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ABSTRACT 
This paper focuses on the problem of improving distributed query 

throughput of the RDBMS-based data integration system that has 

to inherit the query execution model of the underlying RDBMS: 

execute each query independently and utilize a global buffer pool 

mechanism to provide disk page sharing across concurrent query 

execution processes. However, this model is not suitable for 

processing concurrent distributed queries because the foundation, 

the memory-disk hierarchy, does not exist for data provided by 

remote sources. Therefore, the query engine cannot exploit any 

data sharing so that each process will have to interact with data 

sources independently: issue data requests and fetch data over the 

network.  

This paper presents Request Window, a novel DQP mechanism 

that can detect and employ data sharing opportunities across 

concurrent distributed queries. By combining multiple similar data 

requests issued to the same data source to a common data request, 

Request Window allows concurrent query executing processes to 

share the common result data. With the benefits of reduced source 

burdens and data transfers, the throughput of query engine can be 

significantly improved. This paper also introduces the IGNITE 

system, an extended PostgreSQL with DQP support. Our 

experimental results show that Request Window makes IGNITE 

achieve a 1.7x speedup over a commercial data integration system 

when running a workload of distributed TPC-H queries. 

1. INTRODUCTION 
With the rapidly increasing application requirements of 

integrating  remote data objects from various distributed, 

heterogeneous, and autonomous data sources, traditional RDBMS 

are extended to support distributed query processing [16], such as 

the extension to DB2 [15] and to the SQL Server [1]. Such DQP 

extensions deliver RDBMS-based data integration systems that 

can reuse the existing RDBMS components, including access 

interfaces, query optimizer and execution engine, with necessary 

modifications and extensions. 

Typically, the RDBMS-based data integration system employs a 

wrapper architecture that allows various data sources to be 

wrapped and to be plugged into the system. Moreover, the query 

engine utilizes a new operator that is response for interacting with 

wrappers to issue data requests and fetch results, such as the SHIP 

operator in extended DB2. For a distributed query, the 

corresponding query plan tree will be constructed with such 

operators as leaf nodes, so that the query engine can execute a 

distributed query as a common query. Meanwhile, the distributed 

query optimizer is added on the basis of the existing optimizer to 

improve the query execution performance. 

In addition, facing the evolution from disk-oriented RDBMS to 

network-oriented data integration system, academic researchers 

have developed many new algorithms for relational operations, 

especially for the join operation, such as XJoin [30], MJoin [31], 

and Hash-Merge-Join [22]. These algorithms aim at improving 

join performance including initial delay and total response time on 

slow/bursty network transfers. To our knowledge, however, these 

algorithms are not implemented practically in current RDBMS-

based data integration systems. Inside the systems, traditional 

disk-oriented join algorithms are still being used even for 

processing distributed queries. 

For RDBMS-based data integration system, no prior work 

considers the throughput problem: “how to execute concurrent 

multiple distributed queries more efficiently to improve the 

overall throughput?” To address this problem, it is not enough to 

only consider new techniques in query optimizer [10] and new 

operation algorithms, which aim at making a single query be 

executed faster and more efficiently. The improvement of overall 

throughput greatly relies on data sharing across concurrent 

queries, which is more necessary in data integration system than 

in traditional RDBMS, since real data are actually stored in 

remote data sources and have to be transferred to the query 

execution engine over the network.  

Unfortunately, the query execution model of RDBMS-based data 

integration system, which is inherited from the underlying 

RDBMS and can be expressed as “executing each query 

independently” as pointed out in the paper [9], makes it difficult 

to provide data sharing across concurrent distributed queries. 

Existing data sharing mechanisms in RDBMS are not suitable for 

executions of distributed queries. The query execution model in 

RDBMS is to execute concurrent queries independently and to 

employ a global buffer pool manager to share disk pages across 

queries. To improve the utilization of main memory and the 

performance of query processing, researchers have developed 
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various cache replacement algorithms [13][21][23][26]. Despite 

their concrete differences in the replacement policy, all these 

algorithms follow the same idea: “to provide run-time data 

sharing on the basis of the memory-disk hierarchy.” 

Unfortunately, when processing distributed queries, the global 

buffer pool mechanism in RDBMS cannot be directly used 

because its foundation, the memory-disk hierarchy, is bankrupted. 

In typical data integration scenarios, a data source may only 

support a data access interface that takes an SQL statement as the 

input and returns the result tuples. In this way, random access to 

the data source like access to a disk is not supported. 

Being different from page caching and tuple caching, the semantic 

caching technique, which manages client caches as a collection of 

semantic regions [5][14], is used in various distributed data 

applications, such as web querying, application servers, etc. 

However, to be a general method for providing data sharing 

across queries in data integration systems, semantic caching is 

facing the following difficulties: 

(1) In some data integration scenarios, a data source may not 

allow clients to cache its data for some reasons related to 

copyright and policy. Under such limitations, the only way to 

obtain data from the data source, whenever a client needs the 

data, is to send data requests to the data source. Moreover, 

the client must discard all data after consuming them. 1 

(2) Another difficulty for caching data of sources lies in the fact 

that data sources are likely autonomous and they can change 

their data without any notice. More importantly, a data 

source may provide no support for data synchronization 

between its own data storage and copies on the client sides. 

This is very common in service-oriented applications. In this 

situation, the maintenance work for data cache consistence is 

a very big challenge. 

In this paper, we solve the DQP throughput problem using a novel 

approach: Request Window, which can detect and exploit data 

sharing opportunities across multiple concurrent distributed 

queries. The main idea behind Request Window is to remove 

unnecessary data requests by combining multiple similar data 

requests sent to the data source to a single common request and 

dispatching the common result data returned from the data source. 

Although Request Window is a batch processing technique, which 

processes a group of data requests as a batch, it does not require 

that multiple queries must enter the system simultaneously. The 

key is the DIOP (Delay Indicated by OPtimizer) technique we 

present in this paper. By using the DIOP technique, each data 

request generated when executing a query has a tolerable delay 

time, which makes it possible to construct a group of such data 

requests. Moreover, Request Window utilizes the DAW 

(Dynamically Adjusting Window) technique to adjust the 

window size dynamically, i.e. to determine when to process a 

group of data requests as a batch. Request Window can improve 

throughput of executing concurrent queries without sacrificing the 

response time of individual query by utilizing the DIOP technique 

and the DAW technique. 

This paper also introduces the IGNITE system, an extended 

PostgreSQL [24] with DQP support. Our experimental result 

shows that Request Window makes IGNITE achieve a 1.7x 

                                                                    
1 This is a real requirement we met when we applied our system to 

a National Railway Information Grid project in China. 

speedup over a commercial data integration system when running 

a workload of distributed TPC-H queries.  

In summary, this paper presents the first study of how to utilize 

data sharing opportunities across concurrent queries to improve 

the DQP throughput. We make the following contributions: 

� We formalize the problem of data sharing across concurrent 

queries in RDBMS-based data integration system. 

� We present a classification of related data sharing 

techniques employed in traditional RDBMS and in data 

integration systems. 

� We introduce a set of query execution techniques to provide 

data sharing across queries including the Start-Fetch 

wrapper architecture, the Request Window mechanism, the 

DIOP technique, and the DAW technique. 

� We describe an implementation of the IGNITE system, a 

relational data integration system based on the PostgreSQL 

RDBMS.  

The remainder of this paper is organized as follows. Section 2 

discusses various related work and presents a classification of data 

sharing techniques. Section 3 introduces the IGNITE system and 

the Start-Fetch wrapper architecture that provides the foundation 

of Request Window. In Section 4, we describe Request Window 

in detail and illustrate the DIOP technique and the DAW 

technique. Section 5 carries out various experimental results. In 

section 6, we give further discussions about Request Window. We 

conclude this paper and introduce our future work in Section 7. 

2. RELATED WORK & CLASSIFICATION 
This section first briefly introduces related work in various 

contexts and then presents a classification of four data sharing 

techniques. 

2.1 Related Work 
As we discussed in the Introduction section, several commercial 

database products are extended to provide functionalities of data 

integration, for example IBM DB2 [15] and Microsoft SQL 

Server [1]. To our knowledge, these systems currently provide no 

data sharing across distributed queries. 

More closely related to this paper is the research work on the data 

and work sharing in traditional RDBMS. A recent paper is about 

the QPipe query engine in [9], which introduces a new “one-

operator, many-queries” query execution model to replace the 

traditional “one-query, many-operators” model. The QPipe engine 

can provide not only sharing of table scans but also sharing of 

common computations across concurrent queries. In addition, 

several RDBMS products provide similar sharing of table scans, 

for example SQL SERVER [3], RedBrick Data Warehouse [6], 

and Teradata [32].  

Multi-query optimization techniques in RDBMS [4][25][27][33] 

are related to this paper considering the common goal of data 

sharing across queries. The main idea of multi-query optimization 

technique is to process a group of queries that contain common 

subexpressions and to produce a globally optimal plan. To our 

knowledge, no prior work considers multi-query optimization in 

data integration context. 

Ideas on obtaining maximized throughput by delaying processing 

of data requests exist in OS research fields, which are similar to 

Request Window. In [18], an anticipatory scheduling framework 

is proposed to solve the problem of deceptive idleness in disk 

scheduling to improve throughput of the disk subsystems for 

concurrent disk-intensive applications. 
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2.2 Classification of Data Sharing Techniques 
 In this subsection, we compare Request Window with other three 

data sharing techniques in traditional RDBMS (details are 

following) and present a classification as the comparison result. 

Although these techniques have different problem contexts, their 

goal is same: providing data sharing across queries. In our 

classification, we consider two correlative factors. The first one is 

the restriction on the arrival times of different queries across 

which data sharing can be possible, and the second one is the 

maximized amount of data that can be shared among multiple 

queries when data sharing is possible.  

We take an example to illustrate the total four categories of data 

sharing techniques. Consider two identical queries Q1 and Q2: 

“select * from a_table”. In the query statement, “a_table” may be 

a local relation or a remote relation, which determines the query to 

be a traditional query in RDBMS or a distributed query in a data 

integration environment. We assume that Q1 and Q2 may arrive at 

the query processing engine simultaneously, or that Q2 may arrive 

later than Q1. In the example, the first factor means the difference 

between the arrival times of Q1 and of Q2, while the second 

factor means the amount of data shared between Q2 and Q1.  

 The first category of data sharing techniques is the multi-query 

optimization techniques utilized in traditional RDBMS 

[4][25][27][33]. Multi-query optimization is a technique working 

at query compilation phase. The major problem that multi-query 

optimization solves is how to find common subexpressions and to 

produce a global-optimal query plan for a group of queries. The 

multi-query optimization technique has the most restrictive 

requirement on the arrival times of different queries due to the 

limitation that multiple queries must be optimized as a batch. 

Such the limitation means that multiple queries must enter the 

query engine simultaneously in order to be optimized together, 

otherwise queries arrived earlier have to be sacrificed to wait for 

other queries. However, the multi-query optimization technique 

can provide maximized capabilities of data sharing across queries 

once multiple queries are optimized as a batch. More importantly, 

multi-query optimization can provide not only data sharing but 

also common computation sharing. 

The second category of data sharing technique is Request 

Window presented in this paper. What should be noted is that, 

although Request Window is mainly proposed for DQP, it can 

also be employed in traditional RDBMS to provide data sharing. 

Request Window is a technique working at the query execution 

phase. Its basic idea is to combine similar requests for the same 

data source to a single common request and then to dispatch the 

results received from the data source to multiple independent 

query execution processes. In this way, each query engine process 

can share the common results. In the example, data requests 

generated by processing Q1 and Q2 will be combined to a 

common data request, and the query engine processes for Q1 and 

Q2 can share all the results of the common data request received 

from the data source. The restriction on arrival times of queries in 

Request Window is looser than that in multi-query optimization as 

illustrated later in this paper. This is because that some data 

requests sent to the data source when executing complex queries 

may have a delay opportunity so that it is tolerable to wait for 

other similar data requests. For this category, the amount of data 

shared depends on the difference of arrival times of queries. 

The third category of data sharing techniques is table scan sharing 

techniques [3][6][32]. The main idea of scan sharing is that new 

scan request for the same table can “piggyback” on an existing 

scan process. In the example, when Q2 arrives, it can directly 

obtain tuples from the output of existing Q1’ scan process. 

However, because Q2 misses some tuples that have already been 

consumed before Q2’s arrival, a new partial scan will have to be 

restarted for Q2 to fetch the missed tuples. Scan sharing 

techniques have a loose restriction on arrival times of queries as 

long as a previous scan process is still ongoing. For example, Q2 

can share Q1’s scan output as long as Q1 is not finished. Like 

Request Window, the amount of data shared depends on the 

difference of arrival times of queries. Although it works well in 

RDBMS, using table scan sharing in DQP faces a big challenge. It 

may be hard to fetch missed tuples for later queries from the data 

source exactly because the data source may not promise an 

identical response for even two same data requests.  

The fourth category of data sharing techniques is the widely used 

cache mechanism in RDBMS [13][21][23][26]. This is a kind of 

low-level page-based data sharing techniques. Such data sharing 

has no restriction on the arrival times of queries. In the example, 

even Q1 has already finished, Q2 can still benefit from pages in 

main memory placed by the execution of Q1 so that unnecessary 

I/O operations can be removed. However, the amount of data 

shared is unsure and largely dependent on the concrete cache 

replacement policy and run-time situations. Because of the lack of 

memory-disk hierarchy, the cache mechanism is not suitable for 

providing data sharing when processing data integration queries. 

Finally, we summarize our classification in Table 1. 

3. IGNITE & START-FETCH WRAPPER 
In this section, we first present an overview of IGNITE, our 

extended PostgreSQL with DQP support. Next, we introduce the 

Start-Fetch wrapper architecture in IGNITE, which is the base of 

Request Window. 

 Table 1: Classification of Data Sharing Techniques 

Category Multi-Query Optimization Request Window 
Table 

Scan sharing 
Cache Mechanisms 

Application 

scope 

RDBMS or 

Data Integration 

RDBMS or 

Data Integration 
RDBMS RDBMS 

Restriction on 

interarrival 

times 

Most restrictive  

Arrivals must be 

simultaneous. 

Less restrictive 

No requirement for 

simultaneousness 

Ongoing scans must 

exist 
No restriction 

Amount of 

shared data 

Maximized (including 

working sharing) 

dependent on 

interarrival times 

dependent on 

interarrival times 

Unsure and dependent on 

concrete policy  
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3.1 Overview of IGNITE 
The IGNITE system is a relational data integration system that 

provides a collection of virtual views for integrating relational 

data objects from various distributed, heterogeneous, and 

autonomous data sources. The implementation of IGNITE is on 

top of PostgreSQL, which is similar to the distributed extensions 

to IBM DB2 [15] and Microsoft SQL Server [1]. Because 

PostgreSQL is a traditional RDBMS that has no built-in 

distributed query processor, to extend it to a data integration 

system, we have to solve several problems about the system 

architecture, user interface and query execution performance. We 

present an overview of IGNITE as follows. 

The cornerstone of IGNITE is the function mechanism provided 

by PostgreSQL [28]. We build a wrapper framework to enable 

various data sources to plug into IGNITE. A wrapper in IGNITE 

consists of the implementations of several pre-defined function 

interfaces, which are responsible for providing metadata of the 

data source, executing a data request in the data source, obtaining 

statistics information from the data source, etc. Via a wrapper, a 

real relation in the data source can be registered into IGNITE to 

be a virtualized view that can then be queried with no difference 

from common tables. 

Although the function mechanism and the wrapper framework 

enable data integration functionalities, the performance of 

distributed query processing could not be improved if we do not 

modify the underlying query execution engine of PostgreSQL. 

Our modifications involve several aspects, including (a) the re-

implementation of a pipelined FunctionScan operator, (b) the 

implementation of query shipping [7] (we currently implement 

functionalities for pushing down three operations: projection, 

selection, and sorting), and (c) the implementation of an improved 

optimizer which can utilize various statistics information of data 

sources with the help of wrappers. 

Several limitations in the architecture and the implementation of 

PostgreSQL, including the process-per-connection model and 

single-threaded query engine implementation that is not thread-

safe [2], make it difficult to provide data sharing and improve 

throughput when processing concurrent distributed queries in 

IGNITE. Solving this problem is the major motivation of this 

paper. In the IGNITE system, we overcome these limitations by 

utilizing the Start-Fetch wrapper architecture and implementing 

the Request Window mechanism. We only make necessary 

modifications to the core of the PostgreSQL and implement 

additional features in the wrappers. 

For the experiments of this paper, we develop an IGNITE wrapper 

for the data source which is a PostgreSQL database using the 

libpq library. This wrapper is an independent multi-threaded 

application implemented using the pthread library on a POSIX 

platform, which conforms to the design of the Start-Fetch wrapper 

and the Request Window mechanism. We utilize the shared-

memory and UNIX domain socket as the IPC mechanisms 

between this wrapper and the query engine process. The details of 

the architecture and performance evaluation of IGNITE can be 

found in [17]. 

3.2 Start-Fetch Wrapper 
From the point of view of the underlying PostgreSQL, each 

wrapper in IGNITE is only a collection of specific functions. 

IGNITE uses a special R_Scan operator as the bridge between the 

query engine and the wrappers. The R_Scan operator follows the 

iterator model [8] and implements the Open, Next and Close 

iterator functions. Because the backend of PostgreSQL is single-

threaded, the wrapper code will be executed within the same 

process of the query engine for a query. Therefore, no prefetching 

can be available in wrappers, and executions of multiple wrappers 

will have to be synchronized. 

To decouple wrappers from the query engine, we present the 

Start-Fetch architecture for wrappers. The Start-Fetch wrapper 

employs a “multi-process” model: to implement the wrapper 

functionalities in a separate process and to employ some kind of 

inter-process communication mechanisms to connect the query 

engine process and the wrapper process at execution time. The 

multi-process model enables parallelized execution between a 

query engine process and a wrapper process, and there exists a 

consumer-producer relationship between them. When the Open 

function of the R_Scan operator is invoked, the query engine 

process sends a data request to the wrapper process, and the 

wrapper process must return a “ticket” to the query engine process 

as the response immediately. Then the wrapper process needs to 

send the data request to the underlying data source and receive 

results, which occurs independently in its own process. This is the 

“Start” step of Start-Fetch. When the Next function of the R_Scan 

operator is invoked, the query engine process asks for next tuple 

from the wrapper process using the ticket obtained at the “Start” 

step. This is the “Fetch” step of Start-Fetch. 

One benefit of Start-Fetch is that the wrapper process can prefetch 

more tuples from the data source while the query engine process 

is consuming some tuples. The parallelized execution can 

accelerate query processing. However, the overhead of 

communications between the wrapper process and the query 

engine must be reduced to as low as possible.  

Besides the ability of parallelized execution, another big 

advantage of Start-Fetch is that the multi-process model makes 

data sharing across queries to be possible. To enable data sharing 

across multiple independent query engine processes, all data 

requests must be submitted to a common place. In traditional 

RDBMS, the buffer pool manager can provide functionalities of 

such a common place. In a data integration system, the decoupled 

wrapper process is actually such a common place that is 

responsible for receiving data requests from multiple independent 

query engine processes and dispatching results received from the 

data source. 

Note that, the goal of data sharing across queries could not be 

achieved only by employing the Start-Fetch architecture. A Start-

Fetch wrapper only provides the foundation for implementing the 

Request Window mechanism that is the key enabling technique. 

4. REQUEST WINDOW 

4.1 Overview 
In the Start-Fetch wrapper architecture, multiple query engine 

processes will independently issue data requests for the same data 

source to a common wrapper process. The default action of the 

wrapper process is to deal with each data request independently, 

i.e. sending it to the data source, receiving result tuples from the 

data source, and finally returning all result tuples to the 

corresponding query engine process. This execution model does 

not exploit any data sharing opportunity across multiple data 

requests. 

To provide data sharing across multiple query engine processes, 

we present a new batch processing technique working in a Start-

Fetch wrapper: the Request Window mechanism. The main idea 
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behind the mechanism is to process multiple relative data requests 

as a batch in the wrapper instead of processing each of them 

independently. To implement the batch processing, the wrapper 

combines a group of similar data requests to a common data 

request and only sends the common data request to the data 

source. Then, the wrapper will dispatch corresponding result 

tuples for the common data request returned by the data source to 

each participating query engine process. By doing this, multiple 

query engine processes can share common result data so that the 

burdens of the data source for processing data requests can be 

reduced and the amount of result data transferred over network 

can be reduced. 

When a query engine process submits a data request to the 

wrapper process, instead of instantly sending the request to the 

data source, the wrapper will add the new request to a 

corresponding waiting queue that stores each request and the 

corresponding query engine process. If no corresponding waiting 

queue exists, then the wrapper will first create an empty queue. 

We call such a waiting queue a “request window.” At a time, the 

wrapper will process the waiting queue. We call this action 

“window issue” and call the processing time the “window issue 

time.” The window issue action involves several steps: (a) 

combining all data requests in the waiting queue to a single SQL 

statement, (b) sending the SQL statement to the underlying data 

source, (c) receiving results from the data source, and (d) 

dispatching result tuples to each query engine process. Of course, 

the last two steps can be executed in a pipelined way. After all 

query engine processes have received all results, the window will 

be destroyed. Figure 1 shows an illustration of the request window 

technique. 

Currently in our implementation, each data request is a SQL 

statement which has the form of “select (columns) from a_table 

where (predicate)”. The common data request generated by 

combining multiple such statements has a synthesized “where” 

clause. The result tuples for the common data request contains all 

tuples needed by each participating query engines. The result 

dispatcher will only dispatch corresponding tuples to each query 

engine process. It means that the query engine process will never 

receive unnecessary tuples that cannot pass the filter for the 

request. 

We take an example to illustrate the request window mechanism. 

At a time the wrapper receives the data request Q1 (“select * from 

a_remote_table where key > 10”) from a query engine process e1; 

and later, the wrapper receives Q2 (“select * from a_remote_table 

where key > 20”) from another query engine process e2. For the 

two data requests, the wrapper performs the following actions. 

� It creates an empty request window and adds Q1 in the 

window when it receives Q1. 

� It adds Q2 into the window when it receives Q2. 

� It combines Q1 and Q2 to a common SQL statement Q3 

(“select * from a_remote_table where key > 10”) when the 

issue time of the window arrives. Note that, Q3 is as same as 

Q1 because the query result of Q1 contains the result of Q2. 

� It sends Q3 to the corresponding data source and receiving 

result tuples. 

� It dispatches corresponding result tuples to e1 and e2. 

A natural question that will be asked is when the wrapper should 

issue a request window. We define the “window size” concept for 

a request window as the interval between the time for creating the 

window and the time for issuing the window. The key point of the 

request window mechanism is to determine the window size. 

Intuitively, the larger the window size is, the more requests the 

window may contain, and the more data can be shared. However, 

for a large window size, early requests have to wait for a long 

time so that their response times will be increased. To solve this 

problem, we present a solution that consists of two techniques. 

The first one is the DIOP technique, which is utilized to determine 

the maximized delay time of each data request. The second one is 

the DAW technique, which is utilized to adjust the window size 

dynamically according to the maximized delay time of each new 

data request. 

4.2 DIOP: Delay Indicated By OPtimizer 
The key to determine the size of a request window is to determine 

how long each data request can be delayed by the wrapper process 

without increasing the total response time of the query execution. 

According to the Start-Fetch model, the wrapper will receive a 

data request when the Open function of the corresponding R_Scan 

operator is invoked (the Start step) and will provide tuples when 

the Next function is first invoked (the Fetch step). The interval 

between the Start step and the Fetch step provides the opportunity 

for the wrapper to delay the data request. Intuitively, the wrapper 

must at least have one result tuple available when the Fetch step 

begins, otherwise the query engine will have to be blocked by 

waiting for results. Therefore, to determine the maximized delay 

time of a data request, two factors must be determined: (a) the 

interval between the Start step and the Fetch step, and (b) the time 

for the wrapper to obtain the first tuple from the data source. 

We present the DIOP (Delay Indicated by OPtimizer) technique. 

By using DIOP, the delay time of a data request is not determined 

by the wrapper process blindly but by the query optimizer. For 

each data request, the query optimizer will make an estimation of 

its tolerable delay time. When the query engine process submits 

the data request to the wrapper, the engine will additionally tell 

the wrapper the estimated delay time for the data request. 

Therefore, each data request received by the wrapper has an 

annotation of its maximized delay time. In addition, the wrapper 

will dynamically adjust the window size according to the 

Data Source 

 

R1 R2 R3 

Common Result 

Dispatcher 

A wrapper  

Query 1 Query 2 Query 3 

Figure 1:  An architecture overview of the Request Window. 

In a Start-Fetch wrapper, multiple similar data requests will 

be combined to a common data request so that the underlying 

data source only needs to process the common request. The 

common results will be dispatched to each participating 

query engine process. 
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annotation value of each new data request, which is the job of the 

DAW technique discussed in section 4.3. Next, we explain why 

the delay time of a data request can exist and introduce how the 

query optimizer makes the estimation for the delay time. 

4.2.1 Opportunities for Delaying a Data Request 
The foundation on which a data request can be delayed is that 

there is an available interval from the time when the data request 

is created to the time when the results of the request begin to be 

consumed. According to the iterator model for executing a query 

plan tree, such intervals exist and can be estimated by the query 

optimizer when it creates the query plan tree. 

When the query engine begins to execute the query, it will first 

invoke the Open function of each node in the query plan tree 

recursively. When the Open function of a leaf node is invoked, a 

corresponding data request is created. However, the Next function 

of a node will not be invoked until its parent node begins to 

consume the output tuples of the node. This is the nature of on-

demand data consuming of the iterator model. According to the 

implementation algorithm of the parent node, it is possible that 

data consuming of one child node will not happen until some 

event occurs, such as the one that another child node has outputted 

all tuples. Such event dependency in the query plan tree may 

constitute a critical path diagram. In the diagram, a data request 

can be delayed as late as possible until its dependent events occur. 

We consider an example of the hash join operator that consists of 

two phases: (1) building the hash table using all tuples from the 

left child node and (2) probing the hash table using each tuple 

from the right child node. For the right child node, its Next 

function will not be invoked until the building phase is completed. 

Therefore, the underlying wrapper for the right child node can 

delay the data request received when the Open function is invoked 

for a while.  

4.2.2 Estimating the Maximized Delay Time 
Now, we formalize the problem as:  

For a given data request R generated by a leaf node N in the 

query plan tree, how to determine the “Maximized Delay Time” 

of the data request: N
RMDT , i.e. the interval between the time 

when the corresponding wrapper receives the data request to the 

time when the wrapper sends the data request to the data source? 

We define several concepts as follows to solve this problem. 

Definition 1: “Begin Time” of a query plan tree: QBT  

The “Begin Time” of a query plan tree is the time when the query 

plan tree is executed. Considering that execution of the Open 

function of each node in the tree is very fast2, we can think that 

the time when the Open function of each node is invoked is equal 

to the Begin Time of the query plan tree. This time is also the time 

when each wrapper process receives corresponding data request3, 

i.e. the time of the Start step of each wrapper. 

                                                                    
2 In PostgreSQL, the Open function of each node in the query plan 

does not execute too much code. Even for the Sort operator, the 

real sorting code will be executed when the Next function is 

first invoked. 

3 Actually, we can guarantee this by first sending all involved data 

requests to corresponding wrappers when the query plan is 

executed without keeping waiting until each Open function is 

invoked. 

Definition 2: “First Fetch Time” of a node N: NFFT  

The “First Fetch Time” of a node N in a query plan tree is the 

time when the Next function of node N is first invoked. For a leaf 

node, this time is the begin time of the Fetch step for the 

corresponding wrapper. In addition, we assume that the First 

Fetch Time of the root node is equal to the Begin Time of the 

query plan tree. 

Definition 3: “Wait Opportunity” of a node N: NWO  

The Wait Opportunity of a node N in a query plan tree is the 

interval from the Begin Time of the tree to the First Fetch Time of 

node N. It can be expressed using the following formula: 

QNN BTFFTWO −=  

Definition 4: “Initial Delay” of a data request R: RID  

The “Initial Delay” of a data request R is the interval from the 

time when the wrapper sends the data request R to the data source 

to the time when the wrapper receives the first tuple returned by 

the data source. 

According to the above definitions, the Maximized Delay Time of 

a data request R genereated by a node N can be calculated 

according to the following formula: 

RN
N

R IDWOMDT −=  

If the result is a negative, then we set it to zero. Now, the question 

becomes the one of how to estimate the Wait Opportunity of a leaf 

node. We make the following definition. 

Definition 5: “Algorithm Related Delay” of a node N: NARD  

For the root node, the “Algorithm Related Delay” is zero. For a 

non-root node N, the “Algorithm Related Delay” is the interval 

from the First Fetch Time of the parent node P of node N to the 

First Fetch Time of node N. It can be expressed using the 

following formula: 

PNN FFTFFTARD −=  

By the definition, the Algorithm Related Delay of a node is the 

elapsed period from the time when the Next function of its parent 

node is first invoked to the time when the Next function of its own 

is first invoked. How long this interval will be is determined by 

the implementation algorithm of its parent node, so different 

operators have different Algorithm Related Delays. For a hash-

join operator, the Algorithm Related Delay of the left child node 

(building hash table) is zero because the parent join node will 

instantly fetch tuples from the child once the join begins, while 

the Algorithm Related Delay of the right child node (probing hash 

table) is the elapsed time for finishing the hash table building. 

Now, we can get the following formulas to recursively calculate 

the Wait Opportunity of each node. 

      0 rootisNnodeifWON =  

rootnotisNnodeifARDWOWO NPN       +=  

4.2.3 Examples to Illustrate DIOP 
Next, we provide two examples to illustrate the estimation of Wait 

Opportunity for each node.  

The first example is about a query plan tree shown in Figure 2. It 

is a right-deep join tree for a star-join among three relations: 
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ORDERS ⋈ LINEITEM ⋈ PARTSUPP . 

According to the above formulas, we can know that: 

(1) The Wait Opportunity of the leaf node “R_Scan 1” is equal to 

0. 

(2) The Wait Opportunity of the leaf node “R_Scan 2” is equal to 

the time for finishing the node “Hash 1”. 

(3) The Wait Opportunity of the leaf node “R_Scan 3” is equal to 

the sum of the time for finishing the node “Hash 1” and the 

time for finishing the node “Hash 2”. 

The second example is about a query plan tree shown in Figure 3. 

The tree is for a union operation of three relations: 

321 ORDERSORDERSORDERS UU . 

In the tree, the root node is an Append operator (PostgreSQL’s 

implementation for union operation) which is executed with three 

distinct stages in turn for feching tuples of the three child nodes 

respectively.  

According to the above formulas, we can know that: 

(1) The Wait Opportunity of the leaf node “R_Scan 1” is equal to 

0. 

(2) The Wait Opportunity of the leaf node “R_Scan 2” is equal to 

the time for finishing the node “R_Scan 1”. 

(3) The Wait Opportunity of the leaf node “R_Scan 3” is equal to 

the sum of the time for finishing the node “R_Scan 1” and 

the time for finishing the node “R_Scan 2”. 

4.2.4 Approximate Estimation for Hash-Join Tree 
According to the above formulas, estimation of the Wait 

Opportunity of each node is actually a recursive calculation 

process. However, for a query plan tree, for example the hash-join 

tree, we can utilize a more straightforward method to make 

approximate estimations. Actually we don’t need accurate 

estimations since the purpose of DIOP is just to indicate a 

tolerable delay opportunity for a data request. 

Because in typical data integration scenarios, the time for data 

transfer over the network dominates the whole query execution, 

we can ignore the time for local computations. This is the key of 

making approximate estimations. 

In this subsection, we introduce an approximate estimation 

method for a hash-join tree. In a hash-join tree, only three kinds of 

nodes exist: the hash-join operator, the hash operator and the 

R_Scan operator at the leaf level. All wait opportunies in such a 

tree come from the fact that the hash operator is a blocking 

operator. It means that the hash operator cannot output any tuple 

before all tuples of its child are consumed for building the hash 

table. In this way, we can approximately estimate the time for 

finishing a hash node as the time for finishing its child node. And 

further, we can estimate this time using the total time for finishing 

all result data transfers of data requests generated by all the leaf 

nodes in the sub-tree under the hash node. 

We first make the following definition and then present formulas 

for approximate estimations. 

Definition 6: “Total Transfer Time” of a data request R: RTTT  

The “Total Response Time” of a data request R is the interval 

from the time when the underlying wrapper receives R’s first 

result tuple returned by the data source to the time when the 

underlying wrapper receives the last tuple returned by the data 

source. According to related definitions, we know that the time for 

finishing a data request is actually the sum of its Initial Delay and 

Total Transfer Time. To estimate the total transfer time, two 

factors are related. The first one is the data transfer speed which is 

affected by the communication speed and the tuple output speed 

of the data source. The second one is the number of result tuples 

which is affected by the cardinality of the remote relation and the 

selectivity of corresponding “where clause” in the data request 

statement. To obtain these values, the query optimizer needs the 

help of wrappers which provide values of predefined parameters 

and statistics information of underlying data sources. 

To approximately estimate the Wait Opportunity of a leaf node in 

a hash-join tree, we traverse the query plan tree using an inorder 

traversal. After this, for each leaf node N, we obtain a set of data 

requests NRS , which comprises all data requests generated by the 

leaf nodes that are before the node N in the traversal. We use the 

following formulas to approximately estimate the Wait 

Opportunity of a leaf node N: 

=NRS {requests generated before N by inorder traversal} 

( )∑
∈

+=

NRSr

rrN TTTIDWO  

Then, the corresponding Maximized Delay Time can be 

calculated using the formula: 

( ) R

RSr

rr
N

R IDTTTIDMDT

N

−















+= ∑

∈

 

Append 

R_Scan 1: 

ORDERS1 

R_Scan 2: 

ORDERS2 

R_Scan 3: 

ORDERS3 

Hash Join 1 

Hash Join 2 Hash 1 

Hash 2 R_Scan 1: 

ORDERS 

R_Scan 2: 

PARTSUPP 

R_Scan 3: 

LINEITEM 

Figure 2: a right-deep hash-join tree for join of three relations 

Figure 3: a query plan tree for unions of three relations 
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Further approximation is possbile if  we can ignore the factor of 

Initial Delay when it is small compared with the Total Transfer 

Time. This requires that the data request must satisfy the 

following conditions: 

(1) The target data source supports pipelined data fetch, for 

example, if the source is a RDBMS supporting resultset fetch 

via a cursor. 

(2) The target data source can rapidaly return initial results. This 

depends on whether the target relation is a physical table. 

(3) The tuple count of the resultset is large so that the Total 

Transfer Time is very long which is limited by the network 

speed. 

By ignoring the initial delays, we get a formula for more 

approximate estimations: 

∑
∈

=

NRSr

r
N

R TTTMDT  

According to this approximate estimation method, we get the 

same estimation result for the query plan trees shown in Figure 2 

and in Figure 4:  

1) the Maximized Delay Time of the data request for ORDERS 

is 0. 

2) the Maximized Delay Time of the data request for 

PARTSUPP will be the Total Transfer Time for ORDERS. 

3) the Maximized Delay Time of the data request for 

LINEITEM will be the sum of the Total Transfer Time for 

ORDERS and the one for PARTSUPP. 

4.2.5 Implementation Issues 
There are two special considerations in implementing DIOP. We 

use two configurable parameters to allow IGNITE system 

administrators to make specific settings. 

The first parameter is empolyed for those data requests which are 

estimated to have a very high selectivity, for example a data 

request which may only has one tuple in the result. Such a data 

request should not be processed by the request window 

mechanism for two reasons: (a) its total response time is very 

small so that any optimizing effort is unnecessary, and (b) it is 

unfair if the request is unfortunately placed in a window with 

another request which has a very small selectivity so that the 

corresponding query engine will have to select only a very small 

fraction of all tuples from the common result. Only data requests 

whose selectivity is smaller than the value of this parameter can 

be processed by the request window. 

The second parameter is employed for data requests whose 

Maximized Delay Time is 0. The optimizer has a choice to reset 

the Maximized Delay Time of such a data reqeust to the value of 

the parameter. By doing this, even if a data request should not be 

delayed, the wrapper will still delay it to wait for other similar 

data requests. For a data request which will have a very long total 

transfer time (for example more than 100 seconds), it is tolerable 

if the request is delayed for only several seconds to wait for other 

similar requests. More importantly, many queries containing 

aggregations, for example the typical TPC-H queries in DSS 

workloads, are not concerned about the initial delay of query 

results. For systems busied by running concurrent such workloads, 

it is tolerable to set the value of this parameter to be higher in 

order to improve the overall throughput. 

4.3 DAW: Dynamically Adjusting Window 
Remember that, our goal is to determine when to issue the 

window, i.e. to determine the window size. The DIOP technique 

provides hints to make the decision by annotating each data 

request with its maximized delay time. But, this is only the first 

step to achieve the goal. Because a request window, i.e. the 

waiting queue, contains multiple data requests which may have 

different delay times, a coordinator should be used to calculate the 

window size on the basis of delay times of all participating data 

requests.  

We present the DAW (Dynamically Adjusting Window) 

technique to solve the problem of determining window size. The 

basic idea of DAW is to dynamically adjust the window size using 

some policy when a new data request with its annotation of 

maximized delay time is added into the window. The DAW 

technique consists of two components. The first one is the 

adjusting policy which specifies how to get a new window size 

after a new request is added into the window, and the second one 

is the adjusting executor which is triggered by the arrival of new 

data request. The adjusting executor will enforce the adjusting 

policy. 

We first describe how the adjusting executor works. The window 

size is stored as an integer value which means the left time in 

seconds to issue the window. When the window receives a new 

data request, the wrapper will adjust this value by enforcing the 

policy which is implemented as a function hook. In addition, an 

independent daemon thread in the adjusting executor will wake up 

at the interval of one second. When the thread wakes up, it will 

check the current window size value. If it is zero, then the thread 

will start a new working thread to issue the window. Otherwise, it 

will shorten the current window size by one second. 

The core of DAW is the adjusting policy. Whatever policy is 

employed, its goal is to determine a new window size according 

two basic inputs: the current window size and the Maximized 

Delay Time of the newcome data request. Intutively, we should 

use a policy which always keeps the smallest delay time to be the 

window size. In this way, the new window size should be the 

smaller one between the two input values. This policy can 

guarantee that no data request will be delayed beyond its tolerable 

maximized time. This is an emergency-oriented policy. However, 

Figure 4: a hash-join tree for a star-join of three relations 

(compared with Figure 2) 

Hash Join 1 

Hash Join 2 

Hash 1 

Hash 2 

R_Scan 1: 

ORDERS 

R_Scan 2: 

PARTSUPP 

R_Scan 3: 

LINEITEM 
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we can define a policy which can provide more data sharing by 

calculating a larger window size. 

Now, we describe our adjusting policy.  Related symbols are: 

WS: current window size (in second) 

RC: current number of data requests waiting in the window 

MDT: Maximized Delay Time of the newcome data request 

The policy distinguishs between two conditions.  

1) If the Maximized Delay Time of the newcome data request 

is larger than or equal to current window size, then it doesn’t 

change the current window size. 

WSWS =       if WSMDT ≥  

2) Otherwise, it use the following formula to calculate the new 

window size: 

1+

+×
=

RC

MDTRCWS
WS      if WSMDT <  

The principle of the policy consists of two points: (a) the window 

size will never be increased, and (b) the window size is the 

average of all the delay times of data requests in the window. This 

policy can provide more data sharing opportunities than the 

emergency-oriented policy by enlarging the window size using the 

average of all delay times as the window size instead of the 

smallest one. Moreover, according to this policy, the arrival of a 

later data request with long delay time will not cause that existing 

data requests in the window are delayed further. 

Our proposed policy here is suitable for running DSS workloads, 

such as the TPC-H queries, which are not concerned about the 

initial delays of query results.  

5. PERFORMANCE EVALUATION 

5.1 Experimental Setup 
In this section, we present the experimentation with IGNITE. 

Considering no common data integration query benchmark [12], 

we use a TPC-H [29] (scale factor 0.1, 100MB) database as the 

dataset of our experiments. The goal of our experiments is to 

examine how the request window can improve the performance 

and throughput when executing distributed TPC-H queries in 

IGNITE by providing data sharing across queries. 

A TPC-H database has eight relations (REGION, NATION, 

CUSTOMER, SUPPLIER, PART, PARTSUPP, ORDERS, and 

LINEITEM). Therefore, we use eight data sources, and each of 

them is responsible for providing one relation respectively. Each 

data source is actually a PostgreSQL 8.1 RDBMS running on a 

2.8GHz Intel P4 machine with 768MB of RAM, running the 

FreeBSD 5.4 stable operating system. Our IGNITE system is 

running on a SMP machine with four Intel P4 Xeon 2.4GHz 

CPUs, 2GB of RAM, running Linux 2.4.18 SMP. All the 

machines are connected on a 100Mbit/sec Ethernet. 

In our experiments, each relation from a data source is registered 

into the IGNITE system to be a view via several extended SQL 

statements. For example, the real table LINEITEM in a data 

source is actually mapped to the view V_LINEITEM in IGNITE. 

Each query issued to IGNITE in our experiments is actually 

executed over these virtual views. For our experiments, we force 

the query optimizer to choose hash-join for join parts in the query 

plans. 

To avoid introducing additional client-server communication 

overhead, we discard all result tuples of executing queries. In 

addition, all experiments are run a minimum of four times. In all 

of the graphs, the “Baseline” represents the IGNITE system 

without enabling the Start-Fetch wrapper and the Request 

Window mechanism.  

5.2 Sharing Transferred Data 
In this experiment, we examine how the request window 

mechanism can provide data sharing when processing two 

identical queries (say Q1 and Q2 respectively) concurrently in 

IGNITE. We vary the arrival time of the second query later than 

the first one from 0 second to 8 seconds and check how much data 

can be shared between these two queries. The query is: 

select * from V_ORDERS, V_PARTSUPP, V_LINEITEM where 

O_ORDERKEY = L_ORDERKEY and PS_SUPPKEY = 

L_SUPPKEY and PS_PARTKEY = L_PARTKEY. 

This query contains a star-join among three relations LINEITEM, 

ORDERS, and PARTSUPP. The query plan tree is actually shown 

in Figure 2.  

The test results are shown in Figure 5. The vertical axis is the total 

data shared between Q2 and Q1, and the horizontal axis is the 

interarrival time. We can see that when the time difference 

between query arrivals increases, the amount of shared data 

decreases from the maximized about 100MB to zero. 

We explain the results in detail. First, the maximized sharing 

opportunity between Q1 and Q2 is an interval of 6 seconds (0-6), 

which is actually the Wait Opportunity of the node R_Scan 3 for 

LINEITEM. Second, if these two queries arrive simultaneously, 

then they can share all data of tuples of ORDERS, PARTSUPP, 

and LINEITEM. Third, there is an opportunity of 4 seconds (0-4) 

for Q2 to share tuples of PARTSUPP and LINEITEM, which is 

time for finishing R_Scan 1 for ORDERS. Fourth, there is a last 

opportunity of 2 seconds (4-6) for Q2 to share tuples of 

LINEITEM, which is time for finishing R_Scan 2 for 

PARTSUPP. 

5.3  Running Concurrent Same Queries 
In this group of experiments, we examine how well the request 

window in IGNITE performs when running multiple concurrent 

same queries. We vary the number of concurrent clients from 1 to 

12. We set the query interarrival times to zero, i.e. all concurrent 

queries will arrive simultaneously. The goal of these experiments 

is to evaluate how the total response times can be reduced by 

combining multiple data requests to only one in the wrapper. 

Figure 5: The amount of data shared between two queries 

when increasing the interarrival times up to 8 seconds. 
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We choose six queries in this group of experiments. The first one 

(we call it “Simple Query”) is a simple SQL statement: “select * 

from v_lineitem”. The execution of this query has very few local 

computations and is dominated by transferring all tuples of the 

LINEITEM relation from the data source to the query engine. The 

other five queries are the standard TPC-H queries 1#, 5#, 7#, 8#, 

and 9#.  

In Figure 6, six graphs show the test results for each query 

respectively. We present several explanations for the results of 

this group of experiments. 

First, for all queries except the TPC-H query 1#, the request 

window can significantly reduce the total response times by 

removing unnecessary data transfers when executing concurrent 

queries. 

Second, when running concurrent workloads, since request 

window can reduce the data transfer times to the minimum, query 

executions are no longer limited by the network speed but the 

CPU performance. From the graphs, we can see that when the 

number of concurrent clients is less than four, the total response 

times are almost unchanged with enabling request window.  

Third, how much request window can reduce total response times 

depends on the amount of local computations involved in query 

executions. For the TPC-H query 1#, because local computations 

(the HashAggregate operation) dominate query executions when 

running multiple concurrent workloads, request window cannot 

provide a significant speedup over the baseline as it does for other 

queries. The maximum speedup is for the “Simple Query” which 

has the fewest computations among all six queries. 

5.4 Running Full Workloads 
In the next experiment, we compare the overall performance of 

IGNITE with enabling Start-Fetch and Request Window against 

the baseline system using a set of clients executing a mix of 

queries from the TPC-H benchmark. And in this experiment, we 

also test a major commercial data integration system (we call it 

DBMS X for licensing restrictions) as a comparison. We choose 

eight standard TPC-H queries: #1, #3, #4, #5, #7, #8, #9, and #10. 

The query execution sequence of each client is listed in Table 2, 

which is generated according to the TPC-H throughput test 

specification by removing unused queries. We vary the number of 

concurrent clients from one to twelve and measure the throughput. 

Unlike the last group of experiments in which concurrent queries 

are arranged to arrive simultaneously, this experiment cannot pre-

determine the arrival time of each query from different execution 

streams. Therefore, data sharing opportunities are determined 

dynamically by the DIOP technique and the DAW technique as 

discussed in this paper. The experimental results in Figure 7 show 

that the request window can significantly improve the throughput 

of IGNITE by providing data sharing across concurrent queries. 

Simple Query 
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Figure 6: Total response times for executing concurrent same queries that simultaneously arrive. Without enabling Request 

Window, data transfers dominate the query executions. By minimizing data transfers, total times are reduced significantly. 

Figure 7：：：：TPC-H throughput for three systems with varying 

the number of clients from 1 to 12. 
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When the number of concurrent clients is 12, IGNITE with 

Request Window can perform an outstanding throughput speedup 

over two opponent systems.  

From the graph, we can also see that our IGNITE system has a 

higher throughput than the DBMS X even without enabling 

Request Window. This may be explained by the difference in 

implementing the wrapper: the IGNITE utilizes a wrapper for the 

PostgreSQL database built on the libpq library, while the DBMS 

X utilizes a wrapper built on the ODBC interface. 

6. FURTHER DISCUSSIONS 

6.1 Application Range 
Request Window is suitable for running concurrent DSS queries, 

which often contain aggregations on the results of a join operation 

between multiple relations. For such queries, current IGNITE 

optimizer prefers hash-join-based query plans. Although pushing 

sorting down to sources to accelerate sort-merge join is an 

attractive strategy in data integration applications, it is only useful 

for multi-join based on a common attribute. Moreover, many data 

sources do not support sorting operation, which only accept 

queries with the input of a target relation and a selection predicate, 

although the query form does not always follow the SQL syntax. 

For this situation, it is impossible to push sorting down. If the 

IGNITE optimizer chooses a sort-merge join for a query involving 

such sources, the sorting operations will be executed by the 

engine of IGNITE. Because sorting is also a blocking operator as 

the hash operator, there will be wait opportunities in the query 

plan which can be utilized by Request Window. 

If a query contains multi-join based on a common attribute and 

involved sources accept sorting, then Request Window is not 

useful. To execute a single such query, the engine should push all 

sorting operations down and merge ordered tuples from each 

source. In this case, pure Start-Fetch execution without Request 

Window works well because each data request has not any 

available wait opportunity. However, to run multiple concurrent 

such queries, whether and how Request Window can be used to 

reduce data transfers and source burdens is unsure. We are 

planning to improve the current query optimizer to challenge such 

situation. 

In addition, for queries that contain union of multiple relations 

from different data sources, Request Window is suitable. 

6.2 Estimating Delay Times 
Request Window is actually a framework that allows alternative 

implementations for each component. For the DIOP technique, a 

concrete implementation can make the most conservative 

estimations as we do using our approximate approach, or can 

utilize a more accurate but more complex model to make exact 

estimations. 

To estimate delay times of data requests in DIOP, the big 

challenge is the cardinality estimation of the result of each 

request. To do this, current IGNITE system maintains various 

statistics information for each registered remote relation with the 

help of data source wrappers. 

However, as discussed in [11][12], statistics information of some 

sources may be not available in data integration so that making 

exact estimations for query cardinality is very difficult. Currently, 

IGNITE cannot deal with this situation and it can only trust the 

values returned by wrappers. Fortunately, the Black-Box approach 

to query cardinality estimation introduced in [19][20] shows the 

feasibility of accurately estimating query cardinality using 

machine-learning techniques without knowing data distribution. 

We are learning the Black-Box approach and planning to design 

and implement a new component to estimate delay times in DIOP. 

6.3 Compatibility 
Request Window can work together with the semantic caching 

technique if the latter is feasible in a specific application. Even if 

the query engine side has caches of some semantic regions, the 

remainder queries, which cannot be answered only by cached 

regions, need to be sent to data sources. Request Window still can 

deal with those remainder queries. Moreover, because the data 

request can be partially answered by cached regions, the 

remainder query part will have an enlarged “wait opportunity” 

considering the corresponding result will not be consumed before 

the query engine has consumed cached result tuples. 

7. CONCLUSION & FUTURE WORK 
It is feasible to extend traditional RDBMS to support distributed 

query processing. Yet the big challenge is how to provide data 

sharing across concurrent distributed query instances without the 

memory/disk hierarchy, the foundation of RDBMS’s buffer pool 

management mechanism. We present Request Window as the 

solution. Its core idea is to combine multiple similar data requests 

to only one common data request and make concurrent query 

execution instances share the common result data. The benefit of 

exploiting such data sharing is the ability of significantly reducing 

the amount of result data that will have to be transferred over the 

network and the burdens of data sources for processing data 

requests. Request Window does not require that multiple queries 

must arrive simultaneously. It utilizes the DIOP technique to 

detect the delay opportunity for a data request, and utilizes the 

DAW technique to construct a group of data requests processed as 

a batch dynamically. We implemented these techniques in 

IGNITE, a PostgreSQL-based data integration system. The 

experimental results show that our solution for data sharing can 

significantly improve throughput when processing concurrent 

distributed TPC-H queries in IGNITE. 

Table 2: TPC-H query sequences of 12 concurrent clients for 

the throughput experiment. Eight queries are selected. We 

generate this table according to the TPC-H throughput test 

specification. (C for Client) CCCC Q1Q1Q1Q1 Q2Q2Q2Q2 Q3Q3Q3Q3 Q4Q4Q4Q4 Q5Q5Q5Q5 Q6Q6Q6Q6 Q7Q7Q7Q7 Q8Q8Q8Q81 3 5 7 10 8 9 1 42 10 9 8 5 7 1 4 33 8 5 4 7 1 9 10 34 5 4 9 8 10 1 7 35 4 7 3 1 5 8 10 96 10 3 8 9 7 4 1 57 8 4 1 9 3 5 7 108 1 5 8 9 7 4 3 109 8 3 10 4 1 7 9 510 1 7 10 9 3 4 8 511 10 1 8 4 5 3 9 712 1 7 8 9 4 5 10 3
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In future, we shall extend Request Window in three aspects. 

Supporting Subquery: How to detect and exploit waiting 

opportunities when executing various forms of subqueries is a 

challenge, for which we need to develop flexible model for 

estimating delays in DIOP. 

Using Black-Box Approach: To estimate query cardinality and 

total transfer times of data requests, the Black-Box approach 

based on machine-learning methods [20] seems to be a better way, 

which can avoid maintenance work of statistics information of 

sources, and is suitable for general data integration scope beyond 

federated DBMS. 

Adding Window Notification: Currently the wrapper can only 

trust the one-off delay annotation given by DIOP. We are 

studying how to monitor query execution progress and re-

calculate delay times, and then use window notification to hasten 

window issuing. 

8. ACKNOWLEDGEMENTS 
We sincerely thank Professor Xiaodong Zhang for helping us 

better understand capabilities and limitations of the cache 

mechanism in various contexts. We thank Dr. Zhiwei Xu for his 

excellent suggestions about the idea and the experiment. And we 

also thank the VLDB reviewers for their helpful comments. This 

work is supported in part by the National Science Foundation of 

China (Grant No. 90412010) and the China National 973 Program 

(No. 2005CB321807). 

9. REFERENCES 
[1] J. A. Blakeley, C. Cunningham, N. Ellis, B. Rathakrishnan, 

and M. C. Wu. “Distributed/Heterogeneous Query 

Processing in Microsoft SQL Server.” In Proc. ICDE, 

2005. 

[2] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. 

Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. 

Madden, V. Raman, F. Reiss, and M. Shah. 

“TelegraphCQ: Continuous Dataflow Processing for an 

Uncertain World.” In Proc. CIDR, 2003. 

[3] C. Cook. “Database Architecture: The Storage Engine.” 

Microsoft SQL Server 2000 Technical Article, July 2001. 

Available at: http://msdn.microsoft.com/library. 

[4] N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. 

“Pipelining in Multi-Query Optimization.” In PODS, 2001. 

[5] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, and 

M. Tan. “Semantic Data Caching and Replacement.” In 

Proc. VLDB, 1996. 

[6] P. M. Fernandez. “Red Brick Warehouse: A Read-Mostly 

RDBMS for Open SMP Platforms.” In Proc. SIGMOD, 

1994. 

[7] M. J. Franklin, B. T. Jonsson, and D. Kossmann. 

“Performance tradeoffs for Client-Server Query 

Processing.” In Proc. SIGMOD, 1996. 

[8] G. Graefe. “Query Evaluation Techniques for Large 

Databases.” ACM Computing Surveys, 25(2), pp. 73–170, 

June 1993. 

[9] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. 

“QPipe: A Simultaneously Pipelined Relational Query 

Engine.” In Proc. SIGMOD, 2005. 

[10] L. M. Hass, D. Kossmann, E. L. Wimmers, and J. Yang. 

“Optimizing Queries Across Diverse Data Sources.” In 

Proc. VLDB, 1997. 

[11] Z. G. Ives, D. Florescu, M. T. Friedman, A. Y. Levy, and 

D. S. Weld. “An Adaptive Query Execution System for 

Data Integration.” In Proc. SIGMOD, 1999. 

[12] Z. G. Ives, A. Y. Halevy, and D. S. Weld. “Adapting to 

Source Properties in Processing Data Integration Queries” 

In Proc. SIGMOD, 2004. 

[13] T. Johnson and D. Shasha. “2Q: A Low Overhead High 

Performance Buffer Management Replacement 

Algorithm.” In Proc. VLDB, 1994. 

[14] B. Jonsson, M. Arinbjarnar, B. Jorsson, M. J. Franklin, and 

D. Srivastava. “Performance and Overhead of Semantic 

Cache Management.” In ACM TOIT, 6(3), pp. 302-331, 

August 2006. 

[15] V. Josifovski, P. Schwarz, L. M. Hass, and E. Lin. “Garlic: 

a New Flavor of Federated Query Processing for DB2”. In 

Proc. SIGMOD, 2002. 

[16] D. Kossmann. “The State of the Art in Distributed Query 

Processing.” ACM Computing Surveys, 32(4), pp. 422-

469, December 2000. 

[17] R. Lee and M. Zhou. “Extending PostgreSQL to Support 

Distributed/Heterogeneous Query Processing.” In 

Proc.DASFAA, 2007. 

[18] S. Lyer and P. Druschel. “Anticipatory Scheduling: A Disk 

Scheduling Framework to Overcome Deceptive Idleness in 

Synchronous I/O.” In Proc. SOSP, 2001. 

[19] T. Malik, R. Burns, N. Chawla, and A. Szalay. “Estimating 

Query Result Sizes for Proxy Caching in Scientific 

Database Federations.” In SuperComputing, 2006. 

[20] T. Malik, R. Burns, and N. Chawla. “A Black-Box 

Approach to Query Cardinality Estimation.” In Proc. 

CIDR, 2007. 

[21] N. Megiddo and D. S. Modha. “ARC: A Self-Tuning, Low 

Overhead Replacement Cache.” In Proc. FAST, 2003. 

[22] M. F. Mokbel, M. Lu, and W. G. Aref. “Hash-Merge Join: 

A Non-blocking Algorithm for Producing Fast and Early 

Join Results.” In Proc. ICDE, 2004. 

[23] E. J. O'Neil, P. E. O'Neil, and G. Weikum. “The LRU-K 

Page Replacement Algorithm for Database Disk 

Buffering.” In Proc. SIGMOD, 1993. 

[24] PostgreSQL homepage, 2007. http://www.postgresql.org. 

[25] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. “Efficient 

and Extensible Algorithms for Multi Query Optimization.” 

In Proc. SIGMOD, 2000. 

[26] G. M. Sacco and M. Schkolnick. “Buffer Management in 

Relational Database Systems.” In ACM TODS, 11(4), pp. 

473-498, December 1986. 

[27] T. K. Sellis. “Multiple Query Optimization.” In ACM 

TODS, 13(1), pp. 23-52, March 1988. 

[28] M. Stonebraker and G. Kemnitz. “The POSTGRES Next 

Generation Database Management System”. In 

Communications of ACM, 34(10), pp. 78-92, 1991. 

[29] TPC Homepage. TPC-H benchmark. www.tpc.org 

[30] T. Urhan and M. J. Franklin. “XJoin: A reactively-

scheduled pipelined join operator.” IEEE Data Engineering 

Bulletin, 23(2), June 2000. 

[31] S. Viglas, J. F. Naughton, and J. Burger. “Maximizing the 

Output Rate of Multi-Way Join Queries over Streaming 

Information Sources.” In Proc. VLDB, 2003. 

[32] T. Walter. “Explaining cache — NCR CTO Todd Walter 

answers your trickiest questions on Teradata’s caching 

functionality.” http://www.teradata.com/t/page/116344/. 

[33] Y. Zhao, P. M. Deshpande, J. F. Naughton, and A. Shukla. 

“Simultaneous Optimization and Evaluation of Multiple 

Dimensional Queries”. In Proc. SIGMOD, 1998. 

1230


