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ABSTRACT 
Multi-core processors are proliferated across different domains in 
recent years. In this paper, we study the performance of frequent 
pattern mining on a modern multi-core machine. A detailed study 
shows that, even with the best implementation, current FP-tree 
based algorithms still under-utilize a multi-core system due to 
poor data locality and insufficient parallelism expression. We 
propose two techniques: a cache-conscious FP-array (frequent 
pattern array) and a lock-free dataset tiling parallelization mecha-
nism to address this problem. The FP-array efficiently improves 
the data locality performance, and makes use of the benefits from 
hardware and software prefetching. The result yields an overall 
4.0 speedup compared with the state-of-the-art implementation. 
Furthermore, to unlock the power of multi-core processor, a lock-
free parallelization approach is proposed to restructure the FP-tree 
building algorithm. It not only eliminates the locks in building a 
single FP-tree with fine-grained threads, but also improves the 
temporal data locality performance. To summarize, with the pro-
posed cache-conscious FP-array and lock-free parallelization 
enhancements, the overall FP-tree algorithm achieves a 24 fold 
speedup on an 8-core machine. Finally, we believe the presented 
techniques can be applied to other data mining tasks as well with 
the prevalence of multi-core processor.  

1. INTRODUCTION 
Frequent Itemset Mining (FIM) is one of the fundamental prob-
lems in data mining, which aims to discover groups of items or 
values that co-occur frequently in a dataset. It plays an increas-
ingly important role in a series of data mining tasks, such as asso-
ciations [2], correlations [4], causality [24], sequential patterns [3], 
episodes [17], partial periodicity [14], and emerging patterns [8]. 
Many FIM Implementation (FIMI) algorithms have been pro-
posed in the literature [5,7,9,12,13,15,19,22,23,25,27,28], where 
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the frequent pattern tree (FP-tree) [7,11,13,15,22,28] is most 
widely used and considered as the fastest known algorithm. 

In the same time frame, the processor speed almost doubles every 
two years for a couple of decades. However, the DRAM speed 
has not kept up. The widening gap between processor and DRAM 
speed becomes increasingly critical to the application perform-
ance. On the other hand, since the power and thermal constraints 
increase with frequency, chip multi-processor (CMP) is now in 
the way of the microprocessor design as a means achieving higher 
performance with diminishing returns from increasing clock fre-
quency. CMP has multiple cores integrated in the same chip, 
which significantly boosts the performance along with the in-
creasing of thread number. However, given the memory intensive 
feature of FIMI algorithms and in-sufficient shared memory paral-
lelism exploration, it is very likely even the most efficient FIMI 
algorithms grossly under-utilize a modern CMP processor in 
terms of CPU utilization. 

For purpose of this study, we measure the cache and scalability 
performance of the fastest known FIMI algorithm, FPGrowth [15] 
and its parallel implementation [7] on an 8-core SMP system. The 
experimental setup and detailed datasets can be found in the ex-
periment evaluation section. Otherwise specified, the following 
analysis presents the average performance data measured over 
various runs. 

In FPGrowth algorithm, there are two successive phases: FP-tree 
building and FP-growth (mining on the existing FP-tree). FP-
growth spends 80% to 95% of the total execution time. Table 1 
shows the performance characteristics of FP-growth in terms of 
CPI (clock cycles per instruction) and cache misses. FP-growth 
experiences a very high L3 cache miss rate, over 1% of all data 
accesses missed in L3 cache are sent to main memory, which is 
primary performance bottleneck on a modern processor. The CPI 
is also far diverged from the optical performance the Pentium-4 
processor can provide. The problem can be further exacerbated on 
a multi-core processor since frequent off-chip memory accesses 
will cause bus contention and limit the performance of thread 
level parallelization. 

Conventionally FP-tree building is largely ignored due to its small 
execution time compared to FP-growth. However, Amdahl’s law 
indicates that the overall scaling performance is limited by the 
application’s serial time. Figure 1 depicts the scaling performance 
of FPGrowth. Though FP-growth itself achieves a 5.3 speedup 
with 8 threads, the whole application only obtains a less than 3 
speedup when we consider FP-growth and FP-tree building to-
gether. 
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Table 1. Cache performance of FP-growth 

Dataset CPI L3 miss rate (%) L3 misses per 
1000 instr. 

Kosarak 5.74 15.9 6.5 

Accidents 5.78 15.3 6.9 

Smallwebdocs 4.80 14.4 6.0 

Bigwebdocs 12.30 33.8 19.3 

Webdocs 13.24 33.6 20.5 

 

0

1

2

3

4

5

6

1P 2P 4P 8PThread number

sp
ee

du
p

FP-growth+FP-tree building FP-growth only

 
Figure 1. Scalability performance of FPGrowth 

 
The experiments serve to illustrate an important point. The novel 
architectural designs cannot be directly translated into improved 
performance, which needs the program designer to understand and 
make use of these architecture features to improve the execution 
time. Furthermore, it becomes even demanding with the preva-
lence of CMP. The trend indicates that the number of cores in one 
processor will continue to grow according to Moore’s law. In 
order to harness its power, the programmer should redesign the 
algorithm to exploit the thread level parallelism on top of multi-
core processor. 

In response to the performance bottlenecks of FPGrowth on the 
modern CMP machine, we present several techniques to alleviate 
these problems. Our main contributions are: 

1) First, we improve the cache performance through the design 
of a cache-conscious FP-array. It not only reduces the cache 
misses for single-core processor, but also alleviates the off-
chip memory accesses and improves the scalability on the 
multi-core processor. In addition, through the design of the 
cache-conscious FP-array, one can efficiently hide the cache 
miss latency by leveraging hardware features like hardware 
prefetching [10] and software prefetching [6]. 

2) Second, we propose a lock-free approach to parallelize the 
FP-tree building phase, where dataset tiling and hot sub-tree 
are used to improve the cache performance and provide a 
lock-free mechanism in the FP-tree building phase. Essen-
tially, the thread level decomposition of the algorithm boosts 
the performance on the multi-core processor. 

As a result of the cache-conscious and parallel-oriented optimiza-
tions, we achieve a cumulative 4.0 and 24 speedup with respect to 
FPGrowth for sequential and parallel program respectively. 

The remainder of the paper is organized as follows. Section 2 
introduces the related works. Section 3 develops a cache-
conscious FP-array to take advantage of the advancements of 
modern architecture. Section 4 presents a lock-free mechanism to 
improve the scaling performance of FIMI on the multi-core proc-
essor. Detailed experimental evaluations are given in Section 5. 
Section 6 summarizes our study and points out some future re-
search directions. 

2. RELATED WORKS 
Frequent itemset mining plays an important role in a number of 
data mining tasks. Examples include data analysis of market data, 
protein sequences, web logs, text, music, stock market, etc. 
Among the FIMI algorithms, Apriori [1,2] is the first efficient 
algorithm to solve this problem. It is based on the anti-monotone 
Apriori heuristic: if any length k pattern is not frequent in the 
database, its length (k +1) super-pattern can never be frequent. 
The essential idea is to iteratively generate the set of candidate 
patterns of length (k + 1) from the set of frequent patterns of 
length k (for k > 1), and check their corresponding occurrence 
frequencies in the database. 

Following Apriori, several other FIMI algorithms, such as DHP 
[21], DIC [4], Eclat [27] and Partition [23], were proposed, but 
these algorithms are I/O inefficient and suffer from multi-scan 
problem. Salvatore et al. proposed Direct Count & Intersect 
(kDCI) [19] and (parDCI[18]), but it requires at least 3 full dataset 
scans. Han et al. presented FPGrowth, which converts the dataset 
into FP-tree. This structure is significantly smaller than the origi-
nal dataset. Since it does not have an explicit candidate generation 
phase and generates frequent itemsets using FP-tree projections 
recursively, FPGrowth is much faster than any of the apriori-like 
algorithms. However, the pointer-based nature of the FP-tree re-
quires costly dereferences and is not cache friendly, which pre-
vents it from achieving satisfying performance on a modern proc-
essor. In order to improve its cache performance, Ghoting et al 
[11] proposed a tile-able cache-conscious FP-tree (CC-tree) to 
accommodate fast bottom-up traversals in FP-tree. The original 
FP-tree, after constructed, is transformed into CC-tree by allocat-
ing the nodes in sequential memory space in depth-first order. 
CC-tree yields better cache performance than FPGrowth, however, 
due to the tree structure of the CC-tree, it still experiences cache 
misses when traversing the CC-tree in a bottom-up manner. Racz 
presented nonordfp [22] as yet another workaround to improve 
cache performance, which implements the FP-growth without 
rebuilding the projected FP-tree recursively. The memory con-
sumption is unaffordable and it often fails with some small dataset, 
which limits its wide use in practice. 

In spite of the significance of the frequent pattern mining, few 
advances have been made on parallelizing frequent pattern mining 
algorithms. Most of the existing work on parallelizing association 
rule mining was based on apriori-like algorithms. Osmar et al. 
proposed a multi-tree algorithm [26], where each thread builds its 
own FP-tree from a certain part of the dataset and calculates the 
candidate pattern base from its private FP-Tree and then merges 
the candidate pattern bases together. It can achieve good scaling 
performance, but at the expense of memory expansion and redun-
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dant node traversal with the increasing of thread number. Iko et al. 
proposed a remerging algorithm [20] which addresses the node 
expansion problem on a PC cluster. However, tree merging itself 
is much expensive due to additional overhead. In addition to mul-
tiple-tree approach, R.Jin, et al proved that [16], lock-based sin-
gle-tree approach had poor scalability. Chen et al [7] presented a 
tree partition approach, where a unique tree is built. Though it 
partially removes lock contentions, it is not essentially a lock-free 
approach and does not exhibit good scaling performance on a 
multi-core processor. 

As our optimizations are presented in the context of the FPGrowth 
algorithm, we will describe the FP-tree data structure and the 
FPGrowth algorithm in more details. In order to compare with the 
state-of-the-art, we also briefly illustrate CC-tree in this section. 

2.1 FP-tree and FPGrowth 
An FP-tree is a projected dataset, which provides a compact rep-
resentation for the original dataset. Each node of the tree stores an 
item label and a count, with the count representing the number of 
transactions which contain all the items in the path from the root 
node to the current node. The design of FP-tree is based on the 
following observations: 

- For a dataset, only frequent 1-items are necessary to be kept, 
while other items can be pruned away. 

- If multiple transactions share an identical frequent item set, 
they can be merged into one with the number of occurrences 
registered as count. 

- If two transactions share a common prefix, according to some 
sorted order of frequent items, the shared parts can be merged 
using one prefix structure as long as the count is registered 
properly. 

With these observations, an FP-tree is constructed as follows. We 
first scan the dataset to count the frequency of 1-items. For each 
transaction, we insert its frequent items into an FP-tree in fre-
quency descending order. A new node is generated when the node 
with the appropriate item label is not found; otherwise, we in-
crease the count of the existing nodes. 

Table 2. A dataset with min-support = 3 
No. Transaction Sorted Transactions 

1 F,E,B,A A,B,E 

2 F,C,D,A A,C,D 

3 A,C,E A,C,E 

4 A,D A,D 

5 B,A A,B 

6 B B 

7 E,C C,E 

9 D D 

 
Since an FP-tree is the projected dataset of a frequent k-itemset, 
the union of the k-itemset and any item in this FP-tree is a fre-
quent (k+1)-itemset. Specifying α is an item in this FP-tree, the 
projected FP-tree for α is constructed from the conditional pattern 
base of α. Each transaction in the transaction pattern base is an 
item sequence in the bottom-up path starting from the node asso-

ciated with item α in the FP-tree. Table 2 lists a sample dataset, 
and Figure 3 shows the corresponding FP-tree. Each node in the 
FP-tree consists of five members: item label, count, parent pointer, 
nodelink pointer and child pointers. The nodelink pointer points to 
the next item in the FP-tree with the same item-id, and child 
pointers records a list of pointers to all its children. A header table 
is used to store the pointers to the first occurrence of each item in 
the FP-tree. A path in the FP-tree represents a set of transactions 
that contain a particular frequent item pattern. For example, in 
Figure 3, the path “root->C->E” represents all the transactions 
that contain item “C” and “E”. 

 
Figure 2. FPGrowth algorithm 

The FPGrowth algorithm is presented in Figure 2. As described 
earlier, FPGrowth is an FP-tree based approach to frequent pattern 
mining. In phase 1, it builds an FP-tree from a transaction data-
base, removing all the infrequent items. Phase 2 iterates through 
each item in the FP-tree. It finds all the frequent items in the con-
ditional pattern base for an item first, and then builds a new FP-
tree for this conditional pattern base when it has at least two fre-
quent items. Thus, the conditional pattern base is scanned twice in 
each iteration. In general, an FP-tree node will be accessed many 
times since the condition pattern bases of all items share the same 
FP-tree. For each new FP-tree, the algorithm proceeds recursively. 

2.2 CC-tree 
The cache-conscious FP-tree is a modified prefix tree which ac-
commodates fast bottom-up tree traversals. It still uses the FP-
growth algorithm in FPGrowth. CC-tree allocates tree nodes in 
contiguous memory space following the depth-first order of FP-
tree. Each CC-tree node has only 2 fields: item label and parent 
pointer. The new data structure is more compact and the node size 
is smaller than the original one. Hence, it has a better cache line 
utilization. In order to improve temporal data reuse, a tiling 
method is proposed to tile the CC-tree into several partitioned 
sub-trees, where the conditional pattern base for all the items 

Algorithm: FPGrowth 

Input: A prefix tree D, min-support minsupp 

Output: Set of all frequent patterns 

Phase 1: Construct an FP-tree from a database 

(1) Scan the transaction database D once, gathering frequency of all items. 
(2) Sort the items based on their frequency in descending order. 
(3) Create a root node, labeled null. 
(4) Scan the database a second time: for each transaction, remove items 
with frequency < minsupp, sort this transaction, and append it to the root of 
the tree. Each inserted node is linked to a header list of the frequent one 
item with that label. 

Phase 2: Mine the FP-tree by calling FP-growth() 

FP-growth(tree, suffix) 

For each item α in the header table of FP-tree 
  (1) Output α U suffix as frequent 
  (2) Use the header list for α to find all frequent items in the conditional 
pattern base C for α 
  (3) If there is no frequent item in C, end this loop iteration 
  (4) If there is only one frequent item in C, output this item U α U suffix as 
frequent, and end this loop iteration 
  (5) Generate an FP-tree τ according to C and header list of α 
  (6) If τ has only one path, output any sub set of items in this path U α U 
suffix as frequent, and end this loop iteration 
  (7) FP-growth(τ, α U suffix). 
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within the current tile is updated when accessing a tile in the CC-
tree. Figure 4 shows the CC-tree example corresponding to the 
FP-tree in Figure 3. 

Besides FP-tree data structure reorganization, CC-tree also em-
ploys a new parallelization strategy to allow two threads work in 
the same tile simultaneously in order to improve data reuse per-
formance.  

3. CACHE-CONSCIOUS OPTIMIZATION 
In this section, we present several novel techniques to improve the 
performance of frequent pattern mining using FP-tree. The details 
of our optimizations are presented in the context of the FPGrowth 
algorithm. The optimization techniques can also be applied to 
most frequent pattern mining algorithms that use FP-tree.  

3.1 Cache-Conscious FP-array 
Before we detail the optimization techniques, we first profile the 
FPGrowth with VTune1. This tool profiles program execution at 
source code level and provides performance characteristics to 
guide optimization. The FP-tree construction procedure spends 
5%~20% of total execution time. In FP-growth, approximately 
62% of the execution time is spent in the condition_pattern_base() 
routine, which finds the frequent items in the conditional pattern 
base for an item, and another 32% of the execution time is spent 
in the FPGrowth() routine, to use the results of this step to create a 
new projected FP-tree for the next step in the recursion. The work 
                                                                 
1  http://www3.intel.com/cd/software/products/asmo-na/eng/vtune/ 

239144.htm 

flow of these two procedures is very similar. They both have very 
poor cache utilization, mainly for the following reasons. 

First, the routine that scans the conditional pattern base performs 
a bottom-up traversal of the FP-tree. Similarly, this access pattern 
also applies for the routine that builds the projected FP-tree for 
the next step in the recursion. In the FP-tree, each node has a total 
5 elements: a list of child pointers, a parent pointer, a nodelink 
pointer, a count, and an item label. Except for item and parent 
pointer, all the other fields in the FP-tree node are not required for 
the two main routines in the FP-tree traversal. Consequently, once 
we fetch an FP-tree node, only two fields are actually used. This 
significantly degrades cache line utilization. Second, a node and 
its associated child nodes may not reside in the same cache line 
due to the way an FP-tree is constructed. The FP-tree is built as 
the dataset is scanned, and thus, successive accesses in the bot-
tom-up traversal of the tree are not contiguous in memory. Third, 
the pointer based data structure in nodelink prevents two nodes 
with same item-id from presenting at an adjacent position. The 
next node with the same item-id is not likely to be present in any 
other cache line due to the lack of temporal locality. 

We present the cache-conscious frequent pattern array (FP-array), 
a data structure designed to significantly improve cache perform-
ance. A cache-conscious FP-array is a data reorganization of FP-
tree by transforming it into two arrays, i.e. item array and node 
array, which allocates in contiguous memory space. There are no 
pointers in the FP-array, and thus, the pointer based tree data 
structure is eliminated after the transformation. Given an FP-tree, 
we first allocate the item and node array in main memory. Then 
we traverse the FP-tree in depth-first order, and copy the item in 
each node to the item array sequentially. The item array works 

Figure 3. An example of FP-tree Figure 4. An example of CC-tree  

 

 
Figure 5. FP-array after FP-tree transformation 

 

 
Figure 6.  Compact FP-array after item elimination 
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essentially as a replication of the FP-tree. When encountering a 
joint node, we replicate the joint path in the item array. The node 
array, organized as an array list, records the occurrences of the 
frequent items in the item array. Each list in the node array is 
associated with one frequent item, and each element in the node 
array corresponds to an FP-tree node, which has three members: 
begin position of the item in item array, reference count, and 
transaction size. Therefore, the count, nodelink pointer, parent 
pointer and child pointers in the node of FP-tree are converted and 
stored back in the node array. Figure 5 shows the FP-array after 
transforming the FP-tree in Figure 3. It uses preorder tree traversal 
and starts from node A (the first child of the root node), records 
the path from A->E in the item array and updates the correspond-
ing node array member. This procedure iterates in depth-first 
order until the FP-tree is traversed. Note that the item array is 
inserted in reverse order in order to facilitate in-order item tra-
versal. Take {6,1,2} in node array E as an example, 6 represents 
the corresponding transaction starts from the 6th position in the 
item array; 2 is the size of this transaction, which has two con-
tiguous items from 6th position of the item array; 1 is the refer-
ence count for this transaction. Therefore, according to the ele-
ment {6, 1, 2} in the node array E, a transaction (B, A) is con-
structed with reference count 1. There is some redundancy in 
building the item array, for example, in Figure 3, when mining on 
item E, the bottom-up path B->A is traversed, when moving to 
item D, the same node A will also be accessed. Therefore, A is 
replicated in the item array since both bottom-up path B->A and 
C->A share the same parent node A. 

This new array based data structure provides significant im-
provements because the FP-growth algorithm accesses the item 
array several times sequentially, where all the accessed items are 
allocated continuously and a large portion of them reside in the 
same cache line. Second, the separation of node array and item 
array from FP-tree yields a more compact data size, where the 
node size is much smaller than the original node size in FP-tree, 
because we only store the item name in the item array. The other 
four members in the node of FP-tree, e.g. child pointers, nodelink 
pointers, parent pointer and counts are converted into the corre-
sponding members in the node array, which is not along the criti-
cal path. Though the replications of joint paths increase the num-
ber of items in the item array, the total allocated memory size 
decreases dramatically due to the reduction of node size. Compar-
ing with FP-tree, each element of the item array is only less than 
1/5 size of the FP-tree node, which accommodates the memory 
expansion from node replications. Once the FP-array is created, 
the original FP-tree can be purged, and thus memory usage does 
not increase significantly. 

Figure 7 shows the algorithm of transforming the FP-tree into the 
FP-array in depth-first order. To elaborate how it works, follow-
ing gives some details in FP-tree transformation. 

 For the child nodes which share the same parent node, the 
first child node (head of child link-list) is named as the head 
node, and the rest child nodes as the neighbor nodes. We use 
a position iterator to mark the current position in the item 
array. The iterator decreases by 1 after a new node is in-
serted in the current position of the item array. 

 Item stack S records the node path from the current node to 
the root node. Unless a neighbor node is detected, the items 
in S will be copied back to item array IA. 

 When a node is visited, a new element in the node array 
corresponding to this node is allocated. The item label of 
this node is written back to both the item array and the item 
stack S. 

There is data redundancy in the item array construction in Figure 
5. For example, mining D and E share the same bottom-up path 
C->A, likewise, mining B, C and D have the same path A. Re-
dundant item elimination in item array can decrease the memory 
consumption and improve the cache performance. Figure 6 shows 
the compact item array and node array. Furthermore, to further 
optimize the FP-array data structure, we dynamically choose the 
node size ranging from 4 bytes to 1 byte in the item array accord-
ing to the total frequent items in use. Since each element in the 
item array corresponds to the item label of an FP-tree node, it is 
not necessary to use 4-byte node size all the time in the FP-
growth process. For example, 1-byte node size can represent less 
than 256 frequent items, similarly, 2-byte node size is enough 
when the number of total item labels is smaller than 65536. Since 
typically the number of frequent items is in a several thousand 
scale, 2-byte node size is often used in item array for most of 
datasets. In the process of FP-growth, we can also dynamically 
change the node size, depending on the total number of frequent 
items in the current iteration. When the number is under the 
threshold, e.g. 256 or 65536, we can use smaller data size accord-
ingly. Narrower data size often leads to better data locality per-
formance and smaller memory consumption. In this case, the ele-
ment size in the item array is further optimized to less than 1/5 of 
the node in FP-tree. 

 
Figure 7. FP-array transformation algorithm 

3.2 Hardware/Software Prefetching in FP-
array 
Although large cache hierarchies have proven to be effective in 
reducing the latency for the most frequently used data, it is still 
common for memory intensive programs to spend a lot more run 
time stalled on memory requests. Data prefetching has been pro-
posed as a technique for hiding the access latency of data refer-
encing patterns that defeat caching strategies. Rather than waiting 
for a cache miss to initiate a memory fetch, data prefetching an-

Algorithm: Transformation of FP-tree into FP-array 
Input: FP-tree T, number of items in item array L 
Output: Item array IA, and node array NA 

(1) Allocate sequential memory space for IA and set the iterator position of 
IA to L-1 
(2) For each item α in T, allocate memory space for NA[α] 
(3) For each child node C of the root node in FP-tree T 
     Visit(C, null, 0, IA, NA) 
(4) Release memory space for T 

Algorithm: Visit(N, S, 0, IA, NA) 
Input: FP-tree node N, item stack S, depth D, Item array IA, and node arrays 
NA 
Output: None 

(1) If N is a neighbor node, copy the items in S to IA 
(2) Allocate an element from NA[item label of N], set its reference count, 
transaction size and begin position to  node N’s count, depth D, and the 
iterator position of IA respectively 
(3) Write the node N’s item label to the current iterator position in IA 
(4) For each child C of node N 
            Visit(C, S U item label of N, D+1, IA, NA) 
(5) If N has no child, decrease the IA’s iterator position by 1 
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ticipates such misses and issues a fetch to the memory system in 
advance of the actual memory reference. It is an effective mecha-
nism to significantly improve overall program execution time by 
overlapping computation with memory accesses. The frequent 
pattern mining is an essential memory intensive application, 
which does not have a significant amount of computation when 
accessing each node. To alleviate this problem, we can use data 
prefetching to mask the cache miss latencies. 

There are two data prefetching mechanisms, i.e. hardware and 
software prefetching. Software prefetching initiates a data pre-
fetch instruction issued by the processor, which specifies the ad-
dress of a data word to be brought into the cache. When the fetch 
instruction is executed, this address is simply passed on to the 
memory system without forcing the processor to wait for a re-
sponse. In contrast, hardware prefetching employs special hard-
ware which monitors the processor in an attempt to infer prefetch-
ing opportunities, which records memory access patterns of the 
executing application and prefetches data addresses on a best-
effort basis. The Intel Pentium-4 processor has a hardware pre-
fetcher that operates without user intervention. Simple patterns 
such as sequential and stride memory accesses are easily recog-
nized. 

 
Figure 8. FP-array traversal 

Figure 8 shows the algorithm of accessing the cache-conscious 
FP-array. The inner loop (the 7th line) accesses the items in a 
transaction, and the outer loop (the 1st line) locates the transac-
tions associated with the same item. Since item array is allocated 
contiguously in sequential memory space, traversing the item 
array and node array will yield better data locality performance. 
In Figure 8, a transaction in the frequent pattern base in the inner 
loop is accessed sequentially, which is preferable for hardware 
prefetching to capture the sequential data access pattern and im-
prove its cache performance. Furthermore, since different transac-
tions belonging to the same frequent item are not located in the 
adjacent position in the item array, we use manual software pre-
fetching to fetch the next adjacent transaction based on its lookup 
index in the node array, as shown in the 2nd line of Figure 8. 

After understanding the benefits of transforming the FP-tree into 
the cache-friendly FP-array, we would like to further compare the 
FP-array with the CC-tree in Figure 4, which also orients at im-
proving both local and temporal cache performance. CC-tree re-
moves 3 members of the FP-tree node, and maintains a parent 
pointer to traverse the CC-tree in a bottom-up fashion. However, 
pointers based data structure prevents it from accessing all the 
nodes contiguously in memory space, especially when one node 

has multiple children nodes where only one child node can be 
allocated adjacently to the parent node. Furthermore, the hard-
ware prefetching cannot mask the cache misses in pointer chasing 
in the nodelink pointer. In contrast, item array provides the most 
compact node size, 1/2 to 7/8 smaller than CC-tree, and software 
prefetching is employed to hide the cache misses across accessing 
different transactions. Although tiling CC-tree increases the tem-
poral cache locality, the cost of tiling building and maintaining is 
non-trivial. Consequently, we achieve a much better performance 
in terms of both cache and overall execution time.  

In summary, our cache-conscious FP-array transformation makes 
the following benefits: 

- FP-array provides a much smaller node size than FP-tree and 
CC-tree, which improves the cache line utilization to allow 
for a larger fraction of the working set fit in cache. 

- By converting the FP-tree into FP-array which allocates in 
contiguous memory space, once an item node is fetched into a 
cache line, the next consecutive element in the item array will 
likely reside in the same cache line. It reduces the cache miss 
rate in FP-array traversal. 

- Hardware prefetching and software prefetching can be used in 
FP-array optimization to enable both strided and non-strided 
data accesses. They reduce the cache misses in both within 
and across transaction accesses in the item array. 

4. LOCK-FREE PARALLELIZATON 
Instead of focusing on faster clock speeds and more powerful 
single core CPUs, the trend of processor design has made a dra-
matic shift towards multi-core system, which also results in a 
paradigm shift for the development of computationally expensive 
data mining algorithms. Conventionally, most of the existing 
work on parallelizing association rule mining on shared-memory 
multi-processor architecture was based on apriori-like algorithms. 
With the prevalence of multi-core processors, it is important to 
exploit thread-level parallelism within applications to fully take 
advantage of multi core/processor processing capabilities. 

In this section, we present several novel techniques to improve the 
parallel performance of frequent pattern mining with the proposed 
FP-array. According to detailed characterization, we find that the 
FP-tree building module has very poor cache performance, which 
approximately spends 10~40% of the total execution time after 
FP-array optimization. Since most of computations occur in the 
transaction appending routine, which scans the FP-tree in top-
down manner and inserts the node from the root of tree. The 
pointer chasing data access pattern in FP-tree construction ac-
counts for the poor cache utilization. Before we detail the lock-
free parallelization mechanism, we first present some techniques 
to improve the serial execution time which serves as the baseline 
for parallel implementation. 

4.1 Dataset Tiling 
Typically an FP-tree does not fit in cache. It is very likely the 
nodes which are associated with a new transaction are already 
evicted out from the cache when this transaction is inserted into 
the FP-tree. Since two adjacent transactions probably access dif-
ferent portions of FP-tree, data in one portion of the FP-tree which 
are already loaded into the cache can not be used for other trans-

Algorithm: AccessItemNodeArray 

Input: Node arrays A, N: number of elements in A, Item array I  

Output: None 

(1) For k = 0 to N-1, step 1 
(2)      Prefetch(A[k+1]->begin); // Software Prefetching 
(3)      Node=A[k]; 
(4)      Begin=Node->begin; 
(5)      Count=Node->count; 
(6)      Length=Node->length; 
(7)      For j = 0 to Length-1, step 1 
(8)            Access I[j+Begin]; // Hardware Prefetching 
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actions. Therefore, the cache is grossly under-utilized in the FP-
tree building phase, which exhibits a poor temporal data locality 
performance in the FP-tree. Temporal locality states that recently 
accessed memory locations are likely to be accessed again in the 
near future. Therefore, in order to make use of the FP-tree in an 
efficient way, it is imperative to exploit the existing temporal 
locality in the FP-tree building algorithm. 

We accomplish this by proposing a new approach called dataset 
tiling.  It reorganizes datasets so as to make them more likely 
access the same portion of the FP-tree, therefore, reuse the FP-tree 
in a temporal fashion once it is fetched in the cache. Before we 
detail the proposed approach, we define some terms in the dataset 
tiling algorithm. The frequent items are classified into two catego-
ries: hot items and cold items. Typically, we choose the top 16 
frequent items as hot items, and the remaining frequent items as 
code items. The FP-tree node corresponding to a hot item is 
named as a hot node. Class-id of a transaction represents the bit 
sequence of the hot items in this transaction. The lowest bit in 
class id stands for the hot item with largest count. For example, in 
Table 2, after selecting 2 hot items A and B, the class id of trans-
action {A, B, E, F} and {F, C, D, A} are “11” and “01”, respec-
tively. A hot sub-tree is a subset of FP-tree which only consists of 
the hot nodes, and each node path of the hot sub-tree represents 
one class id. 

The procedure of dataset tiling works as follows: 

1) Preparation: we scan the dataset and bypass the infrequent 
items. For each transaction which contains the frequent items, the 
class id is computed and the new transaction is recorded as <class 
id, number of items, transaction item list>, where the transaction 
item list stores the sorted cold items in this transaction. Mean-
while, we choose 16 hot items and build a hot sub-tree. 

2) Dataset tiling: according to the class id information, the new 
transactions with the same class id are sorted and merged into a 
tile. The tile is stored contiguously in memory space. Once the 
full set of tiles is created for the new transactions, the original 
dataset is purged from memory. Dataset tiling executes in a recur-
sive manner until the tile size is smaller than the cache size. After 
dataset tiling, the transactions which can be processed in one por-
tion of FP-tree are assembled in one tile. They have a large over-
lap in sharing the same portion of sub-tree in the transaction inser-
tion stage.  

3) Dataset insertion: the transactions within one tile have the same 
class id, indicating they share the same hot node path in the hot 
sub-tree. When inserting these transactions to the hot sub-tree, 
they will be appended to the tail nodes in the hot node path. Thus, 
all the data insertion in one tile only performs in one subset of the 
FP-tree. The procedure iterates until all the tiles complete transac-
tion insertion. In the end, the hot sub-tree is transformed into the 
final FP-tree. In order to accelerate finding the tail hot node, we 
use hash index to index all the hot nodes according to their class 
id information.  

Figure 9 illustrates the FP-tree building process using transactions 
in Table 2. We empirically choose A and B as two hot items, 
according to the class id information, the 9 transactions are parti-
tioned into 4 tiles, e.g. the tile with class id “11” has two transac-
tion {A, B, E, F} and {A, B}. The gray nodes represent the hot 

nodes. The hot sub-tree is connected using dashed lines. When we 
insert a transaction {A, C, E} into the hot sub-tree, we first finds 
its class id, use its hash index to locate the tail hot node A, and 
then append the item C and E to this hot node. The building pro-
cedure iterates until all the transactions are inserted into the hot 
sub-tree. 

 
Figure 9. Lock-free FP-tree building 

There are several advantages of the dataset tiling. First, it signifi-
cantly improves the temporal cache locality performance by parti-
tioning the transactions into smaller tiles, where each tile only 
pertains to a subset of an FP-tree, thus largely reuse the FP-tree in 
a temporal fashion. Second, with the infrequent and hot items 
pruned in the new transactions, the size of new transaction is re-
duced to less than 20% of original size. Coupled with their con-
tiguous sequential data access pattern, the spatial locality cache 
performance is improved as well. Third, the classification of hot 
nodes and hot sub-tree provides a good foundation for the thread 
level parallelization, which will be elaborated in the next section.  

4.2 Lock-free FP-tree Building 
The parallelization of FP-growth is straightforward. After separat-
ing the first FP-growth loop from its recursive format, the fre-
quent items can be assigned to the worker threads in a dynamic 
manner. However, parallelizing the FP-tree building is more diffi-
cult. Traditionally, the main challenge in parallelizing the build-
ing FP-tree on a shared memory system arises because of the pos-
sible race conditions when multiple processors update the same 
node of the FP-tree. To avoid the race conditions, generally lock 
based exclusive access mechanism is used to protect it from mu-
tual access. Experiments show that this approach has poor scaling 
performance, e.g. the parallel program running on an 8 processor 
system was even slower than its sequential version [16]. 

Motivated by the disadvantages of existing parallel algorithms, 
we propose a novel lock-free approach to efficiently accelerate 
the FP-tree building procedure on multi-core system. In the origi-
nal algorithm, the common pattern for each transaction is ignored 
when inserting transactions into the FP-tree, i.e. in multithreaded 
context, transactions in distinct threads may access the same node 
in the FP-tree. To resolve the conflictions among different trans-
actions, we use the aforementioned class id and hot sub-tree to 
restructure the FP-tree building procedure into the lock-free fash-
ion. Following shows the details of parallelized FP-tree building. 
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1) First, after the first scan, we get support of all items and sort 
the items based on their frequency. At the same time, we 
choose 16 hot items and build a hot sub-tree. Then we tile 
the dataset into a number of segments, whose amount is 
much larger than the total thread number. We use dynamic 
thread scheduling policy to assign the segments to each 
thread to minimize the load imbalance. Then each thread 
computes the class id for each transaction and generates a 
new dataset. 

2) Next, the new transactions attached with the same class id 
are reordered and merged into the same tile. Each thread is 
responsible for one portion of transaction data. Since the start 
position and the size of the new transactions are determined 
beforehand, there is no data access conflict among the work-
ing threads.  

3) Finally, the transactions are inserted to the hot sub-tree in the 
context of tile format. Since each tile has its unique class id, 
which does not overlap with other tiles, the transactions in 
each tile will be appended to one particular tail hot node in 
the hot sub-tree, while other tiles will not touch the same hot 
node pertaining to this tile. Therefore, all the tiles are essen-
tially independent from each other. They can be inserted into 
the hot sub-tree non-exclusively in contrast to using locks to 
protect the sharing nodes in the conventional method. Since 
we choose 16 hot items, which leads to more than 60K tiles, 
in order to minimize the load imbalance, we merge some 
tiles together according to their computational load. Conse-
quently, these merged tiles are assigned to each processor 
and inserted into the FP-tree in a lock-free manner.  

Since most of the execution time is spent in the transaction inser-
tion stage, other modules like hot sub-tree building are trivial for 
parallelization. Figure 9 shows the example of lock-free FP-tree 
building. In case of two threads, the tiles are grouped into two 
partitions (circled in red and green) and assigned to each thread 
respectively. 

To summarize, we make the following contributions in the FP-
tree building phase: 

- Dataset tiling uses class id to classify the transactions into 
different tiles which contain the same set of frequent items. It 
improves the temporal data locality by reusing the same por-
tion of FP-tree in the cache and reduces the memory con-
sumption. 

- A lock-free parallelization mechanism is proposed in the FP-
tree building phase. It uses a hot sub-tree and transaction til-
ing to eliminate the locks in transaction insertion, which sig-
nificantly improves the scaling performance on the multi-core 
processor. 

5. EXPERIMENTAL EVALUATION 
In this section, we evaluate the benefits of our optimizations and 
compare them with prior works. We use an 8-way Intel Xeon 
machine with 4GB physical memory. It has 4 dual-core proces-
sors running at 3.2GHz. Each core is equipped with a 16K L1 data 
cache and a 1MB unified L2 cache. A 4MB L3 unified cache is 
shared by two cores in one physical processor. The cache line 
sizes are 64 bytes for the L1 and L2 caches, and 128 bytes for the 

L3 cache. The system bus runs at 166MHz and delivers a band-
width of 5.3GB/s. We use OpenMP programming model to paral-
lelize this application. Furthermore, we use the Intel VTune per-
formance analyzer to collect the cache performance numbers.  

Table 3. FIMI Datasets 

Name Num. of 
trans. Size Min-

support 
Num. frequent 

1-items 
Aver. Effective

Trans. Len. 
Kosarak 990000 31M 800 1530 5.1 

Accidents 340000 34M 40000 66 26.1 

Smallweb-
docs 230000 200M 12000 662 54.1 

Bigwebdocs 500000 460M 50000 280 25.2 

Webdocs 1690000 1.46G 120000 428 35.8 

 
Table 3 shows the datasets in our evaluation. Accidents, Kosarak 
and Webdocs are the datasets from the Frequent Itemset Mining 
Implementations Repository. Webdocs is the largest dataset in the 
FIMI Repository containing about 1.7 million transactions. 
Smallwebdocs and Bigwebdocs are artificial datasets which are 
cut from Webdocs to represent different sizes of FIM dataset. The 
4th~6th columns in Table 3 list the min-support for each dataset, 
the corresponding frequent 1-items number and average effective 
transaction length (infrequent 1-items are pruned array). 
Throughout this section, we compare the execution time with 
respect to FPGrowth from FIMI repository. In addition, to demon-
strate the effectiveness of FP-array, we also include CC-tree for 
performance comparison. Note that hardware prefetching is en-
abled for both FPGrowth and CC-tree in our evaluation. 

5.1 Impact of FP-array optimization 
We first evaluate the FP-array optimization. From Figure 10, it is 
evident that we achieve a significant performance improvement 
due to spatial locality optimization. It obtains a speedup of 2.76 
on average. Kosarak has the largest performance gain primarily 
due to its sparsest dataset, the cache misses of which is reduced 
significantly when transforming the FP-tree to the FP-array. 
When the hardware prefetching is enabled, it provides an addi-
tional 5%~30% speedup. Since the FPGrowth algorithm employs 
a tree structure where the nodes are linked through pointers, when 
traversing the tree in a bottom-up fashion, pointer based irregular 
data references will break the data spatial locality. In contrast, FP-
array removes the pointer based data structure, and all the data in 
the FP-array are stored sequentially in memory, which directly 
improves the cache locality performance and facilitates hardware 
prefetching. Furthermore, because the item array only contains 
one data element, when we traverse the item array, it can fit up 16 
to 64 nodes (dynamic item size from 1 to 4 bytes) in one cache 
line (64 bytes in Pentium-4 architecture). In the FP-tree imple-
mentation, each node spans at least 20 bytes, and at most 3 nodes 
can fit in a cache line. Even in CC-tree, one cache line can only 
keep 8 nodes. Consequently, the performance of CC-tree is better 
than FPGrowth, but still inferior to FP-array. Figure 12 plots the 
L3 cache miss reduction in terms of MPKI (misses per thousand 
instructions). FP-array reduces the cache misses by a factor of 
17.6 on average compared to the baseline FPGrowth.  
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  Figure 11. FP-growth sequential speedup of Bigwebdocs 
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Figure 12. L3 cache miss reduction in FP-growth 
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Figure 13. Memory consumption ratio in  FP-growth 
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Figure 14. Sequential speedup of FP-tree building 
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Figure 15. FP-tree building and overall scaling performance
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Figure 16. Total execution time of “Webdocs” 
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Figure 17. Total execution time of “Kosarak” 
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Besides hardware prefetching, software prefetching also provides 
20% performance improvement for the large datasets. It pre-loads 
the next several transactions in the item array beforehand accord-
ing to their positions in the node array. Software prefetching helps 
cause data at a specified memory address to be brought into cache. 
Therefore, it makes up for the sequential access pattern in hard-
ware prefetching. The performance impact of software prefetch-
ing is more evident for large dataset with longer transaction length, 
because the longer length of a transaction makes fewer transac-
tions installed in the cache, thus provides more opportunities for 
software prefetching. For instance, Bigwebdocs and Webdocs 
benefit most from data prefetching in Figure 10. In contrast, the 
speedup of Accidents is not pronounced because it holds a relative 
small working set. Figure 11 shows that FP-array consistently 
outperforms CC-tree and FP-tree with the decreasing of min-
support. Lowering supports allows more infrequent items to be-
come frequent, and thus increase the computation of FP-growth 
dramatically.  

In addition to the performance evaluation, we also compare their 
memory consumption as indicated in Figure 13. FP-array roughly 
consumes the same memory as FPGrowth. However, CC-tree 
almost doubles the memory size, which practically limits it from 
running large dataset, e.g. Webdocs. 

5.2 Impact of Dataset Tiling 
Figure 14 shows the sequential execution time improvement with 
the dataset tiling in FP-tree building. We achieve a 4.2 speedup on 
average relative to the baseline - FP-tree building in FPGrowth 
algorithm. Dataset tiling partitions the transactions into several 
segments based on its class id. Each transaction within a tile can 
be inserted into a subset of the FP-tree, which in turn improves 
the temporal data locality performance and reduces the cache 
misses by a factor of 32.1 on average. In addition, dataset tiling 
also reduces memory consumption in building the FP-tree.  

5.3 Impact of Lock Free Parallelization 
The FP-tree building phase is particularly important to the multi-
threading implementation, which constitutes 10~40% of sequen-
tial running time depending on the dataset and support in use. 
Figure 15 depicts the scaling performance of the optimized im-
plementation, where the left bar is the lock-free FP-tree building 
and the right bar is the overall execution time consisting of both 
FP-tree building and FP-growth. With the proposed lock-free 
mechanism, we obtain a 5.6 speedup for the five datasets on aver-
age. The synchronization cost is trivial for the lock free paralleli-
zation. There are no locks to protect the nodes since all the tiles 
are explicitly partitioned and assigned to the different threads. 
The scalability limiting factors are largely from load imbalance 
and hardware resource contention.  

We also compare the lock-free approach with prior single-tree 
based methods, e.g. tree-partition [7]. It only achieves a less than 
2.0 speedup on the 8-core machine due to lock overhead and load 
imbalance. In contrast, even after improving the sequential time 
by a factor of 4, we can further achieve an additional 5.6 speedup 
over the optimized serial program on the 8-core system. 

The overall speedup is also pretty good due to the cache-
conscious optimization of FP-array. It reduces off-chip memory 
accesses and alleviates memory bandwidth requirement. Further-

more, FP-array is shared among multiple threads, which makes it 
attractive in CMP where the last level cache is shared amongst the 
cores to minimize data replications. 

5.4 Overall Execution Time Evaluation 
Finally, we compare the overall sequential execution time be-
tween our proposed FP-array (including Dataset tiling in FP-tree 
building) and a set of FIMIs, i.e. FPGrowth[15], CC-tree[11], 
AIM2[9], kDCI[19], LCM2[25], nonordfp[22], which are consid-
ered as the state-of-the-art in literature. Figure 16 and 17 present 
the results for Webdocs and Kosarak. Note in Figure 16, some 
algorithms fail to run Webdocs due to their huge memory re-
quirement. Other datasets also show the similar trends. It is obvi-
ous that our approach achieves the lowest execution time consis-
tently compared with the other approaches. The performance gap 
is more pronounced with the increasing size of input datasets, 
since it directly increases the working set size and incurs more 
cache misses when the algorithms do not hold a cache-friendly 
data structure. 

In addition to delivering the optimal sequential execution time, we 
also provide an efficient parallel approach to harness the multi-
threading capability provided by the latest multi-core system. The 
optimized algorithm achieves a 6.2 speedup on an 8-core machine. 
Consequently, the total execution time is reduced by a factor of 
24 in combination with cache-conscious FP-array optimization 
compared to the sequential FPGrowth. 

6. CONCLUSION 
In this paper, we show that the existing frequent itemset mining 
implementations like FPGrowth, largely under-utilize a modern 
multi-core processor in terms of poor data locality performance 
and low thread level parallelism. We propose a cache conscious 
FP-array to improve the spatial data locality performance. Fur-
thermore, it allows the algorithm to leverage hardware and soft-
ware prefetching. All these optimizations reduce the cache misses 
greatly and deliver a cumulative 4.0 speedup compared with 
FPGrowth. In order to make use of the multithreading capability 
equipped in the multi-core processor, a dataset tiling approach is 
proposed to enable lock-free FP-tree building. It allows the work-
ing threads to insert transactions to the unique FP-tree without 
data confliction. At the same time, the temporal data locality per-
formance is improved as well due to the reuse of FP-tree. As a 
result, the parallel optimization achieves a 6.2 speedup on an 8-
core system. Overall, we improve the performance by a factor of 
24 compared with the sequential FPGrowth. From our results, we 
conclude that the frequent itemset mining algorithms can be sig-
nificantly optimized in two aspects:  

- The design of cache-conscious FP-array coupled with hard-
ware techniques like hardware and software prefetching to 
improve the cache locality performance 

- Algorithm redesign to enable lock-free tree-building through 
dataset tiling, which improves the temporal cache perform-
ance and makes the algorithm amenable to the thread level 
parallelization. 

We believe the proposed methodology can also be applied to 
other pattern mining categories as well. Further, we would like 
explore large scale frequent mining problems on commodity 
multi-core computers. They will belong to our future work. 
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