
Querying Complex Structured Databases ∗

Cong Yu H. V. Jagadish
Department of EECS, University of Michigan

{congy, jag}@eecs.umich.edu

ABSTRACT
Correctly generating a structured query (e.g., an XQuery or
a SQL query) requires the user to have a full understand-
ing of the database schema, which can be a daunting task.
Alternative query models have been proposed to give users
the ability to query the database without schema knowl-
edge. Those models, including simple keyword search and
labeled keyword search, aim to extract meaningful data frag-
ments that match the structure-free query conditions (e.g.,
keywords) based on various matching semantics. Typically,
the matching semantics are content-based: they are defined
on data node inter-relationships and incur significant query
evaluation cost. Our first contribution is a novel match-
ing semantics based on analyzing the database schema. We
show that query models employing a schema-based match-
ing semantics can reduce query evaluation cost significantly
while maintaining or even improving result quality.

The adoption of schema-based matching semantics does
not change the nature of those query models: they are still
schema-ignorant, i.e., users express no schema knowledge
(except the labels in labeled keyword search) in the query.
While those models work well for some queries on some
databases, they often encounter problems when applied to
complex queries on databases with complex schemas. Our
second contribution is a novel query model that incorpo-
rates partial schema knowledge through the use of schema
summary. This new summary-aware query model, called
Meaningful Summary Query (MSQ), seamlessly integrates
summary-based structural conditions and structure-free con-
ditions, and enables ordinary users to query complex databases.
We design algorithms for evaluating MSQ queries, and demon-
strate that MSQ queries can produce better results against
complex databases when compared with previous approaches,
and that they can be efficiently evaluated.

1. INTRODUCTION
Establishing effective query mechanisms that are easily

accessible to ordinary users is one of the most elusive goals
of database research. Structured query models (e.g., SQL
for relational databases and XQuery for XML databases)
require the users to be knowledgable about the schema so
that they can precisely specify both the locations of the

∗Supported in part by NSF under grant IIS-0438909, and
NIH under grant 1-U54-DA021519.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09

entities and attributes they are searching for, and the re-
lationships among those entities and attributes. However,
understanding schema is a non-trivial task. Consider the
example schema derived from the XMark Benchmark [18]
as shown in Figure 1 (A). To answer a relatively simple
query like the example Q1 in Figure 1, the user will have
to examine the whole schema and (1) identify the location
of item, (2) identify which element (region/name) repre-
sent the region of the item, and (3) identify which element
(description) associated with the item should contain the
keyword phrase “antiques,” before correctly generating the
following XQuery:

for $r in doc()/regions/region, $i in $r/item
where $r/name = “asia” and $i/description ∼ “antiques”
return $i

1.1 Structure-Free Query Models
Several alternative query models have been proposed to

eliminate structures in the query, and they are often con-
sidered structure-free query models. One such model is sim-
ple keyword search [1, 2, 11, 10, 7, 21]. A simple keyword
search query consists of a set of terms, [t1, t2, ...]. For ex-
ample, Q1 can be expressed as [item; region; asia;
antiques]. Data fragments (in the form of either a sub-
tree of nodes or a group of tuples) matching those terms
are returned as relevant results, often in some ranked or-
der. A fundamental concept of structure-free query mod-
els is the matching semantics, which determines which data
fragments are meaningful and relevant to the structure-free
query condition. Several matching semantics for simple key-
word search have been proposed: 1) Lowest Common An-
cestor Subtree (LCAS) for XML data model—a subtree of
nodes is considered a match if the nodes in the subtree col-
lectively contain all the query terms, and the subtree root
node is lowest in the document hierarchy; 2) Smallest Tuple
Group (STG) for relational data model—a group of con-
nected tuples is considered a match if tuples in the group
collectively contain all the query terms, and no tuple can be
removed without losing at least one of the query terms.

Another commonly adopted structure-free query model is
labeled keyword search [9, 15]. This model trades some query
simplicity with better query accuracy by allowing users to
specify label terms and value terms separately. For exam-
ple, in this model, Q1 can be expressed as [region:“asia”;
item:“antiques”], where terms region and item are now
identified as labels of schema elements. Because of this dis-
tinction, labeled keyword search can adopt stricter matching
semantics to fetch “more meaningful” data fragments. For
example, the interconnection relationship semantics in [9]
excludes data fragments that contain multiple nodes of the
same label; and the meaningful LCAS (MLCAS) semantics
in [15] further excludes those data fragments whose roots are
not the lowest ancestors of all the element labels, regardless
of the keywords.

1010

site

regions

item*

@id

mail*

@from

@to

date

people

person*

@idprofile

income

watch*

auctions

auction*

@id

selleritemrefbidder*

@item@person @person

address

@auction

interval

start end

name

text

description

name

education

…

note

initial

date

region*

friend*

address
name

video*
photo*

title URL

URL

title

duration
resolution

URL

@id

mail

mail

site

item*

person*

auction*

bidder*

(A) (B)

note

Example Queries:
Q1: Find items that are “antiques” and registered in region “asia”;
Q2: Retrieve auctions that are sold by the person named “peter” in “chicago” and contain items

that are “antiques” in region “asia”;
Q3: Identify all auctions that are sold by a person in “chicago”, and bid upon by the same person more than 3 times;

Figure 1: An example database schema Ssite (A) that is derived from XMark, its schema summary (B), and example

queries. Nodes, solid arrows, and dashed arrows in (A) represent schema elements, structural links, and value links,

respectively. Elements with suffix ‘*’ are repeatable, and those with prefix ‘@’ are attributes.

In almost all previous proposals, matching semantics is de-
fined solely based on the data fragments themselves. There
are two drawbacks for this content-based semantics. First,
the “meaningful-ness” of a data fragment can be affected
by the presence of specific nodes in the data fragment or
the choice of specific keywords in the user query, regardless
of whether the data fragment is truly meaningful. Second,
query evaluation using content-based semantics requires the
system to examine all the data fragments in the database,
which can have high query evaluation cost even with index
support. In this paper, we advocate that the schema of a
database provides important clues to the semantic meaning
of the data fragments, and propose a novel schema-based
matching semantics for determining meaningful data frag-
ments. We show that this new matching semantics avoids
certain pitfalls encountered by query mechanisms with content-
based matching semantics, and at the same time signifi-
cantly improves the query performance.

1.2 Relaxed-Structure Query Model
Structure-free query models (regardless of the matching

semantics they adopt) are also inherently limited in the
query semantics that they can express. For example, queries
requiring non-trivial value joins or aggregations like Q2 and
Q3 in Figure 1 are almost impossible to express using the
aforementioned structured-free query models. To address
the issue, several relaxed structure query mechanisms for
XML have been proposed [3, 15, 6, 4, 5] that implicitly
or explicitly integrate structure-free components into struc-
tured queries. In particular, [6] proposed Query Relaxation,
which converts the user provided query tree pattern into
less restrictive patterns based on a set of relaxation rules.
Those relaxed patterns are then used to match data frag-
ments with a normal exact matching semantics. In [15], the

authors proposed Schema-Free XQuery, which enables the
users to embed structure-free conditions into a structured
query, therefore allowing the users to retrieve data frag-
ments that matches the structure-free conditions, as well
as the structural condition in the rest of the query.

However, these relaxed-structure query mechanisms still
have their limitations. In [6, 5], users are expected to gen-
erate an approximately correct query tree pattern in order
for the system to retrieve reasonably accurate results. If
the query tree pattern is wildly inaccurate, many retrieved
results will likely to be inaccurate. On the other hand, in
[15], users are required to manually identify and specify rela-
tionships between entities that are non-hierarchically and/or
remotely related, because the matching semantics proposed
is applicable only to hierarchically linked data nodes within
close proximity. As an example, to express a schema-free
query representing Q2 in Figure 1, user will need to explic-
itly specify how auction is associated with person and
item. Simply listing all the keywords will retrieve the root
of the entire database as the matching result instead.

We observe that the limitations of the aforementioned
mechanisms become painfully obvious when the schema is
extremely complex and the query needs to retrieve data nodes
that are remotely related. Under those circumstances, an ap-
proximate query is difficult to express “correctly,” and the
results obtained by evaluating such a query using the above
two mechanisms are often no better than the results ob-
tained using simple keyword queries.

Understanding real databases with complex schemas is the
subject of our recent work [22], where we proposed the novel
concept of Schema Summary. A schema summary is, intu-
itively, a concise description of the underlying database that
is easier for the user to understand than the original complex
schema. It consists of representative elements that are the

1011

Q1: set @c1 = item[region:“asia”, item:“antiques”]
for $i in doc()/site.item.MF(@c1)
return $i

Q2: set @c2 = item[region:“asia”, item:“antiques”]
@c3 = person[name:“peter”, address:“chicago”]

for $a in doc()/site.auction.MF(),
$i in doc()/site.item.MF(@c2),
$p in doc()/site.person.MF(@c3)

where MR($a, $i, -) and MR($a, $p, “sell”)
return $a

Q3: set @c4 = person[address:“chicago”]
for $a in doc()/site.auction.MF(),

$p in doc()/site.person.MF($c4)
let $b in $a.bidder.MF()
where MR($a, $p, “sell”) and MR($b, $p, “bid”) and

count($b) > 3
return $a

Figure 2: Example Meaningful Summary queries.

most important in the schema and collectively have the most
coverage of the underlying database content. Figure 1 (B)
shows an example summary of the XMark schema. In [22],
we demonstrated that a well-generated schema summary can
help users more effectively understand the schema—as mea-
sured by the reduced schema exploration needed to locate
desired elements by the user. For example, to locate el-
ements (region, name, item, description) needed
to construct Q1, a user only needs to explore the abstract
element item, without being distracted by the irrelevant
information presented in other parts of the schema.

The benefit of generating a fully structured query through
schema summary exploration, on the other hand, is often
limited. For example, Q2 requires the user to locate schema
elements under three abstract elements (auction, item,
person) in the summary, which means the user will have to
explore almost the entire schema. However, we note that the
simplicity of a schema summary makes it an ideal starting
point for users to formulate their queries. The challenge is
how to deal with the schema structures that are hidden in-
side the abstract elements. Fortunately, we have structure-
free query models. Specifically, combining the strengths of
schema summary and structure-free query models (labeled
keyword search in particular), we propose a novel query
paradigm called Meaningful Summary Query (MSQ).
Intuitively, an MSQ query is a structured query constructed
using the schema summary and with structure-free condi-
tions embedded. Figure 2 illustrates several MSQ queries
that correspond to the example queries in Figure 1. Their
detailed semantics and usage will be explained later. As
seen from those examples, with the schema summary as the
guide, users can construct a query that does not deviate too
much from the desired structure, and therefore ensure the
relative accuracy of the results. On the other hand, cor-
rect specification of an MSQ query only requires the user
to examine the simple schema summary, instead of learning
the whole complex schema. With the adoption of schema-
based matching semantics, an MSQ query can be evaluated
efficiently by rewriting it into a normal structured query,
thereby leveraging the query optimization facilities that al-
ready exist in current DBMSs.

1.3 Main Contributions and Outline
We make two major contributions. First, we propose a

novel schema-based matching semantics for the structure-
free query model using labeled keyword conditions (Sec-
tion 3). Second, we propose a new query paradigm called
Meaningful Summary Query (Section 4), which enables a
user to pose complex queries against complex databases with
the knowledge of only schema summaries. We describe the
MSQ query evaluation system in Section 5 and its evalua-
tion in Section 6. We discuss related work in Section 7 and
conclude in Section 8. Necessary background on Schema
Summary [22] is presented in Section 2, along with defini-
tions that we will use throughout the rest of the paper.

2. BACKGROUND
We consider both relational and XML data models.
Schema S : We consider a schema as a labeled directed

graph, where the nodes represent schema elements, and the
links represent relationships between schema elements, as
shown is shown in Figure 1. There are two kinds of rela-
tionship links. The first is structural links, which are drawn
as solid arrows with parent element (e.g., region) pointing
to child element (e.g., item). Structural links represent the
parent/child relationships in XML, or table/column rela-
tionships in the relational model. The second is value links,
which are drawn as dashed arrows in Figure 1 with an at-
tribute of the referrer element (e.g., video) pointing to an
attribute of the referee element (e.g., mail). Value links rep-
resent the key/foreign-key (referential) constraints in both
XML and relational models. We further enforce that every
element in S is a child of another element, except for the
root (e.g., site). For relational schemas, we introduce our
own root and establish structural links between the root and
every element in S that is not a child of another element.

While structural and value links are syntactically differ-
ent, they in fact share the same fundamental semantics. For
example, the value link between video and mail means po-
tentially multiple videos are included in a single mail: the
same semantics as if video were a child element of mail.
Based on this observation, we define the concepts of General
Parent and Ancestor, which become useful in Section 3.1.

Definition 1 (General Parent and Ancestor).
Given a schema S, an element eA in S is a general parent
of another element eB in S if:

− eA is the parent element of eB, or,
− eA is the referee element of eB.
Furthermore, eA is a general ancestor of element e′B if:
− eA is a general parent of e′B, or,
− There is an element eC in S, such that eA is a general

parent of eC and eC is a general ancestor of e′B.
We call eB (e′B) a general child (descendant) of eA.

We ignore mixed-content elements in the XML data model:
such an element can potentially be modeled using a special
simple element to store all its atomic content. More impor-
tantly, a schema element is considered repeatable when it
can have, in the database tree, multiple corresponding data
nodes, all of which are under the same parent data node
(e.g., person). Otherwise, it is considered non-repeatable
(e.g., profile). In XML, repeatable elements can be iden-
tified as having maxOccurs greater than 1, while in the re-
lational model, elements representing whole tuples are con-
sidered repeatable.

Database D : We consider the database to be a rooted
labeled tree. Figure 3 illustrates an example (partial) database

1012

site

regions

item

@id = i1

mail

… …

people

person

@id = p1

profile

watch

auctions

auction

@id
= a1

selleritemrefbidder

@item
= i1

@person = p1

@person
= p1address

= “chicago”
@auction = a1

name
= “asia”

description
= “antiques”

name
= “peter”

……

note
= “active”

initial
= $10

date
= “10/ 2”

region

item

@id = i2mail

description
= “antiques”

mail

… …
… …

… …

… …

bidder

……

… …
… …

note
= “active”

Figure 3: Example (partial) database conforming to the schema in Figure 1.

tree. The structural links are represented as solid links be-
tween data nodes in the database tree, with parent node
pointing to child node. The value links in the schema are
implicitly represented when two data nodes have the same
atomic value (e.g., @id=i1 under /site/regions/region
/item and @item=i1 under /site/auctions/auction/
itemref). We assume all the database trees we consider
conform to their associated schemas according to [19].

Schema Summary Ssum : A schema summary (e.g.,
Figure 1 (B)) is modeled as a labeled directed graph, where
the nodes represent abstract elements and the links repre-
sent abstract links between those elements. A schema sum-
mary can not exist alone and is always associated with an
underlying schema, upon which the summary is generated.

Definition 2 (Abstract Element). An abstract el-
ement Ea, in a schema summary Ssum of the schema S, is
a pair 〈er, Ssub〉, where Ssub is called the sub-schema asso-
ciated with Ea, and contains a subset of schema elements
and relationship links in S; and er, one of the elements in
Ssub (not necessarily the root element), is the representative
element of Ssub.

No two abstract elements, Ea
1 and Ea

2 , of Ssum have over-
lapping sub-schemas (i.e., Ea

1 .Ssub and Ea
2 .Ssub do not share

any common schema element).

Intuitively, a schema summary decomposes the original
schema into several non-overlapping sub-schemas, with each
sub-schema represented by one of the abstract elements. For
example, abstract element item represents the sub-schema
Sitem as shown in Figure 4.

There are several things worth mentioning here. First, in
the graphical representation of the schema summary, each
abstract element is shown with only its representative el-
ement, and the sub-schema is “abstracted” away from the
user. Second, we assume a good schema summary has been
generated for the schema in this study. Several heuristic
algorithms for automatic summary generation have been
proposed in [22]. However, in this study, our MSQ query
model does not distinguish between automatic summaries
and summaries that are generated by users based on their
knowledge of the schemas—it utilizes both in the same way.
Third, a schema summary is called a full summary if all of
its elements except the root element are abstract elements.
In this study, we focus on full summaries for the purpose of

regions

item*

@id

mail*

@from

@to
date

name

description

region*

video*
photo*

title URL

URL

title

duration
resolution

URL

@id

mail

mail

text

Figure 4: A sub-schema (Sitem) of the XMark schema in

Figure 1.

query formulation. Abstract elements in the summary are
connected through abstract links, which consolidates all the
relationship links across two abstract elements.

3. SCHEMA-BASED MATCHING
SEMANTICS

In this section, we describe the schema-based matching
semantics for identifying meaningful and relevant data frag-
ments given the labeled keyword search condition. We as-
sume that the user-provided labels are correct, or can be
converted to the correct one through ontology-based nor-
malization [14]. For the rest of this section, we focus on
a sub-schema of the example XMark schema, Sitem (shown
in Figure 4), for simplicity of discussion. We first formally
define Labeled Keyword Condition in Definition 3.

Definition 3 (Labeled Keyword Condition). A
Labeled Keyword Condition C = {(li:vi) | i ∈ [1, k]}, for a
database D with schema S, is a set of pairs, where each pair
contains a label (li), which corresponds to a schema element
label in S, and a value (vi), which corresponds to content
of the schema element in D. We denote the set of labels
{li | i ∈ [1, k]} in C as LC .

Given C, we adopt a schema-based matching semantics to

1013

video

title URL

photo

title URL

item

video photo

URLtitle

(A)

(B)

(C) item

videoURL

title

(D)

(F)region

name item

URL

(E)

description

item

mail photo

titledate @id mail

Figure 5: Potentially meaningful schema patterns: la-

bels in the labeled keyword condition are underlined.

determine which data fragments in the database are matched
to C. This matching semantics is defined in two phases. The
first phase defines the semantics of Meaningful Schema Pat-
terns (MSPs) given the set of labels LC . The second phase
then defines the relevant data fragments given C and the
MSPs obtained in the first phase.

3.1 Meaningful Schema Pattern
We define a schema pattern P as a subgraph of the orig-

inal schema S: i.e., each schema element in P is a schema
element in S and each relationship link in P is a relation-
ship link in S. Definition 4 introduces Meaningful Schema
Pattern (MSP) with the Basic Semantics.

Definition 4 (MSP with Basic Semantics). Given
the schema S and the set of labels LC in C, a schema pattern
P is a Meaningful Schema Pattern (MSP) according to the
Basic Semantics if the following conditions are satisfied.
i. For each l ∈ LC , there exists a schema element e in P ,

such that e.label = l;
ii. For each schema element e or relationship link r in P ,

if e or r is removed from P , then either condition (i) is no
longer satisfied, or P is no longer a connected graph.

The Basic Semantics is, in many aspects, very similar to
those adopted in previous content-based semantics, with the
fundamental difference being that it is defined on schema
graphs instead of data graphs. Condition (i) ensures that
all the labels in C are covered by the MSP, while condi-
tion (ii) ensures that all schema elements in MSP are nec-
essary. As an example, given LC = [title, URL], we can
identify multiple MSPs, several of which are shown in Fig-
ure 5 (A-D), from Sitem (Figure 4) according to the Basic
semantics. Among the MSPs being shown, the Basic se-
mantics successfully identifies patterns (A) and (B) as being
meaningful—they correspond to the video entities and the
photo entities, respectively. However, it also identifies pat-
terns (C) and (D), which are intuitively not as meaningful
as (A) and (B).

Before addressing this problem, we first take a look at
an important feature of schema elements. As mentioned in
Section 2, a schema element can be considered as repeat-
able or non-repeatable, depending on how many data nodes
that correspond to it can share a single parent data node.
Schema element repeatability is in fact a strong indicator

of whether the schema element represent an entity or an
attribute. For example, repeatable elements in Sitem, like
item and mail, correspond to real world item and mail
entities, while non-repeatable elements, like description
and date, correspond to attributes of those entities1. Based
on this observation, we refer to repeatable elements as entity
elements, and non-repeatable elements as attribute elements.
More importantly, we consider any attribute element (a) as
an attribute of its closest ancestor entity element (e), and
we state that a belongs to e. For convenience, we also state
that e belongs to e itself.

Given a schema pattern with a set of elements, there are
two scenarios. First, all the elements belong to the same
entity element (e.g., Figure 5 (A) and (B)), in which case,
the schema pattern is clearly an MSP. Second, the elements
belong to different entity elements, in which case, we con-
sider the schema pattern to be meaningful if and only if
every pair of entity elements in the pattern are meaningfully
related. The question is how do we determine whether two
entity elements are meaningfully related.

Before answering that question, we first examine how two
entity elements can be connected in the schema graph, and
see if the schema structure can again provide us with indica-
tions. There are three basic relationships between two entity
elements. First, the ancestor-descendant (AD) relationship,
where one entity element is a general ancestor (defined in
Definition 1 based on both structural and value links) of the
other. Element pairs (item, mail) and (mail, video) are
such examples. Second, common ancestor sibling (SIB-A)
relationship, where two entity elements share at least one
common general ancestor. Element pair (video, photo) is
one such example. Third, common descendant sibling (SIB-
D) relationship, where two entity elements share at least one
common general descendant. Element pair (mail, video)
has a SIB-D relationship by sharing video/mail as a com-
mon descendant. (Element video/mail is a general de-
scendant of mail according to Definition 1.) We note here
that SIB-D relationships occur only if there are value links
in the schema graph.

We advocate that the AD and SIB-D relationships connect
two entity elements in a meaningful way, while the SIB-A
relationship does not. Intuitively, we observe that informa-
tion regarding an entity always describes (i.e., is relevant
to) its general descendant entities. For example, in Figure 5
(E), the name of a region essentially describes where all
the descendant items of that region are located. In fact,
maintaining attributes at the ancestor can be viewed as an
alternative way of maintaining the same attributes, redun-
dantly, at each descendant. As a result, two entities with
an AD relationship can be considered as meaningfully re-
lated because, essentially, the parent is also describing the
descendant entity. Similarly, two entities with a SIB-D rela-
tionship can be considered as meaningfully related because
both are describing their common descendant entity. The
same argument, however, can not be made for two entity el-
ements with a SIB-A relationship—no single entity is being
described by both elements. Figure 5 (E) and (F) illustrate
examples of schema patterns consisting of entities with AD
and SIB-D relationships, respectively. Particularly in (F),

1This may not always be true, and we do occasionally find
repeatable elements that are more like attributes—they tend
to be at the leaf of the schema hierarchy and repeat very few
times in the database, making them easy to identify.

1014

region

“asia”
item

“ant iques”

contains

contains

(A) region

name

|

“asia”

item

description

|

“antiques”

(B) item

video

resolutionduration

(C)

photo

Figure 6: The Meaningful Query Pattern (A) for Q1,

one of its Meaningful Data Fragments (B), and a data

fragment (C) mistakenly identified as meaningful given

keywords [duration:, resolution:] by content-based se-

mantics.

where LC = [date, title], mail and photo are meaning-
fully related because they share photo/mail as the com-
mon descendant. We now formally introduce the Related-
Entity (RE) Semantics for MSP.

Definition 5 (MSP with Related-Entity Semantics).
Given the schema S and the set of labels LC in C, a schema
pattern P is a Meaningful Schema Pattern (MSP) accord-
ing to the Related-Entity (RE) Semantics if the following
conditions are satisfied.
i. P is considered meaningful under the Basic Semantics.
ii. Any two entity elements, e1 and e2, in P , must be

connected in exactly one of the following two ways:
− e1 (or e2) is a general ancestor of e2 (or e1) in P : AD

relationship;
− both e1 and e2 are general ancestors of a third entity

element e in P : SIB-D relationship.
iii. For each schema element e or relationship link r in

P , if e or r is removed from P , then condition (i) is no
longer satisfied.

Two entity elements may be connected in the original
schema through multiple AD or SIB-D relationships, con-
dition (ii) ensures that each MSP utilizes only one of those
relationships. Condition (iii) ensures that the MSP keeps
track of all the elements and links that make the pattern
meaningful. Based on the RE Semantics, schema pattern
(C) in Figure 5 can now be filtered out. However, schema
pattern (D) still satisfies the RE Semantics. The problem
here is not that pattern (D) is not meaningful by itself, but
that (D) is not as meaningful as (A) or (B) because (D)
properly contains (A) and (B). Formally, we introduce the
Non-Redundant (NR) Semantics to address this issue.

Definition 6 (MSP with Non-Redundant Semantics).
Given the schema S and the set of labels LC in C, a schema
pattern P is a Meaningful Schema Pattern (MSP) accord-
ing to the Non-Redundant (NR) Semantics if the following
conditions are satisfied.
i. P is considered meaningful under the RE Semantics.
ii. There is no other schema pattern P ′, s.t. P ′ satisfies

the RE Semantics for LC , and the set of entity elements in
P ′ is a strict subset of the set of entity elements in P .

The NR Semantics in Definition 6 presents the most re-
strictive and accurate semantics for defining an MSP. Iden-
tified MSPs based on this semantics can then be used, along
with the value terms in C, to identify Meaningful Data Frag-
ments in the second phase, which we will describe next.

3.2 Meaningful Data Fragment

Identifying Meaningful Data Fragments (MDFs) based on
extracted MSPs and the labeled keyword condition C in-
volves two steps. The first step is converting each MSP
into a Meaningful Query Pattern (MQP) by connecting each
schema element in MSP with its corresponding value term
in C (if there is one), through a “contains” link. The second
step is evaluating the resulting MQPs against the database
to retrieve the MDFs. Figure 6 illustrates the MQP for ex-
ample query Q1, and one of the MDFs. The converting step
is relatively straight-forward and we only discuss the issues
involved in the evaluation step.

The key issue in evaluating a MQP is determining the
scope of “contains”. Because of the limited knowledge the
users have about the schema, they can not be expected to
identify the perfect/closest label that should be associated
with each value term. For example, in Q1, the user may not
know that term “antique” appears directly inside the con-
tent of description, and simply associate it with item
instead. If we naively evaluate the query pattern by sim-
ply looking for “antique” within the content of item nodes,
no data fragment will be matched since item nodes have
no content at all. As a result, the search scope of the value
terms must be expanded beyond just the content of the node
with the label. We perform two levels of expansion, all-
attributes and all-subtree. In all-attribute scope expansion,
we search for the value term within the content of all the at-
tributes of the labeled node (i.e., the expansion stops when
entity boundaries are encountered). For example, given
[item:“antiques”], we will search for “antiques” under all
attribute elements of item, namely description, URL,
and @id. In all-subtree scope expansion, we search for the
value term within the entire subtree of the labeled node. For
example, given the same condition, any occurrence of “an-
tiques” under an item node will return a positive match.
All-attribute expansion is more likely to return only rele-
vant data fragments, but may miss certain relevant ones;
while all-subtree expansion will retrieve all relevant data
fragments along with many irrelevant ones.

Definition 7 (Meaningful Data Fragment). Given
the database T , the schema S, and the labeled keyword con-
dition C, a data fragment D is a Meaningful Data Fragment
(MDF) if D is a subtree of T , and:
i. It conforms to at least one MSP that satisfies the Non-

Redundant Semantics given S and C;
ii. For each label/value pair (l:v) ∈ C, there exists an

data node n in D, such that n.label = l, and n contains
v in its own content or the content of one of its attributes
(with all-attribute scope), or one of the data nodes within the
entire subtree rooted at n contains v (with all-subtree scope).

4. MEANINGFUL SUMMARY QUERY
While we are able to achieve high accuracy and perfor-

mance by adopting schema-based semantics to match structure-
free query conditions for relatively simple schemas like Sitem,
directly applying the semantics to more complex schemas
turns out to be very challenging. We briefly discuss the
main problems2 using the XMark schema Ssite and queries
Q2 and Q3 in Figure 1 as examples. We first express Q2
and Q3 as labeled keyword conditions: Q2 = [auction:;

2Those problems are universal to all structure-free query
mechanisms, regardless of the matching semantics (content-
based or schema-based) being adopted.

1015

person:“peter chicago”; item:“antiques”; region:“asia”],
Q3 = [auction:; person:“chicago”].

The first problem is lack of support for complex query se-
mantics. For example, Q2 involves four labels that corre-
spond to elements across the entire schema and connected
through complex join conditions; Q3 involves matching the
label person twice, comparing the identity of both instances,
and an aggregation function. Much of the semantics is lost
when the queries are translated into the structure-free con-
dition. Although this problem is inherent to the structure-
free query model, it is exacerbated by the complexity of the
schema, because the more complex the schema is, the more
likely a user query will involve complex semantics.

The second problem is increased evaluation cost. For ex-
ample, Q2 looks for MSPs that relate auction, person,
item, and region elements. In the schema, auction is
connected to person in three different ways, and item is
connected to person in two different ways. This means
there will be at least six schema patterns to be examined,
and if we adopt the RE Semantics (instead of the NR Se-
mantics), all will have to be evaluated against the database.
The evaluation cost is further affected by redundant schema
element labels (which is more likely to occur in complex
schemas than in simple schemas) because the extra schema
patterns need to be examined. More importantly, one ele-
ment may block the matching of another element with the
same label, and therefore cause relevant data fragments to
be missing from the results. For example, in Ssite, the
label person is used for three different schema elements
(under people, bidder, and seller), each corresponding
to a different concept. Given C = [auction:; person:;
note:“active”] and the XMark database shown in Figure 3,
every matching semantics will match the label person to
the person element under seller or bidder, instead of
the one under people, because the first two are closer to
the auction element, even though matching the label to
the third one is likely to be relevant as well.

All those problems are caused by not allowing the users
to introduce schema knowledge into the query. Structured
query models allow (actually require) “full” schema knowl-
edge in the query, but at a significantly high cost by forcing
the users to study the schema. Relaxed-Structure query
models, on the other hand, let users introduce “guessed”
schema knowledge into the query. When the schema is com-
plex, the guesses are often far from accurate, causing both
the recall and the precision to drop significantly in the re-
sult. To address those problems, we propose the approach
of introducing “partial” schema knowledge into the query,
where the partial schema knowledge is conveyed to the user
in the form of a schema summary [22], which is much easier
to understand than the original schema. By allowing the
users to pose queries against the schema summary and em-
bed structure-free conditions into the query when needed,
this novel query model is powerful as well as user-friendly.

We call this new query model Meaningful Summary Query
(MSQ), and base its syntax on the existing XQuery lan-
guage [20]. Figure 2 illustrates how the example queries in
Figure 1 can be expressed as MSQ queries. As shown in
the examples, the main innovation of the MSQ query model
is that, instead of against the original schema, queries are
formulated against the schema summary without the de-
tailed knowledge of the underlying schema. This simplic-
ity in querying is accomplished through two new language

constructs, Meaningful Fragment (MF) function and Mean-
ingful Relationship (MR) function. The MF function ex-
tracts meaningful data fragments that are within the scope
of the sub-schema associated with the given abstract ele-
ment, and that satisfy the structure-free condition provided
by the user. The MR function, on the other hand, identifies
pairs of meaningful fragments that are connected through
relationship links matching user provided descriptions. We
provide formal definitions of both functions in Sections 4.1
and 4.2, respectively. The basic clauses in the MSQ query
model are briefly described below:

1) The set clause: A set clause of an MSQ query binds
condition symbols (identified by the prefix ‘@’) to Entity-
Matching Conditions (see Definition 8). This clause is pro-
vided mainly for syntactic simplicity.

2) The for/let clauses: Unlike the for/let clauses in XQuery,
which binds variables to specific data nodes in the database,
the for/let clauses in an MSQ query bind variables (identi-
fied by the prefix ‘$’) to meaningful data fragments in the
database as returned by the MF function. We use symbol “.”
in two different ways. First, it is used to express the seman-
tics of “directly reachable in summary” (e.g., the expression
site.item matches the item elements directly connected
with the site element). Second, it is used to connect an
element with the MF function associated with the element
(e.g., item.MF(@c2)).

3) The where clause: The where clauses in an MSQ query
impose additional constraints on the meaningful fragments
represented by the variables. In particular, the Meaningful
Relationship (MR) function filters out fragment pairs that
are not meaningfully related to each other.

4) The return clause: Similar to its counterpart in XQuery,
the return clause in an MSQ query simply specifies the mean-
ingful fragments or sub-fragments to be returned.

4.1 Meaningful Fragment Function
As shown in Figure 2, each MF function in an MSQ query

takes as its argument an Entity-Matching Condition pro-
vided by the user. Intuitively, the semantics of the MF

function is to extract meaningful data fragments that sat-
isfy the Entity-Matching Condition within the scope of the
sub-schema represented by the abstract element. Formally,
we have the following definition.

Definition 8 (Entity-Matching Condition). An
Entity-Matching Condition Ce is defined as a pair 〈e, C〉,
where e, the focus element, can either be unspecified or be
the label of an schema element, and C = {l1:v1, l2:v2, ...} is
a labeled keyword condition.

In an MSQ query, an entity-matching condition is typi-
cally written as e[l1:v1, l2:v2, ...], or simply [l1:v1, l2:v2, ...] if
e is unspecified.

The main difference between an Entity-Matching condi-
tion and a labeled keyword condition is the notion of focus
element, which lets the user express the entity she would like
to focus on when there are multiple entities in the meaning-
ful schema pattern corresponding to the labeled keyword
condition. As an example, consider the meaningful schema
pattern in Figure 5(E), which contains two entity elements,
region and item. The choice of focus entity will affect how
the data fragments are organized. If region is the focus,
then all relevant items of the same region will be grouped
together and there will be one data fragment for each rel-
evant region. However, if item is the focus, then each

1016

relevant item will belong to its own data fragment. Since
the users can not be expected to know the focus element
all the time, it is assigned in the following order: 1) user
provided label; 2) label of the abstract element if an entity
element in the meaningful schema pattern has the same la-
bel; 3) label of the root element in the meaningful schema
pattern. Formally, we have:

Definition 9 (Meaningful Fragment Function).
A Meaningful Fragment function takes two arguments: an
abstract element E in the schema summary and an Entity-
Matching condition Ce. It returns a set of data fragments
from the database, each data fragment in the set is a mean-
ingful data fragment matching the labeled keyword condition
in Ce based on the sub-schema represented by E.

4.2 Meaningful Relationship Function
Any relatively complex query invariably involves relat-

ing multiple entities. In a complex database where there
are multiple value links connecting those entities, identify-
ing the most likely link is a non-trivial task. For example,
Q2 in Figure 1 attempts to retrieve a triple that contains
meaningfully connected auction, item, and person ele-
ments. While there are multiple ways to connect them, only
one connection is likely preferred by the user. Normally,
join is used to identify pairs of related entities. However,
correctly specifying a join requires the user to identify: 1)
which attributes of the two entities should the join use; and
2) the exact schema location of these attributes. In the MSQ
query model, users are shielded from such detailed schema
information, specifying a join in an exact way is therefore
impossible. Instead, the MSQ model adopts MR function
to allow the users specify approximate join conditions. As
shown in Figure 2, each MR function takes two meaning-
ful data fragments and a keyword description, and returns
true if the two fragments are meaningfully related: i.e., the
two fragments are meaningfully connected and the link con-
necting the two fragments satisfies the keyword description.
Similar to our approach in identifying meaningful data frag-
ments, this meaningful relationship between data fragments
can be defined based on meaningful relationships between
schema patterns.

We first define the notion of Property Links of a meaning-
ful schema pattern.

Definition 10 (Property Links of MSP). Given a
Meaningful Schema Pattern P , a value link L is a property
link of P if it involves exactly one attribute element that
belongs to an entity element in P . If L involves two such
attribute elements, it is considered an internal link of P .

For example, the MSP in Figure 5(E) contains the value
link site/auctions/auction/itemref/@item→ site/
regions/region/item/@id as its property link because
@id is an attribute of item. Intuitively, a property link can
be considered as a “meaningful” link that connects the an-
chor element (e.g., item) of its own MSP with the anchor
elements (e.g., auction) of other MSPs. As a result, it
establishes a meaningful path between the anchor elements.
Formally, we define Meaningful Path and MSP with Join
Semantics.

Definition 11 (Meaningful Path). A path between
two anchor entity elements of two MSPs, P1 and P2, is a
Meaningful Path if it contains a value link L such that:

it em

@iddescription
URL

video

URL

duration

mail title

(B)

(C)

person

name @id

address

auction

seller

@person

(A)

Figure 7: (A) Meaningful Schema Pattern with Join

Semantics. (B) and (C) Two Basic Schema Patterns Pitem

and Pvideo.

− L is a property link of both P1 and P2, or
− L is a property link of either P1 or P2, and no other

link L′ satisfy the first condition.

Definition 12 (MSP with Join Semantics). Given
two sub-schemas S1 and S2, two labeled keyword conditions
C1 and C2 on S1 and S2 respectively, and a join keyword
description V . A schema pattern P is a Meaningful Schema
Pattern (MSP) according to the Join Semantics if P can be
divided into two sub-patterns P1 and P2, and:
i. P1 is an MSP given S1 and C1, P2 is an MSP given S2

and C2;
ii. P1 and P2 are joined through a Meaningful Path L;
iii. For each value term v ∈ V , there exist e ∈ L such

that the label of e is similar to v.

Figure 7 illustrates an MSP satisfying the Join Semantics,
where the labeled keyword conditions are [name:, address:]
and [auction:] respectively, and the join keyword descrip-
tion is “sell,” which matches the label seller. There are
many ways to measure the similarity between two labels, and
we currently adopt an edit-distance based approach3. The
MSP in Figure 7 (A) allows us to evaluate the MR func-
tion and identify which pairs of data fragments, one from
person and the other from auction, are meaningfully re-
lated. Formally, we have:

Definition 13 (Meaningful Relationship Function).
A Meaningful Relationship function takes three arguments:
two meaningful data fragments D1 and D2 (satisfying MSPs
P1 and P2 respectively), and a keyword description V . The
function returns true if:

− there is an MSP P that satisfies the Join Semantics
and connects P1 and P2 with meaningful link L;

− D1 and D2 conform to P (i.e., the value link in L is
satisfied between D1 and D2).

The function returns false if no such MSP P exists or D1

and D2 do not conform to P .

5. EVALUATING MEANINGFUL
SUMMARY QUERIES

The adoption of schema-based semantics in the MSQ query
model suggests a novel query evaluation mechanism: an
MSQ query can be converted into multiple structured queries,

3Other approaches include ontology-based similarity detec-
tion, etc.

1017

3 MR

(# 1, # 2, -)

2 MF

(auction, -)

1 MF

(item, @c2)

5 MR

(# 2, # 4, “sell”)

4 MF

(person, @c3)

@c2 = item[region:“asia ”, item:“antiques”]

@c3 = person[name:“peter”, address:“chicago”]

Figure 8: Step 1: Initial Evaluation Plan for Q2.

which can then be evaluated with any traditional query eval-
uation engine. Traditional structure-free query models have
to examine all matching data fragments and filter out the
ones that are not meaningful. Special access methods are
often defined and integrating these into a query pipeline is
a challenge. In contrast, out schema-based semantics allows
us to fetch only meaningful data fragments and integrates
better with the standard database query evaluation pipeline.
In this section, we describe the MSQ query evaluation sys-
tem, which consists of four main components: Schema and
Summary Analyzer, Query Analyzer, Query Rewriter, Query
Evaluator.

5.1 Schema and Summary Analyzer
As described in Section 3.1 and Section 4.2, each MSP

can be considered as a set of meaningfully connected entity
elements, each with its own associated attribute elements.
This association between attribute and entity elements is
fixed regardless of which MSQ query the MSP corresponds
to. We consider each entity element, along with all its asso-
ciated attribute elements, as a Basic Schema Pattern (BSP).
Formally, we have:

Definition 14 (Basic Schema Pattern). A Basic
Schema Pattern (BSP) P of a given schema S is a schema
pattern where: 1) there is only one entity element4 e, called
core element, in P ; 2) all the attribute elements that belong
to e are in P . We denote this BSP as Pe.

Figure 7 (B) illustrates two example BSPs based on the
sub-schema Sitem in Figure 4. The goal of the Schema and
Summary Analyzer is to identify BSPs associated with each
abstract element in the summary. It accomplishes this goal
by identifying each repeatable element in the sub-schema
as a core element for a BSP, and traversing the subtree
rooted at the core element to identify all attribute elements
that belong to the core element and the BSP. A straight-
forward top-down algorithm is adopted and all BSPs for a
sub-schema can be identified in time linear in the number
of schema elements in the sub-schema. The details of the
algorithm are straight-forward and not presented here.

5.2 Query Analyzer
The Query Analyzer parses the user provided MSQ query

and converts it into a query evaluation logical plan based on
the TLC algebra [17]. We adopt this logical representation
for the following reasons. First, an evaluation plan gets rid
of syntactic sugar and is conceptually simpler to transform.

4As mentioned in Section 3, entity elements are elements
that are considered repeatable in S.

Algorithm DetermineMSP:

Input: An Entity-Matching Condition C,
a set B of BSPs associated with the sub-schema S

1. Initialize M = ∅;
2. let E be the (alphabetically) ordered list of labels in C;
3. foreach p ∈ B:
4. Attach label bit array L to p, each bit represents an e ∈ E;
5. foreach e ∈ E:
6. if e ∈ p: p.L[e] = 1; // set the bit representing e

7. if no bit is set in p.L: remove p from B;
8. foreach B ⊆ B:
9. // iterate over all subsets in the order of number of BSPs

10. if ∃p1, p2 ∈ B, s.t. p1, p2 are not AD or SIB-D related:
11. continue; // Related-Entity Semantics
12. if ∃B′ ∈ M , s.t. B′ ⊂ B:
13. continue; // Non-Redundant Semantics
14. initialize label bit array L′;
15. foreach p ∈ B: L′ = L′ | p.L;
16. if all bits are set in L′:
17. add B to M ;
18. foreach m ∈ M : attach values terms in C to m;
Output: M , the set of MSPs from S satisfying C

Figure 9: Algorithm DetermineMSP.

3 MR

(# 9, # 11, -)

5 MR

(# 11, # 9, “sell”)

6 name

= “peter”

7 address

= “chicago”

8 person

10 region

~ “asia”

9 item

~ “antiques”

11 auction

4

2

1

Figure 10: Step 2: Evaluation Plan for Q2 with all MF

nodes substituted. Symbol ∼ represents the “contains”

operator.

Second, the TLC algebra is well studied and its evaluation
plan can be optimized and executed directly in our Timber
system [12]. Figure 8 illustrates the initial evaluation plan
for the example query Q2 in Figure 2. Note here that we
use square boxes to represent non-executable nodes: i.e., the
MF and MR nodes that can not be directly evaluated inside
a query evaluation engine.

5.3 Query Rewriter
An initial plan for an MSQ query always contains some

non-executable nodes, and the goal of the Query Rewriter
is to substitute all such nodes with executable nodes based
on the identified MSP. This rewriting is done in two stages:
substituting MF nodes and substituting MR nodes.

5.3.1 Substituting MF Nodes
To substitute an MF node, we first identify the MSP from

the sub-schema associated with the abstract element, based
on the Entity-Matching Condition provided. This is accom-
plished by Algorithm DetermineMSP shown in Figure 9.
The algorithm iterates through all combinations of BSPs
and retains those combinations that are meaningful accord-
ing to the semantics defined in Section 3.1 and satisfy all the
labels in the condition. For efficiency, we alphabetically sort
the element labels in the condition, and adopt a bit array
data structure to indicate the presence and absence of an
element label.

After an MSP is identified, we replace the MF node in the
initial plan with an evaluation plan that corresponds to the

1018

Algorithm DetermineJoinMSP:

Input: Two MSPs, M1 and M2, and a join description V

1. Initialize M = ∅, foundClose = false;
2. foreach property link l of M1:
3. let e1 ∈ M1 be the entity element for l;
4. if l is also a property link of M2:
5. let e2 ∈ M2 be the entity element for l;
6. if the path between e1 and e2 matches V :
7. Construct MSP m from M1, M2, l; add m to M ;
8. foundClose = true;
9. if foundClose: return

10. foreach property link l of M1: // vice versa for M2

11. let B be the BSP, whose core element is not in M1,
12. with l as its property link;
13. remove keywords that are already matched in M1 from V ;
14. M ′ = DetermineJoinMSP(B, M2, V);
15. foreach MSP m′ ∈ M ′:
16. Construct MSP m from M1, m′, l; add m to M ;
Output: M , the set of Join MSPs from S

Figure 11: Algorithm DetermineJoinMSP.

6 name

= “peter”

7 address

= “chicago”

8 person

10 region

~ “asia”

9 item

~ “antiques”

11 auction

13 itemref

12 @item

15 Join

(# 12 = # 14)

14 @id

17 seller

16 @person # 18 @id

19 Join

(# 16 = # 18)

3 # 5

Figure 12: Step 3: Evaluation Plan for Q2 with all MR

nodes substituted.

identified MSP. If there are multiple such MSPs, multiple
evaluation plans are generated accordingly. Figure 10 shows
the evaluation plan for Q2 after all MF nodes have been
substituted.

5.3.2 Substituting MR Nodes
To substitute an MR node, we need to identify MSPs

based on the Join Semantics as defined in Definition 12.
Figure 11 illustrates the DetermineJoinMSP algorithm that
accomplishes this task. Intuitively, the algorithm first tries
to discover any property link that is shared by the two MSPs
(lines 2-9). If unsuccessful, the algorithm continues on to
discover links that are property links of only one of the two
MSPs in a recursive way (lines 10-16).

Based on the identified Join MSP, we can replace the MR

nodes in the evaluation plan with appropriate value joins,
as shown in Figure 12. After this step, we have obtained
the final evaluation plan corresponding to the user provided
MSQ query.

5.4 Query Evaluator
The Query Evaluator component evaluates the final query

plan after the rewriting. Because the final query plan is
a regular structured query, the Query Evaluator can be
any database engine with keyword search capability (for the
“contains” operator). In our system, we use the Timber
Native XML DBMS as the Query Evaluator and users are
referred to [12] for more details.

6. EXPERIMENTAL EVALUATION
We evaluate our MSQ query evaluation system based on

XMark MiMI
schema elements 327 289

summary elements 10 10
simple queries 14 36

complex queries 6 16

Table 1: Dataset statistics.

Simple ComplexA
ve

ra
ge

 H
um

an
 C

os
t o

f Q
ue

ry
 C

on
st

ru
ct

io
n

0

5

10

15

20

XQUERY

SUMMARY

MSQ

SFX

Figure 13: Human Cost of Query Construction: average

number of extra schema elements visited.

three aspects: human cost, result quality, and performance.
We show that adopting the MSQ query model to query com-
plex databases can reduce the human cost of query construc-
tion when compared against structured query models, while
increasing the result quality and significantly reducing the
query evaluation cost when compared against other alter-
native query models, namely simple keyword searches and
Schema-Free XQuery.

The statistics of the two datasets used in the experiments,
XMark and MiMI, are shown in Table 1. XMark [18] is
a synthetic XML benchmark dataset about auctions, while
MiMI [13] is a real world scientific dataset on protein inter-
action information. The summaries we use for both datasets
are generated based on the methods described in [22]. (Our
approach, however, are not limited to automatically gener-
ated summaries.) We divide the queries for each dataset
into two categories: simple queries, where each query in-
volves only one entity element, and complex queries, where
each query involves more than one entity element. For
example, in Figure 2, Q1 is a simple query, while both
Q2 and Q3 are complex queries. We compare our MSQ
query evaluation mechanism against the following four al-
ternative query mechanisms: XQuery through schema ex-
ploration (XQUERY), XQuery with schema summary sup-
port (SUMMARY), Schema-Free XQuery [15] (SFX), and
XSEarch [9] for labeled keyword search (XSEarch). The
queries generated through XQUERY and SUMMARY are
the same (i.e., standard XQueries)—the difference is that
less human effort is required for the latter. We generate
all other queries (i.e., MSQ queries, Schema-Free XQueries,
and labeled keyword queries) using a systematic approach.
In particular, labels and values for each query are extracted
according to the structured query in the dataset (i.e., tag
names translate to labels, keyword conditions translate to
values). For MSQ, one entity-matching condition is created
for all entity elements covered by the same summary ele-
ment to form an MF construct, and multiple MF constructs
are connected via MR constructs. For SFX, one MLCAS
condition is created for all entity elements within a single
ancestor descendant hierarchy, and multiple MLCAS condi-
tions are connected through explicit value joins. The XMark
database is constructed with scale factor 1.

Human Cost of Query Construction: We calculate

1019

Simple/Prec. Simple/Recall Complex/Prec. Complex/Recall

A
ve

ra
ge

 P
re

ci
si

on
/R

ec
al

l

30

40

50

60

70

80

90

100

MSQ

SFX

XSEarch

Figure 14: Result Quality: average precision and recall.

XQUERY/SUMMARY MSQ SFX XSEarch

Q
ue

ry
 E

va
lu

at
io

n
C

os
t (

s)

0

5

10

15

20

25

30

time

Figure 15: Average Query Evaluation Cost (s).

the human cost of query in the same way as in [22]: the
cost of query construction is the number of extra schema
elements a user needs to visit in order to locate all the nec-
essary schema elements5. For XSEarch, the human cost is
always zero since the user does not need to locate the schema
elements. As shown in Figure 13, for simple queries, all
alternative query mechanisms can significantly reduce the
human cost of query construction. SFX even achieves zero
human cost because it behaves just like XSEarch for those
simple queries. For complex queries, however, both SUM-
MARY, which needs to explore multiple sub-schemas, and
SFX, which needs to locate necessary join attributes in the
schema, can incur significant human cost. Only MSQ can
still maintain over 70% savings on the human cost.

Result Quality: We evaluate the result quality in terms
of precision and recall. For each query, the standard set
of results are obtained by evaluating the XQuery on the
database, and the number of results (say N) is noted. For
alternative query mechanisms that do not generate XQuery
(i.e., MSQ, SFX, and XSEarch), we retrieve up to N re-
sults, and calculate the precision and recall based on those
results. (Alternative mechanisms in fact return N results for
most queries, and as a result, the precision and recall num-
bers coincide.) The result is shown in Figure 14 (note that
XQUERY and SUMMARY always achieve 100% precision
and recall and are therefore omitted from the comparison).
Again, SFX and XSEarch achieve quite good result quality
when the queries are simple. While both MSQ and SFX
maintain reasonably good result quality when dealing with
complex queries, the quality of XSEarch results drops sig-
nificantly. This confirms our intuition that pure keyword
search can not handle queries with complex semantics.

Query Evaluation Cost: Finally, we examine the time

5In reality, we also need to account for cost associated with
designing the query logic, which we ignore in this study.

cost to evaluate the same query using different query mech-
anisms. To achieve maximum performance, various indices
are built on the database (including inverted index, tagname
index, join index, etc.). As shown in Figure 15, evaluating
an MSQ query incurs, on average, very little overhead com-
pared with evaluating the standard XQuery. This limited
overhead is mostly associated with the query rewriting and
the need to executed multiple queries when an MSQ query is
translated into multiple XQueries. SFX and XSEarch, how-
ever, incur significant overhead because they can not utilize
the standard query evaluation engine and have to examine
many non-meaningful data fragments.

7. DISCUSSION AND RELATED WORK
Our work is built upon many previously proposed structure-

free query mechanisms [1, 2, 11, 10, 7, 21, 9, 15, 16] and
relaxed query mechanisms [3, 15, 6, 4, 5] for both relational
and XML databases. However, to the best of our knowledge,
schema-based matching semantics for structure-free query
mechanism is a novel concept first described here. A closely
related work is [8], in which the authors proposed the inter-
connection semantics using query patterns. Although they
do not leverage schema information (e.g., element repeata-
bility) directly, those query patterns resemble the schema
patterns described in this paper.

Advantages of schema-based semantics: Comparing
with content-based matching semantics employed by pre-
vious query mechanisms like BANKS [1] and XRANK [10],
schema-based matching semantics has two main advantages.
First, it promises to identify data fragments that are fun-
damentally meaningful instead of being incidentally mean-
ingful due to missing data nodes or poor choice of keywords
by the users. For example, a query with keyword condition
[resolution:, duration:] on the database conforming
to the schema in Figure 4 will erroneously consider data
fragments connecting item, video, photo as meaning-
ful, as shown in Figure 6 (C). This is due to the fact that
no content-based semantics understands that video and
photo are unrelated entities. The lack of duration un-
der photo and the lack of resolution under video lead
most content-based semantics to believe that both are at-
tributes of item. Second, as shown in our experimental
evaluation, schema-based matching semantics allows more
efficient detection of meaningful data fragments: instead of
scanning the database, (a set of) structured queries can be
generated and only data fragments that are meaningful are
fetched and examined for their relevance.

Ranking extension: While result ranking is not the fo-
cus of this paper, we briefly describe here how ranking can
be introduced into the process. There are several ranking
opportunities. First, the RE Semantics and NR Semantics
can be too restrictive—some schema patterns satisfying RE
Semantics may still be relevant even if they do not satisfy the
NR Semantics, and some schema patterns may be relevant
even they do not satisfy the RE Semantics. For example,
if two sibling entity elements share the same parent, and
both have very low cardinality in the database, they might
be considered closely related to each other. Second, even
when multiple meaningful schema patterns satisfy the same
semantics (NR or RE), they can be of different sizes (i.e.,
containing different numbers of elements) and therefore have
different cohesiveness. Third, evaluation of the “contains”
operator in the meaningful query pattern allows many in-

1020

formation retrieval style ranking mechanisms to be adopted.
We note here that any data fragment returned is a result of
being both meaningful and relevant. The first two ranking
opportunities mentioned above rank the “meaningful-ness”
of the data fragments while the last one ranks their rele-
vance. How to integrate these two aspects is an interesting
research issue that we will explore in the future.

Keyword conditions: In this study, we adopt labeled
keyword, instead of simple keyword, search condition for
several reasons. First, several previous studies [9, 15] have
shown that queries separating labels and values generally
produce better result precision, which is more desired in
database query tasks. Second, the labeled keyword condi-
tion enables a richer query semantics without introducing
too much complexity into the query. Third, the labels in
the condition enable our schema-based matching semantics.
When the users can not separate labels and values, it is nec-
essary to design methods for converting a simple keyword
condition into a labeled keyword condition. This is an in-
teresting problem, but beyond the scope of this paper.

Independence from summary generation: The util-
ity of our MSQ query model relies heavily on the quality of
schema summaries. However, it is not tied to any partic-
ular summary generation mechanism. A schema summary
can either be generated automatically according to [22] or
be generated by a human user. Furthermore, in the case
where users are interested in only a portion of the database,
a summary can even be generated for that particular part of
the schema only. As a result, different users may prefer dif-
ferent schema summaries on which they will be posing their
MSQ queries. Deciding which summary or summaries are
the best for a particular group of users will be an interesting
research problem.

User semantics: The user semantics of the MSQ query
model is the same as Schema-Free XQuery [15] and FleX-
Path [6]: users get back a set of data fragments, which are
extracted from the database based on a set of (labeled) key-
words, and those data fragments satisfy additional structure
conditions as specified in the rest of the MSQ query. As a re-
sult, we expect traditional users of both keyword search and
structured search to find the MSQ query model appealing.
For the former, they can impose a little bit more constraints
in their queries to improve the result precision; for the lat-
ter, they can be fuzzy about some of the constraints while
still maintaining high result quality.

Other Related Work: Generating good schema sum-
maries is the topic of [22], in which we studied what defines a
good schema summary and how to efficiently generate good
schema summaries. Another interesting study in [14] de-
scribes a natural language interface for database querying.
The authors in that study translate an NLP query into a
Schema-Free XQuery [15], which is then executed by the
underlying database engine. We note here that an NLP
query can similarly be translated into an MSQ query, and
take advantages of the many benefits the MSQ query model
has over Schema-Free XQuery.

8. CONCLUSION
Correctly generating a complex structured query against a

complex database is a daunting task, and current structure-
free query mechanisms are inadequate in either result qual-
ity or query performance. We introduce various schema-
based matching semantics and a novel summary-based query

model, called Meaningful Summary Query (MSQ), to ad-
dress those inadequacies. We show that MSQ queries, cou-
pled with schema-based matching semantics, can be evalu-
ated much more efficiently when compared with structure-
free queries, and can achieve almost the same result quality
as structured queries. Furthermore, the MSQ query model
enables ordinary users to query on schema summary di-
rectly, without knowing the details of the underlying com-
plex schema, thereby saving significant human cost of query
construction, as demonstrated in our experimental results.

9. REFERENCES
[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri,

C. Nakhe, and P. Sudarshan. BANKS: Browsing and
Keyword Searching in Relational Databases. In VLDB,
2002.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
System for Keyword-Based Search over Relational
Databases. In ICDE, 2002.

[3] S. Al-Khalifa, C. Yu, and H. V. Jagadish. Querying
Structured Text in an XML Database. In SIGMOD, 2003.

[4] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.
TeXQuery: A Full-Text Search Extension to XQuery. In
WWW, 2004.

[5] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and
D. Toman. Structure and Content Scoring for XML. In
VLDB, 2005.

[6] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.
FleXPath: Flexible Structure and Full-Text Querying for
XML. In SIGMOD, 2004.

[7] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
ObjectRank: Authority-Based Keyword Search in
Databases. In VLDB, 2004.

[8] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv.
Interconnection Semantics for Keyword Search in XML. In
CIKM, 2005.

[9] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A
Semantic Search Engine for XML. In VLDB, 2003.

[10] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents.
In SIGMOD, 2003.

[11] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. In VLDB, 2002.

[12] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
TIMBER: A Native XML Database. The VLDB Journal,
11:274–291, 2002.

[13] M. Jayapandian, A. Chapman, V. G. Tarcea, C. Yu,
A. Elkiss, A. Ianni, B. Liu, A. Nandi, C. Santos,
P. Andrews, B. Athey, D. States, and H. Jagadish.
Michigan Molecular Interactions (MiMI): Putting the
Jigsaw Puzzle Together. Nucl. Acids Res., 34, 2006.

[14] Y. Li, H. Yang, and H. V. Jagadish. Constructing a Generic
Natural Language Interface for an XML Database. In
EDBT, 2006.

[15] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In
VLDB, 2004.

[16] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava.
Adaptive Processing of Top-k Queries in XML. In ICDE,
2005.

[17] S. Paparizos, Y. Wu, L. V. Lakshmanan, and H. Jagadish.
Tree Logical Classes for Efficient Evaluation of XQuery. In
SIGMOD, 2004.

[18] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project, 2001.

[19] W3C. XML Schema.
http://www.w3.org/TR/xmlschema-0/.

[20] W3C. XQuery 1.0: An XML Query Language.

[21] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search
for Smallest LCAs in XML Databases. In SIGMOD, 2005.

[22] C. Yu and H. V. Jagadish. Schema Summarization. In
VLDB, 2006.

1021

