
Optimization of Frequent Itemset Mining on Multiple-Core
Processor

Li Liu2, 1, Eric Li1, Yimin Zhang1, Zhizhong Tang2*

Intel China Research Center, Beijing 100080, China1
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China2

{li.a.liu, eric.q.li, yimin.zhang }@intel.com, tzz-dcs@tsinghua.edu.cn

ABSTRACT
Multi-core processors are proliferated across different domains in
recent years. In this paper, we study the performance of frequent
pattern mining on a modern multi-core machine. A detailed study
shows that, even with the best implementation, current FP-tree
based algorithms still under-utilize a multi-core system due to
poor data locality and insufficient parallelism expression. We
propose two techniques: a cache-conscious FP-array (frequent
pattern array) and a lock-free dataset tiling parallelization mecha-
nism to address this problem. The FP-array efficiently improves
the data locality performance, and makes use of the benefits from
hardware and software prefetching. The result yields an overall
4.0 speedup compared with the state-of-the-art implementation.
Furthermore, to unlock the power of multi-core processor, a lock-
free parallelization approach is proposed to restructure the FP-tree
building algorithm. It not only eliminates the locks in building a
single FP-tree with fine-grained threads, but also improves the
temporal data locality performance. To summarize, with the pro-
posed cache-conscious FP-array and lock-free parallelization
enhancements, the overall FP-tree algorithm achieves a 24 fold
speedup on an 8-core machine. Finally, we believe the presented
techniques can be applied to other data mining tasks as well with
the prevalence of multi-core processor.

1. INTRODUCTION
Frequent Itemset Mining (FIM) is one of the fundamental prob-
lems in data mining, which aims to discover groups of items or
values that co-occur frequently in a dataset. It plays an increas-
ingly important role in a series of data mining tasks, such as asso-
ciations [2], correlations [4], causality [24], sequential patterns [3],
episodes [17], partial periodicity [14], and emerging patterns [8].
Many FIM Implementation (FIMI) algorithms have been pro-
posed in the literature [5,7,9,12,13,15,19,22,23,25,27,28], where

 * The work was supported in part by National Natural Science Founda-
tion of China under Grant No. 60573100

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special per-
mission from the publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

the frequent pattern tree (FP-tree) [7,11,13,15,22,28] is most
widely used and considered as the fastest known algorithm.

In the same time frame, the processor speed almost doubles every
two years for a couple of decades. However, the DRAM speed
has not kept up. The widening gap between processor and DRAM
speed becomes increasingly critical to the application perform-
ance. On the other hand, since the power and thermal constraints
increase with frequency, chip multi-processor (CMP) is now in
the way of the microprocessor design as a means achieving higher
performance with diminishing returns from increasing clock fre-
quency. CMP has multiple cores integrated in the same chip,
which significantly boosts the performance along with the in-
creasing of thread number. However, given the memory intensive
feature of FIMI algorithms and in-sufficient shared memory paral-
lelism exploration, it is very likely even the most efficient FIMI
algorithms grossly under-utilize a modern CMP processor in
terms of CPU utilization.

For purpose of this study, we measure the cache and scalability
performance of the fastest known FIMI algorithm, FPGrowth [15]
and its parallel implementation [7] on an 8-core SMP system. The
experimental setup and detailed datasets can be found in the ex-
periment evaluation section. Otherwise specified, the following
analysis presents the average performance data measured over
various runs.

In FPGrowth algorithm, there are two successive phases: FP-tree
building and FP-growth (mining on the existing FP-tree). FP-
growth spends 80% to 95% of the total execution time. Table 1
shows the performance characteristics of FP-growth in terms of
CPI (clock cycles per instruction) and cache misses. FP-growth
experiences a very high L3 cache miss rate, over 1% of all data
accesses missed in L3 cache are sent to main memory, which is
primary performance bottleneck on a modern processor. The CPI
is also far diverged from the optical performance the Pentium-4
processor can provide. The problem can be further exacerbated on
a multi-core processor since frequent off-chip memory accesses
will cause bus contention and limit the performance of thread
level parallelization.

Conventionally FP-tree building is largely ignored due to its small
execution time compared to FP-growth. However, Amdahl’s law
indicates that the overall scaling performance is limited by the
application’s serial time. Figure 1 depicts the scaling performance
of FPGrowth. Though FP-growth itself achieves a 5.3 speedup
with 8 threads, the whole application only obtains a less than 3
speedup when we consider FP-growth and FP-tree building to-
gether.

1275

Table 1. Cache performance of FP-growth

Dataset CPI L3 miss rate (%) L3 misses per
1000 instr.

Kosarak 5.74 15.9 6.5

Accidents 5.78 15.3 6.9

Smallwebdocs 4.80 14.4 6.0

Bigwebdocs 12.30 33.8 19.3

Webdocs 13.24 33.6 20.5

0

1

2

3

4

5

6

1P 2P 4P 8PThread number

sp
ee

du
p

FP-growth+FP-tree building FP-growth only

Figure 1. Scalability performance of FPGrowth

The experiments serve to illustrate an important point. The novel
architectural designs cannot be directly translated into improved
performance, which needs the program designer to understand and
make use of these architecture features to improve the execution
time. Furthermore, it becomes even demanding with the preva-
lence of CMP. The trend indicates that the number of cores in one
processor will continue to grow according to Moore’s law. In
order to harness its power, the programmer should redesign the
algorithm to exploit the thread level parallelism on top of multi-
core processor.

In response to the performance bottlenecks of FPGrowth on the
modern CMP machine, we present several techniques to alleviate
these problems. Our main contributions are:

1) First, we improve the cache performance through the design
of a cache-conscious FP-array. It not only reduces the cache
misses for single-core processor, but also alleviates the off-
chip memory accesses and improves the scalability on the
multi-core processor. In addition, through the design of the
cache-conscious FP-array, one can efficiently hide the cache
miss latency by leveraging hardware features like hardware
prefetching [10] and software prefetching [6].

2) Second, we propose a lock-free approach to parallelize the
FP-tree building phase, where dataset tiling and hot sub-tree
are used to improve the cache performance and provide a
lock-free mechanism in the FP-tree building phase. Essen-
tially, the thread level decomposition of the algorithm boosts
the performance on the multi-core processor.

As a result of the cache-conscious and parallel-oriented optimiza-
tions, we achieve a cumulative 4.0 and 24 speedup with respect to
FPGrowth for sequential and parallel program respectively.

The remainder of the paper is organized as follows. Section 2
introduces the related works. Section 3 develops a cache-
conscious FP-array to take advantage of the advancements of
modern architecture. Section 4 presents a lock-free mechanism to
improve the scaling performance of FIMI on the multi-core proc-
essor. Detailed experimental evaluations are given in Section 5.
Section 6 summarizes our study and points out some future re-
search directions.

2. RELATED WORKS
Frequent itemset mining plays an important role in a number of
data mining tasks. Examples include data analysis of market data,
protein sequences, web logs, text, music, stock market, etc.
Among the FIMI algorithms, Apriori [1,2] is the first efficient
algorithm to solve this problem. It is based on the anti-monotone
Apriori heuristic: if any length k pattern is not frequent in the
database, its length (k +1) super-pattern can never be frequent.
The essential idea is to iteratively generate the set of candidate
patterns of length (k + 1) from the set of frequent patterns of
length k (for k > 1), and check their corresponding occurrence
frequencies in the database.

Following Apriori, several other FIMI algorithms, such as DHP
[21], DIC [4], Eclat [27] and Partition [23], were proposed, but
these algorithms are I/O inefficient and suffer from multi-scan
problem. Salvatore et al. proposed Direct Count & Intersect
(kDCI) [19] and (parDCI[18]), but it requires at least 3 full dataset
scans. Han et al. presented FPGrowth, which converts the dataset
into FP-tree. This structure is significantly smaller than the origi-
nal dataset. Since it does not have an explicit candidate generation
phase and generates frequent itemsets using FP-tree projections
recursively, FPGrowth is much faster than any of the apriori-like
algorithms. However, the pointer-based nature of the FP-tree re-
quires costly dereferences and is not cache friendly, which pre-
vents it from achieving satisfying performance on a modern proc-
essor. In order to improve its cache performance, Ghoting et al
[11] proposed a tile-able cache-conscious FP-tree (CC-tree) to
accommodate fast bottom-up traversals in FP-tree. The original
FP-tree, after constructed, is transformed into CC-tree by allocat-
ing the nodes in sequential memory space in depth-first order.
CC-tree yields better cache performance than FPGrowth, however,
due to the tree structure of the CC-tree, it still experiences cache
misses when traversing the CC-tree in a bottom-up manner. Racz
presented nonordfp [22] as yet another workaround to improve
cache performance, which implements the FP-growth without
rebuilding the projected FP-tree recursively. The memory con-
sumption is unaffordable and it often fails with some small dataset,
which limits its wide use in practice.

In spite of the significance of the frequent pattern mining, few
advances have been made on parallelizing frequent pattern mining
algorithms. Most of the existing work on parallelizing association
rule mining was based on apriori-like algorithms. Osmar et al.
proposed a multi-tree algorithm [26], where each thread builds its
own FP-tree from a certain part of the dataset and calculates the
candidate pattern base from its private FP-Tree and then merges
the candidate pattern bases together. It can achieve good scaling
performance, but at the expense of memory expansion and redun-

1276

dant node traversal with the increasing of thread number. Iko et al.
proposed a remerging algorithm [20] which addresses the node
expansion problem on a PC cluster. However, tree merging itself
is much expensive due to additional overhead. In addition to mul-
tiple-tree approach, R.Jin, et al proved that [16], lock-based sin-
gle-tree approach had poor scalability. Chen et al [7] presented a
tree partition approach, where a unique tree is built. Though it
partially removes lock contentions, it is not essentially a lock-free
approach and does not exhibit good scaling performance on a
multi-core processor.

As our optimizations are presented in the context of the FPGrowth
algorithm, we will describe the FP-tree data structure and the
FPGrowth algorithm in more details. In order to compare with the
state-of-the-art, we also briefly illustrate CC-tree in this section.

2.1 FP-tree and FPGrowth
An FP-tree is a projected dataset, which provides a compact rep-
resentation for the original dataset. Each node of the tree stores an
item label and a count, with the count representing the number of
transactions which contain all the items in the path from the root
node to the current node. The design of FP-tree is based on the
following observations:

- For a dataset, only frequent 1-items are necessary to be kept,
while other items can be pruned away.

- If multiple transactions share an identical frequent item set,
they can be merged into one with the number of occurrences
registered as count.

- If two transactions share a common prefix, according to some
sorted order of frequent items, the shared parts can be merged
using one prefix structure as long as the count is registered
properly.

With these observations, an FP-tree is constructed as follows. We
first scan the dataset to count the frequency of 1-items. For each
transaction, we insert its frequent items into an FP-tree in fre-
quency descending order. A new node is generated when the node
with the appropriate item label is not found; otherwise, we in-
crease the count of the existing nodes.

Table 2. A dataset with min-support = 3
No. Transaction Sorted Transactions

1 F,E,B,A A,B,E

2 F,C,D,A A,C,D

3 A,C,E A,C,E

4 A,D A,D

5 B,A A,B

6 B B

7 E,C C,E

9 D D

Since an FP-tree is the projected dataset of a frequent k-itemset,
the union of the k-itemset and any item in this FP-tree is a fre-
quent (k+1)-itemset. Specifying α is an item in this FP-tree, the
projected FP-tree for α is constructed from the conditional pattern
base of α. Each transaction in the transaction pattern base is an
item sequence in the bottom-up path starting from the node asso-

ciated with item α in the FP-tree. Table 2 lists a sample dataset,
and Figure 3 shows the corresponding FP-tree. Each node in the
FP-tree consists of five members: item label, count, parent pointer,
nodelink pointer and child pointers. The nodelink pointer points to
the next item in the FP-tree with the same item-id, and child
pointers records a list of pointers to all its children. A header table
is used to store the pointers to the first occurrence of each item in
the FP-tree. A path in the FP-tree represents a set of transactions
that contain a particular frequent item pattern. For example, in
Figure 3, the path “root->C->E” represents all the transactions
that contain item “C” and “E”.

Figure 2. FPGrowth algorithm

The FPGrowth algorithm is presented in Figure 2. As described
earlier, FPGrowth is an FP-tree based approach to frequent pattern
mining. In phase 1, it builds an FP-tree from a transaction data-
base, removing all the infrequent items. Phase 2 iterates through
each item in the FP-tree. It finds all the frequent items in the con-
ditional pattern base for an item first, and then builds a new FP-
tree for this conditional pattern base when it has at least two fre-
quent items. Thus, the conditional pattern base is scanned twice in
each iteration. In general, an FP-tree node will be accessed many
times since the condition pattern bases of all items share the same
FP-tree. For each new FP-tree, the algorithm proceeds recursively.

2.2 CC-tree
The cache-conscious FP-tree is a modified prefix tree which ac-
commodates fast bottom-up tree traversals. It still uses the FP-
growth algorithm in FPGrowth. CC-tree allocates tree nodes in
contiguous memory space following the depth-first order of FP-
tree. Each CC-tree node has only 2 fields: item label and parent
pointer. The new data structure is more compact and the node size
is smaller than the original one. Hence, it has a better cache line
utilization. In order to improve temporal data reuse, a tiling
method is proposed to tile the CC-tree into several partitioned
sub-trees, where the conditional pattern base for all the items

Algorithm: FPGrowth

Input: A prefix tree D, min-support minsupp

Output: Set of all frequent patterns

Phase 1: Construct an FP-tree from a database

(1) Scan the transaction database D once, gathering frequency of all items.
(2) Sort the items based on their frequency in descending order.
(3) Create a root node, labeled null.
(4) Scan the database a second time: for each transaction, remove items
with frequency < minsupp, sort this transaction, and append it to the root of
the tree. Each inserted node is linked to a header list of the frequent one
item with that label.

Phase 2: Mine the FP-tree by calling FP-growth()

FP-growth(tree, suffix)

For each item α in the header table of FP-tree
 (1) Output α U suffix as frequent
 (2) Use the header list for α to find all frequent items in the conditional
pattern base C for α
 (3) If there is no frequent item in C, end this loop iteration
 (4) If there is only one frequent item in C, output this item U α U suffix as
frequent, and end this loop iteration
 (5) Generate an FP-tree τ according to C and header list of α
 (6) If τ has only one path, output any sub set of items in this path U α U
suffix as frequent, and end this loop iteration
 (7) FP-growth(τ, α U suffix).

1277

within the current tile is updated when accessing a tile in the CC-
tree. Figure 4 shows the CC-tree example corresponding to the
FP-tree in Figure 3.

Besides FP-tree data structure reorganization, CC-tree also em-
ploys a new parallelization strategy to allow two threads work in
the same tile simultaneously in order to improve data reuse per-
formance.

3. CACHE-CONSCIOUS OPTIMIZATION
In this section, we present several novel techniques to improve the
performance of frequent pattern mining using FP-tree. The details
of our optimizations are presented in the context of the FPGrowth
algorithm. The optimization techniques can also be applied to
most frequent pattern mining algorithms that use FP-tree.

3.1 Cache-Conscious FP-array
Before we detail the optimization techniques, we first profile the
FPGrowth with VTune1. This tool profiles program execution at
source code level and provides performance characteristics to
guide optimization. The FP-tree construction procedure spends
5%~20% of total execution time. In FP-growth, approximately
62% of the execution time is spent in the condition_pattern_base()
routine, which finds the frequent items in the conditional pattern
base for an item, and another 32% of the execution time is spent
in the FPGrowth() routine, to use the results of this step to create a
new projected FP-tree for the next step in the recursion. The work

1 http://www3.intel.com/cd/software/products/asmo-na/eng/vtune/

239144.htm

flow of these two procedures is very similar. They both have very
poor cache utilization, mainly for the following reasons.

First, the routine that scans the conditional pattern base performs
a bottom-up traversal of the FP-tree. Similarly, this access pattern
also applies for the routine that builds the projected FP-tree for
the next step in the recursion. In the FP-tree, each node has a total
5 elements: a list of child pointers, a parent pointer, a nodelink
pointer, a count, and an item label. Except for item and parent
pointer, all the other fields in the FP-tree node are not required for
the two main routines in the FP-tree traversal. Consequently, once
we fetch an FP-tree node, only two fields are actually used. This
significantly degrades cache line utilization. Second, a node and
its associated child nodes may not reside in the same cache line
due to the way an FP-tree is constructed. The FP-tree is built as
the dataset is scanned, and thus, successive accesses in the bot-
tom-up traversal of the tree are not contiguous in memory. Third,
the pointer based data structure in nodelink prevents two nodes
with same item-id from presenting at an adjacent position. The
next node with the same item-id is not likely to be present in any
other cache line due to the lack of temporal locality.

We present the cache-conscious frequent pattern array (FP-array),
a data structure designed to significantly improve cache perform-
ance. A cache-conscious FP-array is a data reorganization of FP-
tree by transforming it into two arrays, i.e. item array and node
array, which allocates in contiguous memory space. There are no
pointers in the FP-array, and thus, the pointer based tree data
structure is eliminated after the transformation. Given an FP-tree,
we first allocate the item and node array in main memory. Then
we traverse the FP-tree in depth-first order, and copy the item in
each node to the item array sequentially. The item array works

Figure 3. An example of FP-tree Figure 4. An example of CC-tree

Figure 5. FP-array after FP-tree transformation

Figure 6. Compact FP-array after item elimination

1278

essentially as a replication of the FP-tree. When encountering a
joint node, we replicate the joint path in the item array. The node
array, organized as an array list, records the occurrences of the
frequent items in the item array. Each list in the node array is
associated with one frequent item, and each element in the node
array corresponds to an FP-tree node, which has three members:
begin position of the item in item array, reference count, and
transaction size. Therefore, the count, nodelink pointer, parent
pointer and child pointers in the node of FP-tree are converted and
stored back in the node array. Figure 5 shows the FP-array after
transforming the FP-tree in Figure 3. It uses preorder tree traversal
and starts from node A (the first child of the root node), records
the path from A->E in the item array and updates the correspond-
ing node array member. This procedure iterates in depth-first
order until the FP-tree is traversed. Note that the item array is
inserted in reverse order in order to facilitate in-order item tra-
versal. Take {6,1,2} in node array E as an example, 6 represents
the corresponding transaction starts from the 6th position in the
item array; 2 is the size of this transaction, which has two con-
tiguous items from 6th position of the item array; 1 is the refer-
ence count for this transaction. Therefore, according to the ele-
ment {6, 1, 2} in the node array E, a transaction (B, A) is con-
structed with reference count 1. There is some redundancy in
building the item array, for example, in Figure 3, when mining on
item E, the bottom-up path B->A is traversed, when moving to
item D, the same node A will also be accessed. Therefore, A is
replicated in the item array since both bottom-up path B->A and
C->A share the same parent node A.

This new array based data structure provides significant im-
provements because the FP-growth algorithm accesses the item
array several times sequentially, where all the accessed items are
allocated continuously and a large portion of them reside in the
same cache line. Second, the separation of node array and item
array from FP-tree yields a more compact data size, where the
node size is much smaller than the original node size in FP-tree,
because we only store the item name in the item array. The other
four members in the node of FP-tree, e.g. child pointers, nodelink
pointers, parent pointer and counts are converted into the corre-
sponding members in the node array, which is not along the criti-
cal path. Though the replications of joint paths increase the num-
ber of items in the item array, the total allocated memory size
decreases dramatically due to the reduction of node size. Compar-
ing with FP-tree, each element of the item array is only less than
1/5 size of the FP-tree node, which accommodates the memory
expansion from node replications. Once the FP-array is created,
the original FP-tree can be purged, and thus memory usage does
not increase significantly.

Figure 7 shows the algorithm of transforming the FP-tree into the
FP-array in depth-first order. To elaborate how it works, follow-
ing gives some details in FP-tree transformation.

 For the child nodes which share the same parent node, the
first child node (head of child link-list) is named as the head
node, and the rest child nodes as the neighbor nodes. We use
a position iterator to mark the current position in the item
array. The iterator decreases by 1 after a new node is in-
serted in the current position of the item array.

 Item stack S records the node path from the current node to
the root node. Unless a neighbor node is detected, the items
in S will be copied back to item array IA.

 When a node is visited, a new element in the node array
corresponding to this node is allocated. The item label of
this node is written back to both the item array and the item
stack S.

There is data redundancy in the item array construction in Figure
5. For example, mining D and E share the same bottom-up path
C->A, likewise, mining B, C and D have the same path A. Re-
dundant item elimination in item array can decrease the memory
consumption and improve the cache performance. Figure 6 shows
the compact item array and node array. Furthermore, to further
optimize the FP-array data structure, we dynamically choose the
node size ranging from 4 bytes to 1 byte in the item array accord-
ing to the total frequent items in use. Since each element in the
item array corresponds to the item label of an FP-tree node, it is
not necessary to use 4-byte node size all the time in the FP-
growth process. For example, 1-byte node size can represent less
than 256 frequent items, similarly, 2-byte node size is enough
when the number of total item labels is smaller than 65536. Since
typically the number of frequent items is in a several thousand
scale, 2-byte node size is often used in item array for most of
datasets. In the process of FP-growth, we can also dynamically
change the node size, depending on the total number of frequent
items in the current iteration. When the number is under the
threshold, e.g. 256 or 65536, we can use smaller data size accord-
ingly. Narrower data size often leads to better data locality per-
formance and smaller memory consumption. In this case, the ele-
ment size in the item array is further optimized to less than 1/5 of
the node in FP-tree.

Figure 7. FP-array transformation algorithm

3.2 Hardware/Software Prefetching in FP-
array
Although large cache hierarchies have proven to be effective in
reducing the latency for the most frequently used data, it is still
common for memory intensive programs to spend a lot more run
time stalled on memory requests. Data prefetching has been pro-
posed as a technique for hiding the access latency of data refer-
encing patterns that defeat caching strategies. Rather than waiting
for a cache miss to initiate a memory fetch, data prefetching an-

Algorithm: Transformation of FP-tree into FP-array
Input: FP-tree T, number of items in item array L
Output: Item array IA, and node array NA

(1) Allocate sequential memory space for IA and set the iterator position of
IA to L-1
(2) For each item α in T, allocate memory space for NA[α]
(3) For each child node C of the root node in FP-tree T
 Visit(C, null, 0, IA, NA)
(4) Release memory space for T

Algorithm: Visit(N, S, 0, IA, NA)
Input: FP-tree node N, item stack S, depth D, Item array IA, and node arrays
NA
Output: None

(1) If N is a neighbor node, copy the items in S to IA
(2) Allocate an element from NA[item label of N], set its reference count,
transaction size and begin position to node N’s count, depth D, and the
iterator position of IA respectively
(3) Write the node N’s item label to the current iterator position in IA
(4) For each child C of node N
 Visit(C, S U item label of N, D+1, IA, NA)
(5) If N has no child, decrease the IA’s iterator position by 1

1279

ticipates such misses and issues a fetch to the memory system in
advance of the actual memory reference. It is an effective mecha-
nism to significantly improve overall program execution time by
overlapping computation with memory accesses. The frequent
pattern mining is an essential memory intensive application,
which does not have a significant amount of computation when
accessing each node. To alleviate this problem, we can use data
prefetching to mask the cache miss latencies.

There are two data prefetching mechanisms, i.e. hardware and
software prefetching. Software prefetching initiates a data pre-
fetch instruction issued by the processor, which specifies the ad-
dress of a data word to be brought into the cache. When the fetch
instruction is executed, this address is simply passed on to the
memory system without forcing the processor to wait for a re-
sponse. In contrast, hardware prefetching employs special hard-
ware which monitors the processor in an attempt to infer prefetch-
ing opportunities, which records memory access patterns of the
executing application and prefetches data addresses on a best-
effort basis. The Intel Pentium-4 processor has a hardware pre-
fetcher that operates without user intervention. Simple patterns
such as sequential and stride memory accesses are easily recog-
nized.

Figure 8. FP-array traversal

Figure 8 shows the algorithm of accessing the cache-conscious
FP-array. The inner loop (the 7th line) accesses the items in a
transaction, and the outer loop (the 1st line) locates the transac-
tions associated with the same item. Since item array is allocated
contiguously in sequential memory space, traversing the item
array and node array will yield better data locality performance.
In Figure 8, a transaction in the frequent pattern base in the inner
loop is accessed sequentially, which is preferable for hardware
prefetching to capture the sequential data access pattern and im-
prove its cache performance. Furthermore, since different transac-
tions belonging to the same frequent item are not located in the
adjacent position in the item array, we use manual software pre-
fetching to fetch the next adjacent transaction based on its lookup
index in the node array, as shown in the 2nd line of Figure 8.

After understanding the benefits of transforming the FP-tree into
the cache-friendly FP-array, we would like to further compare the
FP-array with the CC-tree in Figure 4, which also orients at im-
proving both local and temporal cache performance. CC-tree re-
moves 3 members of the FP-tree node, and maintains a parent
pointer to traverse the CC-tree in a bottom-up fashion. However,
pointers based data structure prevents it from accessing all the
nodes contiguously in memory space, especially when one node

has multiple children nodes where only one child node can be
allocated adjacently to the parent node. Furthermore, the hard-
ware prefetching cannot mask the cache misses in pointer chasing
in the nodelink pointer. In contrast, item array provides the most
compact node size, 1/2 to 7/8 smaller than CC-tree, and software
prefetching is employed to hide the cache misses across accessing
different transactions. Although tiling CC-tree increases the tem-
poral cache locality, the cost of tiling building and maintaining is
non-trivial. Consequently, we achieve a much better performance
in terms of both cache and overall execution time.

In summary, our cache-conscious FP-array transformation makes
the following benefits:

- FP-array provides a much smaller node size than FP-tree and
CC-tree, which improves the cache line utilization to allow
for a larger fraction of the working set fit in cache.

- By converting the FP-tree into FP-array which allocates in
contiguous memory space, once an item node is fetched into a
cache line, the next consecutive element in the item array will
likely reside in the same cache line. It reduces the cache miss
rate in FP-array traversal.

- Hardware prefetching and software prefetching can be used in
FP-array optimization to enable both strided and non-strided
data accesses. They reduce the cache misses in both within
and across transaction accesses in the item array.

4. LOCK-FREE PARALLELIZATON
Instead of focusing on faster clock speeds and more powerful
single core CPUs, the trend of processor design has made a dra-
matic shift towards multi-core system, which also results in a
paradigm shift for the development of computationally expensive
data mining algorithms. Conventionally, most of the existing
work on parallelizing association rule mining on shared-memory
multi-processor architecture was based on apriori-like algorithms.
With the prevalence of multi-core processors, it is important to
exploit thread-level parallelism within applications to fully take
advantage of multi core/processor processing capabilities.

In this section, we present several novel techniques to improve the
parallel performance of frequent pattern mining with the proposed
FP-array. According to detailed characterization, we find that the
FP-tree building module has very poor cache performance, which
approximately spends 10~40% of the total execution time after
FP-array optimization. Since most of computations occur in the
transaction appending routine, which scans the FP-tree in top-
down manner and inserts the node from the root of tree. The
pointer chasing data access pattern in FP-tree construction ac-
counts for the poor cache utilization. Before we detail the lock-
free parallelization mechanism, we first present some techniques
to improve the serial execution time which serves as the baseline
for parallel implementation.

4.1 Dataset Tiling
Typically an FP-tree does not fit in cache. It is very likely the
nodes which are associated with a new transaction are already
evicted out from the cache when this transaction is inserted into
the FP-tree. Since two adjacent transactions probably access dif-
ferent portions of FP-tree, data in one portion of the FP-tree which
are already loaded into the cache can not be used for other trans-

Algorithm: AccessItemNodeArray

Input: Node arrays A, N: number of elements in A, Item array I

Output: None

(1) For k = 0 to N-1, step 1
(2) Prefetch(A[k+1]->begin); // Software Prefetching
(3) Node=A[k];
(4) Begin=Node->begin;
(5) Count=Node->count;
(6) Length=Node->length;
(7) For j = 0 to Length-1, step 1
(8) Access I[j+Begin]; // Hardware Prefetching

1280

actions. Therefore, the cache is grossly under-utilized in the FP-
tree building phase, which exhibits a poor temporal data locality
performance in the FP-tree. Temporal locality states that recently
accessed memory locations are likely to be accessed again in the
near future. Therefore, in order to make use of the FP-tree in an
efficient way, it is imperative to exploit the existing temporal
locality in the FP-tree building algorithm.

We accomplish this by proposing a new approach called dataset
tiling. It reorganizes datasets so as to make them more likely
access the same portion of the FP-tree, therefore, reuse the FP-tree
in a temporal fashion once it is fetched in the cache. Before we
detail the proposed approach, we define some terms in the dataset
tiling algorithm. The frequent items are classified into two catego-
ries: hot items and cold items. Typically, we choose the top 16
frequent items as hot items, and the remaining frequent items as
code items. The FP-tree node corresponding to a hot item is
named as a hot node. Class-id of a transaction represents the bit
sequence of the hot items in this transaction. The lowest bit in
class id stands for the hot item with largest count. For example, in
Table 2, after selecting 2 hot items A and B, the class id of trans-
action {A, B, E, F} and {F, C, D, A} are “11” and “01”, respec-
tively. A hot sub-tree is a subset of FP-tree which only consists of
the hot nodes, and each node path of the hot sub-tree represents
one class id.

The procedure of dataset tiling works as follows:

1) Preparation: we scan the dataset and bypass the infrequent
items. For each transaction which contains the frequent items, the
class id is computed and the new transaction is recorded as <class
id, number of items, transaction item list>, where the transaction
item list stores the sorted cold items in this transaction. Mean-
while, we choose 16 hot items and build a hot sub-tree.

2) Dataset tiling: according to the class id information, the new
transactions with the same class id are sorted and merged into a
tile. The tile is stored contiguously in memory space. Once the
full set of tiles is created for the new transactions, the original
dataset is purged from memory. Dataset tiling executes in a recur-
sive manner until the tile size is smaller than the cache size. After
dataset tiling, the transactions which can be processed in one por-
tion of FP-tree are assembled in one tile. They have a large over-
lap in sharing the same portion of sub-tree in the transaction inser-
tion stage.

3) Dataset insertion: the transactions within one tile have the same
class id, indicating they share the same hot node path in the hot
sub-tree. When inserting these transactions to the hot sub-tree,
they will be appended to the tail nodes in the hot node path. Thus,
all the data insertion in one tile only performs in one subset of the
FP-tree. The procedure iterates until all the tiles complete transac-
tion insertion. In the end, the hot sub-tree is transformed into the
final FP-tree. In order to accelerate finding the tail hot node, we
use hash index to index all the hot nodes according to their class
id information.

Figure 9 illustrates the FP-tree building process using transactions
in Table 2. We empirically choose A and B as two hot items,
according to the class id information, the 9 transactions are parti-
tioned into 4 tiles, e.g. the tile with class id “11” has two transac-
tion {A, B, E, F} and {A, B}. The gray nodes represent the hot

nodes. The hot sub-tree is connected using dashed lines. When we
insert a transaction {A, C, E} into the hot sub-tree, we first finds
its class id, use its hash index to locate the tail hot node A, and
then append the item C and E to this hot node. The building pro-
cedure iterates until all the transactions are inserted into the hot
sub-tree.

Figure 9. Lock-free FP-tree building

There are several advantages of the dataset tiling. First, it signifi-
cantly improves the temporal cache locality performance by parti-
tioning the transactions into smaller tiles, where each tile only
pertains to a subset of an FP-tree, thus largely reuse the FP-tree in
a temporal fashion. Second, with the infrequent and hot items
pruned in the new transactions, the size of new transaction is re-
duced to less than 20% of original size. Coupled with their con-
tiguous sequential data access pattern, the spatial locality cache
performance is improved as well. Third, the classification of hot
nodes and hot sub-tree provides a good foundation for the thread
level parallelization, which will be elaborated in the next section.

4.2 Lock-free FP-tree Building
The parallelization of FP-growth is straightforward. After separat-
ing the first FP-growth loop from its recursive format, the fre-
quent items can be assigned to the worker threads in a dynamic
manner. However, parallelizing the FP-tree building is more diffi-
cult. Traditionally, the main challenge in parallelizing the build-
ing FP-tree on a shared memory system arises because of the pos-
sible race conditions when multiple processors update the same
node of the FP-tree. To avoid the race conditions, generally lock
based exclusive access mechanism is used to protect it from mu-
tual access. Experiments show that this approach has poor scaling
performance, e.g. the parallel program running on an 8 processor
system was even slower than its sequential version [16].

Motivated by the disadvantages of existing parallel algorithms,
we propose a novel lock-free approach to efficiently accelerate
the FP-tree building procedure on multi-core system. In the origi-
nal algorithm, the common pattern for each transaction is ignored
when inserting transactions into the FP-tree, i.e. in multithreaded
context, transactions in distinct threads may access the same node
in the FP-tree. To resolve the conflictions among different trans-
actions, we use the aforementioned class id and hot sub-tree to
restructure the FP-tree building procedure into the lock-free fash-
ion. Following shows the details of parallelized FP-tree building.

1281

1) First, after the first scan, we get support of all items and sort
the items based on their frequency. At the same time, we
choose 16 hot items and build a hot sub-tree. Then we tile
the dataset into a number of segments, whose amount is
much larger than the total thread number. We use dynamic
thread scheduling policy to assign the segments to each
thread to minimize the load imbalance. Then each thread
computes the class id for each transaction and generates a
new dataset.

2) Next, the new transactions attached with the same class id
are reordered and merged into the same tile. Each thread is
responsible for one portion of transaction data. Since the start
position and the size of the new transactions are determined
beforehand, there is no data access conflict among the work-
ing threads.

3) Finally, the transactions are inserted to the hot sub-tree in the
context of tile format. Since each tile has its unique class id,
which does not overlap with other tiles, the transactions in
each tile will be appended to one particular tail hot node in
the hot sub-tree, while other tiles will not touch the same hot
node pertaining to this tile. Therefore, all the tiles are essen-
tially independent from each other. They can be inserted into
the hot sub-tree non-exclusively in contrast to using locks to
protect the sharing nodes in the conventional method. Since
we choose 16 hot items, which leads to more than 60K tiles,
in order to minimize the load imbalance, we merge some
tiles together according to their computational load. Conse-
quently, these merged tiles are assigned to each processor
and inserted into the FP-tree in a lock-free manner.

Since most of the execution time is spent in the transaction inser-
tion stage, other modules like hot sub-tree building are trivial for
parallelization. Figure 9 shows the example of lock-free FP-tree
building. In case of two threads, the tiles are grouped into two
partitions (circled in red and green) and assigned to each thread
respectively.

To summarize, we make the following contributions in the FP-
tree building phase:

- Dataset tiling uses class id to classify the transactions into
different tiles which contain the same set of frequent items. It
improves the temporal data locality by reusing the same por-
tion of FP-tree in the cache and reduces the memory con-
sumption.

- A lock-free parallelization mechanism is proposed in the FP-
tree building phase. It uses a hot sub-tree and transaction til-
ing to eliminate the locks in transaction insertion, which sig-
nificantly improves the scaling performance on the multi-core
processor.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the benefits of our optimizations and
compare them with prior works. We use an 8-way Intel Xeon
machine with 4GB physical memory. It has 4 dual-core proces-
sors running at 3.2GHz. Each core is equipped with a 16K L1 data
cache and a 1MB unified L2 cache. A 4MB L3 unified cache is
shared by two cores in one physical processor. The cache line
sizes are 64 bytes for the L1 and L2 caches, and 128 bytes for the

L3 cache. The system bus runs at 166MHz and delivers a band-
width of 5.3GB/s. We use OpenMP programming model to paral-
lelize this application. Furthermore, we use the Intel VTune per-
formance analyzer to collect the cache performance numbers.

Table 3. FIMI Datasets

Name Num. of
trans. Size Min-

support
Num. frequent

1-items
Aver. Effective

Trans. Len.
Kosarak 990000 31M 800 1530 5.1

Accidents 340000 34M 40000 66 26.1

Smallweb-
docs 230000 200M 12000 662 54.1

Bigwebdocs 500000 460M 50000 280 25.2

Webdocs 1690000 1.46G 120000 428 35.8

Table 3 shows the datasets in our evaluation. Accidents, Kosarak
and Webdocs are the datasets from the Frequent Itemset Mining
Implementations Repository. Webdocs is the largest dataset in the
FIMI Repository containing about 1.7 million transactions.
Smallwebdocs and Bigwebdocs are artificial datasets which are
cut from Webdocs to represent different sizes of FIM dataset. The
4th~6th columns in Table 3 list the min-support for each dataset,
the corresponding frequent 1-items number and average effective
transaction length (infrequent 1-items are pruned array).
Throughout this section, we compare the execution time with
respect to FPGrowth from FIMI repository. In addition, to demon-
strate the effectiveness of FP-array, we also include CC-tree for
performance comparison. Note that hardware prefetching is en-
abled for both FPGrowth and CC-tree in our evaluation.

5.1 Impact of FP-array optimization
We first evaluate the FP-array optimization. From Figure 10, it is
evident that we achieve a significant performance improvement
due to spatial locality optimization. It obtains a speedup of 2.76
on average. Kosarak has the largest performance gain primarily
due to its sparsest dataset, the cache misses of which is reduced
significantly when transforming the FP-tree to the FP-array.
When the hardware prefetching is enabled, it provides an addi-
tional 5%~30% speedup. Since the FPGrowth algorithm employs
a tree structure where the nodes are linked through pointers, when
traversing the tree in a bottom-up fashion, pointer based irregular
data references will break the data spatial locality. In contrast, FP-
array removes the pointer based data structure, and all the data in
the FP-array are stored sequentially in memory, which directly
improves the cache locality performance and facilitates hardware
prefetching. Furthermore, because the item array only contains
one data element, when we traverse the item array, it can fit up 16
to 64 nodes (dynamic item size from 1 to 4 bytes) in one cache
line (64 bytes in Pentium-4 architecture). In the FP-tree imple-
mentation, each node spans at least 20 bytes, and at most 3 nodes
can fit in a cache line. Even in CC-tree, one cache line can only
keep 8 nodes. Consequently, the performance of CC-tree is better
than FPGrowth, but still inferior to FP-array. Figure 12 plots the
L3 cache miss reduction in terms of MPKI (misses per thousand
instructions). FP-array reduces the cache misses by a factor of
17.6 on average compared to the baseline FPGrowth.

1282

0

1

2

3

4

5

kosarak accidents smallwebdocs bigwebdocs webdocs

CC-tree FP-array
FP-array+H/W prefetching FP-array+H/W+S/W prefetching

Figure 10. FP-growth sequential speedup

0

1

2

3

4

5

6

7

100000 75000 50000 25000
min-support

CC_tree
FP-array+H/W prefetching
FP-array+H/W +S/W prefteching

 Figure 11. FP-growth sequential speedup of Bigwebdocs

0

5

10

15

20

kosarak accidents bigwebdocs smallwebdocs webdocs

M
P

KI

FPGrowth FP-array
FP-array+H/W prefetching FP-array+H/W+S/W prefetching
CC-tree+H/W prefetching

Figure 12. L3 cache miss reduction in FP-growth

0

1

2

3

4

kosarak accidents smallwebdocs bigwebdocs webdocs

M
em

or
y

Co
ns

um
pt

io
n

R
at

io

FP-array CC-tree

Figure 13. Memory consumption ratio in FP-growth

0

2

4

6

8

kosarak accidents smallwebdocs bigwebdocs webdocs

S
pe

ed
up

Transaction Set Tiling

Figure 14. Sequential speedup of FP-tree building

0

2

4

6

8

1 2 4 8Core number

S
pe

ed
up

FP-tree building speedup Ovreall speedup

Figure 15. FP-tree building and overall scaling performance

10

100

1000

10000

400000 350000 300000 250000 200000 150000 120000
min support

tim
e

kDCI LCM2 FPGrowth
CC-tree FP-array

Figure 16. Total execution time of “Webdocs”

1

10

100

10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 800

min-support

Ti
m

e

AIM2 KDCI LCM2 nonordfp

FPGrowth CC-tree FP-array

Figure 17. Total execution time of “Kosarak”

1283

Besides hardware prefetching, software prefetching also provides
20% performance improvement for the large datasets. It pre-loads
the next several transactions in the item array beforehand accord-
ing to their positions in the node array. Software prefetching helps
cause data at a specified memory address to be brought into cache.
Therefore, it makes up for the sequential access pattern in hard-
ware prefetching. The performance impact of software prefetch-
ing is more evident for large dataset with longer transaction length,
because the longer length of a transaction makes fewer transac-
tions installed in the cache, thus provides more opportunities for
software prefetching. For instance, Bigwebdocs and Webdocs
benefit most from data prefetching in Figure 10. In contrast, the
speedup of Accidents is not pronounced because it holds a relative
small working set. Figure 11 shows that FP-array consistently
outperforms CC-tree and FP-tree with the decreasing of min-
support. Lowering supports allows more infrequent items to be-
come frequent, and thus increase the computation of FP-growth
dramatically.

In addition to the performance evaluation, we also compare their
memory consumption as indicated in Figure 13. FP-array roughly
consumes the same memory as FPGrowth. However, CC-tree
almost doubles the memory size, which practically limits it from
running large dataset, e.g. Webdocs.

5.2 Impact of Dataset Tiling
Figure 14 shows the sequential execution time improvement with
the dataset tiling in FP-tree building. We achieve a 4.2 speedup on
average relative to the baseline - FP-tree building in FPGrowth
algorithm. Dataset tiling partitions the transactions into several
segments based on its class id. Each transaction within a tile can
be inserted into a subset of the FP-tree, which in turn improves
the temporal data locality performance and reduces the cache
misses by a factor of 32.1 on average. In addition, dataset tiling
also reduces memory consumption in building the FP-tree.

5.3 Impact of Lock Free Parallelization
The FP-tree building phase is particularly important to the multi-
threading implementation, which constitutes 10~40% of sequen-
tial running time depending on the dataset and support in use.
Figure 15 depicts the scaling performance of the optimized im-
plementation, where the left bar is the lock-free FP-tree building
and the right bar is the overall execution time consisting of both
FP-tree building and FP-growth. With the proposed lock-free
mechanism, we obtain a 5.6 speedup for the five datasets on aver-
age. The synchronization cost is trivial for the lock free paralleli-
zation. There are no locks to protect the nodes since all the tiles
are explicitly partitioned and assigned to the different threads.
The scalability limiting factors are largely from load imbalance
and hardware resource contention.

We also compare the lock-free approach with prior single-tree
based methods, e.g. tree-partition [7]. It only achieves a less than
2.0 speedup on the 8-core machine due to lock overhead and load
imbalance. In contrast, even after improving the sequential time
by a factor of 4, we can further achieve an additional 5.6 speedup
over the optimized serial program on the 8-core system.

The overall speedup is also pretty good due to the cache-
conscious optimization of FP-array. It reduces off-chip memory
accesses and alleviates memory bandwidth requirement. Further-

more, FP-array is shared among multiple threads, which makes it
attractive in CMP where the last level cache is shared amongst the
cores to minimize data replications.

5.4 Overall Execution Time Evaluation
Finally, we compare the overall sequential execution time be-
tween our proposed FP-array (including Dataset tiling in FP-tree
building) and a set of FIMIs, i.e. FPGrowth[15], CC-tree[11],
AIM2[9], kDCI[19], LCM2[25], nonordfp[22], which are consid-
ered as the state-of-the-art in literature. Figure 16 and 17 present
the results for Webdocs and Kosarak. Note in Figure 16, some
algorithms fail to run Webdocs due to their huge memory re-
quirement. Other datasets also show the similar trends. It is obvi-
ous that our approach achieves the lowest execution time consis-
tently compared with the other approaches. The performance gap
is more pronounced with the increasing size of input datasets,
since it directly increases the working set size and incurs more
cache misses when the algorithms do not hold a cache-friendly
data structure.

In addition to delivering the optimal sequential execution time, we
also provide an efficient parallel approach to harness the multi-
threading capability provided by the latest multi-core system. The
optimized algorithm achieves a 6.2 speedup on an 8-core machine.
Consequently, the total execution time is reduced by a factor of
24 in combination with cache-conscious FP-array optimization
compared to the sequential FPGrowth.

6. CONCLUSION
In this paper, we show that the existing frequent itemset mining
implementations like FPGrowth, largely under-utilize a modern
multi-core processor in terms of poor data locality performance
and low thread level parallelism. We propose a cache conscious
FP-array to improve the spatial data locality performance. Fur-
thermore, it allows the algorithm to leverage hardware and soft-
ware prefetching. All these optimizations reduce the cache misses
greatly and deliver a cumulative 4.0 speedup compared with
FPGrowth. In order to make use of the multithreading capability
equipped in the multi-core processor, a dataset tiling approach is
proposed to enable lock-free FP-tree building. It allows the work-
ing threads to insert transactions to the unique FP-tree without
data confliction. At the same time, the temporal data locality per-
formance is improved as well due to the reuse of FP-tree. As a
result, the parallel optimization achieves a 6.2 speedup on an 8-
core system. Overall, we improve the performance by a factor of
24 compared with the sequential FPGrowth. From our results, we
conclude that the frequent itemset mining algorithms can be sig-
nificantly optimized in two aspects:

- The design of cache-conscious FP-array coupled with hard-
ware techniques like hardware and software prefetching to
improve the cache locality performance

- Algorithm redesign to enable lock-free tree-building through
dataset tiling, which improves the temporal cache perform-
ance and makes the algorithm amenable to the thread level
parallelization.

We believe the proposed methodology can also be applied to
other pattern mining categories as well. Further, we would like
explore large scale frequent mining problems on commodity
multi-core computers. They will belong to our future work.

1284

7. ACKNOWLEDGMENTS
We would like to thank Amol Ghoting and Yen-Kuang Chen for
allowing us to use their CC-tree codes.

8. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association

rules between sets of items in large database. In Proceedings
of the International Conference on Management of Data,
1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In Proceedings of the International Conference
on Very Large Data Bases, 1994.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proceedings of the International Conference on Data Engi-
neering, 1995.

[4] S. Brin, R. Motwani, and C. Silverstein. Beyond market bas-
ket: Generalizing association rules to correlations. In Pro-
ceedings of the International Conference on Management of
Data, 1997.

[5] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal
frequent itemset mining algorithm for transactional databases.
In Proceedings of the International Conference on Data En-
gineering, 2001.

[6] D. Callahan, K. Kennedy, A. Porterfield. Software prefetch-
ing. In Proceedings of international conference on Architec-
tural Support for Programming Languages and Operating
Systems, 1991.

[7] DH. Chen, CR. Lai, W Hu, WG. Chen, YM. Zhang, WM.
Zheng. Tree partition based parallel frequent pattern mining
on shared memory systems. In Proceedings of IPDPS Work-
shop on Parallel and Distributed Scientific and Engineering,
2006.

[8] G. Dong and J. Li. Efficient mining of emerging patterns:
Discovering trends and differences. In Proceedings of the In-
ternational Conference on Knowledge Discovery and Data
Mining,1999.

[9] A. Fiat, S. Shporer. AIM2: Improved implementation of AIM.
In Proceedings of ICDM Workshop on Frequent Itemset
Mining Implementations, 2004.

[10] John W. C. Fu, Janak H. Patel, Bob L. Janssens. Stride di-
rected prefetching in scalar processors. In Proceedings of in-
ternational symposium on Microarchitecture, 1992.

[11] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A.
Nguyen, Y. Chen, and P. Dubey. Cache-conscious Frequent
Pattern Mining on a Modern Processor. In Proceedings of the
International Conference on Very Large Data Bases, 2005.

[12] K. Gouda and M. Zaki. Efficiently mining maximal frequent
itemsets. In Proceedings of the International Conference on
Data Mining, 2001.

[13] G. Grahne, J. Zhu. Efficiently using prefix-trees in mining
frequent itemsets. In Proceedings of ICDM Workshop on
Frequent Itemset Mining Implementations, 2003.

[14] J. Han, G. Dong, and Y. Yin. Efficient mining of partial pe-
riodic patterns in time series dataset. In Proceedings of the
International Conference on Data Engineering, 1999.

[15] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generations. In Proceedings of the International
Conference on Management of Data, 2000.

[16] R. Jin, G. Yang, and G. Agrawal. Shared memory paralleli-
zation of data mining algorithms: Techniques, programming
interface, and performance. IEEE Trans. Knowl. Data Eng,
17,1 (JAN. 2005), 71–89.

[17] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of
frequent episodes in event sequences. Data Mining and
Knowledge Discovery, 1, 3 (SEP. 1997), 259-289.

[18] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. An
efficient parallel and distributed algorithm for counting fre-
quent sets. In VECPAR, 2002.

[19] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, F. Silvestri.
kDCI: a Multi-Strategy Algorithm for Mining Frequent Sets.
In Proceedings of ICDM Workshop on Frequent Itemset
Mining Implementations, 2003.

[20] I. Pramudiono and M. Kitsuregawa. Tree structure based
parallel frequent pattern mining on PC cluster. In Proceed-
ings of the International Conference on Database and Expert
System Applications, 2003.

[21] J. Park, M. Chen, and P. Yu. An effective hash-based algo-
rithm for mining association rules. In Proceedings of the In-
ternational Conference on Management of Data, 1995.

[22] B. Racz. nonordfp: An FP-growth variation without rebuild-
ing the FP-tree. In Proceedings of ICDM Workshop on Fre-
quent Itemset Mining Implementations, 2004.

[23] A. Savasere, E. Omiecinski, and S. Navathe. An efficient
algorithm for mining association rules in large database. In
Proceedings of the International Conference on Very Large
Data Bases, 1995.

[24] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable
techniques for mining causal structures. In Proceedings of
the International Conference on Very Large Data Bases,
1998.

[25] T. Uno, M. Kiyomi, H. Arimura. LCM ver. 2: Efficient Min-
ing Algorithms for Frequent/Closed/Maximal Itemsets. In
Proceedings of ICDM Workshop on Frequent Itemset Mining
Implementations, 2004

[26] O. R. Za¨ıane, M. El-Hajj, and P. Lu. Fast parallel associa-
tion rule mining without candidacy generation. In Proceed-
ings of the International Conference on Data Mining, 2001.

[27] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algo-
rithms for fast discovery of association rules. In Proceedings
of the International Conference on Knowledge Discovery
and Data Mining, 1997.

[28] J. Zhou, J. Cieslewicz, K. Ross, M. Shah. Improving dataset
performance on simultaneous multithreading processors. In
Proceedings of the International Conference on Very Large
Data Bases, 2005

1285

