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ABSTRACT
When integrating data from heterogeneous sources, it is of-
ten necessary to transform both the schemas and the data
from the underlying sources in order to present the inte-
grated data in the form desired by its consuming applica-
tions. Unfortunately, these transformations—particularly if
implemented by custom code—can block query optimization
and updates, leading to potentially severe performance and
functionality limitations. To circumvent these problems, the
BEA AquaLogic Data Services Platform provides support
for user-defined inverse functions. This paper describes the
motivation, design, user experience, and implementation as-
sociated with inverse functions in ALDSP. This functionality
debuted in version 2.1 of ALDSP in March 2006.

1. INTRODUCTION
Developers of data-centric enterprise applications are fac-

ing a crisis today. Relational databases have been so suc-
cessful that there are many different systems available (Or-
acle, DB2, SQL Server, and MySQL, to name a few), and
any given enterprise is likely to have a number of different
relational database systems and databases within its corpo-
rate walls. Moreover, information about key business en-
tities such as customers or employees is likely to reside in
several such systems. In addition, while most “corporate
jewel” data is stored relationally, much of it is not relation-
ally accessible – it is owned by packaged applications such
as SAP, Oracle Financials, PeopleSoft, Siebel, Clarify, or
SalesForce.com, or custom homegrown applications. These
applications add meaning to the stored data by enforcing
the business rules and controlling the logic of the business
objects of the application. Meaningful access to their data
requires calling the functions of the applications’ APIs. As
a result, enterprise application developers face a major inte-
gration challenge today: bits and pieces of any given busi-
ness entity reside in a mix of relational databases, packaged
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applications, and perhaps even in files or in legacy main-
frame systems and/or applications.

To create new, composite applications from disparate parts,
XML-based Web services [1, 2] are a piece of the puzzle.
Web services provide a degree of physical normalization for
intra- and inter-enterprise function invocation and informa-
tion exchange. In order to provide proper support for the
data side of composite application development, however, we
need more – we need a declarative way to create data services
[3] for use in composite applications. The composite applica-
tion approach that we are taking at BEA is to ride the wave
created by Web services and associated XML standards. We
are using the W3C XML, XML Schema, and XQuery Rec-
ommendations as a standards-based foundation for declar-
ative data services development [4]. The BEA AquaLogic
Data Services Platform (ALDSP), first introduced in 2005,
supports a declarative approach to designing and developing
data services [5]. ALDSP is aimed at developers of compos-
ite applications that need to access and compose information
from a range of enterprise data sources, including packaged
applications, relational databases, Web services, and files,
as well as other sources.

When designing and implementing data services, one of
the main goals is to provide a set of abstractions so that ap-
plications can see and manipulate integrated enterprise data
in a clean, unified, meaningful, canonical form. Doing so in-
variably requires transforming data – restructuring and uni-
fying the schemas and the instance-level data formats of the
disparate data sources. Names are reformatted, addresses
normalized, differences in units reconciled, and so on, all in
order to provide application developers (the consumers of
data services) with a natural and easily manipulable view
of the underlying data. Such transformations, while highly
useful to the end consumers of the data, can lead to perfor-
mance challenges. When the resulting data is queried, it is
crucial for performance that much of the query processing
(especially for selections and joins) be pushable to the under-
lying sources, particularly the relational sources. It is also
important that it be possible for updates to the transformed
view of the data be translatable into appropriate source up-
dates. Unfortunately, if data transformations are written in
a general-purpose programming language such as Java, this
can be difficult due to the fact that the transformations are
opaque to the query processor.

To permit general user-defined data transformations with-
out sacrificing query pushdown and updatability, ALDSP
provides a means for a data service developer to register in-
verse functions with the system so that it can un-transform
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Figure 1: ALDSP Data Service – Design View

data when pushing query predicates or decomposing updates
into the required underlying data source updates. The re-
mainder of this paper describes inverse functions in ALDSP,
including typical use cases, the user experience for develop-
ers, the use of inverse functions in query and update process-
ing, and the performance benefits that they provide. Section
2 sets the stage with an overview of ALDSP. Section 3 de-
scribes the data service developer’s view of inverse functions,
showing in detail how they can be used to tackle several
typical data integration use cases. Section 4 describes how
inverse functions are actually utilized during query process-
ing, explaining how they were added to ALDSP’s rule-based
query optimizer and update decomposition component. Sec-
tion 5 presents a set of experimental ALDSP performance
measurements that illustrate the importance of inverse func-
tions. Section 6 concludes the paper.

2. ALDSP: A WHIRLWIND TOUR
To provide the context for our treatment of inverse func-

tions and their use in query and update processing in ALDSP,
it is important to first understand the ALDSP world model
and system architecture.

2.1 Modeling Data and Services
ALSDSP targets the SOA world, so it is based on a service-

oriented view of data. ALDSP models the enterprise (or a
portion of interest of the enterprise) as a set of interrelated
data services [4]. Each data service is a set of service calls
that an application can use to access and modify instances
of a particular coarse-grained business object type (e.g., cus-
tomer, order, employee, or service case). A data service has
a “shape”, which characterizes the information content of
its business object type; ALDSP uses XML Schema to de-
scribe each data service’s shape. A data service also has a
set of read methods, the service calls that provide various
ways to request access to one or more instances of the data
service’s business objects. In addition, a data service has
a set of write methods, the service calls that support up-
dating (e.g., modifying, inserting, or deleting) one or more
instances of the data service’s business objects. Last but

not least, a data service has a set of navigation methods,
the service calls that traverse relationships from a business
object returned by the data service (e.g., customer) to one
or more business object instances from a second data service
(e.g., order). Each of the methods associated with a data
service is realized as an XQuery function that can be called
in queries and/or used in the creation of other, higher-level
logical data services.

Figure 1 shows a screen capture of the design view of a
simple data service. In the center of the design view is the
shape of the data service. The left-hand side of the figure
shows the service calls that are provided for users of the data
service, including the read methods (upper left) and navi-
gation methods (lower left). The objective of an ALDSP
data service architect/developer is to design and implement
a set of data services, like the one shown, that together pro-
vide a clean, reusable, and service-oriented “single view” of
some portion of an enterprise. (As we will see, that is where
user-defined transformation functions and inverses become
important.) The right-hand side of the design view shows
the dependencies that this data service has on other data
services that were used to create it.

When pointed at a data source by a data service devel-
oper, ALDSP introspects the data source’s metadata (e.g.,
SQL metadata for a relational data source or WSDL files
for a Web service). This introspection guides the automatic
creation of one or more physical data services that make
the source available for use in ALDSP. Introspecting a re-
lational data source yields one data service (with one read
method and one update method) per table or view. The
shape in this case corresponds to the natural, typed XML-
ification of a row of the table. In the presence of foreign key
constraints, introspection also produces navigation functions
that encapsulate the join paths provided by the constraints.
Introspecting a Web service (WSDL) yields one data ser-
vice per distinct Web service operation return type. The
data service functions correspond to the Web service’s oper-
ations, and the functions’ input and output types correspond
to the schema information in the WSDL. Other functional
data sources are modeled similarly. The result is a uni-
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Figure 2: Overview of ALDSP Architecture

form, “everything is a data service” view of an enterprise’s
data sources that is well-suited for further use in composing
higher-level data services using XQuery.

2.2 ALDSP Architecture
Figure 2 depicts the architecture of ALDSP. At the bot-

tom of the picture are the various kinds of data sources that
ALDSP supports. The data source types are grouped into
three categories – queryable, non-queryable, and functional.
Queryable sources are sources to which ALDSP can delegate
query processing; relational databases fall into this category.
Non-queryable sources are sources from which ALDSP can
access the full content of the source but which do not support
queries; XML and delimited files belong in this category.
Functional sources are sources which ALDSP can only inter-
act with by calling specific functions with parameters; Web
services, Java functions, and stored procedures all fall into
this category. In the world of SOA, this last source category
is especially important, as most packaged and home-grown
applications fit in here. Also, it is common for this cate-
gory of source to return complex, structured results (e.g., a
purchase order document obtained from a call to an order
management system). To facilitate declarative integration
and data service creation, all data sources are presented to
ALDSP developers uniformly as external XQuery functions
that have (virtual) XML inputs and outputs.

Sitting above the data source level in Figure 2 is the
ALDSP adaptor framework, which connects ALDSP to the
available data sources. Adaptors have a design-time com-
ponent that introspects data source metadata to extract
the information needed to create the typed XQuery func-
tion models for sources. They also have a runtime compo-
nent that controls and manages source access at runtime.
Above the adaptor layer is a middleware query processing
subsystem that consists of a query compiler and a runtime
system. The query compiler is responsible for translating
XQuery queries and function calls into efficient executable
query plans. To do its job, it must refer to metadata about

the various data services in the enterprise as well as to secu-
rity metadata that controls who has access to which ALDSP
data. Also, ALDSP maintains a query plan cache in order to
avoid repeatedly compiling popular queries from the same
or different users. The runtime system is made up of a col-
lection of XQuery functions and query operators that can
be combined to form query plans; the runtime also controls
the execution of such plans and the resources that they con-
sume. In addition, the ALDSP runtime is responsible for
accepting updates and propagating the changes back to the
affected underlying data sources. More details about the
ALDSP query processing architecture are available in [6].

The central box in Figure 2 is the ALDSP server. The
server is made up of the components described in the previ-
ous paragraph, and it has a remote (EJB) client-server API
that is shared by all of ALDSP’s client interfaces. These
include a Web service interface, a Java mediator interface
(based on Service Data Objects [7], a.k.a. SDO), and a JD-
BC/SQL interface. The SDO-based Java mediator interface
allows Java client programs to call data service methods as
well as to submit ad hoc queries. In the method call case,
a degree of query flexibility remains, as the mediator API
permits clients to include result filtering and sorting criteria
along with their request. The ALDSP server also has two
graphical interfaces, a design-time data service designer that
resides in the BEA WebLogic Workshop IDE and a runtime
administration console for configuring logical and physical
ALDSP server resources.

3. INVERSE FUNCTIONS IN ALDSP
We now examine the inverse function feature of ALDSP

from a data architect’s perspective. We will describe several
typical use cases and see how inverse functions address them,
looking at the steps required to define them in ALDSP as
well as the XQuery and metadata artifacts that result from
doing so. As mentioned in the introduction, the motivation
for adding inverse functions to ALDSP was to allow data
service developers to define and utilize custom, user-defined
data transformations without sacrificing query performance
or updatability. It is important to note that this ALDSP
feature was customer-driven—it was developed and added
to the product in response to several ALDSP 2.0 customers
who were defining their own data transformations in Java
and then struggling with the query pushdown and update
limitations that resulted from their opacity.

3.1 An Example Scenario
To provide concrete examples of typical inverse function

use cases, let us assume that ALDSP is being asked to inte-
grate customer-related data from a number of sources, one
of which is the following table from a relational data source:

CREATE TABLE WESTCUSTOMER (
CUSTID VARCHAR(10) NOT NULL,
FNAME VARCHAR(20),
LNAME VARCHAR(20),
MONTHLYSAL INTEGER,
HIRED INTEGER );

Our examples will be based on scenarios involving the in-
tegration of data about individuals who are customers of
a hypothetical Internet job placement firm, GotJobs.com.
The table shown above is one of GotJobs’ data sources, and
it contains information about the customers in the West-
ern region of the firm’s business geography. Each customer
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xquery version ”1.0” encoding ”WINDOWS-1252”;

(::pragma ... ::)
declare namespace ns4=
‘‘lib:EastWestInverseDataServices/DateLibrary”;

declare namespace ns3=
‘‘lib:EastWestInverseDataServices/NameLibrary”;

declare namespace ns2=
‘‘ld:EastWestInverseDataServices/WESTCUSTOMER”;

import schema namespace ns0=... at ...;
declare namespace ns1=...;

(::pragma function <f:function kind=‘‘read” ... ::)
declare function ns1:getWestCustomers()

as element(ns0:WestCustomerView)∗
{
for $WESTCUSTOMER in ns2:WESTCUSTOMER()
return
<ns0:WestCustomerView>

<customerId>
{fn:data($WESTCUSTOMER/CUSTID)}

</customerId>
<fullName?>{ns3:fullname
($WESTCUSTOMER/LNAME, $WESTCUSTOMER/FNAME)}

</fullName>
<monthlySalary?>
{fn:data($WESTCUSTOMER/MONTHLYSAL)}

</monthlySalary>
<dateHired?>
{ns4:y2kdate($WESTCUSTOMER/HIRED)}

</dateHired>
</ns0:WestCustomerView>

};

(::pragma function <f:function kind=‘‘read” ... ::)
declare function ns1:getWestCustomersByName
($fullname as xs:string)

as element(ns0:WestCustomerView)∗ {
for $WestCustomerView in ns1:getWestCustomers()
where $fullname = $WestCustomerView/fullName
return $WestCustomerView

};

(::pragma function <f:function kind=‘‘read” ... ::)
declare function ns1:getOldWestCustomers
($beforedate as xs:dateTime)

as element(ns0:WestCustomerView)∗ {
for $WestCustomerView0 in ns1:getWestCustomers()
where $WestCustomerView/dateHired lt $beforedate
return $WestCustomerView0

};

Figure 3: WestCustomers Dataservice

record has a customer id and a separately stored first and
last name. In addition, being a job placement firm, the
data that GotJobs keeps about each customer includes their
starting salary and date of hire. The salary data is stored as
a monthly amount, in dollars. Being a post-Internet-bubble
firm, the date of hire data is encoded as a simple integer and
expressed in terms of the number of days since Y2K (i.e.,
days since January 1, 2000).

To set the stage for our data integration and data trans-
formation examples, let us suppose that GotJobs is a large
firm, with customers located in all regions of the country.
GotJobs has grown incrementally, originating in the West
but then adding other regional job placement firms to its
portfolio. As is often the case with mergers and acquisitions,
the other divisions of GotJobs each have their own customer
data with similar information content but with differences in
some of the underlying data representation details. GotJobs
is now in the process of cleaning up its enterprise IT situ-
ation, and one of the tasks involved is creating a (virtual)

package JavaFuncs ;

public c lass Dates {

private stat ic f ina l Calendar Y2K =
new GregorianCalendar (2000 ,

Calendar .JANUARY, 1 ) ;

public stat ic Calendar y2kdate
( In t eg e r e lapseddays ) {

try {
Calendar date = ( Calendar ) Y2K. c lone ( ) ;

date . add ( Calendar .DATE,
e lapseddays . intValue ( ) ) ;

return date ;
} catch ( Exception e ) {

return null ;
}

}

public stat ic I n t eg e r y2kdays ( Calendar date ) {
try {

long y2kMi l l i s = Y2K. getTime ( ) . getTime ( ) ;
long da t eM i l l i s = date . getTime ( ) . getTime ( ) ;
long de l t a = ( da t eM i l l i s − y2kMi l l i s ) /

(1000L∗60L∗60L∗24L ) ;
return new I n t eg e r ( ( int ) de l t a ) ;

} catch ( Exception e ) {
return null ;

}
}

}

Figure 4: Implementation of Time Transformations

single view of customer that will allow its customer data
to still reside in its divisional IT systems while also being
accessible and updatable uniformly by the new, corporate-
level applications that GotJobs is developing. GotJobs is
”going SOA” for its new applications, so the single view
of customer is being developed using ALDSP and its data
services methodology.

The chief data architect for GotJobs has decided to cre-
ate, as part of a layered data architecture, a set of uniform
data services, one per region, that present each region’s cus-
tomers in an enterprise-wide canonical form. After analyz-
ing the various regions’ customer schemas, and considering
the needs of the new applications, it has been decided that
the date of hire for customers should be represented more
traditionally, as a date value, and that customers’ names
should be surfaced as a single string value in lastname, first-
name format. Each region will start by constructing a cus-
tomer data service that normalizes its regional information
and provides access to it in this canonical form. Access
to the resulting normalized data is to be parameterized on
various search criteria, e.g., by name, by date of hire, by
customer id, and so on.

Figure 3 shows a concrete example of what the canonical
data service looks like for the West Coast region of the com-
pany, showing ALDSP source code for the WestCustomers
data service (based on the WESTCUSTOMER table). To
keep the example short, only three data service operations
are shown—-one that provides access to the normalized form
of all West Coast customers, one that provides searched ac-
cess by full name, and another that provides searched access
based on date of hire. The West Coast customer data is ac-
cessed using the function WESTCUSTOMER() that resulted
from asking ALDSP to introspect the WESTCUSTOMER
table to make it available as a physical data service for this
data services project. A closer look at the body of the
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package JavaFuncs ;

public c lass LastNameFirstName
{

public stat ic St r ing fu l lname ( St r ing ln ,
S t r ing fn ) {

return ( ln == null | | fn == null ) ?
null : ( ln + ” , ” + fn ) ;

}

public stat ic St r ing f i r s tname ( St r ing name) {
try { return name . subs t r i ng

( name . indexOf ( ’ , ’ ) + 2 ) ;
} catch ( Exception e ) { return null ; }

}

public stat ic St r ing lastname ( St r ing name) {
try {

int k = name . indexOf ( ’ , ’ ) ;
return name . subs t r i ng ( 0 , k ) ;

} catch ( Exception e ) { return null ; }
}

}

Figure 5: Implementation of Name Transformations

getWestCustomers() operation shows how the required nor-
malization is handled—-GotJobs already had Java functions
that normalize hire dates (y2kdate) and names (fullname),
and these were introspected by ALDSP and then utilized
in the definition of getWestCustomers().1 Figure 4 shows
GotJobs’ Java class for handling dates, and Figure 5 shows
their Java class for handling name transformations. Once
introspected by ALDSP, these functions become available
for use in XQuery, as illustrated in the getWestCustomers()
method of Figure 3. Notice that the other two WestCus-
tomers search functions are then expressed very succinctly in
terms of this main integration function, both for simplicity
of expression and to avoid replicating its integration/trans-
formation logic (so that subsequent changes to the logic will
be isolated if the GotJobs IT architecture evolves).

Given the work done so far by the GotJobs IT depart-
ment, we now have a working WestCustomers data service
that normalizes the West Coast customer data and provides
searched access. However, a significant problem remains—
performance. With only the data service definition and
Java functions of Figures 3 through 5, ALDSP can call the
Java functions but cannot fully optimize queries that involve
them. For example, if the data service operation getWest-
CustomersByName() is invoked, since the query predicate is
on the result of calling the Java function fullname(), ALDSP
will end up streaming all of the WESTCUSTOMER rows
into the middle tier in order to compute each customer’s full
name and compare it to the function parameter. Likewise
for requests to run the data service operation getOldWest-
Customers()—lacking any additional information, its invo-
cation will require mid-tier evaluation of the Java function
y2kdate to convert the WESTCUSTOMER integer hire date
into a regular date for comparison to the function’s input
parameter. There is another significant problem as well—
updates. In the absence of additional information, neither
the fullName nor dateHired elements in the single view of
customer will be updatable since they are the result of opaque
Java function calls.

1The Java functions used for the examples in this section
are intentionally simple; in practice, such functions can be
much more complex internally.

This is where ALDSP’s inverse function support comes
in. In the remainder of this section, we will examine how
inverse functions and related semantic rules can be provided
to ALDSP to help with such use cases. We will then look
at how inverse function definitions are surfaced to data ar-
chitects working in the context of ALDSP’s graphical data
service design environment.

declare namespace f1 = ...

(::pragma function
<f:function nativeName=‘‘y2kdate” ...
xmlns:dat= ...>
<inverseFunctions>

<inverseFunction name=‘‘dat:y2kdays”
parameterIndex=‘‘1”/>

</inverseFunctions>
<equivalentTransforms>

<pair source=‘‘xpat:dateTime−greater−than”
target=‘‘day:dateGT” arity=‘‘2”/>

<pair source=‘‘xpat:dateTime−less−than”
target=‘‘day:dateLT” arity=‘‘2”/>

<pair source=‘‘xpat:dateTime−equal”
target=‘‘day:dateEQ” arity=‘‘2”/>

</equivalentTransforms>
<params>

<param nativeType=‘‘java.lang.Integer”/>
</params>

</f:function>
::)
declare function f1:y2kdate($x1 as xsd:int?)
as xsd:dateTime? external;

(::pragma function
<f:function nativeName=‘‘y2kdays” ...
xmlns:dat= ...
<params>

<param nativeType=‘‘java.util.Calendar”/>
</params>

</f:function>
::)
declare function f1:y2kdays($x1 as xsd:dateTime?)
as xsd:int? external;

(::pragma function ... ::)
declare function f1:dateEQ($date1 as xsd:dateTime?,

$date2 as xsd:dateTime?) as xsd:boolean? {
f1:y2kdays($date1) eq f1:y2kdays($date2)

};

(::pragma function ... ::)
declare function f1:dateLT($date1 as xsd:dateTime?,

$date2 as xsd:dateTime?) as xsd:boolean? {
f1:y2kdays($date1) lt f1:y2kdays($date2)

};

(::pragma function ... ::)
declare function f1:dateGT($date1 as xsd:dateTime?,

$date2 as xsd:dateTime?) as xsd:boolean? {
f1:y2kdays($date1) gt f1:y2kdays($date2)

};

Figure 6: XQuery Library for Time Transformations

3.2 1:1 Data Transformations
Let us first examine the hiring date use case in our ex-

ample. This use case involves what we call a 1:1 transfor-
mation: The Java function y2kdate transforms one value
(an integral number of days since Y2K) into a different, but
equivalent, value (a calendar date). In order for ALDSP to
optimize predicates or perform updates involving getWest-
Customers()/dateHired, the system needs to be able to invert
the y2kdate function—it needs to know that the Java func-
tion y2kdays is its inverse, and can thus be used to turn a
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declare namespace f1 = ...

(::pragma function
<f:function nativeName=‘‘fullname” ...

<inverseFunctions>
<inverseFunction name=‘‘nam:lastname”
parameterIndex=‘‘1”/>

<inverseFunction name=‘‘nam:firstname”
parameterIndex=‘‘2”/>

</inverseFunctions>
<equivalentTransforms>

<pair source=‘‘xqu:string−greater−than”
target=‘‘nam:fullnameGT” arity=‘‘2”/>

<pair source=‘‘xqu:string−less−than”
target=‘‘nam:fullnameLT” arity=‘‘2”/>

<pair source=‘‘xqu:string−equal”
target=‘‘nam:fullnameEQ” arity=‘‘2”/>

</equivalentTransforms>
<params>

<param nativeType=‘‘java.lang.String”/>
<param nativeType=‘‘java.lang.String”/>

</params>
</f:function>
::)
declare function f1:fullname($last as xsd:string?,

$first as xsd:string?)
as xsd:string? external;

(::pragma function ... ::)
declare function f1:firstname($full as xsd:string?)
as xsd:string? external;

(::pragma function ... ::)
declare function f1:lastname($full as xsd:string?)
as xsd:string? external;

(::pragma function ... ::)
declare function f1:fullnameEQ($fullname1 as xsd:string?,

$fullname2 as xsd:string?) as xsd:boolean? {
(f1:lastname($fullname1) eq f1:lastname($fullname2)) and
(f1:firstname($fullname1) eq f1:firstname($fullname2))

};

(::pragma function ... ::)
declare function f1:fullnameLT($fullname1 as xsd:string?,

$fullname2 as xsd:string?) as xsd:boolean? {
(f1:lastname($fullname1) lt f1:lastname($fullname2)) or
((f1:lastname($fullname1) eq f1:lastname($fullname2)) and
(f1:firstname($fullname1) lt f1:firstname($fullname2)))

};

(::pragma function ... ::)
declare function f1:fullnameGT($fullname1 as xsd:string?,

$fullname2 as xsd:string?) as xsd:boolean? {
(f1:lastname($fullname1) gt f1:lastname($fullname2)) or
((f1:lastname($fullname1) eq f1:lastname($fullname2)) and
(f1:firstname($fullname1) gt f1:firstname($fullname2)))

};

Figure 7: XQuery Library for Name Transforma-
tions

calendar date into a number of days since Y2K. In addition,
for query optimization, the system needs to be told how
to convert calendar date comparisons into comparisons on
the numbers of days since Y2K—it needs equivalences to be
defined for any boolean comparisons that might appear in
query predicates for which the data service developer wants
ALDSP to be able to perform SQL pushdown optimizations.
The inverse function feature of ALDSP provides the means
for a data service developer to declare these additional pieces
of information to the system.

Figure 6 shows the ALDSP XQuery definitions (in an
XQuery Function Library, or XFL) needed for the Java date
transformation function use case. The initial version of this
file was produced automatically when ALDSP was directed

to introspect the Java class file for the Dates class of Figure 4.
Such an XFL file initially contains one XQuery function per
Java function, with those functions being flagged as external
in their XQuery function signatures. This is how the func-
tions y2kdate and y2kdays came into existence in the XFL
file shown in Figure 6. The other functions shown there, as
well as the <inverseFunction> and <equivalentTransforms>
annotations in the <inverseFunctions> function annotation
above the y2kdate function, were then added by the data ser-
vice developer. The <inverseFunction> annotation declares
y2kdays as being inversely related to the function y2kdate.
(Ignore the parameterIndex attribute; we will explain its pur-
pose in the next subsection.) The XQuery functions da-
teEQ, dateLT, and so on in Figure 6 each define ways to
compare calendar dates by instead transforming them into
integer days-since-Y2K values and comparing the resulting
values. Last but not least, the <equivalentTransforms> an-
notation above the function y2kdate in the figure defines
these XQuery functions as being semantically equivalent to
performing the same comparisons using XQuery’s built-in
calendar date comparisons.

3.3 1:N Data Transformations
Let us now examine the name formatting use case in our

example. This use case involves a 1:N transformation: The
Java function fullname transforms a sequence of two values
(the function’s last and first name parameter strings) into a
single, different, but equivalent, value (a full name string).
In order for ALDSP to optimize query predicates or trans-
late updates involving getWestCustomers()/fullName, the sys-
tem needs to be able to invert the fullname function—it
needs to know that the pair of Java functions lastname and
firstname together form the inverse of fullname, and can
therefore be used to turn a full name into a separated pair
of values for last name and first name. As in the 1:1 case, for
query optimization, the system also needs to know how to
convert full name comparisons into a combination of com-
parisons on last and first names. The inverse function fea-
ture of ALDSP is designed to handle such 1:N transforma-
tions as well.

Figure 7 shows the ALDSP source code for the XQuery
Function Library (XFL) for the Java name transformation
functions. As in the previous case, this file was created ini-
tially by directing ALDSP to introspect a Java class file,
in this case the class file for the LastNameFirstName class
of Figure 5. The data service developer then added the
XQuery-bodied comparison functions and the inverse decla-
ration and equivalent transforms annotations on the fullname
function in the XFL. For the most part, the XFL file in Fig-
ure 7 is similar to that of the 1:1 use case. However, no-
tice that the <inverseFunctions> annotation block now con-
tains two < inverseFunction > sub-annotations—indicating
that to invert the function fullname(p1,p2), the functions
lastname(p1) and firstname(p2) (in that order, parameter-
index-wise) are both involved.

To illustrate the effect of the inverse functions and equiv-
alent transforms for this more complex use case, Figure 8
shows the query execution plan produced by ALDSP for
a call to the getWestCustomersByName() function from the
WestCustomers data service. With the additional knowl-
edge provided by these declarations, instead of having to ex-
amine all WESTCUSTOMER rows, ALDSP is able to push
a SQL query with the predicate “WHERE ((? = t1.LNAME)
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Figure 8: Optimized Plan After Pushing Selections

AND (? = t1.FNAME))”, delegating most of the query pro-
cessing work to the underlying relational data source and
retrieving only relevant data into the ALDSP runtime. As
indicated at the bottom of the query plan, the values bound
to these parameters are the result of inverting the incoming
function parameter (fullname) and then binding the result-
ing pair of values (lastname and firstname) as input to the
SQL query. The query was arrived at through the use of
the equivalent transform information; its predicate was pro-
duced by using this information to transform the full name
equality predicate in getWestCustomersByName() into the
equivalent conjunctive equality predicate on last and first
names. We will examine this rewrite process in much more
detail in Section 4.

3.4 User Experience for Inverse Functions
Having examined these use cases and their correspond-

ing source files, readers will probably feel that having to
hand-author the components of an <inverseFunctions> an-
notation would be tedious and error-prone. For this reason,
ALDSP provides graphical UI assistance for defining inverse
functions and equivalent transformations. Inverse functions
can be declared graphically, as shown in Figure 9, by right-
clicking on a function in the design view of an XFL and
choosing its inverse(s) from a drop-down list of the other
candidate functions in the XFL. In the figure, the fullname
function has been selected, and lastname and firstname are
being chosen as its first and second position inverses, re-
spectively. Equivalent transforms can also be defined graph-
ically, as shown in the screen shot of Figure 10, where the
rules defining the equivalence between the built-in XQuery
string comparisons on full name values and the XQuery-

bodied last- and first-name based comparison functions are
being specified.

3.5 Related Functionality
When we undertook the design and implementation of

inverse functions, much to our surprise, we were unable to
find directly related work in the database research literature
to build upon. Our work on inverse functions is loosely re-
lated to work from the object-relational database era on sup-
porting and optimizing queries involving user-defined data
types. For example, the UC Berkeley ADT-Ingres project [8,
9] and its follow-on project Postgres [10] provided ways for
developers to register functions to convert ADT instances
to/from their external (printable) representations and to
register comparison-related functions to enable hash- and
B+ tree-based indexes to be used on ADT-valued columns.
The ALDSP inverse function facility is different, however, in
that there is no new data type involved or needed. Instead,
the notion of inverse functions in ALDSP is lighter weight,
specifying for one particular function of interest—typically
a data transformation of some sort—how to invert the func-
tion when needed and how to transform the comparisons
on its return type into equivalent XQuery functions involv-
ing comparisons on its argument types. Updates through
a transformation can be enabled in some database systems
by writing procedural code inside INSTEAD OF triggers, but
ALDSP provides a declarative, higher-level way of achiev-
ing the same functionality by registering an inverse. A more
in-depth (and recent) Google search for related work again
yielded no research papers on inverses (except for a brief
mention of their utility in [11]), but it did yield one related
system called OpenLink Universal Server. The OpenLink
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Figure 9: Declare Inverses Using the UI

system is a SQL-based data integration system that includes
support for SQL inverse functions [12] that appear to be sim-
ilarly motivated and to have capabilities similar to XQuery
inverse functions in ALDSP. A difference in power is that
OpenLink is restricted to transformations that preserve the
original query’s comparison operations.

4. HOW INVERSE FUNCTIONS WORK
We now explore how the inverse function facility of ALDSP

works inside. We briefly review the structure of the ALDSP
query optimizer. We then explain how inverse functions
were added, including the nature of the rewrite rules and
how they are controlled. We reflect briefly on the power of
the resulting facility, and we close with a discussion of the
role of inverse functions in update processing.

4.1 Query Optimization in ALDSP
The ALDSP query processor compiles an XQuery into an

evaluation plan that undergoes several optimization stages,
each one implemented by rewriting rules. One important
class of optimizations is related to function inlining and
unnesting, and it is closely related to view unfolding in re-
lational query processing. Other targeted key areas are de-
tecting and processing relational-style joins and group-bys.
Although it is always possible to perform mid-tier query
plan evaluation, for performance reasons the ALDSP query
processor tries to identify the largest fragments of the query
that can be translated into SQL and then pushed down to
relational data sources.

SQL pushdown optimization is implemented in two steps.
The first step is implemented by optimizer rules that pre-
pare the XQuery expression tree for SQL pushdown analy-
sis. It is in this step that explicit joins are introduced and

optimized and that other subexpressions that may be trans-
latable into SQL are consolidated as well. The second step
in SQL pushdown optimization generates SQL code for the
portions of the expression tree that operate on data origi-
nating from relational sources. Several XQuery constructs
and a number of the built-in functions and operators (logical
operators, numeric and date-time arithmetic, various string
functions, comparison operations, aggregate functions, and
the sequence functions subsequence, empty, and exists) can
be pushed down successfully as SQL. Certain other expres-
sions can first be partially evaluated in XQuery and then
pushed as bound SQL parameters. This latter category in-
cludes results from non-pushable function calls, such as Java
calls in the absence of inverse functions, as well as operations
on nodes or sequences of nodes. A more detailed treatment
of ALDSP query optimization and SQL pushdown, as well
as a more in-depth coverage of other aspects of the architec-
ture of the ALDSP query processor, can be found in [6].

4.2 Adding Support for Inverse Definitions
Inverse functions were integrated into the ALDSP query

processor by extending the optimizer with additional opti-
mization rules that make SQL generation possible for use
cases like those in Section 3 involving opaque data transfor-
mations in selection (or join) predicates.

What we needed to introduce are in fact equivalent trans-
forms between functional expressions such as lt(y2kdate(x),y)

≡ lt(x,y2kdays(y)). However, termination for an arbitrary set
of such equivalences is undecidable, as can be shown by
adapting the proof of undecidability for termination of term
rewriting [13]. Thus, it is not possible to always explore
all equivalent query plans given such rules. Controlling rule
evaluation in such a way as to cover a useful range of use
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Figure 10: Declare Function Properties Using the UI

cases while also terminating quickly was therefore another
design consideration.

Our implementation allows only directed rewriting rules
of the form C(f(x), y) → B(x, y) or C(x, f(y)) → B(x, y).
C are binary functions, typically comparison functions or
other types of conditions, and f are invertible functions,
i.e., those functions for which one or more inverses have
been declared in the associated metadata. (For instance
y2kdays from Figure 6 is the inverse of the unary function
y2kdate.) B are XQuery expressions in which x and y may
appear as free variables. For convenience, the B expressions
are defined as XQuery functions, e.g., the XQuery-bodied
comparison functions shown in the XQuery libraries of Fig-
ures 6-7. The choice of restricting our implementation to
these types of rules was motivated by our focus on push-
ing boolean conditions to SQL that are constructed using
comparison operators. The syntax for the rules (encoded in
the XML annotations described in Section 3) can express
all of these optimizations, and for many practical cases, we
are able to bound the search space of rewritings that are of
potential interest to us, as we will explain.

Algorithm 1, describes, in pseudo-code, how the query op-
timizer uses the rewriting rules to produce equivalent plans.
In the following discussion, in order to simplify the presenta-
tion, we will not distinguish explicitly between an expression
and its representation as a syntax tree.

The algorithm consists of a recursive rewriting procedure
Rewrite-cond that, when given an expression tree E, tries
all applicable rules from the input rule set S.

A rule r of the form C(f(x), y) → B (or C(x, f(y)) →
B) matches the node nd of E if nd is a call to the binary
function C and its left (right) child is a call to f . Once a
match is found, the rule is executed by calling the recursive

Algorithm 1 Rewrite-cond(E ;S)

{E is an XQuery expression}
{S is a set of rules {p(x, y)→ B(x, y)}}
{where p is of the form C(f(x), y) or C(x, f(y))}
let nd be the root of the expression tree of E
repeat

rewrite the children of nd recursively, bottom-up
for all rules r ∈ S that match nd do

if the rule has not already been applied to nd then
max ← length of longest loop-free path

starting from LHS pattern of r
i ← number of invertible functions in E
bound ← (max +1) ∗ i
Apply-rules(E , S, r, bound)

end if
end for
reduce occurrences of f−1(f(x)),

until E does not change

subroutine Apply-rules:
Apply-rules(E ; S ; r ; bound)

if bound > 0 then
F ← apply rule r to E
add F as a choice to E
for all rules r′ matching E and not yet applied to E

Apply-rules(E , S , r ′, bound-1)
end if

Applying a rule C(f(x), y)→ B(x, y) involves inlining the
bindings for x and y obtained from the match against E
inside the B expression and then outputting the instantiated
B. The resulting F represents an alternative subplan that
could be used instead of the original subplan of E .
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In the main loop of Rewrite-cond, we compute a bound
for the maximum number of rewriting steps (i.e., recursive
calls to Apply-rules) that are allowed starting from a cer-
tain node of the original expression. The bound uses results
from a static analysis stage performed during the compi-
lation of the data service, when a graph of dependencies
between rules is inferred. The nodes in this graph are the
patterns C(f(x), y) used when matching the rules, modulo
renaming of free variables x and y. There is an edge from
C(f(x), y) to C′(f ′(t), v) if there is a rule C(f(x), y) → B
in which a subexpression of B matches C′(f ′(t), v). The
longest loop-free path in this graph starting from a certain
pattern p tells us how many equivalent plans we can explore,
starting from the matching expression, before rediscovering
a match for p. To continue rewriting after reaching such a
point is unlikely to be useful—if the call to f inside p could
not be translated into SQL the first time, then it can never
be translated. This is due in part to a monotonicity prop-
erty of our SQL translation process: if a given subexpression
cannot be pushed to SQL, then an expression that includes
it will not be pushable either. We defer discussion of the
coverage of our algorithm to Section 4.3.

After applying the rewriting rules derived from equivalent
transforms, the optimizer also reduces an application of a
function over its inverse, trying to maximize the chances
for pushability. For unary functions, the reduction of f−1

with f eliminates the two function calls, leaving only the x
argument of f . For functions of higher arity, we can only
specify projections of their inverses. Suppose that f−1

k is the

projection of the inverse of f on the kth component. Then
f−1

k (f(x)) will be reduced to the kth projection of x. In the
use case with a composite name (Figure 5), the inverse’s
projections of fullname are lastname and firstname, and we
can reduce, for instance, lastname(fullname($n1,$n2)) to $n1.

Figure 11 applies this rewriting process to the WestCus-
tomers data service example (Figure 3). The example starts
from a call to getWestCustomersByName, which contains an
equality condition on the fullName element of the variable
$WestCustomerView. When inlined, the condition involves
a call to the external function fullname, which precludes the
direct translation of the query into SQL. However, fullname
has inverse-related metadata associated with it (Figure 7),
declaring its inverses to be lastname and firstname, together
with several equivalent transforms, including one saying that
an equality on fullnames can be replaced by the expression
inside the fullnameEQ function body. Thus,

$fullname eq ns3:fullName($WESCUSTOMER/LNAME,
$WESTCUSTOMER/FNAME)

can be equivalently rewritten into:

f1:lastname($name) eq $WESTCUSTOMER/LNAME and
f1:firstname($name) eq $WESTCUSTOMER/FNAME

This can then be recognized (by the SQL generator) as
equivalent to a selection over the WESTCUSTOMER table
where the SQL ‘?’ arguments are the results of the function
calls f1:lastname($fullname) and f1:firstname($fullname), respec-
tively. These function calls will be performed only once for
the entire data service call, and the SQL query sent to the
database engine will apply the condition efficiently.

At the end of the phase of optimization using inverse func-
tion rewritings, a query plan will actually contain sets of

declare function ns1:getWestCustomersByName
($fullname as xs:string)

as element(ns0:WestCustomerView)*
{
for $WestCustomerView in ns1:getWestCustomers()
where $fullname = $WestCustomerView/fullName

return
$WestCustomerView

};

⇓ inline the call to getWestCustomers (from Figure 3)

for $WESTCUSTOMER in ns2:WESTCUSTOMER()
where $fullname eq {ns3:fullname
($WESTCUSTOMER/LNAME, $WESTCUSTOMER/FNAME)}

return
<ns0:WestCustomerView>
...

</ns0:WestCustomerView>

⇓ apply rule for fullnameEQ (from Figure 7)

for $WESTCUSTOMER in ns2:WESTCUSTOMER()
where
f1:lastname($fullname) eq $WESTCUSTOMER/LNAME and
f1:firstname($fullname) eq $WESTCUSTOMER/FNAME

return
...

⇓ generated SQL

SELECT t1.’’CUSTID’’ AS c1,
t1.’’FNAME’’ AS c2,
t1.’’LNAME’’ AS c4,
t1.’’HIRED’’ AS c3,
t1.’’MONTHLYSAL’’ AS c5

FROM ‘‘DTABASS’’.’’WESTCUSTOMER’’ t1
WHERE ((? = t1.’’LNAME’’) AND (? = t1.’’FNAME’’))

Figure 11: Pushing Selections on Names

equivalent subplans for each condition on which the inverse
rewriting rules fired. In the current implementation, the
optimizer picks from each set the first subplan that can be
translated into SQL, if any. It would also be possible, in
principle, to perform cost-based optimization and choose the
alternative with the most promising cost, if the optimizer
had function cost metadata available. (In general, selecting
a query plan that uses inverse functions may be beneficial
not only for data integration, but also for applications where
materializing the result of a function is more expensive then
querying the source data. This can occur, for example, in
data compression or graphical processing [14].)

4.3 Coverage and Limitations
We now consider the limits of the ALDSP inverse rewrit-

ing approach. Suppose now that GotJobs is expanding fur-
ther, and it opens a branch called EastEurope in a Slavic
country that uses the cyrillic alphabet. Further, suppose
that users from that branch should be able to see the names
of the West Coast customers rewritten in cyrillic characters,
possibly with additional formatting, as provided through a
view called EastEuropeView. This view draws its information
from the WestCustomers data service by applying an addi-
tional unary function cyrillicName($fullname), so after inlin-
ing all XQuery function calls, a selection on cyrillic names
would be rewritten into

$name = ns5:cyrillicName(ns3:fullName
($CUSTOMER/LNAME, $CUSTOMER/FNAME))

To enable the rewrite optimizations needed for efficient query-
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ing in this use case, the Slavic data service developer will
register a function latinName($cyrillicname) as the inverse of
cyrillicName, as well as the equivalent transformation:

cyrillicName($engName) = $name →
$engName = latinName($name)

In the graph of rule dependencies, the longest path starting
from the pattern x = cyrillicName(y) has length 2, and the
ALDSP rewriting algorithm will finally rewrite the selection
condition above into

f1:lastname(ns5:latinName($name)) eq $CUSTOMER/LNAME and
f1:firstname(ns5:latinName($name)) eq $CUSTOMER/FNAME

which again can be pushed to the SQL engine by precomput-
ing and binding the query parameters. Thus, the algorithm
effectively handles multiple layers of inverse function usage.

In general, what we are looking for when controlling rule
rewriting is to find all useful rewritings for our purposes,
meaning all equivalent plans that can be pushed to SQL.
While our approach handles the use cases we have seen from
ALDSP customers, the general answer, if we relax our rule
format restrictions, is negative—the current approach has
its limitations. For example, consider a view created for
display purposes in which customer names are processed by
calls to the function displayedName($lname,$fname). Assume
the existence of an invertible function norm that transforms
last names into a standard format and a generalized equiva-
lent transform rule stating that the combined effect of these
functions is similar to applying fullName directly:

displayedName(norm($ln), $fn)→ fullName($ln, $fn)

The ALDSP inverse rewriting algorithm, on the input

$name = displayedName(norm($CUSTOMER/LNAME),
$CUSTOMER/FNAME )

would compute a bound of maximum 1 rewriting step to
apply because there is no edge in the graph of dependencies
starting from displayedName(norm(x), y) and there is only
one call to an invertible function, norm. Thus, it would
stop after rewriting the expression into an equality involv-
ing a call to fullName, without performing a second (desir-
able) rewriting step to invert that call into a comparison
on last and first names. Intuitively, the reason for not dis-
covering all useful plans is that the rewriting rules provide
only a limited context, and an analysis that only looks at
their patterns may miss certain combinations of expressions.
However, as mentioned in Section 4.2, allowing rules with
arbitrary patterns would not be practical because most im-
portant problems become undecidable.

Our algorithm will find all useful rewritings for sets of
rules of the form C1(f(x), y)→ C2(x, f−1(y)), where C1,C2

are comparison functions and f an invertible function, un-
der the restriction that the sets of comparisons and invert-
ible functions are disjoint and the y expressions do not con-
tain calls to invertible functions. In the more general case,
ALDSP takes a best effort approach without promising to
exploit all rewriting opportunities (due to the way that the
rewriting process is bounded).

4.4 Updates Through Inverse Functions
While we have focused heavily on condition rewriting and

SQL predicate pushdown, inverse functions also play a cru-
cial role in enabling ALDSP’s update automation to work in

the presence of opaque, user-defined transformations. As de-
scribed more fully in [6], the ALDSP client APIs allow appli-
cations to invoke a data service, operate on the results, and
then put the changed data back. If the data service being
updated has components whose definitions involve custom
Java transformations, the ALDSP update processor needs
inverse function information in order to convert the incom-
ing data into a form that can be written back to the un-
derlying physical data sources. In this case, the equivalent
transformations are not relevant; only the inverse definitions
themselves are needed for successful update translation.

In order to perform an update against data obtained from
a data service, its data source lineage must be computed.
ALDSP statically computes the data lineage for a data ser-
vice by analyzing the query body of the data service func-
tion that has been marked for use in update analysis by the
designer of the data service. (One is chosen by default if
no function has been specially marked.) The data lineage
computation is performed by a specialized rule set that is
driven by the same rule engine used for the ALDSP XQuery
optimizer. Element/attribute constructors, primary key in-
formation, query predicates, and query result shapes are
used together in a repeated function inlining process to de-
termine how to propagate changes back to the underlying
sources. Inverse function definitions allow this process to
proceed successfully through Java functions where it would
otherwise have been blocked and thus unable to determine
data lineage.

5. EXPERIMENTAL EVALUATION
To quantify the benefits of having inverse function support

in ALDSP, this section of the paper presents some simple
but realistic experimental results based on the getWestCus-
tomersByName(fullname) function introduced earlier. The
underlying relational data for these experiments is the WEST-
CUSTOMER table, but with one extension–a CHAR(500)
field named ETCETERA was added to the table in order to
pad the tuples out to a more typical row size. The West-
Customers data service was correspondingly extended with
one additional xs:string element, otherInfo, based on the
data coming from this column. The WESTCUSTOMER
table was populated by generating a collection of synthetic
data with unique values in all columns for simplicity, with
table sizes ranging from 1,000 to 100,000 rows. The ex-
periments were run on a Dell XPS M1210 laptop machine
with a 1.33 GHz Intel Core 2 Duo Processor T7600, 2GB of
SDRAM, and a 160 GB SATA hard drive running Windows
XP. The relational database server used for the experiments
was Pointbase 4.4, a Java-based RDBMS that ships with the
BEA WebLogic Platform 8.1 system.

Table 1 shows the structure of the experiments together
with the experimental results. For each table size, the read
function getWestCustomersByName was invoked with a full
name string (“Smith1000, John1000”) that ultimately re-
sulted in the return of a single instance of the WestCustomers
data service XML element type. This was done three ways
for each table size–once without the use of inverse functions,
once with inverse functions but with no useful indexes on
the underlying WESTCUSTOMER table, and once with
a composite non-unique index on (LNAME, FNAME) de-
fined on WESTCUSTOMER. The first way, ALDSP is un-
able to push a WHERE clause to the RDBMS, so all of the
WESTCUSTOMER data must be retrieved and the name-
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Inverses Indexed 100K customers 10K customers 1K customers compile time
No No 14400 msec 1500 msec 125 msec 125 msec
Yes No 2600 msec 250 msec 15 msec 135 msec
Yes Yes 8 msec 7 msec 5 msec 135 msec

Table 1: Execution times for getWestCustomersByName (yielding 1 match)

matching predicate must be evaluated in the ALDSP mid-
tier engine. The second way, ALDSP is able to push the
predicate “WHERE ((? = t1.LNAME) AND (? = t1.FNAME))”,
but a table scan is required to evaluate the predicate in
PointBase since there is no supporting index. The third way,
ALDSP is able to push the predicate, and PointBase is able
to use a simple index scan to retrieve the requested data.
The numbers shown in the table are warm times (based on
repeated query executions).

The results in Table 1 indicate the trends that one would
expect. First, the query compilation time is quite small,
and adding inverse function rules adds only a very small
overhead to the query compilation time. (Remember also
that ALDSP uses a query plan cache to avoid reoptimiz-
ing queries, as discussed in Section 2.) Second, comparing
the query execution times in rows 1 and 2 of the table, the
impact of the predicate pushdown optimizations enabled by
inverse functions is clear. Even when PointBase must per-
form a table scan, there is a large benefit (roughly 6x in this
case) to not having to fetch unwanted data into ALDSP for
mid-tier predicate evaluation. Finally, comparing the query
execution times in rows 1 and 3 of Table 1, it is evident
that inverse functions plus an appropriate underlying phys-
ical database design can enable many orders of magnitude
of improvement. For example, with 100,000 rows in the
WESTCUSTOMER table, a 14.4 second query becomes an
8 millisecond query. These results clearly emphasize the im-
portance of having support for inverse functions and their
associated optimization rules in a data integration system
like ALDSP that supports opaque, user-defined data trans-
formation functions.

6. CONCLUSIONS
In this paper, we have provided an in-depth description of

the inverse function feature of BEA’s AquaLogic Data Ser-
vices Platform. Since ALDSP is aimed at integrating and
service-enabling data from a variety of data sources, data
transformations are a key part of the definition of most data
services. To handle situations where XQuery is insufficient
for performing the required transformations, ALDSP per-
mits users to write and register their own custom transfor-
mations, implemented in Java. This then results in a set of
transformation functions that are opaque to ALDSP’s query
optimization and update analysis components.

To break down the barriers imposed by user-defined Java
transformation functions, ALDSP allows data transforma-
tion developers to specify inverse functions and equivalent
transformations that enable ALDSP to push predicates and
perform updates on data services that involve the use of such
functions. We have described here the motivation for inverse
functions, illustrated their use for addressing typical 1:1 and
1:N data transformation use cases, and discussed their im-
plementation in some depth. We also presented a brief set
of experimental results to demonstrate, in a practical way,

how the presence of this feature in ALDSP can provide or-
ders of magnitude improvements in query execution times
when such transformations are involved.
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