
CellSort: High Performance Sorting on the Cell Processor

Buğra Gedik

bgedik@us.ibm.com

Rajesh R. Bordawekar

bordaw@us.ibm.com

Philip S. Yu

psyu@us.ibm.com

Thomas J. Watson Research Center, IBM Research, Hawthorne, NY 10532

ABSTRACT

In this paper we describe the design and implementation of
CellSort − a high performance distributed sort algorithm
for the Cell processor. We design CellSort as a distributed
bitonic merge with a data-parallel bitonic sorting kernel. In
order to best exploit the architecture of the Cell processor
and make use of all available forms of parallelism to achieve
good scalability, we structure CellSort as a three-tiered
sort. The first tier is a SIMD (single-instruction multiple
data) optimized bitonic sort, which sorts up to 128KB of
items that cat fit into one SPE’s (a co-processor on Cell) lo-
cal store. We design a comprehensive SIMDization scheme
that employs data parallelism even for the most fine-grained
steps of the bitonic sorting kernel. Our results show that,
SIMDized bitonic sorting kernel is vastly superior to other
alternatives on the SPE and performs up to 1.7 times faster
compared to quick sort on 3.2GHz Intel Xeon. The second
tier is an in-core bitonic merge optimized for cross-SPE data
transfers via asynchronous DMAs, and sorts enough num-
ber of items that can fit into the cumulative space available
on the local stores of the participating SPEs. We design
data transfer and synchronization patters that minimize se-
rial sections of the code by taking advantage of the high
aggregate cross-SPE bandwidth available on Cell. Results
show that, in-core bitonic sort scales well on the Cell proces-
sor with increasing number of SPEs, and performs up to 10
times faster with 16 SPEs compared to parallel quick sort
on dual-3.2GHz Intel Xeon. The third tier is an out-of-core1

bitonic merge which sorts large number of items stored in
the main memory. Results show that, when properly imple-
mented, distributed out-of-core bitonic sort on Cell can sig-
nificantly outperform the asymptotically (average case) su-
perior quick sort for large number of memory resident items
(up to 4 times faster when sorting 0.5GB of data with 16
SPEs, compared to dual-3.2GHz Intel Xeon).

1
The term “out-of-core” does not imply a disk-based sort in the con-

text of this paper. However, relation to external sorting is strong (see
Sections 2 and 3 for details).

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1. INTRODUCTION
Sorting is, unquestionably, one of the most fundamental

operations in computer science [16]. It has important uses in
large-scale data intensive applications in many fields, rang-
ing from databases [9] to computer graphics [22] to scientific
computing. With the ever increasing main memory sizes and
the current trend in computer architecture towards multi-
core processors, the importance of main memory-based high-
performance parallel and distributed sorting has become
more prominent. In this paper, we describe how large num-
ber of memory resident items can be sorted using distributed
bitonic sort on Cell − a heterogeneous multi-core proces-
sor [12]. Main memory-based sorting on Cell is particularly
interesting from the perspective of traditional external sort-
ing, since the co-processors on Cell are not connected to the
main memory via a cache hierarchy, but instead use DMAs
to transfer blocks of data to/from the main memory.

Originally designed for gaming consoles, the Cell proces-
sor has created significant interest in scientific and commer-
cial domains. High-end Cell blade servers for general com-
puting are commercially available [17], and research on port-
ing various algorithms to this unconventional, yet extremely
powerful processor are under way in many application do-
mains [2, 4, 21, 26].

There exists a large body of prior work on sorting for a
variety of distributed and parallel computers. However, the
unique properties of the Cell processor, and heterogeneous
multi-core architectures in general, necessitate revisiting this
fundamental problem once again. A heterogeneous multi-
core architecture is often characterized by a main process-
ing element accompanied by a number of co-processors. For
instance, the Cell processor consists of the PPE (PowerPC
Processing Element) which serves as the main processing
element, and the eight SPEs (Synergistic Processing Ele-
ments) which are the co-processors providing the bulk of the
processing power. SPEs are pure SIMD (single-instruction,
multiple data) processors. Furthermore, SPEs do not have
conventional caches, but instead are equipped with local
stores, where the transfers between the main memory and
the local stores are managed explicitly by the application
software. This is a common characteristic of heterogeneous
multi-core processors, such as network processors [13].

In this paper, we describe the design and implementation
of CellSort − a high performance sorting algorithm for
the Cell processor. An implementation of CellSort will
appear in the upcoming version 3.0 of the Cell Broadband
Engine SDK, with its source code publicly available on IBM
developerWorks. CellSort is based on distributed bitonic

1286

SPE 0

(Synergistic

Processing

Element)

SPE 1 SPE 2 SPE 3

SPE4

SPE5 SPE6 SPE7

 Element Interconnect Bus (EIB)

PPE (PowerPC

Processing

Element)

Memory Interface

Controller (MIC)

IO Interface

Controllers

25.6GB/s

L1 L2

Local Store

25.6GB/s

25.6GB/s

25.6GB/s

25.6GB/s

25.6GB/s 25.6GB/s 25.6GB/s

25.6GB/s 25.6GB/s 25.6GB/s 25.6GB/s

Dual-XDR

memory

BIF & IO

25GB/s35GB/s

25.6GB/s

DMA Cont.

256KB

512KB
32KB

Dual-threaded, VMX

Dual-pipeline, SIMD

Figure 1: Architecture of the Cell processor

merge with a SIMDized bitonic sorting kernel. It can be used
as a module to support large-scale disk-based sorts, although
we do not investigate this perspective of the problem here.
There are two major challenges in crafting an efficient dis-
tributed sort for the Cell processor. First, the local sorting
kernel has to be carefully selected and optimized. Most of
the comparison-based sorts involve unpredictable branches
and are not suitable for SIMD-only processors like the SPEs
on Cell. Second, the data transfers performed during in-core
and out-of-core sorts (see Section 3 for definitions) should be
carefully designed to minimize synchronization overhead and
should take advantage of the asynchronous DMA capability
to hide the memory transfer delays as much as possible.

Our results reported in this paper show that:

(i) SIMDization of local sorts is crucial to achieving high
performance. When properly optimized, SIMDized
bitonic sort kernels are significantly superior to quick
sort kernels (which are not easily SIMDized) for the
local sorts on the SPEs. Interestingly, the same ar-
gument does not hold for SSE-enhanced bitonic sort
on Intel Xeon processors (not pure SIMD processors,
unlike the SPEs).

(ii) Distributed in-core sort has little communication over-
head. This is due to our effective design of the data
transfer and SPE synchronization patterns, use of asyn-
chronous DMAs to hide data transfer delays, and the
large aggregate bandwidth available for cross-SPE com-
munication. Compared to parallel quick sort on a dual-
core 3.2Ghz Intel Xeon processor, in-core bitonic sort
using 16 SPEs can sort floats up to 10 times faster.

(iii) The relative advantage of bitonic sort on the Cell pro-
cessor decreases as we go out-of-core and sort larger
number of items. The sort becomes memory I/O bound
due to smaller bandwidth available for accessing the
main memory, compared to cross-SPE bandwidth. Yet,
16 SPEs can sort 0.5GB of floats up to 4 times faster
compared to parallel quick sort on a dual-core 3.2Ghz
Intel Xeon processor.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the Cell processor. Section 3 de-
scribes the basics of sorting on Cell. Sections 4.1, 4.2, and 4.3
describe local, in-core, and out-of-core bitonic sort, respec-
tively. Section 5 gives the communication and computation
complexity of out-of-core bitonic sort. Experimental results
are presented in Section 6. Section 7 presents the related
work and we conclude the paper in Section 8.

2. CELL PROCESSOR
The Cell processor is a 64-bit single-chip multiprocessor

with 9 processing elements − 1 general purpose process-
ing element called PPE and 8 special purpose co-processors
called SPEs. Each SPE is a 128-bit RISC processor spe-
cialized for data-rich, compute-intensive applications. Since
SPEs are pure SIMD processors, high application perfor-
mance is strongly tied to heavy use of vectorized operations.

Each SPE has full access to coherent shared memory.
However, an important difference between the SPEs and the
PPE is how they access the main memory. Unlike the PPE,
which is connected to the main memory through two level
of caches, SPEs access the main memory with direct mem-
ory access (DMA) commands. Instead of caches, each SPE
has a 256KB private local store. The local stores are used to
hold both instructions and data. The load and store instruc-
tions on the SPE go between the register file and the local
store. Transfers between the main memory and the local
store, as well as the transfers between different local stores,
are performed through asynchronous DMA transfers. This
is a radical design compared to conventional architectures
and programming models, because it explicitly parallelizes
the computation and transfer of data. On the down side, it
is programmers’ task to manage such transfers and take ad-
vantage of the high aggregate bandwidth made available by
the Cell architecture, especially for cross-SPE transfers [15].

Besides data parallelism from rich set of SIMD instruc-
tions, SPEs also provide instruction-level parallelism in the
form of dual pipelines. Reducing the dependencies among
instructions within sequential code blocks can improve ap-
plication performance by utilizing these dual-pipelines.

Another important architectural constraint is the lack of
branch prediction hardware on the SPEs. Hence, SPE appli-
cations should avoid using conditionals as much as possible
to keep the pipeline utilization high. Figure 1 gives a basic
view of the Cell processor.

3. SORTING ON CELL: THE BASICS
Any sorting algorithm designed to run on the Cell pro-

cessor using multiple SPEs needs to satisfy the following
constraints of the Cell architecture: (i) distributed pro-
gramming model, (ii) limited local memory per SPE, (iii)
higher bandwidth for transfers across local memories, com-
pared to transfers to/from the main memory, and (iv) data-
parallelism via SIMD instructions.

Therefore, sorting on Cell calls for a three-tiered approach.
Figure 2 presents an outline of the complete algorithm. At
the innermost first tier, one needs a sorting kernel that is
effective for sorting items that are local to an SPE. We refer
to this as the single-SPE local sort. Since the Cell processor
provides higher bandwidth for cross-SPE memory transfers
compared to the bandwidth available for main memory ac-
cess, the second tier is optimized for distributed sorting of
items that are stored in the local stores of the participat-
ing SPEs. This is called distributed in-core sort. All of the
data transfers during an in-core sort are between the SPEs
or within an SPE. The term “in-core” refers to the set of
SPEs connected by the EIB bus (see Figure 1). When the
set of items to be sorted does not fit into the collective space
provided by the local stores of the SPEs, the sort has to be
taken “out-of-core”, which involves moving data back-and-
forth between the local stores and the main memory. We

1287

Sort(m) Sort(m) Sort(m) Sort(m)

0 1 2 P−1

O(L) Memory Accesses

Main Memory

Sort(N), where N=L.P.m

Sort(P.m)

3
:D
is
tr
ib
u
te
d
 O
u
t−
o
f−
co
re
 S
o
rt

1
:L
o
ca
l
S
o
rt

2
:D
is
tr
ib
u
te
d
 I
n
−
co
re
 S
o
rt

Figure 2: Three-tiered distributed sort on Cell, us-
ing bitonic merge.

call this distributed out-of-core sort. The distributed out-
of-core sort makes use of the distributed in-core sort, which
in turn makes use of the local sort. CellSort is based on
distributed bitonic merge with a SIMDized bitonic sorting
kernel. The distributed bitonic merge is used both for the
in-core and out-of-core tiers and is itself SIMDized.

Let N be the total number of items to be sorted using P
processors. Let m denote the size of items that each pro-
cessor can sort in its local memory using the local sorting
kernel. Hence, P ·m is the maximum number of items that
can be sorted in-core. Finally, L = N

(P ·m)
determines the

number of memory runs for an out-of-core sort. Let CU (m)
be the computational cost of sorting m items using a sort-
ing kernel U . Then the total cost of sorting N items over
P processors using the sorting kernel U and a distributed
bitonic merge is (L · P) · CU (m) + O(N

P
· lg N · lg (L · P)).

In this paper, we experimentally demonstrate that the pro-
posed algorithm scales very well as the number of processors
is increased. Our implementation assumes that N , m, and
P are powers of 2.

4. SORTING ON CELL: THE ALGORITHMS
In this section, we describe basic bitonic sort, local sort

with SIMDized bitonic kernel, distributed in-core sort, and
distributed out-of-core sort, respectively.

4.1 Single-SPE Local Sort
Local sort is one of the most performance critical parts of

the full-scale out-of-core sort on the Cell processor. Differ-
ent sorting kernels can be used to perform the local sorts.
The choice of the sorting kernel should take into account
the properties of the SPEs. Sorting algorithms with heavy
branching, recursion, and non-contiguous memory access
patterns should be avoided. The latter is especially im-
portant, since SIMD acceleration can be effectively lever-
aged only if the sorting algorithm performs same operations
on items within a contiguous memory block successively.
Despite its non-optimal asymptotic complexity, bitonic sort
lends itself to an efficient implementation on the SPE, by
virtue of its many desirable properties, meeting all the re-
quirements we have listed so far. We will first describe a
basic version of the bitonic sort and then give details on
how bitonic sort can be optimized using SIMD instructions.

4.1.1 Power-of-two Bitonic Sort

Here we will describe bitonic sort from a procedural point
of view. The theoretical basis of bitonic sort can be found

 4 3 6 5 2 7 8 9

 3 4 6 5 2 7 9 8

 3 4 6 5 9 8 2 7

 3 4 5 6 9 8 7 2

 3 4 5 2 9 8 7 6

 3 2 5 4 7 6 9 8

 2 3 4 5 6 7 8 9

p
h

as
e

1

2
-m

er
g

e

p
h

as
e

2

4
-m

er
g

e

p
h

as
e

3

8
-m

er
g

e

1-2-swap

2-4-swap

1-4-swap

4-8-swap

2-8-swap

1-8-swap

1-sorted list

2-sorted list

4-sorted list

8-sorted list

Figure 3: Bitonic sort of 8 values

elsewhere [3]. We assume that the number of items to be
sorted, m, is an exact power of 2.

Bitonic sort makes use of a key procedure called bitonic

merge. Given two equal length lists of items, sorted in op-
posing directions, the bitonic merge procedure will create a
combined list of sorted items. Bitonic sort makes use of suc-
cessive bitonic merges to fully sort a given list of items. Con-
cretely, bitonic sort involves lg m phases, where each phase
consists of a series of bitonic merge procedures. The first
phase merges each even-indexed item (index starts from 0)
with the item immediately following it, in alternating direc-
tions. This produces a list where consecutive 2-item blocks
are sorted, in alternating directions. Similarly, the second
phase of bitonic sort involves merging each even-indexed 2-
item block with the 2-item block immediately following it,
producing a list where consecutive 4-item blocks are sorted
in alternating directions. The sort continuous in this manner
until the list of items is fully sorted in ascending order after
the lg m th phase. Following the ith phase (i ∈ [1.. lg m]), we
have a list where consecutive k-item blocks, where k = 2i,
are sorted. All even indexed k-item blocks are sorted in as-
cending order, whereas all odd indexed ones are sorted in
descending order. We call this list a k-sorted list. We refer
to the ith phase of bitonic sort as the k-merge phase, where
k = 2i and a k-sorted list is generated.

Illustration of k-merge phases: Figure 3 gives an illus-
tration of bitonic sort for m = 8. For now we will only focus
on the status of the 8-item list after the k-merge phases
(lists below dashed horizontal phase separators). The dark
shades in the figure represent the blocks sorted in ascend-
ing order, whereas light shades represent blocks sorted in
descending order. Note that there are lg m = 3 phases of
the sort, namely a 2-merge phase to yield a 2-sorted list, a
4-merge phase to yield a 4-sorted list, and an 8-merge phase
to yield the final sorted list.

We now describe the details of k-merge phases. A k-merge
phase involves lg k number of steps that perform compare-

and-swap operations. We first describe these steps in the
context of the first k-items, i.e. a bitonic merge of two
sorted (in opposite directions) lists of size k/2 each. The first
step involves performing compare-and-swaps of consecutive
k/2-item blocks. The second sub-step involves performing
compare-and-swaps of consecutive k/4-item blocks, and so
on. In summary, the ith step involves performing compare-
and-swaps of consecutive j-item blocks, where j = k/2i.
Note that we have j = 1 for the last step (i = lg k) and thus
perform compare-and-swap of each even-indexed item with
the item immediately following it. Compare-and-swap of

1288

Algorithm 1: Power-of-two bitonic sort. Note: bw-xor
and bw-and represent bitwise-and and bitwise-xor
bitonic sort(data, m)
(1) for k = 2 to k ≤ m step k ← 2 · k {k-merge phases}
(2) for j = k/2 to j > 0 step j ← j/2 {j-k-swap steps}
(3) for i = 0 to i < m step i← i+1 {compare-and-swaps}
(4) l← i bw-xor j {index of item from odd j-block}
(5) if l < i then i = i + j − 1 {skip odd j-block}
(6) else {perform compare-and-swap of items}
(7) if (i bw-and k = 0) and (data[i] > data[l])
(8) swap(data[i], data[l]) {even k-block}
(9) if (i bw-and k 6= 0) and (data[i] < data[l])
(10) swap(data[i], data[l]) {odd k-block}

two j-item blocks involve comparing individual items from
the first block with their corresponding items in the sec-
ond block and performing a swap if the item from the first
block is larger than the item from the second block. For
instance, performing compare-and-swap on the lists A1 =
[6, 5, 7, 1] and A2 = [3, 9, 2, 4] yields A1 = [3, 5, 2, 1] and
A2 = [6, 9, 7, 4].

Now, consider the ith step of the k-merge in the context of
the complete list (not for the first k-items). The same pro-
cedures described for the first k-items are repeated for every
k-item block, but with alternating compare-and-swap direc-
tions to result in alternating orders. That is, we perform
compare-and-swap of consecutive j-item blocks (j = k/2i)
for the whole list, but alternate the compare-and-swap di-
rection after every k-item block. In other words, while per-
forming the j-item compare-and-swaps within an even in-
dexed k-block we perform swaps iff the items from the first
j-blocks are larger, whereas within an odd indexed k-item
block we perform swaps iff the items from the first j-blocks
are smaller. We refer to the ith step of the k-merge as the
j-k-swap step where j = k/2i.

Illustration of j-k-swap sub-steps: Let us go back to
Figure 3 and examine the j-k-swap steps of the k-merge
phases. The arrows in the figure represent the compare-
and-swaps performed between j-item blocks, including the
direction of the compare-and-swap. Note that the compare-
and-swaps performed as part of the k-j-swap steps for a
k-merge phase have a single direction within each k-item
block, which alternates after each k-item block. For in-
stance, during the 4-merge phase (phase 2 in the figure) all
compare-and-swaps performed within the first 4-item block
are ascending, whereas they are descending for the second
4-item block.

When m is a power of 2, bitonic sort lends itself to a very
straight-forward non-recursive implementation based on the
above description. We provide the pseudo code of bitonic
sort in Algorithm 1. Note that, bitonic sort is an in-place
sort. Its computational complexity is easy to derive, since
the number of operations performed is independent of the
values of the sorted items. As a result, bitonic sort has equal
worst, best, and average case asymptotic complexities. For
m items, bitonic sort involves lg2 m phases. The ith phase,
which is a k-merge (k = 2i), involves i = lg k steps. Each
step is a j-k-swap with Θ(m) complexity. As a result, the

complexity of bitonic sort is (
Plg m

i=1 i) ·Θ(m) = Θ(m · lg2 m).
Even though basic bitonic sort is simple to understand

and implement, its out-of-core and in-core distributed vari-
ants designed for the Cell processor are significantly more
complex and harder to implement. Even the single-SPE, lo-

cal implementation of bitonic sort is non-trivial due to the
intricacies of an efficient SIMD implementation.

4.1.2 SIMDized Bitonic Sorting Kernel

We now describe how bitonic sort can be accelerated through
the use of SIMD instructions available on the SPEs. We will
assume that the sorted items (keys) are 32-bit integers or
floats, so that each 128-bit vector contains 4 items. Items
in the form of key/value pairs can be sorted by separating
keys from values, attaching value pointers to keys, and then
sorting the key/pointer pairs.

The SIMD support can be used to perform the compare-
and-swaps using fewer number of instructions. This is espe-
cially effective when the blocks on which we perform compare-
and-swaps consist of at least one vector, that is we have j ≥
4 during a j-k swap step of the sort. Let a and b be two cor-
responding vectors from j-item blocks to be compare-and-
swapped. An SIMD comparison instruction t = cmpgt(a, b)
can be used to create a mask such that a following SIMD
select instruction a′ = select(a, b, t) can be used to yield
the smaller of the corresponding items of the two vectors,
that is the lower half of the compare-and-swap result. Sim-
ilarly, b′ = select(b, a, t) will yield the larger items, that
is the higher half of the compare-and-swap result. In to-
tal, the SIMD implementation requires 1 comparison and
2 select instructions to complete the compare-and-swap of
two vectors that contain a total of 8 items. Another impor-
tant observation is that, the SIMD implementation of the
compare-and-swap does not involve any conditional state-
ments. This is a significant advantage, considering that the
SPEs do not have branch prediction hardware.

When we have a j-k-swap step with j < 4 (j ∈ {1, 2}), the
exploitation of SIMD instructions is not as straightforward
compared to the case of j ≥ 4 we have described so far.
This is because the blocks to be compare-and-swapped fall
into the boundaries of a single vector. It is important to
note that all k-merge phases (lg m of them) of a bitonic
sort involve a j-k-swap step with j = 1 and half of the k-
merge phases involve a j-k-swap step with j = 2. In fact
3/(lg m + 1) fraction of the j-k-swaps are for j < 4. Even
though this fraction approaches to zero as m becomes larger,
it is still a large fraction for practical purposes. Given that
local sort can handle at most 32K number of items (128KB
of data) due to the limited local store space on SPEs, the
fraction of j-k-swap steps with j < 4 constitute at least
18.75% of the total. Therefore, it is important to optimize
for the case of j < 4, which includes five sub-cases, namely:
〈j =2, k =4〉, 〈j =2, k≥ 8〉, 〈j =1, k =2〉, 〈j =1, k =4〉, and
〈j =1, k≥8〉. Our experimental results show that optimizing
these sub-cases has a profound impact on performance (see
Section 6.1).

Even though each sub-case require a different SIMD im-
plementation, their SIMDization share a common structure.
Given two vectors covering consecutive items, say a and b,
we first perform two shuffles to organize these items into
two new vectors a′ and b′ such that the pair of items to be
compare-and-swapped are located at the corresponding po-
sitions of the two new vectors. Then the compare-and-swap
of paired items are performed using 1 compare and 2 se-
lect instructions as before. Another two shuffles are applied
to bring the items back to their proper positions. The two
shuffles performed at the beginning and at the end match
each other for the cases of 〈j = 2, k≥ 8〉 and 〈j = 1, k≥ 8〉,

1289

a1 a2 a3 a4 b1 b2 b3 b4

s1 l1 s2 l2 s3 l3 s4 l4

a1 b1 a3 b3 a2 b2 a4 b4

implemented with

2 SIMD shuffles

s1 s3 s2 s4 l1 l3 l2 l4

s1 = min(a1, a2)

l1 = max(a1, a2)

compare-and-swap

implemented with

1 SIMD compare

2 SIMD selects

sa
m

e
sh

u
ff

le
 p

at
te

rn

implemented with

2 SIMD shuffles

s2 = min(a3, a4)

l2 = max(a3, a4)

s3 = min(b1, b2)

l3 = max(b1, b2)

s4 = min(b3, b4)

l4 = max(b3, b4)

3 2 5 4 7 6 9 8

compare-and-swap

3 7 5 9 2 6 4 8

2 6 4 8 3 7 5 9

2 3 4 5 6 7 8 9

Figure 4: SIMDization of j-k swap, when j = 1, k ≥ 8.
On the right: 1-8-swap step from Figure 3

a1 a2 a3 a4 b1 b2 b3 b4

s1 s2 l1 l2 l3 l4 s3 s4

a1 a2 b1 b2 a3 a4 b3 b4

implemented with

2 SIMD shuffles

s1 s2 s3 s4 l1 l2 l3 l4

s1 = min(a1, a3)

l1 = max(a1, a3)

compare-and-swap

implemented with

1 SIMD compare

2 SIMD selects

d
if

fe
re

n
t

sh
u

ff
le

 p
at

te
rn

implemented with

2 SIMD shuffles

s2 = min(a2, a4)

l2 = max(a2, a4)

s3 = min(b1, b3)

l3 = max(b1, b3)

s4 = min(b2, b4)

l4 = max(b2, b4)

compare-and-swap

3 4 6 5 2 7 9 8

3 4 2 7 6 5 9 8

3 4 2 7 6 5 9 8

3 4 6 5 9 8 2 7

Figure 5: SIMDization of j-k swap, when j = 2, k = 4.
On the right: 2-4-swap step from Figure 3

whereas they do not match for the cases of 〈j = 2, k = 4〉,
〈j = 1, k = 2〉, and 〈j = 1, k = 4〉. The latter is due to the
fact that the compare-and-swap direction changes within a
2-vector block (k ≤ 4).

We now give two examples of SIMDization for j < 4, con-
cretely for the sub-cases of 〈j = 1, k ≥ 8〉 and 〈j = 2, k =
4〉. Figure 4 illustrates the former. Since j = 1, we need
to compare-and-swap consecutive items. This requires dis-
tributing each 2-item block across two vectors. The first row
in Figure 4 shows the shuffles needed to achieve this. Dif-
ferent shades are used in the figure to mark different pair of
items to be compare-and-swapped. Note that after the first
set of shuffles, the two vectors has the exact same shading
order. At this stage, we apply a vector compare-and-swap
over the shuffled vectors (see the second row in the figure).
Then the exact same shuffles are re-applied to bring back
together the separated 2-item blocks (see the third row in
the figure). In total 7 SIMD instructions are used, 4 more
than the number of instructions needed for the case of j ≥ 4.

Figure 5 illustrates the sub-case of 〈j = 2, k = 4〉. Since
j = 2, we need to compare-and-swap consecutive 2-item
blocks. This requires distributing each 4-item block across
two vectors by locating the first 2-item block to the first
vector and the second 2-item block to the corresponding po-
sitions of the second vector. The first row in Figure 5 shows
the shuffles needed to achieve this. We then apply a vec-
tor compare-and-swap over the shuffled vectors, and then a
new set of shuffles are applied to bring back together the
separated 4-item blocks. There is a change in the shuffles
performed, because the compare-and-swap direction is re-
versed for the second 4-item block.

Besides SIMDization, implementing bitonic sort efficiently
on the SPEs also require unrolling loops and avoiding branches
as much as possible. These optimizations provide smaller
percentage of dependency stalls and branch misses, better
utilization of the dual-pipelines, and higher CPI (cycles per
instruction) in general.

4.2 Distributed In-core Sort
Distributed in-core sort works by performing local sorts

using the bitonic sorting kernel and then using in-core bitonic
merge to yield the final result. Algorithm 2 gives the pseudo
code of the distributed in-core sort. In this subsection we
are going to assume that L = 1, thus we have N = P ·m.

Concretely, distributed in-core sort involves two stages.
In the first stage, all SPEs perform local sorts. The P local
sorts are performed in parallel. SPE i, i ∈ [0..P−1], sorts
the items in ascending order if i is even, and in descending

order if i is odd. After the first stage, we have a k-sorted list
(in the local stores) where k = m. The second stage involves
performing lg P number of k-merge phases, the first one for
k = 2 · m, the last one for k = P · m = N , and doubling
k after each phase. Before each k-merge phase, the set of
consecutive k/m SPEs do a barrier synchronization between
themselves to make sure the results from the last phase are
finalized. Some of the j-k-swap steps of the lg P number
of k-merge phases can be performed locally (see line 25 in
Algorithm 2 for the local), whereas others require cross-SPE
data transfers (see lines 5-24 in Algorithm 2).

Distributed cross-SPE j-k swaps

Recall that a k-merge phase involves lg k number of j-k
swap steps. For k ≥ 2 · m, the first lg (k/m) number of
j-k swap steps (j ≥ m) involve cross-SPE data transfers,
whereas the rest can be performed locally by each SPE. For
the cross-SPE j-k swaps to be efficient, we need to mini-
mize the amount of data transfers performed between the
SPEs. In what follows, we provide a way to partition the
cross-SPE j-k-swap computation across the P SPEs such
that each SPE performs a compare-and-swap using m/2 lo-
cal items and m/2 remote items, which results in minimal
amount of data transfers.

To perform a cross-SPE j-k-swap we first group the SPEs
into N/(2 · j) number of groups, where consecutive (2 · j)/m
SPEs are put into the same groups. The SPEs within the
same group, say group i (i starts from 0), perform the
compare-and-swap of the j-item block indexed 2 · i with
its consecutive j-item block. SPE l will either compare-
and-swap the first half of its items with the first half of the
items of SPE (l+ j/m) or it will compare-and-swap the sec-
ond half of its items with the second half of the items of SPE
(l−j/m). The former is performed if ⌊(l ·m)/j⌋ is even, and
the latter is performed otherwise. After each j-k-swap, the
SPEs within the same groups do a barrier synchronization
among themselves. This whole procedure is best illustrated
with an example.

Figure 6 illustrates a cross-SPE j-k swap, when j = 2 ·m,
k = 4 ·m, and P = 8. As a result, we have N/(2 · j) = 2
SPE groups, each containing (2 ·j)/m = 4 SPEs. The first 4
SPEs perform the compare-and-swaps of the first (indexed
0) j = 2 ·m-item block with the second j-item block. The
second 4 SPEs perform the compare-and-swaps of the third
j-item block with the fourth j-item block. For each SPE,
the figure marks the local items that are not involved in
a cross-SPE transfer (lightly shaded) and the local items
that are involved in a cross-SPE transfer (darkly shaded).

1290

SPE0 SPE1 SPE2 SPE3 SPE4 SPE5 SPE6 SPE7

performed by SPE2

performed by SPE0

performed by SPE6

performed by SPE4

performed by SPE5

performed by SPE7

performed by SPE1

performed by SPE3

Figure 6: Cross-SPE j-k swap, when j = 2 ·m, k =
4 ·m, P = 8

Note that, for each SPE exactly half of the items in its local
store are not involved in a cross-SPE transfer, which is the
optimal behavior. As an example consider SPE 2 (l = 2).
Since (l · m)/j = 1 is odd, SPE 2 compare-and-swaps its
second half of items with the second half of items from SPE
0 (l − j/m = 0).

Hiding the cross-SPE transfer delays

Recall that during a cross-SPE compare-and-swap, each SPE
has to fetch m/2 number of items from a remote SPE, per-
form compare-and-swap of the remote items with their lo-
cal counterparts, and put one half of the result back (m/2
items) into the remote SPE. There are two important issues
in implementing this efficiently:

1. The local store of the SPE does not have enough space
to hold all of the m/2 items, thus the operation has to
be carried out in smaller batches of md items.

2. Asynchronous DMAs can be used to hide the trans-
fer delays by overlapping compare-and-swap process-
ing with cross-SPE data transfers.

This is implemented as follows. Let us assume the SPE
has already brought in the ith remote md-item block. Before
processing it, the SPE issues asynchronous DMA commands
to (i) put the results from the (i− 1)th md-item block back
to the remote SPE and (ii) fetch the (i+1)th md-item block
from the remote SPE . When the processing of the ith md-
item block is finished, the SPE will check the completion
status of the issued DMAs and wait for their completion in
case they are still pending. Most of the time this involves
no waiting. This kind of double-buffering is very effective in
hiding memory transfer delays, because the Cell processor
provides high cross-SPE interconnect bandwidth and thus
the in-core sort does not become memory I/O bound.

4.3 Distributed Out-of-core Sort
Distributed out-of-core sort works by performing a series

of in-core sorts and then using an out-of-core bitonic merge
to yield the final result. Algorithm 3 gives the pseudo code
of the distributed out-of-core sort.

Concretely, out-of-core sort involves two stages. In the
first stage (see lines 1-7 in Algorithm 3), we perform L in-
core sorts for each consecutive (P · m)-item block, using
alternating sort directions. These L in-core sorts are per-
formed sequentially, where each in-core sort uses all P SPEs
in parallel as described in the last subsection. After the
first stage, we have a k-sorted list (in the memory) where
k = P ·m. The second stage involves performing lg L num-
ber of k-merge phases, the first one for k = 2 ·P ·m, the last
one for k = L · P ·m = N , and doubling k after each phase.

Algorithm 2: Distributed in-core sort with bitonic merge.
Note: bw-and represents bitwise-and operation.
in core sort(m, P)
(1) s← my SPE index {index starts from 0}
(2) local sort(s) {apply sorting kernel (sort in proper

direction: desc. if s is odd, asc. if s is even) }
(3) for k ← 2 ·m to k ≤ m · P step k ← 2 · k
(4) barrier(k/m) {barrier(n) means synchronize

SPEs [i..(i + n)], i = n · ⌊s/n⌋ }
(5) for j ← k/2 to j ≥ m step j ← j/2
(6) is ← s ·m {index of the 1st item to be CASed}
(7) if (s bw-and j/m) 6= 0
(8) is ← is + m/2− j {is is remote}
(9) ie ← is + m/2 {1+ index of last CASed item}
(10) if (is bw-and k) = 0 then d← ‘ascending’
(11) else d← ‘descending’
(12) for i← is to i < ie step i← i + md

(13) u← i− s ·m {index at local store}
(14) if u < m/2 {using fist half of local items}
(15) B1 : local data[u..(u + md − 1)]
(16) B2 ← DMA read from SPE no (i + j)/m its

local data[u..(u + md − 1)]
(17) compare-and-swap(B1, B2, d)
(18) DMA write B2 into SPE no (i + j)/m at its

local data[u..(u + md − 1)]
(19) else {using second half of local items}
(20) B1 ← DMA read from SPE no i/m its

local data[u..(u + md − 1)]
(21) B2 : local data[u..(u + md − 1)]
(22) compare-and-swap(B1, B2, d)
(23) DMA write B1 into SPE no i/m at its

local data[u..(u + md − 1)]
(24) barrier(2 · (j/m))
(25) local merge() {apply local merge (merge in proper di-

rection: desc. if ⌊s ·m/k⌋ is odd, asc. otherwise)}

Before each k-merge phase, the SPEs do a barrier synchro-
nization between themselves to make sure that the results
from the last phase are finalized. The j-k-swap steps of the
lg L number of k-merge steps cannot all be performed using
in-core bitonic merge and as a result some of them require
out-of-core data transfers (see lines 10-26 in Algorithm 3).

Distributed out-of-core j-k swaps

A k-merge phase involves lg k number of j-k swap steps.
For k ≥ 2 · P · m, the first lg (k/(P ·m)) number of j-k
swap steps (j ≥ P ·m) involve out-of-core memory transfers,
whereas the rest can be performed in an in-core manner.
In what follows, we provide a way to partition the out-of-
core j-k-swap computation across the P SPEs, such that no
synchronization is needed after each out-of-core j-k swap.
This is unlike the in-core j-k swaps discussed earlier, which
were optimized to minimize the cross-SPE data transfers
and thus required more complex synchronization patterns.

To perform an out-of-core j-k-swap, each SPE operates
independently. m-item blocks are assigned to SPEs in a
round-robin fashion. For instance, SPE l will compare-and-
swap the m-item block with index i against the m-item block
with index i+ j/m, iff i mod P = l and ⌊i ·m/j⌋ is even. If
⌊i·m/k⌋ is even, then the compare-and-swap is performed in
ascending order. Otherwise, it is performed in descending
order. The importance of this communication pattern is
that, no synchronization is needed between the k-j-swap
steps, since the SPEs are assigned fixed exclusive portions
of the data during j-k-swap steps of a k-merge phase. This
is best illustrated with an example.

1291

performed by SPE0

performed by SPE1

0 1 2 3 4 5 6 7 m-item block index

e e e e o o o o

performed by SPE0

performed by SPE1

8 9 10 11 12 13 14 15 m-item block index

e e e e o o o o

Figure 7: Out-of-core j-k swap, j =4 ·m, k=8 ·m, P =
2, L=8

Figure 7 illustrates an out-of-core j-k swap, when j = 4·m,
k = 8 ·m, P = 2, and L = 8. The m-item blocks processed
by SPE 0 are lightly shaded, whereas the ones processed by
SPE 1 are darkly shaded in the figure. An m-item block with
index i is marked with ‘e’ iff ⌊i ·m/j⌋ = ⌊i/4⌋ is even, and
with ‘o’ otherwise. Note that SPE 0 compare-and-swaps m-
item blocks 0, 2, 8, and 10 against m-item blocks 4, 6, 12, and
14, respectively. The blocks in the former list are all marked
‘e’ and satisfy i mod P = l for P = 2 and l = 0, that is i
mod 2 = 0. The blocks in the second list are j/m = 4
positions further in the order than their counterparts in the
first list (m-item block with index i is compared against
the m-item block with index i + j/m). The first two m-
item block compare-and-swaps performed by SPE 0, that is
〈0 → 4〉 and 〈2 → 6〉 are performed using ascending order,
since ⌊i · m/k⌋ = ⌊i/8⌋ is even for i = 0 and i = 2. The
second two m-item block compare-and-swaps performed by
SPE 0, that is 〈8← 12〉 and 〈10← 14〉 are performed using
descending order, since ⌊i/8⌋ is odd for i = 8 and i = 10.

Hiding the memory transfer delays

Similar to the case of in-core sort, the memory transfers
during j-k-swap steps are done in chunks of md items each
and double buffering is applied to hide the memory transfer
delays. However, there are two significant differences.

1. None of the two md-item blocks that are to be compare-
and-swapped are residents of the local store of the SPE
performing the operation. Thus the overall communi-
cation cost in terms of number of items transferred is
doubled compared to that of an in-core implementa-
tion. Recall that for an in-core sort, one of the md-item
blocks is always local to the SPE.

2. All DMA transfers are to/from the main memory. Since
the bandwidth to the main memory is smaller than the
aggregate bandwidth between the SPE local stores, the
transfer delays are larger for the out-of-core sort. As
we will later discuss in the experimental results, out-
of-core sort becomes memory I/O bound.

Distributed in-core j-k swaps

When we have j < P ·m, the j-k-swaps can be performed
in an in-core manner. These j-k-swaps are collectively per-
formed through L number of in-core merges, one for each
(P ·m)-item block (see lines 27-32 in Algorithm 3). An in-
core merge is similar to an in-core sort, in the sense that
it includes cross-SPE merges and local merges. We do not
further discuss in-core merges.

Algorithm 3: Distributed out-of-core sort with bitonic
merge. Note: bw-xor and bw-and represent bitwise-xor
and bitwise-and, respectively.
out of core sort(m, P , L)
(1) s← my SPE index {index starts from 0}
(2) for i← 0 to i < L step i← i + 1
(3) u← (s + i · P) ·m
(4) DMA read from memory data[u..(u + m− 1)]

to local data[0..(m− 1)]
(5) barrier(P) {sync. before starting in-core sort}
(6) in core sort(i) {sort ith P ·m-item block (sort in proper

direction: desc. if i is odd, asc. if i is even)}
(7) DMA write to memory data[u..(u + m− 1)]

from local data[0..(m− 1)]
(8) for k ← 2 · P ·m to k ≤ L · P ·m step k ← 2 · k
(9) barrier(P) {sync. before starting k-merge}
(10) for j ← k/2 to j ≥ P ·m step j ← j/2
(11) d← ‘ascending’ {initial direction}
(12) for i← s ·m to i < L · P ·m
(13) l← i bw-xor j{index of 1st item in pair j-block}
(14) if l < i {item i is in odd indexed j-block}
(15) i← i + j {skip this j-block }
(16) if (i bw-and k) = 0 then d← ‘ascending’
(17) else d← ‘descending’
(18) continue{go to next j-block}
(19) is ← i; ie ← is + m
(20) for i← is to i < ie step i← i + md

(21) B1 ←DMA read from mem. data[i..(i+md−1)]
(22) B2 ← DMA read from memory

data[(i + j)..(i + j + md − 1)]
(23) compare-and-swap(B1, B2, d)
(24) DMA write B1 into mem. data[i..(i + md − 1)]
(25) DMA write B2 into memory

data[(i + j)..(i + j + md − 1)]
(26) i← is + m · P {index of the 1st item in the next

m-block assigned to s}
(27) for i← 0 to i < L step i← i + 1
(28) u← (s + i · P) ·m
(29) DMA read from memory data[u..(u + m− 1)]

to local data[0..(m− 1)]
(30) barrier(P) {sync. before starting in-core merge}
(31) in core merge(i) {apply in-core merge to the ith (P ·

m)-item block (merge in proper direction: desc. if ⌊i ·
P ·m/k⌋ is odd, asc. otherwise)}

(32) DMA write to memory data[u..(u + m− 1)]
from local data[0..(m− 1)]

5. COMPLEXITY ANALYSIS
In this section, we present the computation and commu-

nication complexity of the complete out-of-core bitonic sort
on the Cell processor.

Multi-SPE out-of-core sort is also fully and symmetrically
parallelized. The resulting computational complexity of the
sort using P SPEs is given by O(N

P
· lg2 N). We have N =

L · P ·m. However, deriving the communication complexity
of out-of-core sort is slightly more involved. We divide the
communication complexity into two categories, namely i-

transfers and o-transfers. The number of i-transfers is the
number of items sent/received to/from the local store of an
another SPE. The number of o-transfers is the number of
items sent/received to/from the main memory.

The first stage of the out-of-core sort involves L number
of in-core sorts of N/L items each. During an in-core sort,
lg P · (1+lg P)/2 number of j-k-swaps are performed, where
each j-k-swap makes N/L i-transfers. This brings the total
number of i-transfers to (N/L)·((1+lg P)·lg P)/2. Moreover,
2·N o-transfers are made to bring in the items to local stores
and to write them back to memory. In summary, the total

1292

number of i-transfers and o-transfers made for the first stage
is (N/2) · (1 + lg P) · lg P and 2 ·N , respectively.

The second stage of the out-of-core sort involves lg L ·
(1 + lg L)/2 number of out-of-core j-k-swaps and a number
of in-core j-k-swaps. During an out-of-core j-k-swap, 2 ·N
o-transfers are made. Thus the total o-transfer cost of out-
of-core j-k-swaps is N ·lg L·(1+lg L). The in-core j-k-swaps
are performed as L · lg L number of in-core merges, where
an in-core merge involves makes (N/L) · lg P i-transfers. As
a result, the total i-transfer cost for the in-core j-k-swaps is
N · lg L · lg P . Moreover, each in-core merge makes 2 · (N/L)
o-memory transfers to DMA in the items to local stores and
to write them back. As a result, the total o-transfer cost for
the in-core j-k-swaps is 2 · N · lg L. In summary, the total
number of i-transfers and o-transfers made for the second
stage is N · lg L · lg P and (3 + lg L) ·N · lg L, respectively.

In summary, out-of-core sort makes

• (lg L + (1 + lg P)/2) ·N · lg P i-transfers, and

• 2 ·N + (3 + lg L) ·N · lg L o-transfers.

For L > P , asymptotically the i-transfer and o-transfer
complexities of out-of-core sort are O(N · lg L · lg P) and
O(N · lg2 L), respectively.

6. EXPERIMENTAL RESULTS
In this section we present experimental results compar-

ing the performance of local, in-core, and out-of-core sort
to various alternatives on various processors. In particu-
lar we compare the following configurations: (i) Distributed
bitonic sort using up to P = 16 SPEs (3.2GHz each) avail-
able in an IBM QS20 Cell blade, with the following sort-
ing kernels: basic bitonic, SIMDized bitonic, shell sort, and
quick sort, (ii) Quick sort on the PPE (3.2GHz), (iii) Sin-
gle and dual-core (using OpenMP) quick sort on 3.2GHz
Intel Xeon and 3GHz Intel Pentium 4 machines, (iv) Single-
core SSE-enhanced bitonic sort on aforementioned Intel ma-
chines. The sorts on the Intel processors are compiled using
the icc compiler with all optimization on. The Cell sorts
are compiled using the gnu tool chain. Maximum number of
items that can be sorted using local sort is m = 32K (128KB
of data) and using in-core sort is N = P ·m = 16 · 32K =
512K (2MBs of data). We sort up to 0.5GB of data (128M
number of items) using out-of-core sort, since the memory
available to us in our test machine was 1GB. It is important
to note that the sort time for in-core and local sorts also
include the time to transfer items to/from the main mem-
ory, in order to be fair in comparison against main memory
based algorithms.

6.1 Single-SPE Local Sort
We now present experimental results for single-SPE local

sorts. We compare the sort time of SIMDized bitonic sort
on SPE to basic bitonic sort on SPE, quick sort on SPE,
and quick sort on PPE.

Table 1: Single-SPE local sort performance
SIMD quick no-shuffle basic PPE

32K bitonic bitonic bitonic quick
ints .0025 secs .0073 .0178 .0550 .0038

floats .0025 secs .0073 .0178 .0550 .0090

Table 1 lists the sort times in seconds for integer and float
sorts using different algorithms, with 32K items. In this
table, we also included a variant of bitonic sort called no-

shuffle bitonic sort, which does not implement the SIMD
shuffle-based optimizations designed for the j-k-swap steps
with j < 4. We make four observations from Table 1. First,
we observe that basic bitonic sort takes 22 times longer com-
pared to the optimized SIMD bitonic sort. This attests to
the importance of careful SIMDization, loop unrolling, and
branch avoidance. Second, we observe that leaving out the
optimizations for j-k-swap steps with j < 4 causes the sort
time to increase to around 7.12 times the sort time of fully
optimized SIMD bitonic sort. Recall from Section 4.1.2 that
such j-k-swap steps constitute only 18.75% of the total num-
ber of j-k-swaps (for 32K items). However, implementing
those steps with scalar operations results in a much higher
cost, as evidenced by the six fold increase in the sort time.
Third, we see that quick sort on the SPE is a better choice
than the simple bitonic sort, but still takes approximately 3
times longer compared to the SIMDized bitonic sort. Note
that quick sort has average case complexity of O(N · lg N),
which is asymptotically smaller than O(N · lg2 N) of bitonic
sort. However, quick sort cannot be efficiently SIMDized.
For the current local store sizes, the SIMDized bitonic sort
prevails against the quick sort. Last, we observe that quick
sort on the PPE comes closest to the SIMdized bitonic sort
on the SPE, but still takes around 1.5 times longer when
sorting integers. The performance of PPE quick sort drops
when floats are sorted (it takes more than 2.3 times longer
compared to sorting integers), whereas there is no difference
in SPE performance when sorting integers or floats.

0

2

4

6

8

256 512 1024 2048 4096 8192 16384 32768

Number of integers

T
im

e
 (

re
la

ti
v

e
 t

o
 S

IM
D

 b
it

o
n

ic
)

SPE / SIMD bitonic
SPE / quick
SPE / bitonic
PPE / quick
3.2Ghz Xeon / SSE bitonic
3.2Ghz Xeon / quick

Figure 8: Local sort, integers

0

2

4

6

8
SPE / SIMD bitonic
SPE / quick
SPE / bitonic
PPE / quick
3.2Ghz Xeon / SSE bitonic
3.2Ghz Xeon / quick

T
im

e
 (

re
la

ti
v

e
 t

o
 S

IM
D

 b
it

o
n

ic
)

256 512 1024 2048 4096 8192 16384 32768

Number of floats

Figure 9: Local sort, floats

Figures 8 and 9 plot the sort time of different algorithms,
relative to that of SIMD bitonic sort, with varying number
of items (up to 32K items) for integers and floats, respec-
tively. For this experiment, we also compare the perfor-
mance against quick sort and SIMDized bitonic sort (using
SSE and SSE2 instructions) on a 3.2Ghz Intel Xeon proces-
sor. We observe that, unlike SPEs, Xeon favors quick sort

1293

over SIMDized bitonic sort. In fact, SIMDized bitonic sort
on Xeon is 2.4 times slower compared to SPE when sorting
128KB of items. On the other hand, quick sort on Xeon
is around 1.7 times slower when sorting floats and only 1.1
times slower when sorting integers, both for 128KB of data.
It is important to point out that the pure SIMD nature of
the SPEs, their large 128-bit register file, rich set of SIMD
instruction set, and their lack of branch prediction hard-
ware result in SIMDized bitonic sort to prevail over quick
sort, which is not the case for SSE enhanced bitonic sort on
the Intel processors such as the Xeon.

Table 2: Cycle statistics
metrics basic SIMD quick

bitonic bitonic sort

CPI (cycles per instruction) 2.26 1.05 3.39
Single issued cycles 28.9% 42.5% 20.5%
Double issued cycles 3.6% 22.2% 2.6%
Stalls due to branch 40.1% 22% 40.3%

Stalls due to dependency 22.5% 10.8% 33.8%
Other (including nops) 3.7% 2.5% 2.8%

Table 2 lists the cycle statistics for basic and SIMDized
bitonic sorts as well as the quick sort on the SPE. Note
that the CPI is significantly lower with the optimized SIMD
implementation (less than half of the CPI of basic bitonic
sort and one third of the CPI of quick sort). Moreover the
SIMDized implementation with heavy loop unrolling and
branch avoidance result in smaller percentage of dependency
and branch misses. Quick sort on the SPE has worse CPI
and stall percentage than both basic and SIMDized bitonic
sort, but as we have observed earlier it is faster than the
basic bitonic sort, since it has a smaller total cycle count.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

8K
(32KB)

16K
(64KB)

32K
(128KB)

64K
(256KB)

128K
(512KB)

256K
(1MB)

512K
(2MB)

Number of integers

T
im

e
 (

in
 s

e
c

s
)

SPEs bitonic/bitonic

SPEs quick/bitonic

SPEs shell/bitonic

PPE quick

3.2Ghz Xeon quick

3Ghz P4 quick

Figure 10: In-core sort, integers

0.000

0.005

0.010

0.015

0.020

0.025

0.030

8K
(32KB)

16K
(64KB)

32K
(128KB)

64K
(256KB)

128K
(512KB)

256K
(1MB)

512K
(2MB)

Number of floats

T
im

e
 (

in
 s

e
c

s
)

SPEs bitonic/bitonic

SPEs quick/bitonic

SPEs shell/bitonic

PPE quick

3.2Ghz Xeon quick

3Ghz P4 quick

Figure 11: In-core sort, floats

6.2 Distributed In-core Sort

0
2
4
6
8

10
12
14
16
18
20
22
24

8K
(32KB)

16K
(64KB)

32K
(128KB)

64K
(256KB)

128K
(512KB)

256K
(1MB)

512K
(2MB)

Number of integers

T
im

e
 (

re
la

ti
v

e
 t

o
 b

it
o

n
ic

)

SPEs bitonic/bitonic

PPE quick

3.2Ghz Xeon quick

3Ghz P4 quick

3.2Ghz Xeon SSE bitonic

Figure 12: In-core sort, integers

SPEs bitonic/bitonic

PPE quick

3.2Ghz Xeon quick

3Ghz P4 quick

3.2Ghz Xeon SSE bitonic

0
4
8

12
16
20
24
28
32
36
40
44
48
52

T
im

e
 (

re
la

ti
v

e
 t

o
 b

it
o

n
ic

)

8K
(32KB)

16K
(64KB)

32K
(128KB)

64K
(256KB)

128K
(512KB)

256K
(1MB)

512K
(2MB)

Number of floats

Figure 13: In-core sort, floats

We now present results from multi-SPE in-core sort. We
compare 6 different approaches. The first three are SPE
sorts using up to 16 SPEs. Based on the data size, 1, 2,
4, 8, or 16 SPEs are used. The difference between the first
three approaches, named bitonic/bitonic, quick/bitonic, and
shell/bitonic, is the sorting kernel employed. The fourth
approach is quick sort on the PPE. The fifth and sixth ap-
proaches are quick sorts on two Intel processors, a 3.2Ghz
Xeon and a 3Ghz Pentium 4. The last three approaches are
single-threaded sorts using a single core.

Figures 10 and 11 plots the time it takes to perform the
sort with the 6 different approaches, for integers and floats
respectively. After the number of items hit 32K, the number
of SPEs used is doubled as the number of items sorted is dou-
bled. Time to sort using bitonic/bitonic only increases 63%
when going from sorting 32K items with a single SPE up to
sorting 512K items (16 times 32K) with 16 SPEs. This num-
ber is particularly important. Let us represent the time it
takes to perform a j-k-swap during a local sort as α·N . Then
the time it takes to perform the bitonic sort with N = 32K
is given by A = (α·32K)·lg 32K·(lg 32K+1)/2 = 3932160·α.
Now let us assume that in an ideal case we have no overhead
due to cross-SPE communication when performing in-core
bitonic sort. Then the time it takes to sort 512K items
using 16 SPEs with a no overhead assumption is given by
B = (1/16)·(α·512K)·lg 512K·(lg 512K+1)/2 = 6225920·α.
Note that B is only 58% higher than A. This shows that the
communication overhead of the actual in-core bitonic sort is
as little as 3% for 16 SPEs (we have (163−158)/168 = 0.03).
This is due to the high cross-SPE interconnect bandwidth
and the use of double buffering to hide the transfer delays.

Figures 10 and 11 also show that the bitonic sorting kernel
is significantly faster than other alternatives. Bitonic sort
with quick sort kernel takes 2.4 times and shell sort kernel
takes 4 times the sorting time with bitonic kernel.

The performance of sorting on Cell compared to the Intel

1294

processors is better observed from the Figures 12 and 13,
which plot the sorting time relative to that of bitonic sort
with bitonic kernel. We observe that when sorting 2MB
of items, the closest competitor to 16 SPE bitonic sort is
the quick sort on the 3.2Ghz Xeon, which takes 13.5 times
longer when sorting integers and 21 times longer when sort-
ing floats. Quick sort on the 3Ghz Pentium 4 takes 18 times
longer when sorting integers and 31 times longer when sort-
ing floats. Quick sort on the PPE (clocked at 3.2Ghz) per-
forms the worst, taking 23 times longer when sorting integers
and 50 times longer when sorting floats.

6.3 Distributed Out-of-core Sort
We now present results from out-of-core sort. 16 SPE

bitonic sort (bitonic merge with SIMDized bitonic kernel)
is compared against quick sort on the PPE as well as on
the Intel 3.2Ghz Xeon (including dual-core using OpenMP)
and Intel 3.0Ghz Pentium 4 processors. We sort up to 128M
items, which corresponds to 1/2GB of data (maximum avail-
able memory on the Cell machine was 1GB).

Table 3: Out-of-core sort performance (in secs)

16 SPEs 3.2GHz Xeon 3.2GHz Xeon PPE
items bitonic quick quick 2-core quick
1M 0.0098 0.1813 0.098589 0.4333
2M 0.0234 0.3794 0.205728 0.9072
4M 0.0569 0.7941 0.429499 1.9574
8M 0.1372 1.6704 0.895168 4.0746
16M 0.3172 3.4673 1.863354 8.4577
32M 0.7461 7.1751 3.863495 18.3882
64M 1.7703 14.8731 7.946356 38.7473
128M 4.0991 30.0481 16.165578 79.9971

Table 3 lists the time it takes to perform the out-of-core
sort for different number of items. Let us analyze these
numbers in more detail. In an ideal case, where the out-
of-core sort can be performed without any communication
overhead, the time to takes to sort N with P processors,
relative to sorting m items with a single processor is given

by: β = (N/P)·lg N·(lg N+1)/2
m·lg m·(lg m+1)/2

. For N = 1M, we have β =

3.92, whereas the observed β, denoted as βo based on the
results from Table 3 is 3.5. Then the overhead of out-of-
core sort for N = 1M items is βo−β

βo·10−2 % = 12%. Recall

that the overhead of the in-core sort for half the number
of items was 3%. When we look at β for 128M, we see
that the overhead becomes 50.82%. In other words, when
sorting large numbers of items using out-of-core sort, the
communication overhead becomes a significant component
of the overall sort time. In fact when sorting 128K items,
during the double buffered out-of-core j-k-swap sub-steps,
the last issued DMA commands never complete before the
time current buffer is completely processed. the time the
current buffer is completely processed. This attests to the
fact that the out-of-core sort becomes memory I/O bound
as the number of items sorted increases.

Figures 14 and 15 plot the time it takes to perform the
sort, relative to that of bitonic sort, for varying number of
integer and float items, respectively. An important obser-
vation from the figures is that, the performance of 16 SPE
bitonic sort degrades with increasing number of items, when
compared against the alternative approaches. However, the

SPEs bitonic/bitonic

PPE quick

3.2Ghz Xeon quick

3Ghz P4 quick

3.2Ghz Xeon 2mp quick

1M
(4MB)

2M
(8MB)

4M
(16MB)

8M
(32MB)

16M
(64MB)

32M
(128MB)

64M
(256MB)

128M
(512MB)

0
2
4
6
8

10
12
14
16
18
20
22
24

T
im

e
 (

re
la

ti
v

e
 t

o
 b

it
o

n
ic

)

Number of integers

Figure 14: Out-of-core sort, integers

0
4
8

12
16
20
24
28
32
36
40
44
48

SPEs bitonic/bitonic

PPE quick

3.2Ghz Xeon quick

3Ghz P4 quick

3.2Ghz Xeon 2mp quick

T
im

e
 (

re
la

ti
v

e
 t

o
 b

it
o

n
ic

)

1M
(4MB)

2M
(8MB)

4M
(16MB)

8M
(32MB)

16M
(64MB)

32M
(128MB)

64M
(256MB)

128M
(512MB)

Number of floats

Figure 15: Out-of-core sort, floats

closest single-core approach (quick sort on the Xeon) still
takes 4.8 times and 7.3 times longer to sort 0.5GB of integers
and floats, respectively. Considering that roughly half of the
sorting time is spent for communication (data transfers and
synchronization) when sorting 128M items with bitonic sort,
the closest single-core approach would be 14.6 times slower
compared to bitonic sort with no communication cost as-
sumption. This is still smaller than the 21 times slower
result we got for in-core sort when using all 16 SPEs. In
other words, even with no communication overhead there
is still a reduction in the relative performance of bitonic
sort compared to quick sort for increasing number of items.
This can be attributed to the higher asymptotic complexity
of bitonic sort, compared to that of quick sort. Yet, sorting
0.5GB of floats using 16 SPEs is still 4 times faster compared
to parallel quick sort on a dual-core 3.2GHz Intel Xeon.

0.004147

0.015062
0.029598

0.007739

15.849165
9.051614

5.527536
4.051501

0.029598

0.007400

0.014799

0.003700

7.924583

3.962291
1.981146

0.001

0.010

0.100

1.000

10.000

100.000

2 4 8 16

Number of SPEs

T
im

e
 (

in
 s

e
c

s
)

2MB (512K) - observed
0.5GB (128M) - observed
2MB (512K) - ideal
0.5GB (128M) - ideal

Figure 16: Scalability with number of SPEs

6.4 Scalability
Figure 16 studies the scalability with respect to number of

processors, with two different data sizes, namely 2MB and
0.5GB. Notice that both x and y axises are in logarithmic
scale. Figure 16 also plots the ideal scalability scenarios for
both data sizes, where doubling the number of processors

1295

cuts the sort time by one half. We observe almost per-
fect scalability for 2MB data, in which case 16 SPE sort is
in-core. For 0.5GB data, all sorts are out-of-core and the
scalability is not as good. As the number of SPEs increase,
the scalability of out-of-core sort decreases. Note that for
0.5GB of data, moving from 8 SPEs to 16 SPEs only bring
a speed-up of 1.375, whereas going from 4 SPEs to 8 SPEs
brings a speed-up of 1.64, and from 2 SPEs to 4 SPEs brings
1.75. This difference in scalability between in-core and out-
of-core sort is again due to memory bandwidth bound nature
of out-of-core sort. Increasing the number of SPEs increases
the contention to access the main memory.

0.010

0.100

1.000

10.000

100.000

1000.000

64K
(256KB)

128K
(512KB)

256K
(1MB)

512K
(2MB)

1M
(4MB)

2M
(8MB)

4M
(16MB)

8M
(32MB)

16M
(64MB)

32M
(128MB)

64M
(256MB)

128M
(512MB)

Number of floats

A
b

s
o

lu
te

 t
im

e
 (

in
 m

il
li

s
e
c
o

n
d

s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
la

ti
v
e
 t

im
e
 (

%
 o

f
s
o

rt
 t

im
e
)

absolute time

relative time

in-core out-of-core

Figure 17: Synchronization cost

6.5 Synchronization Cost
Figure 17 plots the average time (in milliseconds) an SPE

waits for synchronization as a function of the number of
floats sorted, using the left y-axis (in logarithmic scale).
The relative time with respect to the total sort time is also
plotted, using the right y-axis. Two different trends are ob-
served. First, synchronization time relative to sort time is
mostly stable for the out-of-core sort. Second, for in-core
sort, the synchronization cost increases with the number of
items sorted. This is due to the increasing number of pro-
cessors used for the barriers. Note that the average time
an SPE spends waiting for synchronization is almost always
less than 3% of the sort time.

6.6 Discussions
A number of recent works (see Section 7) on GPU (graph-

ics processing unit) based sorting algorithms have reported
impressive performance results compared to CPU-based sorts
on high-end processors. Since we do not have access to code
from these works, it is not possible to present an apples-
to-apples comparison of CellSort with GPU-based sorts.
However, here we would mention a brief comparison against
the recent AbiSort algorithm [10], using the results re-
ported on a GeForce 7800 system. Since the authors of [10]
report results on sorting float items with attached pointers,
we doubled our performance results for comparison purposes
(our results are from key-only sorts). This is a very conser-
vative comparison, since sorting key-value pairs instead of
keys-only is likely to result in a smaller increase in sort time
compared to doubling the sort time. However, even with this
assumption CellSort with 16 SPEs is significantly superior
to AbiSort on GeForce 7800. Concretely, it takes 135ms to
sort 1M 〈float, pointer〉 pairs with AbiSort, whereas the
conservative estimate for CellSort is only 19.5ms, which
is around 1/7th of AbiSort’s sort time.

In summary, high performance of CellSort stems from
three major factors.

1. With proper SIMDization, sorting on an SPE can be
made to perform as good as or even better than sorting
on a similarly clocked single-core high-end processor,
bringing 8 times more computational capacity per Cell
processor. Without SIMDization and other low level
optimizations such as loop unrolling and branch avoid-
ance, the scalar performance of the SPEs is poor.

2. The high bandwidth provided by the Cell processor
for cross-SPE data transfers, together with the use of
asynchronous DMAs and optimal SPE communication
patters outlined in this paper, enables us to implement
distributed bitonic merge with minimal overhead. As
a result, in-core sort has close to linear scalability with
increasing number of processors.

3. Bitonic merge lends itself not only to an efficient SIMD
implementation, but also to an efficient distributed im-
plementation. However, as a side-effect, it has sub-
optimal complexity. This limits performance when the
data size significantly exceeds the in-core limit. Con-
sidering that processors with hundreds of cores with
more on-chip memory are in our horizon, this is less of
an issue for the future.

7. RELATED WORK
Sorting algorithms have been studied extensively since the

inception of the computer science discipline. [16] presents a
comprehensive survey of the classic sorting algorithms. Sort-
ing is a still considered a fundamental operation in many ap-
plications domains, e.g., database systems [9] and computer
graphics [22].

Bitonic sort [3, 6] was designed for a comparator-based
abstract sorting network. Bitonic sort’s fixed computational
pattern and underlying abstract execution model makes it
suitable for parallel execution. Over the years, a variety of
parallel sorting algorithms have been proposed for different
parallel architectures and programming models [1]. Earli-
est parallel sorting algorithms were devised using the SIMD
programming model for the vector multiprocessors like the
Cray-YMP [27] or massively data-parallel multicomputers
such as the CM-2 [5]. These multicomputer sorting algo-
rithms optimized the fixed computational patterns of the
Bitonic and Radix sort [16] using SIMD instructions. Al-
ternatively, the sorting algorithms devised for distributed-
memory machines and clusters employed variants of the par-
allel merge techniques [1]. Current generations of processors,
e.g., Pentium 4 and its successors, provide hardware and
software support for parallel programming on shared mem-
ory using threads (i.e., via hyper-threading and OpenMP
primitives). These capabilities can be effectively used for
implementing a parallel merge-based sort [20]. The key
difference between these approaches and our implementa-
tion is that our implementation uses a combination of the
distributed-memory, shared-memory, and data-parallel al-
gorithms.

In addition to the Cell, most current computer architec-
tures support instructions for short-vector (e.g., 128 bit)
SIMD parallelism, e.g., AltiVec on PowerPC and SSE3 for
Intel [25, 28]. Recent generations of GPUs, such as the

1296

nVIDIA 8800, enable data-parallel implementations of gen-
eral purpose computations using 2-dimensional texture rep-
resentation of input data [22, 19]. In particular, GPUs have
been shown to suitable for accelerating the bitonic sort-
based algorithms [23, 14, 8, 7, 11]. Conceptually, the GPU-
based data-parallel implementations are closer to the mul-
ticomputer approaches as both implement data-parallel op-
erations over large datasets. The GPU-based implementa-
tions of bitonic sort differ from our approach in many ways.
Specifically, GPU-based algorithms donot stripmine compu-
tations due to lack of available memory and they donot dis-
tribute work over multiple computational units. However,
unlike Cell, the GPU-based algorithms are affected by cache
memory latencies and need to be optimized for memory ef-
ficiency (e.g., using appropriate data layout and tiling) [8].
Finally, the any GPU-based sorting implementation involves
non-trivial mapping of the basic datatypes into pixels in the
GPU’s texture memory [7].

The GPUTeraSort implementation used Radix sort in their
sorting kernel. We have also investigated Radix sort and its
variant, the Postman’s sort [24] for the SPE sorting kernel.
We have found that both Radix and Postman’s sort involve
extensive scalar updates using indirection arrays that are
difficult to SIMDize and thus, degrade the overall perfor-
mance.

The multi-stage approach used in our implementation is
similar to the one used in parallel disk-based sorts [1] (in
our case, the external storage is the off-chip main-memory,
not disk). For example, AlphaSort [18], a shared-memory
based parallel external sort, uses quicksort as the sequential
sorting kernel and a replacement-selection tree to merge the
sorted subsets.

8. CONCLUSIONS
In this paper we described a distributed implementation of

the bitonic sort tailored for the Cell processor. Large num-
ber of items, that do not fit into the total space provided by
the local stores of the participating SPEs, are sorted using
a three-tiered approach. A SIMDized bitonic sorting kernel
is used to sort items locally in the local stores of the SPEs,
a distributed in-core bitonic merge is used to merge local
store resident local sort results, and a distributed out-of-
core bitonic merge is used to merge the results of a number
of main memory resident in-core sort results. Our study
shows that the SIMDized bitonic sort is the most effective
sorting kernel for the local sort part and the in-core sort on
the Cell processor scales well with the increasing number of
participating SPEs. The in-core bitonic sort is not memory
I/O bound and can significantly surpass the performance of
quick sort on similarly clocked Intel processors. On the other
hand, the out-of-core bitonic sort on Cell becomes memory
I/O bound and its performance degrades with increasing
number of items sorted. The non-optimal computational
complexity of the bitonic sort also contributes to this degra-
dation. However, distributed out-of-core bitonic sort still
compares favorable against other alternatives on competing
processors with similar clock speeds.

9. REFERENCES
[1] S. G. Akl. Parallel Sorting Algorithms. Academic Press Inc.,

1990.

[2] D. Bader, V. Agarwal, and K. Madduri. On the design and
analysis of irregular algorithms on the Cell processor: A case
study on list ranking. In Proc. of IEEE IPDPS, 2007.

[3] K. E. Batcher. Sorting networks and their applications. In
Proc. of the Spring Joint Computer Conference, 1968.

[4] F. Blagojevic, A. Stamatakis, C. Antonopoulos, and
D. Nikolopoulos. RAxML-Cell: Parallel phylogenetic tree
inference on the Cell Broadband Engine. In Proc. of IEEE
IPDPS, 2007.

[5] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton,
S. J. Smith, and M. Zegha. A comparison of sorting algorithms
for the connection machine CM-2. In Proc. of ACM SPAA,
1991.

[6] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic
balanced sorting network. Journal of the ACM, 36(4):738–757,
October 1989.

[7] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: High performance graphics co-processor sorting
for large database management. In Proc. of ACM SIGMOD,
2006.

[8] N. K. Govindaraju, N. Raghuvanshi, M. Hanson, D. Tuft, and
D. Manocha. A cache-efficient sorting algorithm for database
and data mining computations using graphics processors.
Technical report, Department of Computer Science, University
of North Carolina, 2005.

[9] G. Graefe. Implementing sorting in database systems. ACM
Computing Surveys, 38(3), 2006.

[10] A. Greß and G. Zachmann. GPU-ABiSort: Optimal parallel
sorting on stream architectures. Technical Report IfI-06-11, TU
Clausthal, 2006.

[11] A. Greß and G. Zachmann. GPU-ABiSort: Optimal parallel
sorting on stream architectures. In Proc. of IEEE IPDPS,
2006.

[12] IBM. Cell Broadband Engine Architecture. Technical Report
Version 1.0, IBM Systems and Technology Group, 2005.

[13] Intel. IXP2400 network processor hardware reference manual.
Technical report, Intel Corporation, May 2003.

[14] P. Kipfer and R. Westermann. Improved GPU Sorting,
chapter 46. Addison Wesley, 2005.

[15] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor
interconnection network: Built for speed. IEEE Micro, 26(3),
2006.

[16] D. E. Knuth. The Art of Computer Programming, volume 3:
Searching and Sorting. Addison Wesley, 1973.

[17] Mercury Systems Dual Cell-based Blade.
www.mc.com/literature/literature files/Cell blade-ds.pdf,
Feburary 2007.

[18] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet.
AlphaSort: A cache-sensitive parallel external sort. VLDB
Journal, 4, 1995.

[19] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A. E. Lefohn, and T. J. Purcell. A survey of general-purpose
computation on graphics hardware. Computer Graphics
Forum, 26, 2007.

[20] R. Parikh. Accelerating QuickSort on the Intel Pentium-4
processor with Hyper-Threading technology. Intel Developer
Network.

[21] F. Petrini, G. Fossum, J. Fernandez, A. L. Varbanescu,
M. Kistler, and M. Perrone. Multicore surprises: Lessons
learned from optimizing Sweep3D on the Cell Broadband
Engine. In Proc. of IEEE IPDPS, 2007.

[22] M. Pharr, editor. GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose
Computation. Addison Wesley, 2005.

[23] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and
P. Hanrahan. Photon mapping on programmable graphics
hardware. In Proc. of the ACM SIGGRAPH/Eurographics
Conference on Graphics Hardware (EGGH’03), 2003.

[24] R. Ramey. The Postman’s sort. C/C++ Users Journal,
August 1992.

[25] G. Ren, P. Wu, and D. Padua. Optimizing data permutations
for SIMD devices. In Proc. of ACM PLDI, 2006.

[26] V. Sachdeva, M. Kistler, E. Speight, and T.-H. K. Tzeng.
Exploring the viability of the Cell Broadband Engine for
Bioinformatics applications. In Proc. of the IEEE
International Workshop on High Performance Computational
Biology (HiCOMB’07), 2007.

[27] M. Zagha and G. E. Blelloch. Radix Sort for vector
multiprocessors. In Proc. of Supercomputing, 1991.

[28] J. Zhou and K. A. Ross. Implementing database operations
using SIMD instructions. In Proc. of ACM SIGMOD, 2002.

1297

