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ABSTRACT
We propose a technique for measuring the structural simi-
larity of semistructured documents based on entropy. After
extracting the structural information from two documents
we use either Ziv-Lempel encoding or Ziv-Merhav crosspars-
ing to determine the entropy and consequently the similarity
between the documents. To the best of our knowledge, this
is the first true linear-time approach for evaluating struc-
tural similarity. In an experimental evaluation we demon-
strate that the results of our algorithm in terms of clustering
quality are on a par with or even better than existing ap-
proaches.

1. INTRODUCTION
More and more information is stored in semistructured

documents, be it in HTML, XHTML, or XML. Ever larger
collections of these documents can be searched online. In
traditional Information Retrieval (IR), detecting similari-
ties within a group of unstructured text documents is used
widely, e.g. in order to cluster them according to different
topics or to use documents that have been identified as rel-
evant by a user during the search (for an overview see [2]).
Consequently, similarity measures for text documents have
been a research topic since the 1970s. With the advent of
semistructured documents new opportunities and challenges
have arisen. Mark-up languages such as XML add structural
information to documents and they allow a lot of freedom
in doing so, which means we have collections of documents
showing great structural diversity. In addition to measur-
ing the similarity of the textual content (which can be done
with the traditional IR techniques), we have to be able to
cope with the structural similarity.

Identifying structural similarity can help in many ways.
First, there are several proposals for extracting schema or
document type information from a document collection [1,
17, 27]. The more homogeneous a collection is, i.e. the fewer
out-of-place documents are contained in it, the better these
extraction algorithms work. So it is a good idea to first

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

cluster the documents and then apply the extraction algo-
rithms. In addition to this, a similarity measure could also
be used to compare schema information itself [4, 6] Second,
being able to determine the structural similarity of docu-
ments while integrating heterogeneous data sources helps
in identifying sources that supply similar types of informa-
tion. Currently, the process of finding relevant web pages
is mainly done manually and it is quite labor-intensive [3,
15, 22]. Automatically clustering web pages according to
their structure will speed up this task considerably. Third,
a similarity measure can also be used to merge and fuse
data during entity resolution while cleaning data [9, 18]. As
more and more data is exchanged or stored in XML for-
mat, there is a need for a similarity measure that is able to
handle semi-structured data. Last but not least, inexperi-
enced users of (web-)retrieval system often find it difficult
to formulate complicated queries in, say, XQuery, to search
for semistructured documents. Using a similarity measure
could enable a system to allow its users to provide relevant
example documents.

Many of the approaches proposed for detecting structural
similarity (e.g. [28]) are based on tree-editing [36], com-
puting the minimal editing costs for transforming one docu-
ment’s structure into the other. The main drawback of these
approaches is their complexity of at least O(N2), where N
is the number of tags in both documents.

Flesca et al. [16] take a completely different approach by
quantifying the structures of two documents and interpret-
ing the results as time series. These two time series are then
analyzed and compared using the Discrete Fourier Transfor-
mation (DFT), resulting in an algorithm with a complexity
of O(N1 log N1) for comparing two documents (where N1,
w.l.o.g., is the size of the larger document).

Buttler [8] uses a much simpler approach based on path
shingles. This reduces the paths in a document to hash
values, which can be compared to those of another document
using set union and set intersection operators. Although
this approach is more efficient than the previous two, in the
worst case it is still not linear.

Our approach works in yet another way. We extract the
structural information from a document by stripping away
the content and then using the entropy between the struc-
tural data as a measure of similarity. As we will see, the
quality of this approach in terms of avoiding misclusterings
is on a par with or even better than the previously described
approaches, while having a time complexity of O(N) (where
N is the number of tags in both documents).

The remainder of this paper is structured as follows. In
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Section 2 we give a brief a brief introduction into the notion
of information distance on which our approach is based. We
describe the details (and different variants) of our similar-
ity measure in Section 3, while the tree-editing algorithm
by Nierman and Jagadish [28], the DFT approach by Flesca
et al. [16], and the path shingle approach by Buttler [8]
are explained in Section 4. Section 5 contains the results of
our experimental evaluation, including a description of the
experimental environment and an interpretation of the re-
sults. Related work will be covered in Section 6. Finally, we
conclude this paper with a short summary and an outlook.

2. INFORMATION DISTANCE
Bennet et al. introduced the concept of using a univer-

sal information metric to measure similarity between data
objects in [5]. Their work is based on Kolmogorov complex-
ity: given a data object x (e.g. a binary string in {0, 1}∗)
the Kolmogorov complexity K(x) is the length of the short-
est (binary) program that outputs x. We assume here that
this program is written for a universal computer such as a
universal Turing machine. A more generalized form of the
Kolmogorov complexity is the conditional Kolmogorov com-
plexity K(x|y), which is the length of the shortest program
with input y that outputs x. Bennet et al. defined an in-
formation distance E(x, y) = max{K(x|y), K(y|x)} and its
normalized version

NID(x, y) = E(x, y)/max{K(x), K(y)} (1)

to measure the similarity of two data objects. They also
showed that this information distance exhibits several desir-
able properties (e.g. it is a metric, up to negligible violations
of the metric inequalities, and it is a lower bound for admis-
sible distances; for details see [5]). The only catch is that
the Kolmogorov complexity generally is not computable.

However, the Kolmogorov complexity of a data object x
can be seen as the length of the ultimate compressed ver-
sion of x. Obviously, the ultimate compression is not com-
putable either, but we can approximate it by using stan-
dard compression algorithms. In [12], Cilibrasi and Vitányi
defined a normalized compression distance (NCD) derived
from the NID. Rewriting the denominator of the NID poses
no problem, we just replace K(x) by C(x), which is the
length of the compressed x. The numerator, containing
conditional Kolmogorov complexity expressions, needs to be
rewritten before approximating it by compression. Exploit-
ing the additive property of Kolmogorov complexity [24],
the numerator of (1) can be rewritten to max{K(x, y) −
K(x), K(x, y)−K(y)} within logarithmic additive precision.
K(x, y) is the length of the shortest program needed to pro-
duce the pair (x, y) of data objects. As it is easier to handle
concatenation with compression, this can be estimated by
min{C(xy), C(yx)} − min{C(x), C(y)}. Due to the sym-
metrical behavior of many compression algorithms this can
be further simplified to C(xy) − min{C(x), C(y)}, arriving
at the definition of NCD found in [12]:

NCD =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
(2)

Cilibrasi and Vitányi applied their similarity measure quite
successfully to clustering data objects in different domains
such as genomics, literature, music, and astronomy.

<a>

<b x="foo">

<c>

some text

</c>

<d y="bar">

some more text

</d>

</b>

</a>

Figure 1: Example XML document

3. MEASURING STRUCTURAL SIMILAR-
ITY

We want to apply this technique to measuring the struc-
tural similarity between XML documents. While for Kol-
mogorov complexity the exact format of the data is irrele-
vant, for compression algorithms in the real world it is not.
Depending on the data objects that are to be compared,
preprocessing the data may have a significant impact on the
quality of the results. For comparing structural similarity
this means that we want to extract the structural informa-
tion from an XML document before doing the actual com-
parison. In addition to applying the NCD technique in a
straightforward fashion (just compressing the XML docu-
ments and comparing them1), we use four different methods
to extract structural information from the XML documents.
In the following we are going to have a look at them.

3.1 Tags
In order to illustrate the different methods we show ex-

amples using the XML document in Figure 1. We call the
simplest method Tags, in which we strip XML documents
of all content (e.g. text nodes and attribute values) and ex-
tract all other nodes in document order by outputting their
tag names (both opening and closing) and possible attribute
names. For the example document this would result in the
sequence <a><b x><c></c><d y></d></b></a>.

3.2 Pairwise
Similar to Tags, Pairwise also removes all content from the

XML document and keeps the remaining structural nodes.
However, for each node the name of the parent node is
prepended to its name. Again the document order is main-
tained but we refrain from outputting the closing tags in
this case. So applying Pairwise to the example document
yields: a abx bc bdy.

3.3 Full Path
Full Path adds even more information than Pairwise, as

all node names are prepended with the full path from the
root node to the current node (after removing the content).
So, for the example document this produces the sequence:
a abx abc abdy.

3.4 Family Order
An important concept when designing DTDs is the group-

ing of elements as siblings. Thus one could argue that de-
scribing the structural information of an XML document in

1This will lead to a low-quality result as we will see later.

1023



12 13 14 15

5 6

2

7 8 9 10 11

1

3 4

Family order traversal:

12 13 14 15 5 6 7 8 9 10 11 2 3 4 1

Figure 2: Family order traversal

a breadth-first manner is as appropriate as traversing it in
document order (e.g. Levene and Wood propose a breadth-
first traversal for compressing and uncompressing XML doc-
uments [23]). However, breadth-first traversal is problematic
due to its memory consumption: given an XML document
of height h, breadth-first traversal may need space that is
exponential in h, whereas depth-first traversal uses up space
that is linear in h.

Family Order traversal represents a compromise between
breadth-first and depth-first traversal [20]. All the children
of a node are output en bloc, i.e. all siblings will end up
next to each other. However, before doing so, all their de-
scendants have to be processed. Figure 2 shows an example
of a family order traversal. In this way we still manage to
keep the sibling information intact without having to store
whole levels of the tree during the traversal.

3.5 Document Similarity
Measuring the structural similarity of two XML docu-

ments works as follows. First, the structural information
of both documents is extracted using one of the methods
described in the previous sections. The resulting files are
compressed (separately) with GNU zip (gzip version 1.3.5)
and their size in bytes is noted. These two file sizes are
the values we need in formula (2) for C(x) and C(y) to cal-
culate the normalized compression distance. Then the files
containing the extracted structural information are concate-
nated and this concatenation is compressed again. The size
of this compressed file yields the value for C(xy). All that is
left to do now is to compute the actual value for the NCD.

Compression of files using the Ziv-Lempel approach (as
in gzip) can be done in linear time using suffix trees as an
index structure for finding the location of the longest match-
ing substring [21]. This means that, except for full path ex-
traction, the similarity of two XML documents can also be
computed in linear time.

As a variant we used crossparsing as applied by Ziv and
Merhav to measure relative entropy between sequences [38]
(for more details see Section 3.7). Instead of actually com-
pressing the documents, we parse them with respect to each
other, i.e. we step through one document trying to find the
longest prefix that will match a sequence in the other docu-
ment. Using suffix trees this can also be done in linear time
[25].

String to encode:
aababbccccd

Triplets:
<0,0,a> first appearance of a, no previous

substring available

<1,1,b> ab is encoded with a reference to
a followed by the symbol b

<2,2,b> abb is encoded with a reference to
the previous ab followed by b

<0,0,c> first appearance of c

<1,3,d> the longest matching substring
previously encoded and the string to
be compressed may overlap

Figure 3: Example for Ziv-Lempel

3.6 Ziv-Lempel Encoding
In order to understand the results of the experimental

evaluation better, it helps to know the basic functionality of
the Ziv-Lempel family of encoders (of which gzip is a mem-
ber). These algorithms build a dictionary for encoding (and
decoding) by utilizing substrings that have already appeared
in the previously encoded part of the document. For that
purpose a Ziv-Lempel encoder stores distances and lengths
in the dictionary. Distance refers to the starting position
of the referenced substring as measured by going backwards
from the current symbol (the first symbol of the rest of the
document that is yet to be compressed), while length in-
dicates the length of the substring. The algorithm always
tries to find the longest possible substring that matches a
string starting at the current symbol. Added to the distance-
length information is the first symbol that does not match
the previously encoded substring. So the dictionary consists
of triplets of the form form <distance, length, symbol>
and is generated on the fly during encoding (and decoding).
See Figure 3 for a brief example. For our similarity mea-
sure this means that when concatenating two documents,
the second document can fall back on substrings of the first
document. The more overlap there is between two docu-
ments, the better the compression rate will be. For more
details on this compression technique see [35, 37].

3.7 Ziv-Merhav Crossparsing
(Cross-)parsing document x with respect to document

y, both of which we assume to be represented as strings,
works as follows. First we find the longest prefix of x that
appears as a string in y, i.e. find the largest integer m
such that x1, x2, . . . , xm = yi, yi+1, . . . , yi+m−1 for some i.
x1, x2, . . . , xm is the first phrase of x with respect to y (if
x1 6∈ y, then we set m = 1)2. After determining the first
value for m, we find the longest prefix of x starting with
xm+1 with respect to y. We continue doing so until we have
parsed the whole document x. Let c(x|y) be equal to the
number of phrases when parsing x with respect to y. For
example, let x = abbbbaaabba and y = baababaabba. Then

2We count the number of times we have to (re-)start the
parsing.
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c(x|y) = 3, the three phrases being abb, bba, and aabba.
As a similarity measure between documents x and y we use
c(x|y)−1+c(y|x)−1

2
, i.e. we crossparse both ways (taking the

average) and we count the number of times that we have to
reapply finding the longest prefix.

Another important difference between the gzip compres-
sion and how we apply crossparsing is the different granu-
larity. The compression algorithm identifies characters as
the smallest entities in a document, while for the crosspars-
ing algorithm we chose tag names as smallest entities. This
should reflect the actual structure of the document better,
as we are interested in matching sequences of tags and not
sequences of substrings of tag names.

4. THE COMPETITORS
We compare our method to three other techniques: one

based on tree-editing distances by Nierman and Jagadish
[28], another one based on Discrete Fourier Transformation
(DFT) by Flesca et al. [16], and path shingles by Buttler
[8]. We give a brief description of all three in the remainder
of this section.

4.1 Tree-Editing Distance
The origins of algorithms computing tree-editing distances

go back to the dynamic programming algorithms for finding
minimum-editing (or Levenshtein) distances between strings.
There are several variants of tree-editing distance algorithms
depending on the edit operations they allow. Nierman and
Jagadish adapted the edit operations to reflect the special
requirements of XML documents. Due to optional and re-
peating elements, XML documents generated from the same
DTD can show a considerable difference in their sizes (i.e.
the number of nodes they contain). Consequently, a metric
that permits changing only one node at a time may overesti-
mate the distance. Therefore, Nierman and Jagadish utilize
edit operations that can change more than one node per
step. The provide five different operations:

• Relabel: give a node in a tree a new label

• Insert: insert a new node (without children) into a tree

• Delete: deletes a single node from a tree

• Insert Tree: inserts a new subtree into a tree

• Delete Tree: delete a node and all its descendants from
a tree

Each of these operations has a non-negative cost associ-
ated with it. While the algorithm proposed by Nierman and
Jagadish works with general costs, they restrict themselves
to a constant unit cost for all operations.

There are two constraints on the Insert Tree and Delete
Tree operations. Otherwise, every tree could be transformed
into any other tree in just two steps (delete complete original
tree, insert complete new tree). The two restrictions are: (1)
a subtree may only be inserted if it already occurs in a tree
and it may only be deleted if it still occurs in a tree. This
models optional and repeated elements. (2) A subtree that
has been inserted may not have additional nodes inserted
afterwards, while a deleted subtree may not have had some
its nodes deleted previously. This makes the computation
of the editing costs more efficient.

The complexity of the algorithm is O(|d1||d2|), where d1

and d2 are two (document) trees that are to be compared
and |d1| and |d2| are their sizes (in number of nodes), re-
spectively. For more details on the actual algorithm, see
[28].

4.2 Discrete Fourier Transformation
The DFT technique takes a totally different approach.

The features of an XML document relevant to its structure
are described via a numerical encoding and these values are
interpreted as a time series. (This approach can be visu-
alized by rotating an XML document by 90 degrees and
looking at the element indentations as a time series.)

4.2.1 Tag Encoding
The numerical encoding of the XML documents happens

on two different levels: the encoding of the elements or
tags and the encoding of a document’s substructures (an
attribute with name X is treated as a subelement named
ATTRIB@X). For the tag encoding a function γ maps the
tags of a set of documents to real numbers (excluding 0).
Flesca et al. distinguish direct, pairwise, and nested encod-
ing. The difference between these encodings is the extent of
context that is considered. In the direct encoding, each tag
is mapped directly to a real number, in pairwise encoding
each tag/parent tag combination is mapped to a real num-
ber, while in the nested encoding a path from the root to an
element is mapped to a real number. This corresponds to
the first three methods used in our approach in Section 3.

4.2.2 Document Encoding
While a tag encoding maps individual tags to real num-

bers, a document encoding associates an XML document
with a time series. A document encoding is a function enc
that maps a document to a sequence of real numbers in such
a way that no structural loss occurs. A function enc is with-
out structural loss (WSL), if for each pair of documents d1

and d2, enc(d1) = enc(d2) implies that d1 and d2 have the
same sequence3 of tag instances. Flesca et al. distinguish a
trivial, linear, and multi-level encoding.

In the trivial encoding a document d is defined by its
sequence of tags t1, t2, . . . , tn mapped to its sequence of tag
encodings:

enc(d) = γ(t1), γ(t2), . . . , γ(tn).

In the linear encoding each item in the time series is a
linear combination of all tag encodings from the start of the
document to the current element. So,

enc(d) = γ(t1), γ(t1) + γ(t2), . . . ,
X

k≤n

γ(tk).

The multi-level encoding is the most complicated variant,
in which the current tag encoding is combined with the tag
encoding of all its ancestors in the document:

enc(d) = S1, S2, . . . , Sn

where

Si = γ(ti) · B
maxdepth−depth(ti) +

X

tj∈anc(ti)

γ(tj) · B
maxdepth−depth(tj).

3in document order
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maxdepth is the maximum depth for any document in the
document collection, B is a fixed value (usually greater or
equal to the number of distinct symbols encoded by γ, to
avoid mixing tag information with substructure informa-
tion), and anc(ti) is the set of tags on the path from the
root of the document to ti.

Let us present a small example. Assume that the direct
tag encoding for our example document in Figure 1 (dis-
regarding attributes for a moment) is: <a> = 1, </a> =
−1, <b> = 2, </b> = −2, <c> = 3, </c> = −3, <d>
= 4, and </d> = −4. Then the time series for the whole
document using linear encoding would be: 1 3 6 3 7 3 1 0.

4.2.3 Document Similarity
Flesca et al. use an interpolated DF̃T transform to calcu-

late the distance between two documents d1 and d2:

dist(d1, d2) =
0

B

@

M
2

X

k=1

“

|[DF̃T(enc(d1))](k)| − |[DF̃T(enc(d2))](k)|
”2

1

C

A

1

2

where DF̃T is an interpolation of DFT to the frequencies
appearing in both d1 and d2, and M is the total number
of points appearing in this interpolation (M = |tags(d1)| +
|tags(d2)|). The motivation for using DFT was to abstract
from the length of the documents and to determine whether
a given subsequence of tags appears with a certain regularity
(independent of the location of the subsequence).

The complexity of the algorithms is O(N log N) with N =
max(|d1|, |d2|), where |d1| and |d2| represent the size of the
documents in number of nodes. For more details on the
DFT technique, see [16].

4.3 Path Shingles
In a first step structural information is extracted from

the documents using the Full Path variant described in Sec-
tion 3.3. The next step consists of computing a hash value
hj (1 ≤ j ≤ |di|, where |di| is the number of nodes in di) for
each of the paths in di. A shingle of width w is the combi-
nation of w consecutive hash values hj , . . . , hj+w (w is also
called the window size). The set of all shingles of width w
for document di is denoted by S(di, w). The similarity of
two documents can now be determined with the help of the
Dice coefficient:

sim(di, dk) =
S(di, w) ∩ S(dk, w)

S(di, w) ∪ S(di, w)

For a distance metric we can use:

dist(di, dk) = 1 − sim(di, dk)

5. EXPERIMENTAL EVALUATION
In this section we present the results of our experimental

evaluation and interpret them. Before doing so, however,
we briefly explain how we measured the quality of the sim-
ilarity measures by using them to cluster XML documents
associated with different DTDs and we describe the docu-
ment collections we used in the experiments.

doc−DTD1

doc−DTD1

doc−DTD1

doc−DTD2

doc−DTD1

doc−DTD2

doc−DTD2

doc−DTD1

Figure 4: Example dendrogram

5.1 Measuring Clustering Quality
As it is difficult to determine the quality of a similar-

ity measure in a direct way, we used the different measures
to cluster collections of XML documents adhering to dif-
ferent DTDs. After clustering the documents we counted
the number of documents that were misclustered, i.e., docu-
ments that were put into the wrong cluster. The lower this
number, the better the similarity measure.

As clustering technique we used the well-known hierarchi-
cal agglomerative clustering [19] to make our results com-
parable to those of previous experiments. In this technique
we start with each document representing its own cluster.
In each subsequent step the two clusters that have the clos-
est similarity are merged together until we end up with one
large cluster. The steps taken by this algorithm can be rep-
resented visually in a so-called dendrogram (see Figure 4 for
an example). The dendrogram shows, from right to left, in
which order the document clusters were merged. To calcu-
late cluster distances we applied the Unweighted Pair Group
Averaging Method (UPGMA) [31] that was also used by
Nierman and Jagadish in [28]:

dist(C1, C2) =
1

|C1| · |C2|
·

|C1|
X

i=1

|C2|
X

j=1

dist(dC1

i , dC2

j )

where C1 and C2 are two document clusters, |Ci| denotes

the number of documents contained in cluster Ci, and dCi
j

is the j-th document in cluster Ci.
In our experiments we first determined the similarity for

each pair of documents in the collection and then built a
dendrogram using UPGMA. The algorithms computing the
similarity were not given any hint which DTD a document

1026



a10

f
a a

f
a

f

a
ff

a

a
f

a a
f

a
f

f
a

f

a
f

a
f

a
f

a
f

a
f

a
f

a
f

a
f

a
f

a
f

a
f

a
f

a
f

a
f

f

1

2 8 9

3 7

4 5 6

3 7

4 5 6

3 7

4 5 6

3 7

4 5 6

1

2 3 4 5

6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25

Figure 5: Basic document used for experiments

was associated with (i.e., we removed all information per-
taining to DTDs). Afterwards we checked which DTD a
document belonged to and identified documents that ended
up in the wrong cluster. In Figure 4 these are the two doc-
uments marked by a box. So in this case we have two mis-
clustered documents.

5.2 Document Collections
In our experiments we used different data sets consisting

of real and synthetically generated documents. For the real
data sets we used 57 documents from the XML version of
the SIGMOD record4, 60 documents from the heterogeneous
track at INEX 20055, and 34 music sheets encoded in XML6.

For the synthetically generated documents (generated with
ToXgene7) we started out with the DTDs in the DFT pa-
per [16]. As we wanted to have more control over certain
parameters, we also created our own collection, in which we
varied one parameter per document collection and kept all
other parameters the same throughout one collection. Each
document collection contained eight different clusters and
for each cluster we generated ten documents.

At first glance the synthetically generated document col-
lections might seem quite extreme, as there are often only
nuances between different clusters. We (as well as Flesca et
al. [16]) did this on purpose to test out the limits of the
different approaches. The DTDs used by Flesca et al. can
be found in the appendix, our collection is described in the
following.

5.2.1 Element Data Set
As first parameter we varied the tag names, calling this

data set Element because the only difference between the
documents is the name of the elements. Figure 5 shows
the basic structure of the documents we used for the syn-
thetically generated data sets. For the Element data set we
generated eight different clusters by replacing the tag names
a1, a2, . . . , a10 with different names for each cluster. The fre-
quencies of appearances for each element, represented by fi,
were set to 1-4 for each frequency except f1 which was set to
1. The numbers mentioned in connection with frequencies
denote the number of occurrences of an element.

4available at http://www.sigmod.org/record/xml/
5available at http://inex.is.informatik.uni-
duisburg.de/2005/
6available at http://xml.coverpages.org/xmlMusic.html
7available at http://www.cs.toronto.edu/tox/toxgene/

5.2.2 Frequency Data Set
The next parameter we varied was the frequency of ap-

pearance of the different elements. All documents had the
same element names and the basic structure as depicted in
Figure 5, but each cluster had different values for the fi (ex-
cept for f1, which was always set to 1). In the first cluster
all frequencies were set to 1, in the second cluster all fis (ex-
cept f1) were set to 3-4, in the third cluster f2 to f13 were
set to 1 and f14 to f25 were set to 3-4, and in the fourth
cluster we set f2 to f5 to 3-4 and f6 to f25 to 1. In the
fifth to eighth clusters we varied the frequencies in a verti-
cal manner. Cluster 5: f2, f4, and all the frequencies of the
elements a3, a4, and a5 set to 1, all others set to 3-4. (for
cluster 6 the frequencies 1 and 3-4 were switched). In cluster
7 the following frequencies were set to 1: f2, f4, f7, f8, f11,
f12, f14, f15, f19, f20, f21, f25. The other frequencies were
set to 3-4. For cluster 8 this was reversed.

5.2.3 Position Data Set
In this data set we varied the position of the elements

within the documents (using the same element names in each
cluster and the same basic document structure as shown in
Figure 5). The element a1 was kept as root element for all
documents (with f1 = 1, while all other frequencies were
set to 1-4). For cluster 1 and 2 we shifted8 the elements
within each level of the document by one and two positions,
respectively. In clusters 3 and 4 we shifted9 down all ele-
ments by one and two levels, respectively. This changed the
number of occurrences of the elements, as there is a differ-
ent number of elements on each level. For the clusters 5
and 6 we shifted all elements to the left and right by two
positions, respectively. For this purpose, we interpreted the
elements associated with f2 to f25 to be one big sequence
with a wraparound from f25 to f2. For clusters 7 and 8 we
swapped around element names in an arbitrary manner.

5.2.4 Depth Data Set
In this data set we varied the depth of the documents

from cluster to cluster. For this benchmark we modified the
document structure, as it was very difficult to vary the depth
of the document in Figure 5 and by doing so keeping the
frequencies of the different elements roughly the same. For
the depth data set we used the document structure shown in

8Wrapping around on each level.
9Wrapping around vertically this time.
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Figure 6. The depth of the documents was increased from
4 (for cluster 1) to 11 (for cluster 8). The frequency for the
elements a2, a5, a8, and a11 was set to 4 for cluster 1, all
other frequencies were set to 1. For the subsequent clusters
the frequencies of the elements were modified so as to have
roughly the same number of each element in the document.

5.3 Results
Figure 7 shows the results of our experimental evaluation.

The columns stand for the nine different data sets used in
the experiments and the error rate over all data sets, while
the rows show the results for the different similarity mea-
sures. The numbers in the table itself give the number of
misclusterings for each case.

For the DFT data sets we used two different sets of pa-
rameters: as in [16] choices (|) and ? were modeled using
a uniform distribution for both, DFT1 and DFT2, while *
and + were modeled using a log-normal distribution (with
µ = .75, σ2 = .75 for DFT1 and µ = 4, σ2 = 1 for DFT2).

For the DFT algorithm we ran the direct multilevel and
pairwise multilevel encoding (which outperformed the other
encodings [16]). For our compression technique we have one
additional variant, called simple, in which no structural in-
formation was extracted from the XML documents, i.e., they
were compressed as they were. We also added a hybrid ver-
sion multiplying the distances supplied by a DFT algorithm
with those of a crossparsing algorithm.

The results we present for the Path Shingle algorithm were
run with a window size of 1 (according to [8] and our own
experience, the window size has almost no effect on the accu-
racy; the differences lie within a tenth of a percent). For the
sake of completeness, we also ran the path shingle algorithm
with the tag and pairwise structure extraction techniques
described in Section 3.

5.4 Interpretation of Results

5.4.1 Tree-Editing Distance
When looking at Figure 7, we notice several things. The

tree-editing algorithm showed quite a strong clustering per-
formance for all data sets except Music, DFT1, and DFT2.
The main problem with the Music XML files seems to be the
large variation in document sizes within the clusters, result-
ing in a larger number of edit operations than usual. For
example, in one cluster (belonging to the same DTD) the
smallest document consisted of 315 tags, while the largest
consisted of 32680 tags. The clusters in the DFT collections
are not all disjoint, e.g. the document <XML> <n> </n>
</XML> could belong to DTD5 as well as DTD6. This
alone, however, does not explain the rather large number
of misclusterings. The tree-editing algorithm had the most
trouble clustering documents belonging to DTD4 correctly
(they showed up in lots of other clusters), confirming results
found in [16] (where the tree-editing algorithm was also run
against the DFT algorithm). We believe that the reason for
this is that DTD4 is the only DTD that contains a repeti-
tion of a pair of nodes: (x,y)*, which means that we have a
pattern that is not restricted to a single subtree but spans
two subtrees. As the tree-editing algorithms can only handle
single subtrees in an edit operation, it is not able to detect
this pattern correctly.

5.4.2 Discrete Fourier Transformation
The DFT algorithms, although having a strong showing

for the real data sets, DFT2, and the Frequency data set,
perform quite poorly for the other data sets. It does not
come as a surprise that these algorithms are very good at
detecting differences in frequencies of appearances, as they
were originally developed for analyzing frequencies. How-
ever, when it comes to detecting elements appearing with
roughly the same frequency at different locations within a
document, they seem to fail. We did not expect the high
number of misclusterings for the Element data set, as dif-
ferent tag names are encoded differently. It seems that the
tag encoding only plays a minor role in the DFT method
for detecting similarity. The gap between the results for
DFT1 and DFT2 shows that if the frequency of a tag is too
low, then the DFT algorithms are not able to detect small
differences very well.

5.4.3 Path Shingles
Except for one case, the Depth data set, the path shingle

algorithms exhibits similar strengths and weaknesses as the
tree-editing algorithm. Overall, the full path shingle vari-
ant is able to outperform the DFT algorithms and to match
the tree-editing algorithms in terms of accuracy. Running
the path shingles with the tags and pairwise extraction tech-
nique results in an algorithm having linear run-time, but the
accuracy of these variants drops considerably.

5.4.4 Compression-Based Entropy
For the compression-based techniques it becomes quite

clear that just compressing the original XML documents
(simple method) does not get the job done. Indeed, the main
motivation for adding this naive method was to illustrate
the benefits of extracting structural information first. The
compression-based techniques have the most problems with
the DFT and the Frequency data sets. The more tags occur
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SIGMOD INEX Music DFT1 DFT2 Element Frequency Position Depth Overall

No of docs 57 60 34 140 140 80 80 80 80

tree-edit 1 0 10 56 43 0 0 5 0 15.3%

DFT
direct ML 0 4 5 55 1 29 9 33 32 22.4%

pairwise ML 0 3 9 53 1 26 0 37 19 19.7%

path shingles
tags 0 0 1 50 40 0 0 14 48 20.4%

pairwise 0 0 1 46 42 0 0 6 39 17.8%
full path 0 0 1 41 44 0 0 0 29 15.3%

gzip
simple 1 0 1 39 57 3 30 21 44 26.1%
tags 0 0 1 51 58 0 17 0 6 17.7%

pairwise 0 0 1 45 59 0 25 0 26 20.8%
full path 0 0 1 41 58 0 24 0 3 16.9%

family order 0 0 1 57 62 0 13 9 0 18.9%

Ziv-Merhav
tags 5 2 1 45 34 0 1 0 0 11.7%

pairwise 0 2 1 43 34 0 8 0 16 13.8%
full path 0 2 1 43 32 0 7 0 0 11.3%

family order 0 0 1 38 39 0 0 2 0 10.6%

Hybrid (DFT/Ziv-Merhav)
pairw. ML/tags 0 3 9 37 14 0 0 0 3 8.8%

pairw. ML/pairw. 0 3 9 36 16 0 0 0 29 12.4%
pairw. ML/path 0 3 9 35 15 0 0 0 11 9.7%

pairw. ML/family 0 1 8 64 56 0 2 21 9 21.4%

Figure 7: Number of misclusterings for different methods

of a certain type, the better they can be compressed. As
soon as a certain pattern appears sufficiently often in a doc-
ument, it gets an own entry in the gzip dictionary, resulting
in a very good compression rate for this pattern regardless of
how often it appears in the other document. This makes it
difficult to detect differences in frequencies by only looking
at the size of the compressed files. For the DFT data sets
we have the same picture as for the tree-editing algorithms,
meaning that the compression-based algorithms have prob-
lems clustering documents of the DTD4 type. An oddity
for the compression-based techniques was the good perfor-
mance of the tags method and the quite bad performance
of the pairwise method. We have not been able to find the
reasons for this yet. The family-order traversal did not bring
with it a major improvement in terms of overall clustering
performance. Although there were some improvements for
the Frequency and the Depth data sets, for other data sets
(DFT1, DFT2, and Position) the family-order traversal per-
formed more poorly.

5.4.5 Crossparsing
By crossparsing the documents instead of compressing

them and by increasing the granularity from characters to
tags, we were able to improve the clustering performance of
the entropy-based approaches considerably. Overall, these
algorithms are now able to outperform the clustering capa-
bilities of the tree-editing and the DFT algorithms. Three of
the variants (tags, pairwise, and family-order) even have lin-
ear running time. Combining crossparsing with family-order
traversal, however, yielded only minimal improvements.

5.4.6 Hybrid Approach
As the crossparsing and DFT algorithms are complemen-

tary in their behavior (having strengths and weaknesses in
different areas), we decided to combine them in a hybrid
approach by multiplying the distances they return. For
our own document collections (Element, Frequency, Posi-

tion, and Depth), the effect of the crossparsing algorithm
dominates, while for the real data sets the DFT algorithm
seems to dominate. For the DFT data sets the presence
of the DFT algorithm kicks in (for DFT2 the result is bet-
ter than the average of the two original algorithms, while
for DFT1 the result is even better than the individual re-
sults of the original algorithms). The combination pairwise
ML DFT/family-order Ziv-Merhav disappointed somewhat
(they are not as complementary as other DFT/Ziv-Merhav
combinations, e.g. both have problems clustering the Posi-
tion data set correctly), while the overall clustering quality
for pairwise ML DFT/tags Ziv-Merhav is almost twice as
good as that for the tree-editing algorithm, while having a
better asymptotic complexity.

5.4.7 Run Time
Measuring the run-time of the different algorithms exper-

imentally is quite difficult, because they were implemented
by different people in different programming languages and
are not directly comparable, e.g. the actual comparison (af-
ter extracting the structural information) for the compression-
based algorithms was done with a part UNIX shell script/C
implementation solution, while the tree-editing algorithm
was written in Java. So we decided to present results for nor-
malized run-time, i.e., we assume that all algorithms have a
run-time of 1 second for a document containing 1500 nodes.
The run-times for all other document sizes were divided by
the actual run-time of an algorithm for a document size of
1500 nodes. In this way at least the asymptotic run-time
complexity of the algorithms can be determined experimen-
tally. We ran the algorithms10 on a set of shallow documents
(ranging in size from 300 up to 102,300 nodes) and on a set

10In order not to clutter the graphs, only a selection is shown
here. The results of the compression-based algorithms (gzip)
are very similar to the crossparsing algorithms, while those
for the simple tag variants are very similar to the pairwise
variants.
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Figure 8: Run-time for shallow documents
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Figure 9: Run-time for deep documents

of deep documents (also ranging in size from 300 to 102,300
nodes).11 The results for the shallow documents can be seen
in Figure 8, while the results for the deep documents are de-
picted in Figure 9. For the shallow documents the crosspars-
ing/pairwise algorithm and the shingle path algorithm are
the clear winners. All other tested algorithms break away
from a linear growth sooner or later. For the deep docu-
ments the shingle path algorithm also breaks away, since
the full path extraction is not linear in the worst case. The
crossparsing/pairwise variant, however, is able to hold the
linear run time.

6. RELATED WORK
The earliest attempts of detecting structural similarity go

back to computing tree-editing distances [29, 30, 32, 34,
36]. These approaches have two major disadvantages: they
have at least a quadratic complexity and operate on a node
basis, i.e. the basic unit of editing is one node. While
Chawathe et al. [10, 11] have enhanced their tree-editing
algorithms by subtree editing operations (shedding the lat-
ter disadvantage) they have not been able to improve on the
quadratic complexity, use heuristics, and in one case work
on unordered trees [10]. Nierman and Jagadish developed
an algorithm that reflects the properties of XML documents

11The DTDs of the documents can be found in the appendix.

much better [28], but still does not improve the running
time. Dalamagas et al. [14] try to improve the performance
of the tree-editing approach by using tree structural sum-
maries (eliminating element repetition and nesting) rather
than comparing full tree representations. However, from [14]
it it not quite clear how the algorithm works for special cases
(if there is more than one ancestor node with the same label
as a given node) and how costly the preprocessing of the
documents to obtain the structural summaries is. By tak-
ing a completely different approach based on the analysis of
time series via Discrete Fourier Transformation, Flesca et al.
were able to improve on the complexity of tree-editing algo-
rithms [16]. In addition to presenting a new shingle-based
algorithm, Buttler also gives a brief overview of existing al-
gorithms for detecting document structure similarity [8].

Clustering semistructured documents using a similarity
measure forms the basis for algorithms such as [17, 27] ex-
tracting schema or document type information. Determin-
ing structural similarity is also important for the extraction
of information from semistructured data sources [1, 3, 13].

There is also ongoing work on detecting similarity not be-
tween XML documents, but between documents and DTDs
[7] and comparing unordered XML documents (i.e. data-
centric documents for which the order among elements is not
relevant) to each other [26]. Finally, there is also a search
engine, XXL, employing an ontology similarity measure for
retrieving semistructured data semantically [33].

7. CONCLUSION AND OUTLOOK
Determining the similarity of documents is an important

aspect during retrieval or when clustering document collec-
tions. Measuring the similarity of semistructured data adds
another dimension, as we have to be able to measure struc-
tural similarity as well. Due to the number of documents
involved and their size, it is crucial to utilize an algorithm
that shows good performance in terms of efficiency as well
as in terms of output quality.

We proposed a method that has true linear complexity,
thus outperforming existing approaches, while being able to
keep up with the quality of these approaches. Our technique
is based on measuring entropy, which distinguishes it from
previously employed methods. In an extensive experimental
evaluation we were able to reveal the strengths and weak-
nesses of the different approaches, demonstrating that the
Discrete Fourier Transformation method and our method
show quite complementary behavior. Combining these two
approaches will yield a very good similarity measure quality.

Future work in this area involves finding more sophisti-
cated ways of describing the structural information of a doc-
ument before computing the entropy. We would also like to
try several other measures for entropy to maybe find one
that is better suited for structural information or develop
a new entropy measure specifically for structural informa-
tion.
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Zurek. Information distance. IEEE Transactions on
Information Theory, 44(4):1407–1423, July 1998.

[6] P.A. Bernstein, J. Madhavan, and E. Rahm. Generic
schema matching with Cupid. In Int. Conf. on Very
Large Databases (VLDB’01), pages 49–58, 2001.

[7] E. Bertino, G. Guerrini, and M. Mesiti. A matching
algorithm for measuring the structural similarity
between an XML document and a DTD and its
applications. Inf. Syst., 29(1):23–46, 2004.

[8] D. Buttler. A short survey of document structure
similarity algorithms. In 5th Int. Conf. on Internet
Computing, Las Vegas, Nevada, 2004.

[9] S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. In Proc. 21st Int.
Conf. on Data Engineering (ICDE), pages 865–876,
Tokyo, 2005.

[10] S. Chawathe and H. Garcia-Molina. Meaningful
change detection in structured data. In ACM
SIGMOD Int. Conf. on Management of Data, pages
26–37, 1997.

[11] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically
structured information. In ACM SIGMOD Int. Conf.
on Management of Data, pages 493–504, 1996.

[12] R. Cilibrasi and P.M.B Vitányi. Clustering by
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APPENDIX

A. DTDS USED IN THE DFT PAPER

<!DOCTYPE DTD1 [

<!ELEMENT XML (a*)>

<!ELEMENT a (b,c,d,e*)>

<!ELEMENT b (f?)>

<!ELEMENT c (g|h)>

<!ELEMENT d EMPTY>

<!ELEMENT e EMPTY>

<!ELEMENT f EMPTY >

<!ELEMENT g EMPTY>

<!ELEMENT h EMPTY>

]>

<!DOCTYPE DTD2 [

<!ELEMENT XML (a1*)>

<!ELEMENT a1 (b1,c1,d1,e1*)>

<!ELEMENT b1 (f1?)>

<!ELEMENT c1 (g1|h1)>

<!ELEMENT d1 EMPTY>

<!ELEMENT e1 EMPTY>

<!ELEMENT f1 EMPTY >

<!ELEMENT g1 EMPTY>

<!ELEMENT h1 EMPTY>

]>

<!DOCTYPE DTD3 [

<!ELEMENT XML (h*)>

<!ELEMENT h (f,g)>

<!ELEMENT f (d*)>

<!ELEMENT g (b|c)>

<!ELEMENT d (a?)>

<!ELEMENT b EMPTY>

<!ELEMENT c EMPTY>

<!ELEMENT a EMPTY>

]>

<!DOCTYPE DTD4 [

<!ELEMENT XML ((x,y)*)>

<!ELEMENT x ((a,w)|z*)>

<!ELEMENT a EMPTY>

<!ELEMENT w (c?)>

<!ELEMENT c EMPTY>

<!ELEMENT z (v,c)>

<!ELEMENT v EMPTY>

<!ELEMENT y EMPTY>

]>

<!DOCTYPE DTD5 [

<!ELEMENT XML (m*,n)>

<!ELEMENT m (q*)>

<!ELEMENT q (x,y)>

<!ELEMENT x ((a,c)|z*)>

<!ELEMENT a EMPTY>

<!ELEMENT c EMPTY>

<!ELEMENT z EMPTY>

<!ELEMENT n EMPTY>

<!ELEMENT y EMPTY>

]>

<!DOCTYPE DTD6 [

<!ELEMENT XML (m*,n)>

<!ELEMENT m (x)>

<!ELEMENT x ((a,c)|z*)>

<!ELEMENT a EMPTY>

<!ELEMENT c EMPTY>

<!ELEMENT z EMPTY>

<!ELEMENT n EMPTY>

]>

<!DOCTYPE DTD7 [

<!ELEMENT XML (m)>

<!ELEMENT m (x,n)>

<!ELEMENT x (z*)>

<!ELEMENT z EMPTY>

<!ELEMENT n EMPTY>

]>

B. DTDS FOR RUN-TIME EXPERIMENTS
The following two DTDs were used in the run-time ex-

periments from Section 5.4.7. The DTD for the shallow
documents was:

<!DOCTYPE SHALLOW [

<!ELEMENT TOPMOST (PERSON)>

<!ELEMENT PERSON (NAME,AGE,CHILDREN)>

<!ELEMENT NAME #PCDATA>

<!ELEMENT AGE #PCDATA>

<!ELEMENT CHILDREN (PERSON*)>

]>

The number of children a person element has was not
chosen freely, but a person either had two children or none.
We generated documents with (2i − 1) ∗ 100 nodes (2 ≤ i ≤
10) having i levels (100 person elements on the top level and
2i−1 ∗ 100 persons on the other levels.

The DTD for the deep documents was:

<!DOCTYPE SHALLOW [

<!ELEMENT TOPMOST (PERSON)>

<!ELEMENT PERSON (NAME,AGE,CHILDREN)>

<!ELEMENT NAME #PCDATA>

<!ELEMENT AGE #PCDATA>

<!ELEMENT CHILDREN (PERSON?)>

]>

Here we generated documents with (2i − 1) ∗ 100 nodes
(2 ≤ i ≤ 10) having 2i − 1 levels (100 person elements on
each level.
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