters.  Also, the 

clusters may reveal undiscovered domain knowledge that 

may improve the other two operators.     

 

Our workbench does not currently model the results of an 

operator with their probability of being accurate, as in 

probabilistic databases.  Instead, it relies on the threshold 

that the particular method uses to determine extraction, 

integration, and clustering; the DBAs can also verify the 

output of the operators themselves.  Although 

incorporating probabilities and reasoning about them could 

be very useful, it is orthogonal to the basic operators of our 

workbench and out of the scope of this paper. 

One assumption we make in this model is that the 

specific algorithms of the three operators are already 

coded as programs that can be conveniently applied to the 

data in the workbench.  Unfortunately, the reality is much 
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more complicated.  For example, currently, PostgreSQL, 

which we use for our case study, only allows UDFs written 

in C/C++, so even if we have extraction scripts written in 

Perl, we cannot apply them as UDFs.  How to facilitate the 

application of external programs within the workbench is 

an important and practical problem to address.  A possible 

idea is to create a repository of external programs.  The 

DBAs and users can write these external programs (that 

may follow some guidelines set by the workbench), and 

upload them to the repository.  The workbench can then 

use them on the data set. 

3.2 Operator Interaction 

One powerful feature of our workbench is that the 

operators can be combined synergistically in a “whole is 

greater than the sum of the parts” fashion. That is, the 

operators can be combined to improve each other’s 

performance, in terms of both efficiency and quality.  

There are six possible pairwise combinations of distinct 

operators: Integrate-Extract, Cluster-Extract, Extract-
Cluster, Integrate-Cluster, Extract-Integrate, and 

Cluster-Integrate.  Of course, they can be extended into a 

sequence of operators – we could do triples, quadruples, 

etc. In the following, we explain for each case how the 

previous operator benefits the subsequent one. 

 

Integrate-Extract: 

Integrate can help find new targets for Extract.  For 

example, suppose that the DBAs have used Extract to 

extract from the attribute “address” the finer-grained 

attributes “street address”, “city,” “state,” and “zip code.”  

When Integrate identifies a mapping between “address” 

and another attribute “sent-to” based on the data instances, 

the DBAs may want to apply the same extractor on “sent-

to.” 

 

Cluster-Extract: 

At the early stage of processing, when the DBAs know 

nothing about the documents, they can only apply domain-

independent extractors on the entire set of documents.  

However, when Cluster discovers a specific domain, the 

DBAs can narrow the scope of Extract and apply domain-

specific extractors on only the documents in this domain.  

Because domain-specific extractors are more powerful but 

often applicable to only a small subset of the documents, 

domain discovery can greatly improve Extract’s 

efficiency and the quality of its results.   

 

Extract-Cluster: 

The extracted set of structures may provide more 

information that Cluster can use to group together 

documents or attributes.  For example, we try to cluster 

pages about cities in Wikipedia (see Section 6) based on 

the section names they contain.  Although we are fairly 

successful in finding most city pages, the short pages are 

left out because they do not have a section name (just a 

title).  However, after we extract the “city info-box” 

structure in some of these pages, Cluster will recognize 

them and put them in the city cluster.   

 

Integrate-Cluster: 

Integrate can prevent Cluster from creating multiple 

clusters where logically a single cluster would be better.  

For example, given a data set with attributes {C#, 

Company, FirstName, LastName, CustID, Contact, 

CName}, Cluster may find two clusters – the tuples either 

have non-null values for the set of attributes {C#, CName, 

FirstName, LastName}, or the set of attributes {CustID, 

Company, Contact}.  However, if we have run Integrate 

first and find the set of mapping {C#  = CustID, CName = 

Company, FirstName + LastName = Contact}, then 

Cluster will end up with only one cluster. 

 

Extract-Integrate: 

This pair is more a necessity than an option – 

obviously we need to extract a set of structures before 

integrating them. 

 

Cluster-Integrate: 

Cluster can narrow the scope for Integrate in two 

ways.  First, when Cluster identifies a domain for a set of 

structures, the DBAs may want to apply domain-specific 

schema matchers on this set of structures.  Second, when 

Cluster identifies two overlapping sets of attributes (e.g., 

{CustID, CName} and {CustID, Company}), DBAs may 

want to look for possible mappings in the difference 

between the two sets of attributes because they may be 

semantically the same (e.g., CName = Company).   

 

We conclude this section with two thoughts.  First, 

incremental processing is a flexible scheme to support 

structured queries over unstructured data.  On the one 

hand, the interaction of operators with different methods 

supports robust evolution of structure.  On the other hand, 

DBAs can also process the data lazily – that is, they do not 

try to process the data unless they determine that getting 

the structure will significantly improve searching 

experience.  A lazy approach is more appropriate when 

resources are limited, as it avoids over-processing 

structure that users do not care.  Second, the correctness of 

structured queries over this data set is limited by how 

much, and how well, the DBAs have processed the data.  

In other words, the results obtained via structured queries 

can have less-than-perfect recall and precision. 

4. Case Study: Wikipedia 

4.1 Preliminaries 

As a proof of concept, we conducted a preliminary case 

study on applying our workbench model on Wikipedia, an 

online encyclopedia written collaboratively by volunteers.  

Coincidentally, in addressing DB and IR integration, 

Weikum recently suggested turning Wikipedia into a 

database that can answer advanced queries, as a first, 

smaller-scale step to turn the entire Web into a gigantic 

knowledge base [35].  The pages in Wikipedia are actually 

stored in a relational database; however, they are stored as 

blobs of text and the only way to find information from 

them is via browsing and “vanilla” keyword search, with 
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no advanced search options such as those found in the 

“Advanced Search” page of Google [24].  The purpose of 

this case study is to illustrate how our relational 

workbench can incrementally evolve structure from the 

contents of Wikipedia, and how users can pose 

increasingly sophisticated queries at each stage of the 

processing.   

Wikipedia has many qualities that make it an ideal 

subject of this case study.  The contents are embedded in 

wiki markup text.  There are guidelines on how to create 

and edit a wiki page.  As a result, even though many users 

can make changes to the same page, in general the pages 

have a consistent structural organization.  For example, 

they all have a title; many of them comprise text organized 

into a hierarchy of sections, and contain structured data in 

the forms of “wiki table” and “info box.”  Moreover, it 

encourages the use of templates for wiki tables and info 

boxes in the same domain, so the same structure is often 

used across many pages.   

For our case study, we downloaded a database dump of 

Wikipedia that includes only the current revisions, as of 

December 5, 2005.  The dump has more than 4 million 

XML files in 8.5 GB.  Each XML file contains a blob that 

is the content of a wiki page, and metadata about the page 

such as page-id, title, revision-id, contributor-user-name, 

last-modification-date, etc.  To more easily track the 

evolution progress and the results of our queries, we also 

selected a small subset of pages as a control data set.  The 

control set comprises pages from three domains: major 

American cities (254 files), major universities from the 

states of Wisconsin, New York, and California (255 files), 

and top male tennis players on the ATP tour in the “Open 

Era” (373 files).  For the rest of this section, we refer to 

these domains as “City,” “University,” and 

“TennisPlayer,” respectively.  We ran our experiments in 

PostgreSQL.   

 

4.2 Incremental Processing  

Stage 1: Initial Loading 

In the first stage, we parsed the XML files and loaded 

them into a single table, which initially had five columns: 

PageId, PageText, RevisionId, ContributorUserName, and 

LastModificationDate.  Each page corresponds to a single 

row.  We used the page title as the PageId of a page.  

PageText contains the content of the page in wiki text.  

The other attributes describe the metadata about the page.  

With a full-text index on PageText, users can already 

query the documents using keyword searches, even though 

we have not begun processing the data.   

 

Stage 2: Extracting SectionName(text) 

Next, from each page we extracted the structure 

SectionName(text), in which SectionName represents the 

name of a first-level section in the page and the text is the 

content in that section.  For example, the page titled 

“Madison, Wisconsin” has 16 first-level sections, such as 

“History,” “Geographics,” “Demographics,” and so on.  

For each instance of this structure we appended it to the  
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Figure 7.  A portion of the wide table after extracting 

SectionName(text) over the control data set.  The table has a total 

of 1,258 attributes and 882 rows, but only 1.05% of all cells have 

non-null values. 

 

end of the corresponding row.  Note that when two 

instances had different section names, we stored their text 

in two different columns.  (Figure 7) 

One reason to extract this structure is that it allows us 

to do “focused” keyword search.  For example, suppose 

we want to retrieve from the control set the pages about 

male tennis players who have been ranked world number 

one, we can pose the keyword query “World No. 1 tennis 

player” over the PageText column.  For this query, 

PostgreSQL returns 86 players.  It includes all the 23 

players who indeed have been ranked number one in the 

world since the “Open Era.”  For the other 63 players, 

most of them are included for reasons such as they have 

been ranked number one in doubles, they have defeated a 

top-ranked player, and so on.   

Continuing with the example, suppose we know that 

the pages of the players who have been number one almost 

always mention that fact in the introduction section.  

Therefore, we may want to try posing the same keyword 

query over only the introduction section.  This query 

returns 67 players, 21 of which have been number one.  In 

other words, it gives us better precision but worse recall.  

Incidentally, for the two players who are excluded, their 

introduction does mention that they have been ranked 

number one before, but the fact is expressed as “world 

number one” instead of “world No. 1.”  

Although extracting the structure SectionName(text) 

allows us to do focused keyword search, it leads to 

inserting 1,253 new attributes into the wide table.  Each 

row has only 13 non-null attributes on average.  The entire 

table has about 1.05% non-null values.  Fortunately, using 

the interpreted storage format can avoid the storage 

explosion caused by storing the null values.   

We checked how many of these attributes are 

equivalent based on name similarity, and found that even 

in this small control data set with just 882 files from 3 

domains, a significant percentage of attributes are 

equivalent or highly similar to another attribute.  

Specifically, more than 350 of the 1,253 attributes belong 

to one of the 14 most common attribute topics.  Figure 8 

shows these 14 attribute topics with some examples.  We 
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City University TennisPlayer 
famous people (37): famous people from abilene, famous 

people born in akron, famous madisonians, ... 

 

demographics (15): demographics and diversity, 

population and demographics, population history, ... 

 

museum (23):  museums and cultural organizations, 

museums and attractions, museum and historical 

attractions, museums and cultural arts, ... 

 

colleges and universities (33): schools & colleges, 

colleges & research institutes, schools & universities, ... 

 

culture and entertainment (33): arts and entertainment, 

entertainers, arts literature humanities, ... 

 

highways (24): us highways, highways, streets and 

highways, ... 

 

athletics (7): athletics and 

traditions, school athletics, athletics 

and mascots, athletics highlights, ... 

 

greek life (14):  greek social 

organizations at alfred, greek letter 

organizations, greek social 

fraternities, campus greek life, 

fraternities, ... 

 

campus (73):  facilities & campus 

construction, hillside campus, main 

campus, new york city campus, 

campus and facilities, ... 

 

single_titles (28 total):  singles titles 

(21), singles titles (33), singles titles (5), 

... 

 

doubles_titles (12 total):  doubles titles 

(15), mens doubles titles (50), career 

doubles titles (54), ... 

 

personal (6): personal and family life, 

personal life, personal information, ... 

 

grand_slam_record (16): grand slam 

records, grand slam results, grand slam 

history, ... 

 

career overview (35): career highlights, 

tennis career, professional career, ... 

Figure 8.  The 14 attribute topics with the most aliases found in the control data set.  For each topic, we show the most representative attribute in bold, 

the number of aliases in that topic, and some examples. 

 

 
Figure 9.  A network diagram by Many Eyes on the section 

names extracted from the control data set.  We can see that the 

section names form three fairly clear clusters. 
 

could store these mappings in a mapping table as described 

in Section 3.   

Figure 8 reveals two interesting observations.  First, 

many section names are a mix of attribute names and 

values.  For example, the attribute “singles titles” is 

frequently followed by a number in parentheses, e.g., 

“singles titles (13).”  Apparently, the many aliases of 

“singles titles” are due to the convention of putting the 

total number of titles next to the section name, while the 

content of that section describes when and where a player 

has won each of these titles.  We also observed this pattern 

of mixing data with metadata in attributes such as “doubles 

titles” and “famous people.” 

This observation indicates an opportunity for 

extraction.  For the “singles titles” example, we can extract 

the number in parentheses into a new structure, 

NumberOfSinglesTitlesWon(number), and store it in the 

wide table.  The section names can be changed back to 

“singles titles,” resulting in many fewer aliases.  This 

example illustrates how Integrate and Extract can benefit 

each other.   

The second observation is that given the output of an 

operator, there is often more than one reasonable action.  

For example, after we extracted the SectionName(text) 

structure, we immediately stored them into the wide table, 

and then stored the mappings in the mapping table.  

However, a better decision might be to run Integrate and 

Extract as described above to reduce the attribute 

explosion, and store only the sections that we believe are 

likely to be used for focused keyword search.  Of course,  

the first approach has the advantage that we can “undo” 

any mappings that are later found to be incorrect, simply 

by updating the mapping table.  We leave these decisions 

to the DBAs. 

Suppose we do not know that the documents in the 

control set come from the domains University, City, and 

TennisPlayer.  We might be motivated to see if the 

SectionName(text) instances form any clusters because 

pages in the same domain often have similar section 

names.  We used the following definition of Jaccard 

coefficient to identify clusters.  Given two attributes 

(section names in this case) AX and AY, let X be the set of 

rows for which AX is non-null, and let Y be defined 

analogously.  The Jaccard coefficient for AX and AY is 

defined as: 

Jaccard(AX, AY) = |X∩Y|/|X∪Y|   
 

The coefficient’s value ranges from zero to one.  It is zero 

when no rows have non-null values for both AX and AY, 

and one when AX and AY are either both null or both non-

null for all tuples.  We created an adjacency matrix on the 

attributes with the Jaccard coefficients as the values.  Next, 

we tried to visualize the clusters via a network diagram, a 

feature in the Many Eyes visualization tool developed by 

IBM [32].  The tool takes in an input list of distinct 

attribute pairs that have a Jaccard coefficient greater than  
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Domain  

(# files) 

# Returned 

Pages 

# Correct 

Pages 

Recall Precision 

City   (254) 477 247 .97 .51 

University 

(255) 

498 240 .94 .48 

TennisPlayer 

(373) 

375 330 .88 .88 

Figure 10.  The results of posing a keyword query to retrieve a 

set of documents for each domain.  TennisPlayer enjoys a high 

precision because its domain is relatively disjoint from the other 

two domains, in which many pages mention both cities and 

universities. 

 

The University of Wisconsin-Madison 

Motto Numen Lumen The divine within the ... 

Established 1848 

Type Public State University 

Faculty 2053 

Students 41466 

... ... 

Colors Cardinal & White 

Mascot Bucky Badger 

Figure 11.  Info box of the University of Wisconsin-Madison. 

 

0.1, and appear non-null in at least 0.05% of rows.  The 

output is a graph in which the vertices correspond to the 

attributes, and the edges represent the pairs that satisfy the 

constraints.  Strongly related attributes are kept in close 

proximity to each other.  The size of a vertex is 

proportional to the number of its outgoing edges.  Figure 9 

shows this network diagram, which depicts the three 

clusters quite clearly.  Looking at the vertices closely, we 

were able to identify the domains of the three clusters, as 

labelled in the figure. 

We also tried doing keyword search as a means to 

approximate clusters.  That is, assuming we know that the 

domains are City, University, and TennisPlayer, we pose 

three keyword queries: “city,” “university,” and “tennis 

player” over the control set to get three sets of documents.  

Figure 10 shows the results of these keyword queries.  All 

of them have high recall, which is not surprising because 

the keyword queries describe the domains accurately.  

However, notice that while TennisPlayer enjoys a 

relatively high precision, the other two domains have 

significantly poorer precision.  This result also makes 

sense because many university pages mention the city 

where the university is located, and many city pages 

mention major universities that are located in the city.  We 

posed the same keyword queries over the entire Wikipedia, 

and retrieved 175,193 pages for City, 114,173 pages for 

University, and 851 pages for TennisPlayer.  These 

numbers are reasonable because they include pages about 

cities and universities from all over the world, and all 

kinds of tennis players, including male and female 

professionals, and possibly amateur and junior players.  

Nevertheless, these numbers are a huge reduction from the 

4 million+ pages in Wikipedia, so keyword search is a 

very good way of narrowing the scope of documents for 

further processing.   

We can draw an interesting comparison between the 

two approaches.  Clustering section names does not 

depend on any prior knowledge about the set of 

documents.  Moreover, if there is a set of extracted 

structures, then clustering is a good approach for 

discovering domains because based on the clusters, we 

could create views to improve efficiency for queries over 

this set of structures.  In contrast, the keyword search 

approach is simple and potentially effective if the DBAs 

have prior knowledge about the documents.  This approach 

is appropriate for identifying a scope for applying domain-

specific extractors.  This example demonstrates the 

robustness of our relational workbench, as it supports a 

wide variety of approaches for doing the same task.   

As yet another approach to find clusters, we note that 

for many online unstructured data sets, the contents have 

already been organized into subsets.  For example, the 

contents in Wikipedia are organized into categories and 

presented as many lists (which can in turn contain more 

lists).  We can certainly leverage this existing 

organization.   

Identifying clusters of attributes can help increase the 

efficiency of queries over the data set.  For example, after 

we cluster the documents based on these domains over the 

table that contains all Wikipedia documents, the scanning 

times for City, University, and TennisPlayer are 26.12 ms, 

24.62 ms, and 25.69 ms, respectively.  Without this 

clustering information, to find the documents from each 

cluster, we have to scan the entire table, which takes about 

44 seconds.   

In concluding this stage, we note that extracting only 

one kind of structure – SectionName(text) – already leads 

to many opportunities for evolving the structure.  

Therefore, it is very important to have a flexible 

infrastructure to handle this evolution.   

 

Stage 3:  Extracting info box as a blob   

In the next stage of processing, we extracted info 

boxes, which are a general template that contains 

predefined attributes and vary depending on the domain.  

That is, the definition of a city info box is different from 

that of a university info box.  Figure 11 shows a portion of 

the info box of the University of Wisconsin-Madison. 

Although ideally we would want to extract each 

attribute-value pair, a much simpler alternative is to just 

store the entire info box as a blob.  This blob would not 

support structured queries over the attributes; however, it 

allows focused keyword search over the info box.  For 

instance, we can find out which universities have 

“cardinal” as their school color, by posing the keyword 

query “cardinal” over the university info boxes in our 

control set.  The answer set for this query includes seven 

schools.  Six of them have “cardinal” as one of their 

school colors.  One of them has “red” as its school color, 

but has a mascot called “Cardinal Burghy.”  In contrast, 

running the keyword query “cardinal university” over the 

PageText column of the control data set returns 51 pages.  

1053



  

Most of them are either university pages that mention 

sports teams whose names contain “cardinal,” or city 

pages that contain the term “cardinal” in various contexts, 

such as sports teams, high schools, religion, and “cardinal-

direction.”  This example shows that sometimes even a 

small effort in processing data can greatly improve the 

quality of keyword search.   

 

Stage 4: Extracting structured data from info boxes 

and wiki tables 

In the last stage of our case study, we demonstrate the 

process of extracting and querying structured data from 

info boxes and wiki tables.  For our first example, we go 

back to address the first query given at the beginning of 

the paper: compute the average of the average low 

temperatures of December, January, and February from the 

temperature wiki table of Madison (Figure 1).  To do this 

query with our relational workbench, first we need to 

transform the contents of the temperature wiki table into a 

relation.  There are many alternatives.  We chose to use the 

following schema: 

 

temperature_wiki(city, month, lowF, lowC, highF,  ....) 

 

Since PostgreSQL does not allow a column to store a 

relation, we simulated the effect by storing a table 

identifier in the column that originally stores 

temperature_wiki according to our model, and created 

temperature_wiki as a separate table.  We used the name 

“temperature_wiki” as the table identifier.  Figure 12 

shows the wide table and a portion of temperature_wiki.  

The following query computes the average of the average 

low temperatures of January, February, and December: 

 

Q1: SELECT AVG(Low_F) 

FROM  temperature_wiki as T 

WHERE T.city = ‘Madison, Wisconsin’ AND 

Month = 1 OR Month = 2 OR Month = 12; 

 

Since temperature_wiki associates each measurement 

with a city, we could reuse it for any city page that 

contains this wiki table.  Once we have extracted many 

temperature wiki tables from pages of Wikipedia into 

temperature_wiki in this fashion, we could pose queries 

that do powerful comparisons, such as “find the coldest 

city,” or “rank the cities based on their precipitation.”   

As a comparison to the earlier keyword queries that 

retrieve top ranked male tennis players, we extracted the 

tennis info box structure, which has the attribute 

highest_singles_rankings, and posed the equivalent 

structured query: 

 

Q2: SELECT  id 

FROM  info_box_tennis_player 

WHERE highest_singles_rankings = 1; 

 

Q2 returns 23 players, 22 of which have been ranked 

number one.  This result has a much better precision than 

the keyword queries.  One player that has been ranked 

number one is not included in the answer because that 
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Figure 12.  Implementation for storing an internal table in the 

wide table – a table identifier is assigned to the internal table 

(temperature_wiki), which is created as a separate physical table. 

 

player’s page does not have an info box.  This example 

demonstrates the improvement we can potentially get by 

exploiting structured data embedded in text; however, the 

correctness of the query is limited to the availability of the 

structure and the quality of our processing. 

In addition to arithmetic comparison and aggregation, 

a powerful advantage that structured queries have over 

keyword search is their ability to join documents.  For 

example, suppose a student wants to find out which 

university is located in a place that can get very cold in 

January.  The student can pose a query that joins the 

university pages in the wide table with the temperature 

table of the cities where the universities are located, based 

on the “location” field extracted from the university pages:   

 

Q3:     SELECT T1.ID 

FROM  WideTable T1, temperature_wiki T2 

WHERE T1.location = T2.city AND T2.month = 

1 AND Low_F < 20; 

 

Not surprisingly, Q3 returns the University of Wisconsin-

Madison.  In our data set, this university is the only one 

returned because only a small number of cities have 

temperature tables, and many of them are in sunny 

California.  

In this case study, we present the first few stages of 

incrementally evolving structure from a small set of 

Wikipedia pages.  Although we have only scratched the 

surface of processing these pages, we have already seen a 

significant improvement in the type of queries that users 

can use: from keyword search over unstructured data, to 

focused keyword search over sections of text and blobs of 

info boxes and wiki tables, to doing arithmetic 

comparison, aggregation, and even joins.  Note that during 

this process, we have only focused on extracting structure 

based on the syntax of the Wiki markup text; we have not 

even used extractors based on natural language processing 

and statistical learning.  There is still so much structure yet 

to be discovered and exploited, that we need a flexible 
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infrastructure that gives us many options in how to manage 

these evolving structures. 

5 Related Work 

There is a large body of literature relevant to various 

aspects of our workbench model.  In this section, we try to 

cover a representative sample of this related work, but it is 

by no means exhaustive.   

Our wide table resembles Google’s Bigtable [12], a 

distributed storage system for managing structured data 

that is designed to scale to a very large size.  The 

difference is that Bigtable focuses on storing document 

metadata, whereas our wide table needs to store different 

forms of extracted structures.   

Our Extract, Integrate, and Cluster operators overlap 

somewhat in their functions with Data Cleaning tools [34], 

which deal with detecting and removing errors and 

inconsistencies from data in order to improve the quality 

of data.  Also, supervised learning algorithms can be 

defined as operators that DBAs can apply to the data set.  

Exploring how to adapt existing data cleaning and learning 

tools in the context of our workbench is a very interesting 

and promising area for future work.   

There is a large body of literature in information 

extraction [e.g., 3, 15, 17], data integration [e.g, 25], and 

data clustering [e.g., 5], which we will not describe here.  

In the following, we review some recent or ongoing 

projects that address problems similar to those addressed 

by the workbench.     

AVATAR [28], a prototype by IBM, aims to provide 

seamless support for queries over unstructured and 

structured data, mainly from the business domain.  It relies 

on hand-written annotators to emit the structures.  

Although a relational database (DB2) is used to store these 

structures, AVATAR devises an object model as an 

abstraction layer to hide the details of the underlying 

storage.  It also features a statistical model to handle 

uncertainty about the extracted structures.  One of its 

focuses is to support online analytic processing (OLAP) 

over uncertain and imprecise data [9].   

ExDB [10] is an “extraction database” that extracts 

structures from web text and supports structured queries 

over them.  Using IE systems that are domain-independent 

and unsupervised, such as KnowItAll [21], it extracts data 

values (e.g., “Einstein,” “Switzerland”), binary 

relationships (e.g., “Einstein” was born in “Switzerland”), 

and semantic types (e.g., “Switzerland” is a “country”).    

The tuples are loaded into a probabilistic database, which 

records for each tuple the probability of that tuple being 

true.  ExDB supports structured probabilistic queries that 

use a Datalog-like notation.   

SEMEX [18] is a platform for personal information 

management and integration.  It supports desktop search 

via semantically meaningful associations, which may be 

extracted by analyzing specific file formats (e.g., Latex 

and Bibtex), derived from external sources, or defined by 

users.  Therefore, a major challenge is to identify different 

references that correspond to the same real-world concept 

[20].  Another line of work is the proposal of “malleable” 

object-oriented schemas to model uncertainty that arises in 

diverse and evolving structures [19].   

Cimple [16] is a platform for community information 

management.  For instance, its prototype system, DBLife, 

manages information for the database research community.  

Although it is domain (or rather, community) specific, the 

data may come from multiple sources.  With a larger group 

of users, Cimple explores techniques that leverage mass 

collaboration, for tasks such as improving the accuracy of 

data integration tools [33]. 

Google’s PAYGO [30] is a data integration architecture 

intended to manage structured data on the Web scale.  

Therefore, it has to model any kind of structures, which 

can come from any domain (e.g., school, government, 

sports, etc.) and from any source (e.g., queryable HTML 

forms in the Deep Web [11], Flickr [22], Google Base 

[23], etc.).  PAYGO and our workbench model share the 

same philosophy that a system should be able to 

incrementally evolve its understanding of the data.   

For storing sparse data sets, Yu et al. [37] and we [14] 

separately advocated the use of a wide table – that is, 

forego complicated schema design and store all attributes 

in a single physical table.  As explained in Section 2, our 

workbench uses a modified wide table to store the 

evolving set of structures.   

Mansuri et al. [31] presented a system for 

automatically integrating unstructured text into a multi-

relational database.  By using statistical models for 

structure extraction and matching, the system loads 

unstructured records into columns that spread across 

multiple tables in the database, and resolves the 

relationship of the extracted text with existing column 

values.    

Liu et al. [29] described an alternative approach to 

answer structured queries over unstructured data.  Instead 

of extracting structures from unstructured data, it 

transforms a given structured query to a keyword query 

and poses this keyword query over the unstructured data 

directly.  Although this approach does not require 

extraction, it somewhat defeats the purpose of posing 

structured queries, as it is inapplicable to express queries 

that involve disjunction, inequality predicates (e.g., <, >), 

or aggregation.  However, we noted that when a data set is 

sparse, it is often possible to use keyword search as an 

optimization technique for many structured queries that 

contain only equality predicates in conjunction [14].  Jain 

et al. [26] describes another approach to answer structured 

queries over text data, by executing multiple extractors and 

combining their results on the fly. 

Although many of these systems explore similar 

problems and propose similar techniques in comparison to 

our work, none of them employs their approach inside a 

relational database in an end-to-end fashion.  For most of 

them, the use of a relational database is limited to storing a 

set of structures, which usually have a well-defined 

schema when they are loaded into the database.  Some 

systems, such as SEMEX, do not even use a relational 

database (although it would be possible to use one).  In 

contrast, we focus on the seemingly unpromising idea of 

incrementally processing data in a relational database.   
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6 Conclusion 

In this paper, we propose the use of a relational database 

as a workbench not only for storing and querying 

structured data, but also for incrementally evolving 

structure from unstructured data.  As a proof of concept, 

we conducted a case study of applying our approach to 

evolve and query the structure in the contents of 

Wikipedia.  Our experience in this study demonstrated that 

our approach exploits existing technology effectively and 

allows one to quickly and incrementally discover and 

query the structure lurking in unstructured documents.   

Much scope for future work remains – virtually every 

aspect of our system can be “drilled down” upon to 

discover and evaluate alternative approaches.  Some 

interesting outstanding problems include: 

• How to handle updates to the unstructured data.  

That is, how should these updates be propagated 

to the wide table, the mapping table, etc.?  This 

topic is relevant especially for Wikipedia, in 

which users update the content all the time. 

• How to record the evolution of data, so when a 

new document arrives and we find that it is similar 

to existing documents in the workbench, we know 

how we should process the new document. 

• How to help users write queries that exploit the 

structure discovered in this workbench. 

• How to optimize queries in this context, such as 

when they involve attributes that have many 

mappings. 

 

We intend to address these and other questions in the 

future, and it is our hope that our initial work in this area 

will inspire other researchers to also address these 

questions.   
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