
Request Window: an Approach to Improve Throughput of
RDBMS-based Data Integration System by Utilizing Data

Sharing Across Concurrent Distributed Queries
Rubao Lee, Minghong Zhou, Huaming Liao

Research Centre for Grid and Service Computing Research,
Institute of Computing Technology, Chinese Academy of Sciences

P.O. Box 2704, Beijing, China

{lirubao,zmh,lhm}@software.ict.ac.cn

ABSTRACT
This paper focuses on the problem of improving distributed query

throughput of the RDBMS-based data integration system that has

to inherit the query execution model of the underlying RDBMS:

execute each query independently and utilize a global buffer pool

mechanism to provide disk page sharing across concurrent query

execution processes. However, this model is not suitable for

processing concurrent distributed queries because the foundation,

the memory-disk hierarchy, does not exist for data provided by

remote sources. Therefore, the query engine cannot exploit any

data sharing so that each process will have to interact with data

sources independently: issue data requests and fetch data over the

network.

This paper presents Request Window, a novel DQP mechanism

that can detect and employ data sharing opportunities across

concurrent distributed queries. By combining multiple similar data

requests issued to the same data source to a common data request,

Request Window allows concurrent query executing processes to

share the common result data. With the benefits of reduced source

burdens and data transfers, the throughput of query engine can be

significantly improved. This paper also introduces the IGNITE

system, an extended PostgreSQL with DQP support. Our

experimental results show that Request Window makes IGNITE

achieve a 1.7x speedup over a commercial data integration system

when running a workload of distributed TPC-H queries.

1. INTRODUCTION
With the rapidly increasing application requirements of

integrating remote data objects from various distributed,

heterogeneous, and autonomous data sources, traditional RDBMS

are extended to support distributed query processing [16], such as

the extension to DB2 [15] and to the SQL Server [1]. Such DQP

extensions deliver RDBMS-based data integration systems that

can reuse the existing RDBMS components, including access

interfaces, query optimizer and execution engine, with necessary

modifications and extensions.

Typically, the RDBMS-based data integration system employs a

wrapper architecture that allows various data sources to be

wrapped and to be plugged into the system. Moreover, the query

engine utilizes a new operator that is response for interacting with

wrappers to issue data requests and fetch results, such as the SHIP

operator in extended DB2. For a distributed query, the

corresponding query plan tree will be constructed with such

operators as leaf nodes, so that the query engine can execute a

distributed query as a common query. Meanwhile, the distributed

query optimizer is added on the basis of the existing optimizer to

improve the query execution performance.

In addition, facing the evolution from disk-oriented RDBMS to

network-oriented data integration system, academic researchers

have developed many new algorithms for relational operations,

especially for the join operation, such as XJoin [30], MJoin [31],

and Hash-Merge-Join [22]. These algorithms aim at improving

join performance including initial delay and total response time on

slow/bursty network transfers. To our knowledge, however, these

algorithms are not implemented practically in current RDBMS-

based data integration systems. Inside the systems, traditional

disk-oriented join algorithms are still being used even for

processing distributed queries.

For RDBMS-based data integration system, no prior work

considers the throughput problem: “how to execute concurrent

multiple distributed queries more efficiently to improve the

overall throughput?” To address this problem, it is not enough to

only consider new techniques in query optimizer [10] and new

operation algorithms, which aim at making a single query be

executed faster and more efficiently. The improvement of overall

throughput greatly relies on data sharing across concurrent

queries, which is more necessary in data integration system than

in traditional RDBMS, since real data are actually stored in

remote data sources and have to be transferred to the query

execution engine over the network.

Unfortunately, the query execution model of RDBMS-based data

integration system, which is inherited from the underlying

RDBMS and can be expressed as “executing each query

independently” as pointed out in the paper [9], makes it difficult

to provide data sharing across concurrent distributed queries.

Existing data sharing mechanisms in RDBMS are not suitable for

executions of distributed queries. The query execution model in

RDBMS is to execute concurrent queries independently and to

employ a global buffer pool manager to share disk pages across

queries. To improve the utilization of main memory and the

performance of query processing, researchers have developed

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Very Large

Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

VLDB ’07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1219

various cache replacement algorithms [13][21][23][26]. Despite

their concrete differences in the replacement policy, all these

algorithms follow the same idea: “to provide run-time data

sharing on the basis of the memory-disk hierarchy.”

Unfortunately, when processing distributed queries, the global

buffer pool mechanism in RDBMS cannot be directly used

because its foundation, the memory-disk hierarchy, is bankrupted.

In typical data integration scenarios, a data source may only

support a data access interface that takes an SQL statement as the

input and returns the result tuples. In this way, random access to

the data source like access to a disk is not supported.

Being different from page caching and tuple caching, the semantic

caching technique, which manages client caches as a collection of

semantic regions [5][14], is used in various distributed data

applications, such as web querying, application servers, etc.

However, to be a general method for providing data sharing

across queries in data integration systems, semantic caching is

facing the following difficulties:

(1) In some data integration scenarios, a data source may not

allow clients to cache its data for some reasons related to

copyright and policy. Under such limitations, the only way to

obtain data from the data source, whenever a client needs the

data, is to send data requests to the data source. Moreover,

the client must discard all data after consuming them. 1

(2) Another difficulty for caching data of sources lies in the fact

that data sources are likely autonomous and they can change

their data without any notice. More importantly, a data

source may provide no support for data synchronization

between its own data storage and copies on the client sides.

This is very common in service-oriented applications. In this

situation, the maintenance work for data cache consistence is

a very big challenge.

In this paper, we solve the DQP throughput problem using a novel

approach: Request Window, which can detect and exploit data

sharing opportunities across multiple concurrent distributed

queries. The main idea behind Request Window is to remove

unnecessary data requests by combining multiple similar data

requests sent to the data source to a single common request and

dispatching the common result data returned from the data source.

Although Request Window is a batch processing technique, which

processes a group of data requests as a batch, it does not require

that multiple queries must enter the system simultaneously. The

key is the DIOP (Delay Indicated by OPtimizer) technique we

present in this paper. By using the DIOP technique, each data

request generated when executing a query has a tolerable delay

time, which makes it possible to construct a group of such data

requests. Moreover, Request Window utilizes the DAW

(Dynamically Adjusting Window) technique to adjust the

window size dynamically, i.e. to determine when to process a

group of data requests as a batch. Request Window can improve

throughput of executing concurrent queries without sacrificing the

response time of individual query by utilizing the DIOP technique

and the DAW technique.

This paper also introduces the IGNITE system, an extended

PostgreSQL [24] with DQP support. Our experimental result

shows that Request Window makes IGNITE achieve a 1.7x

1 This is a real requirement we met when we applied our system to

a National Railway Information Grid project in China.

speedup over a commercial data integration system when running

a workload of distributed TPC-H queries.

In summary, this paper presents the first study of how to utilize

data sharing opportunities across concurrent queries to improve

the DQP throughput. We make the following contributions:

� We formalize the problem of data sharing across concurrent

queries in RDBMS-based data integration system.

� We present a classification of related data sharing

techniques employed in traditional RDBMS and in data

integration systems.

� We introduce a set of query execution techniques to provide

data sharing across queries including the Start-Fetch

wrapper architecture, the Request Window mechanism, the

DIOP technique, and the DAW technique.

� We describe an implementation of the IGNITE system, a

relational data integration system based on the PostgreSQL

RDBMS.

The remainder of this paper is organized as follows. Section 2

discusses various related work and presents a classification of data

sharing techniques. Section 3 introduces the IGNITE system and

the Start-Fetch wrapper architecture that provides the foundation

of Request Window. In Section 4, we describe Request Window

in detail and illustrate the DIOP technique and the DAW

technique. Section 5 carries out various experimental results. In

section 6, we give further discussions about Request Window. We

conclude this paper and introduce our future work in Section 7.

2. RELATED WORK & CLASSIFICATION
This section first briefly introduces related work in various

contexts and then presents a classification of four data sharing

techniques.

2.1 Related Work
As we discussed in the Introduction section, several commercial

database products are extended to provide functionalities of data

integration, for example IBM DB2 [15] and Microsoft SQL

Server [1]. To our knowledge, these systems currently provide no

data sharing across distributed queries.

More closely related to this paper is the research work on the data

and work sharing in traditional RDBMS. A recent paper is about

the QPipe query engine in [9], which introduces a new “one-

operator, many-queries” query execution model to replace the

traditional “one-query, many-operators” model. The QPipe engine

can provide not only sharing of table scans but also sharing of

common computations across concurrent queries. In addition,

several RDBMS products provide similar sharing of table scans,

for example SQL SERVER [3], RedBrick Data Warehouse [6],

and Teradata [32].

Multi-query optimization techniques in RDBMS [4][25][27][33]

are related to this paper considering the common goal of data

sharing across queries. The main idea of multi-query optimization

technique is to process a group of queries that contain common

subexpressions and to produce a globally optimal plan. To our

knowledge, no prior work considers multi-query optimization in

data integration context.

Ideas on obtaining maximized throughput by delaying processing

of data requests exist in OS research fields, which are similar to

Request Window. In [18], an anticipatory scheduling framework

is proposed to solve the problem of deceptive idleness in disk

scheduling to improve throughput of the disk subsystems for

concurrent disk-intensive applications.

1220

2.2 Classification of Data Sharing Techniques
 In this subsection, we compare Request Window with other three

data sharing techniques in traditional RDBMS (details are

following) and present a classification as the comparison result.

Although these techniques have different problem contexts, their

goal is same: providing data sharing across queries. In our

classification, we consider two correlative factors. The first one is

the restriction on the arrival times of different queries across

which data sharing can be possible, and the second one is the

maximized amount of data that can be shared among multiple

queries when data sharing is possible.

We take an example to illustrate the total four categories of data

sharing techniques. Consider two identical queries Q1 and Q2:

“select * from a_table”. In the query statement, “a_table” may be

a local relation or a remote relation, which determines the query to

be a traditional query in RDBMS or a distributed query in a data

integration environment. We assume that Q1 and Q2 may arrive at

the query processing engine simultaneously, or that Q2 may arrive

later than Q1. In the example, the first factor means the difference

between the arrival times of Q1 and of Q2, while the second

factor means the amount of data shared between Q2 and Q1.

 The first category of data sharing techniques is the multi-query

optimization techniques utilized in traditional RDBMS

[4][25][27][33]. Multi-query optimization is a technique working

at query compilation phase. The major problem that multi-query

optimization solves is how to find common subexpressions and to

produce a global-optimal query plan for a group of queries. The

multi-query optimization technique has the most restrictive

requirement on the arrival times of different queries due to the

limitation that multiple queries must be optimized as a batch.

Such the limitation means that multiple queries must enter the

query engine simultaneously in order to be optimized together,

otherwise queries arrived earlier have to be sacrificed to wait for

other queries. However, the multi-query optimization technique

can provide maximized capabilities of data sharing across queries

once multiple queries are optimized as a batch. More importantly,

multi-query optimization can provide not only data sharing but

also common computation sharing.

The second category of data sharing technique is Request

Window presented in this paper. What should be noted is that,

although Request Window is mainly proposed for DQP, it can

also be employed in traditional RDBMS to provide data sharing.

Request Window is a technique working at the query execution

phase. Its basic idea is to combine similar requests for the same

data source to a single common request and then to dispatch the

results received from the data source to multiple independent

query execution processes. In this way, each query engine process

can share the common results. In the example, data requests

generated by processing Q1 and Q2 will be combined to a

common data request, and the query engine processes for Q1 and

Q2 can share all the results of the common data request received

from the data source. The restriction on arrival times of queries in

Request Window is looser than that in multi-query optimization as

illustrated later in this paper. This is because that some data

requests sent to the data source when executing complex queries

may have a delay opportunity so that it is tolerable to wait for

other similar data requests. For this category, the amount of data

shared depends on the difference of arrival times of queries.

The third category of data sharing techniques is table scan sharing

techniques [3][6][32]. The main idea of scan sharing is that new

scan request for the same table can “piggyback” on an existing

scan process. In the example, when Q2 arrives, it can directly

obtain tuples from the output of existing Q1’ scan process.

However, because Q2 misses some tuples that have already been

consumed before Q2’s arrival, a new partial scan will have to be

restarted for Q2 to fetch the missed tuples. Scan sharing

techniques have a loose restriction on arrival times of queries as

long as a previous scan process is still ongoing. For example, Q2

can share Q1’s scan output as long as Q1 is not finished. Like

Request Window, the amount of data shared depends on the

difference of arrival times of queries. Although it works well in

RDBMS, using table scan sharing in DQP faces a big challenge. It

may be hard to fetch missed tuples for later queries from the data

source exactly because the data source may not promise an

identical response for even two same data requests.

The fourth category of data sharing techniques is the widely used

cache mechanism in RDBMS [13][21][23][26]. This is a kind of

low-level page-based data sharing techniques. Such data sharing

has no restriction on the arrival times of queries. In the example,

even Q1 has already finished, Q2 can still benefit from pages in

main memory placed by the execution of Q1 so that unnecessary

I/O operations can be removed. However, the amount of data

shared is unsure and largely dependent on the concrete cache

replacement policy and run-time situations. Because of the lack of

memory-disk hierarchy, the cache mechanism is not suitable for

providing data sharing when processing data integration queries.

Finally, we summarize our classification in Table 1.

3. IGNITE & START-FETCH WRAPPER
In this section, we first present an overview of IGNITE, our

extended PostgreSQL with DQP support. Next, we introduce the

Start-Fetch wrapper architecture in IGNITE, which is the base of

Request Window.

 Table 1: Classification of Data Sharing Techniques

Category Multi-Query Optimization Request Window
Table

Scan sharing
Cache Mechanisms

Application

scope

RDBMS or

Data Integration

RDBMS or

Data Integration
RDBMS RDBMS

Restriction on

interarrival

times

Most restrictive

Arrivals must be

simultaneous.

Less restrictive

No requirement for

simultaneousness

Ongoing scans must

exist
No restriction

Amount of

shared data

Maximized (including

working sharing)

dependent on

interarrival times

dependent on

interarrival times

Unsure and dependent on

concrete policy

1221

3.1 Overview of IGNITE
The IGNITE system is a relational data integration system that

provides a collection of virtual views for integrating relational

data objects from various distributed, heterogeneous, and

autonomous data sources. The implementation of IGNITE is on

top of PostgreSQL, which is similar to the distributed extensions

to IBM DB2 [15] and Microsoft SQL Server [1]. Because

PostgreSQL is a traditional RDBMS that has no built-in

distributed query processor, to extend it to a data integration

system, we have to solve several problems about the system

architecture, user interface and query execution performance. We

present an overview of IGNITE as follows.

The cornerstone of IGNITE is the function mechanism provided

by PostgreSQL [28]. We build a wrapper framework to enable

various data sources to plug into IGNITE. A wrapper in IGNITE

consists of the implementations of several pre-defined function

interfaces, which are responsible for providing metadata of the

data source, executing a data request in the data source, obtaining

statistics information from the data source, etc. Via a wrapper, a

real relation in the data source can be registered into IGNITE to

be a virtualized view that can then be queried with no difference

from common tables.

Although the function mechanism and the wrapper framework

enable data integration functionalities, the performance of

distributed query processing could not be improved if we do not

modify the underlying query execution engine of PostgreSQL.

Our modifications involve several aspects, including (a) the re-

implementation of a pipelined FunctionScan operator, (b) the

implementation of query shipping [7] (we currently implement

functionalities for pushing down three operations: projection,

selection, and sorting), and (c) the implementation of an improved

optimizer which can utilize various statistics information of data

sources with the help of wrappers.

Several limitations in the architecture and the implementation of

PostgreSQL, including the process-per-connection model and

single-threaded query engine implementation that is not thread-

safe [2], make it difficult to provide data sharing and improve

throughput when processing concurrent distributed queries in

IGNITE. Solving this problem is the major motivation of this

paper. In the IGNITE system, we overcome these limitations by

utilizing the Start-Fetch wrapper architecture and implementing

the Request Window mechanism. We only make necessary

modifications to the core of the PostgreSQL and implement

additional features in the wrappers.

For the experiments of this paper, we develop an IGNITE wrapper

for the data source which is a PostgreSQL database using the

libpq library. This wrapper is an independent multi-threaded

application implemented using the pthread library on a POSIX

platform, which conforms to the design of the Start-Fetch wrapper

and the Request Window mechanism. We utilize the shared-

memory and UNIX domain socket as the IPC mechanisms

between this wrapper and the query engine process. The details of

the architecture and performance evaluation of IGNITE can be

found in [17].

3.2 Start-Fetch Wrapper
From the point of view of the underlying PostgreSQL, each

wrapper in IGNITE is only a collection of specific functions.

IGNITE uses a special R_Scan operator as the bridge between the

query engine and the wrappers. The R_Scan operator follows the

iterator model [8] and implements the Open, Next and Close

iterator functions. Because the backend of PostgreSQL is single-

threaded, the wrapper code will be executed within the same

process of the query engine for a query. Therefore, no prefetching

can be available in wrappers, and executions of multiple wrappers

will have to be synchronized.

To decouple wrappers from the query engine, we present the

Start-Fetch architecture for wrappers. The Start-Fetch wrapper

employs a “multi-process” model: to implement the wrapper

functionalities in a separate process and to employ some kind of

inter-process communication mechanisms to connect the query

engine process and the wrapper process at execution time. The

multi-process model enables parallelized execution between a

query engine process and a wrapper process, and there exists a

consumer-producer relationship between them. When the Open

function of the R_Scan operator is invoked, the query engine

process sends a data request to the wrapper process, and the

wrapper process must return a “ticket” to the query engine process

as the response immediately. Then the wrapper process needs to

send the data request to the underlying data source and receive

results, which occurs independently in its own process. This is the

“Start” step of Start-Fetch. When the Next function of the R_Scan

operator is invoked, the query engine process asks for next tuple

from the wrapper process using the ticket obtained at the “Start”

step. This is the “Fetch” step of Start-Fetch.

One benefit of Start-Fetch is that the wrapper process can prefetch

more tuples from the data source while the query engine process

is consuming some tuples. The parallelized execution can

accelerate query processing. However, the overhead of

communications between the wrapper process and the query

engine must be reduced to as low as possible.

Besides the ability of parallelized execution, another big

advantage of Start-Fetch is that the multi-process model makes

data sharing across queries to be possible. To enable data sharing

across multiple independent query engine processes, all data

requests must be submitted to a common place. In traditional

RDBMS, the buffer pool manager can provide functionalities of

such a common place. In a data integration system, the decoupled

wrapper process is actually such a common place that is

responsible for receiving data requests from multiple independent

query engine processes and dispatching results received from the

data source.

Note that, the goal of data sharing across queries could not be

achieved only by employing the Start-Fetch architecture. A Start-

Fetch wrapper only provides the foundation for implementing the

Request Window mechanism that is the key enabling technique.

4. REQUEST WINDOW

4.1 Overview
In the Start-Fetch wrapper architecture, multiple query engine

processes will independently issue data requests for the same data

source to a common wrapper process. The default action of the

wrapper process is to deal with each data request independently,

i.e. sending it to the data source, receiving result tuples from the

data source, and finally returning all result tuples to the

corresponding query engine process. This execution model does

not exploit any data sharing opportunity across multiple data

requests.

To provide data sharing across multiple query engine processes,

we present a new batch processing technique working in a Start-

Fetch wrapper: the Request Window mechanism. The main idea

1222

behind the mechanism is to process multiple relative data requests

as a batch in the wrapper instead of processing each of them

independently. To implement the batch processing, the wrapper

combines a group of similar data requests to a common data

request and only sends the common data request to the data

source. Then, the wrapper will dispatch corresponding result

tuples for the common data request returned by the data source to

each participating query engine process. By doing this, multiple

query engine processes can share common result data so that the

burdens of the data source for processing data requests can be

reduced and the amount of result data transferred over network

can be reduced.

When a query engine process submits a data request to the

wrapper process, instead of instantly sending the request to the

data source, the wrapper will add the new request to a

corresponding waiting queue that stores each request and the

corresponding query engine process. If no corresponding waiting

queue exists, then the wrapper will first create an empty queue.

We call such a waiting queue a “request window.” At a time, the

wrapper will process the waiting queue. We call this action

“window issue” and call the processing time the “window issue

time.” The window issue action involves several steps: (a)

combining all data requests in the waiting queue to a single SQL

statement, (b) sending the SQL statement to the underlying data

source, (c) receiving results from the data source, and (d)

dispatching result tuples to each query engine process. Of course,

the last two steps can be executed in a pipelined way. After all

query engine processes have received all results, the window will

be destroyed. Figure 1 shows an illustration of the request window

technique.

Currently in our implementation, each data request is a SQL

statement which has the form of “select (columns) from a_table

where (predicate)”. The common data request generated by

combining multiple such statements has a synthesized “where”

clause. The result tuples for the common data request contains all

tuples needed by each participating query engines. The result

dispatcher will only dispatch corresponding tuples to each query

engine process. It means that the query engine process will never

receive unnecessary tuples that cannot pass the filter for the

request.

We take an example to illustrate the request window mechanism.

At a time the wrapper receives the data request Q1 (“select * from

a_remote_table where key > 10”) from a query engine process e1;

and later, the wrapper receives Q2 (“select * from a_remote_table

where key > 20”) from another query engine process e2. For the

two data requests, the wrapper performs the following actions.

� It creates an empty request window and adds Q1 in the

window when it receives Q1.

� It adds Q2 into the window when it receives Q2.

� It combines Q1 and Q2 to a common SQL statement Q3

(“select * from a_remote_table where key > 10”) when the

issue time of the window arrives. Note that, Q3 is as same as

Q1 because the query result of Q1 contains the result of Q2.

� It sends Q3 to the corresponding data source and receiving

result tuples.

� It dispatches corresponding result tuples to e1 and e2.

A natural question that will be asked is when the wrapper should

issue a request window. We define the “window size” concept for

a request window as the interval between the time for creating the

window and the time for issuing the window. The key point of the

request window mechanism is to determine the window size.

Intuitively, the larger the window size is, the more requests the

window may contain, and the more data can be shared. However,

for a large window size, early requests have to wait for a long

time so that their response times will be increased. To solve this

problem, we present a solution that consists of two techniques.

The first one is the DIOP technique, which is utilized to determine

the maximized delay time of each data request. The second one is

the DAW technique, which is utilized to adjust the window size

dynamically according to the maximized delay time of each new

data request.

4.2 DIOP: Delay Indicated By OPtimizer
The key to determine the size of a request window is to determine

how long each data request can be delayed by the wrapper process

without increasing the total response time of the query execution.

According to the Start-Fetch model, the wrapper will receive a

data request when the Open function of the corresponding R_Scan

operator is invoked (the Start step) and will provide tuples when

the Next function is first invoked (the Fetch step). The interval

between the Start step and the Fetch step provides the opportunity

for the wrapper to delay the data request. Intuitively, the wrapper

must at least have one result tuple available when the Fetch step

begins, otherwise the query engine will have to be blocked by

waiting for results. Therefore, to determine the maximized delay

time of a data request, two factors must be determined: (a) the

interval between the Start step and the Fetch step, and (b) the time

for the wrapper to obtain the first tuple from the data source.

We present the DIOP (Delay Indicated by OPtimizer) technique.

By using DIOP, the delay time of a data request is not determined

by the wrapper process blindly but by the query optimizer. For

each data request, the query optimizer will make an estimation of

its tolerable delay time. When the query engine process submits

the data request to the wrapper, the engine will additionally tell

the wrapper the estimated delay time for the data request.

Therefore, each data request received by the wrapper has an

annotation of its maximized delay time. In addition, the wrapper

will dynamically adjust the window size according to the

Data Source

R1 R2 R3

Common Result

Dispatcher

A wrapper

Query 1 Query 2 Query 3

Figure 1: An architecture overview of the Request Window.

In a Start-Fetch wrapper, multiple similar data requests will

be combined to a common data request so that the underlying

data source only needs to process the common request. The

common results will be dispatched to each participating

query engine process.

1223

annotation value of each new data request, which is the job of the

DAW technique discussed in section 4.3. Next, we explain why

the delay time of a data request can exist and introduce how the

query optimizer makes the estimation for the delay time.

4.2.1 Opportunities for Delaying a Data Request
The foundation on which a data request can be delayed is that

there is an available interval from the time when the data request

is created to the time when the results of the request begin to be

consumed. According to the iterator model for executing a query

plan tree, such intervals exist and can be estimated by the query

optimizer when it creates the query plan tree.

When the query engine begins to execute the query, it will first

invoke the Open function of each node in the query plan tree

recursively. When the Open function of a leaf node is invoked, a

corresponding data request is created. However, the Next function

of a node will not be invoked until its parent node begins to

consume the output tuples of the node. This is the nature of on-

demand data consuming of the iterator model. According to the

implementation algorithm of the parent node, it is possible that

data consuming of one child node will not happen until some

event occurs, such as the one that another child node has outputted

all tuples. Such event dependency in the query plan tree may

constitute a critical path diagram. In the diagram, a data request

can be delayed as late as possible until its dependent events occur.

We consider an example of the hash join operator that consists of

two phases: (1) building the hash table using all tuples from the

left child node and (2) probing the hash table using each tuple

from the right child node. For the right child node, its Next

function will not be invoked until the building phase is completed.

Therefore, the underlying wrapper for the right child node can

delay the data request received when the Open function is invoked

for a while.

4.2.2 Estimating the Maximized Delay Time
Now, we formalize the problem as:

For a given data request R generated by a leaf node N in the

query plan tree, how to determine the “Maximized Delay Time”

of the data request: N
RMDT , i.e. the interval between the time

when the corresponding wrapper receives the data request to the

time when the wrapper sends the data request to the data source?

We define several concepts as follows to solve this problem.

Definition 1: “Begin Time” of a query plan tree: QBT

The “Begin Time” of a query plan tree is the time when the query

plan tree is executed. Considering that execution of the Open

function of each node in the tree is very fast2, we can think that

the time when the Open function of each node is invoked is equal

to the Begin Time of the query plan tree. This time is also the time

when each wrapper process receives corresponding data request3,

i.e. the time of the Start step of each wrapper.

2 In PostgreSQL, the Open function of each node in the query plan

does not execute too much code. Even for the Sort operator, the

real sorting code will be executed when the Next function is

first invoked.

3 Actually, we can guarantee this by first sending all involved data

requests to corresponding wrappers when the query plan is

executed without keeping waiting until each Open function is

invoked.

Definition 2: “First Fetch Time” of a node N: NFFT

The “First Fetch Time” of a node N in a query plan tree is the

time when the Next function of node N is first invoked. For a leaf

node, this time is the begin time of the Fetch step for the

corresponding wrapper. In addition, we assume that the First

Fetch Time of the root node is equal to the Begin Time of the

query plan tree.

Definition 3: “Wait Opportunity” of a node N: NWO

The Wait Opportunity of a node N in a query plan tree is the

interval from the Begin Time of the tree to the First Fetch Time of

node N. It can be expressed using the following formula:

QNN BTFFTWO −=

Definition 4: “Initial Delay” of a data request R: RID

The “Initial Delay” of a data request R is the interval from the

time when the wrapper sends the data request R to the data source

to the time when the wrapper receives the first tuple returned by

the data source.

According to the above definitions, the Maximized Delay Time of

a data request R genereated by a node N can be calculated

according to the following formula:

RN
N

R IDWOMDT −=

If the result is a negative, then we set it to zero. Now, the question

becomes the one of how to estimate the Wait Opportunity of a leaf

node. We make the following definition.

Definition 5: “Algorithm Related Delay” of a node N: NARD

For the root node, the “Algorithm Related Delay” is zero. For a

non-root node N, the “Algorithm Related Delay” is the interval

from the First Fetch Time of the parent node P of node N to the

First Fetch Time of node N. It can be expressed using the

following formula:

PNN FFTFFTARD −=

By the definition, the Algorithm Related Delay of a node is the

elapsed period from the time when the Next function of its parent

node is first invoked to the time when the Next function of its own

is first invoked. How long this interval will be is determined by

the implementation algorithm of its parent node, so different

operators have different Algorithm Related Delays. For a hash-

join operator, the Algorithm Related Delay of the left child node

(building hash table) is zero because the parent join node will

instantly fetch tuples from the child once the join begins, while

the Algorithm Related Delay of the right child node (probing hash

table) is the elapsed time for finishing the hash table building.

Now, we can get the following formulas to recursively calculate

the Wait Opportunity of each node.

 0 rootisNnodeifWON =

rootnotisNnodeifARDWOWO NPN +=

4.2.3 Examples to Illustrate DIOP
Next, we provide two examples to illustrate the estimation of Wait

Opportunity for each node.

The first example is about a query plan tree shown in Figure 2. It

is a right-deep join tree for a star-join among three relations:

1224

ORDERS ⋈ LINEITEM ⋈ PARTSUPP .

According to the above formulas, we can know that:

(1) The Wait Opportunity of the leaf node “R_Scan 1” is equal to

0.

(2) The Wait Opportunity of the leaf node “R_Scan 2” is equal to

the time for finishing the node “Hash 1”.

(3) The Wait Opportunity of the leaf node “R_Scan 3” is equal to

the sum of the time for finishing the node “Hash 1” and the

time for finishing the node “Hash 2”.

The second example is about a query plan tree shown in Figure 3.

The tree is for a union operation of three relations:

321 ORDERSORDERSORDERS UU .

In the tree, the root node is an Append operator (PostgreSQL’s

implementation for union operation) which is executed with three

distinct stages in turn for feching tuples of the three child nodes

respectively.

According to the above formulas, we can know that:

(1) The Wait Opportunity of the leaf node “R_Scan 1” is equal to

0.

(2) The Wait Opportunity of the leaf node “R_Scan 2” is equal to

the time for finishing the node “R_Scan 1”.

(3) The Wait Opportunity of the leaf node “R_Scan 3” is equal to

the sum of the time for finishing the node “R_Scan 1” and

the time for finishing the node “R_Scan 2”.

4.2.4 Approximate Estimation for Hash-Join Tree
According to the above formulas, estimation of the Wait

Opportunity of each node is actually a recursive calculation

process. However, for a query plan tree, for example the hash-join

tree, we can utilize a more straightforward method to make

approximate estimations. Actually we don’t need accurate

estimations since the purpose of DIOP is just to indicate a

tolerable delay opportunity for a data request.

Because in typical data integration scenarios, the time for data

transfer over the network dominates the whole query execution,

we can ignore the time for local computations. This is the key of

making approximate estimations.

In this subsection, we introduce an approximate estimation

method for a hash-join tree. In a hash-join tree, only three kinds of

nodes exist: the hash-join operator, the hash operator and the

R_Scan operator at the leaf level. All wait opportunies in such a

tree come from the fact that the hash operator is a blocking

operator. It means that the hash operator cannot output any tuple

before all tuples of its child are consumed for building the hash

table. In this way, we can approximately estimate the time for

finishing a hash node as the time for finishing its child node. And

further, we can estimate this time using the total time for finishing

all result data transfers of data requests generated by all the leaf

nodes in the sub-tree under the hash node.

We first make the following definition and then present formulas

for approximate estimations.

Definition 6: “Total Transfer Time” of a data request R: RTTT

The “Total Response Time” of a data request R is the interval

from the time when the underlying wrapper receives R’s first

result tuple returned by the data source to the time when the

underlying wrapper receives the last tuple returned by the data

source. According to related definitions, we know that the time for

finishing a data request is actually the sum of its Initial Delay and

Total Transfer Time. To estimate the total transfer time, two

factors are related. The first one is the data transfer speed which is

affected by the communication speed and the tuple output speed

of the data source. The second one is the number of result tuples

which is affected by the cardinality of the remote relation and the

selectivity of corresponding “where clause” in the data request

statement. To obtain these values, the query optimizer needs the

help of wrappers which provide values of predefined parameters

and statistics information of underlying data sources.

To approximately estimate the Wait Opportunity of a leaf node in

a hash-join tree, we traverse the query plan tree using an inorder

traversal. After this, for each leaf node N, we obtain a set of data

requests NRS , which comprises all data requests generated by the

leaf nodes that are before the node N in the traversal. We use the

following formulas to approximately estimate the Wait

Opportunity of a leaf node N:

=NRS {requests generated before N by inorder traversal}

()∑
∈

+=

NRSr

rrN TTTIDWO

Then, the corresponding Maximized Delay Time can be

calculated using the formula:

() R

RSr

rr
N

R IDTTTIDMDT

N

−















+= ∑

∈

Append

R_Scan 1:

ORDERS1

R_Scan 2:

ORDERS2

R_Scan 3:

ORDERS3

Hash Join 1

Hash Join 2 Hash 1

Hash 2 R_Scan 1:

ORDERS

R_Scan 2:

PARTSUPP

R_Scan 3:

LINEITEM

Figure 2: a right-deep hash-join tree for join of three relations

Figure 3: a query plan tree for unions of three relations

1225

Further approximation is possbile if we can ignore the factor of

Initial Delay when it is small compared with the Total Transfer

Time. This requires that the data request must satisfy the

following conditions:

(1) The target data source supports pipelined data fetch, for

example, if the source is a RDBMS supporting resultset fetch

via a cursor.

(2) The target data source can rapidaly return initial results. This

depends on whether the target relation is a physical table.

(3) The tuple count of the resultset is large so that the Total

Transfer Time is very long which is limited by the network

speed.

By ignoring the initial delays, we get a formula for more

approximate estimations:

∑
∈

=

NRSr

r
N

R TTTMDT

According to this approximate estimation method, we get the

same estimation result for the query plan trees shown in Figure 2

and in Figure 4:

1) the Maximized Delay Time of the data request for ORDERS

is 0.

2) the Maximized Delay Time of the data request for

PARTSUPP will be the Total Transfer Time for ORDERS.

3) the Maximized Delay Time of the data request for

LINEITEM will be the sum of the Total Transfer Time for

ORDERS and the one for PARTSUPP.

4.2.5 Implementation Issues
There are two special considerations in implementing DIOP. We

use two configurable parameters to allow IGNITE system

administrators to make specific settings.

The first parameter is empolyed for those data requests which are

estimated to have a very high selectivity, for example a data

request which may only has one tuple in the result. Such a data

request should not be processed by the request window

mechanism for two reasons: (a) its total response time is very

small so that any optimizing effort is unnecessary, and (b) it is

unfair if the request is unfortunately placed in a window with

another request which has a very small selectivity so that the

corresponding query engine will have to select only a very small

fraction of all tuples from the common result. Only data requests

whose selectivity is smaller than the value of this parameter can

be processed by the request window.

The second parameter is employed for data requests whose

Maximized Delay Time is 0. The optimizer has a choice to reset

the Maximized Delay Time of such a data reqeust to the value of

the parameter. By doing this, even if a data request should not be

delayed, the wrapper will still delay it to wait for other similar

data requests. For a data request which will have a very long total

transfer time (for example more than 100 seconds), it is tolerable

if the request is delayed for only several seconds to wait for other

similar requests. More importantly, many queries containing

aggregations, for example the typical TPC-H queries in DSS

workloads, are not concerned about the initial delay of query

results. For systems busied by running concurrent such workloads,

it is tolerable to set the value of this parameter to be higher in

order to improve the overall throughput.

4.3 DAW: Dynamically Adjusting Window
Remember that, our goal is to determine when to issue the

window, i.e. to determine the window size. The DIOP technique

provides hints to make the decision by annotating each data

request with its maximized delay time. But, this is only the first

step to achieve the goal. Because a request window, i.e. the

waiting queue, contains multiple data requests which may have

different delay times, a coordinator should be used to calculate the

window size on the basis of delay times of all participating data

requests.

We present the DAW (Dynamically Adjusting Window)

technique to solve the problem of determining window size. The

basic idea of DAW is to dynamically adjust the window size using

some policy when a new data request with its annotation of

maximized delay time is added into the window. The DAW

technique consists of two components. The first one is the

adjusting policy which specifies how to get a new window size

after a new request is added into the window, and the second one

is the adjusting executor which is triggered by the arrival of new

data request. The adjusting executor will enforce the adjusting

policy.

We first describe how the adjusting executor works. The window

size is stored as an integer value which means the left time in

seconds to issue the window. When the window receives a new

data request, the wrapper will adjust this value by enforcing the

policy which is implemented as a function hook. In addition, an

independent daemon thread in the adjusting executor will wake up

at the interval of one second. When the thread wakes up, it will

check the current window size value. If it is zero, then the thread

will start a new working thread to issue the window. Otherwise, it

will shorten the current window size by one second.

The core of DAW is the adjusting policy. Whatever policy is

employed, its goal is to determine a new window size according

two basic inputs: the current window size and the Maximized

Delay Time of the newcome data request. Intutively, we should

use a policy which always keeps the smallest delay time to be the

window size. In this way, the new window size should be the

smaller one between the two input values. This policy can

guarantee that no data request will be delayed beyond its tolerable

maximized time. This is an emergency-oriented policy. However,

Figure 4: a hash-join tree for a star-join of three relations

(compared with Figure 2)

Hash Join 1

Hash Join 2

Hash 1

Hash 2

R_Scan 1:

ORDERS

R_Scan 2:

PARTSUPP

R_Scan 3:

LINEITEM

1226

we can define a policy which can provide more data sharing by

calculating a larger window size.

Now, we describe our adjusting policy. Related symbols are:

WS: current window size (in second)

RC: current number of data requests waiting in the window

MDT: Maximized Delay Time of the newcome data request

The policy distinguishs between two conditions.

1) If the Maximized Delay Time of the newcome data request

is larger than or equal to current window size, then it doesn’t

change the current window size.

WSWS = if WSMDT ≥

2) Otherwise, it use the following formula to calculate the new

window size:

1+

+×
=

RC

MDTRCWS
WS if WSMDT <

The principle of the policy consists of two points: (a) the window

size will never be increased, and (b) the window size is the

average of all the delay times of data requests in the window. This

policy can provide more data sharing opportunities than the

emergency-oriented policy by enlarging the window size using the

average of all delay times as the window size instead of the

smallest one. Moreover, according to this policy, the arrival of a

later data request with long delay time will not cause that existing

data requests in the window are delayed further.

Our proposed policy here is suitable for running DSS workloads,

such as the TPC-H queries, which are not concerned about the

initial delays of query results.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
In this section, we present the experimentation with IGNITE.

Considering no common data integration query benchmark [12],

we use a TPC-H [29] (scale factor 0.1, 100MB) database as the

dataset of our experiments. The goal of our experiments is to

examine how the request window can improve the performance

and throughput when executing distributed TPC-H queries in

IGNITE by providing data sharing across queries.

A TPC-H database has eight relations (REGION, NATION,

CUSTOMER, SUPPLIER, PART, PARTSUPP, ORDERS, and

LINEITEM). Therefore, we use eight data sources, and each of

them is responsible for providing one relation respectively. Each

data source is actually a PostgreSQL 8.1 RDBMS running on a

2.8GHz Intel P4 machine with 768MB of RAM, running the

FreeBSD 5.4 stable operating system. Our IGNITE system is

running on a SMP machine with four Intel P4 Xeon 2.4GHz

CPUs, 2GB of RAM, running Linux 2.4.18 SMP. All the

machines are connected on a 100Mbit/sec Ethernet.

In our experiments, each relation from a data source is registered

into the IGNITE system to be a view via several extended SQL

statements. For example, the real table LINEITEM in a data

source is actually mapped to the view V_LINEITEM in IGNITE.

Each query issued to IGNITE in our experiments is actually

executed over these virtual views. For our experiments, we force

the query optimizer to choose hash-join for join parts in the query

plans.

To avoid introducing additional client-server communication

overhead, we discard all result tuples of executing queries. In

addition, all experiments are run a minimum of four times. In all

of the graphs, the “Baseline” represents the IGNITE system

without enabling the Start-Fetch wrapper and the Request

Window mechanism.

5.2 Sharing Transferred Data
In this experiment, we examine how the request window

mechanism can provide data sharing when processing two

identical queries (say Q1 and Q2 respectively) concurrently in

IGNITE. We vary the arrival time of the second query later than

the first one from 0 second to 8 seconds and check how much data

can be shared between these two queries. The query is:

select * from V_ORDERS, V_PARTSUPP, V_LINEITEM where

O_ORDERKEY = L_ORDERKEY and PS_SUPPKEY =

L_SUPPKEY and PS_PARTKEY = L_PARTKEY.

This query contains a star-join among three relations LINEITEM,

ORDERS, and PARTSUPP. The query plan tree is actually shown

in Figure 2.

The test results are shown in Figure 5. The vertical axis is the total

data shared between Q2 and Q1, and the horizontal axis is the

interarrival time. We can see that when the time difference

between query arrivals increases, the amount of shared data

decreases from the maximized about 100MB to zero.

We explain the results in detail. First, the maximized sharing

opportunity between Q1 and Q2 is an interval of 6 seconds (0-6),

which is actually the Wait Opportunity of the node R_Scan 3 for

LINEITEM. Second, if these two queries arrive simultaneously,

then they can share all data of tuples of ORDERS, PARTSUPP,

and LINEITEM. Third, there is an opportunity of 4 seconds (0-4)

for Q2 to share tuples of PARTSUPP and LINEITEM, which is

time for finishing R_Scan 1 for ORDERS. Fourth, there is a last

opportunity of 2 seconds (4-6) for Q2 to share tuples of

LINEITEM, which is time for finishing R_Scan 2 for

PARTSUPP.

5.3 Running Concurrent Same Queries
In this group of experiments, we examine how well the request

window in IGNITE performs when running multiple concurrent

same queries. We vary the number of concurrent clients from 1 to

12. We set the query interarrival times to zero, i.e. all concurrent

queries will arrive simultaneously. The goal of these experiments

is to evaluate how the total response times can be reduced by

combining multiple data requests to only one in the wrapper.

Figure 5: The amount of data shared between two queries

when increasing the interarrival times up to 8 seconds.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

Time difference between query arrivals (second)

D
a

ta
 s

h
a

r
e
d

 (
M

B
)

1227

We choose six queries in this group of experiments. The first one

(we call it “Simple Query”) is a simple SQL statement: “select *

from v_lineitem”. The execution of this query has very few local

computations and is dominated by transferring all tuples of the

LINEITEM relation from the data source to the query engine. The

other five queries are the standard TPC-H queries 1#, 5#, 7#, 8#,

and 9#.

In Figure 6, six graphs show the test results for each query

respectively. We present several explanations for the results of

this group of experiments.

First, for all queries except the TPC-H query 1#, the request

window can significantly reduce the total response times by

removing unnecessary data transfers when executing concurrent

queries.

Second, when running concurrent workloads, since request

window can reduce the data transfer times to the minimum, query

executions are no longer limited by the network speed but the

CPU performance. From the graphs, we can see that when the

number of concurrent clients is less than four, the total response

times are almost unchanged with enabling request window.

Third, how much request window can reduce total response times

depends on the amount of local computations involved in query

executions. For the TPC-H query 1#, because local computations

(the HashAggregate operation) dominate query executions when

running multiple concurrent workloads, request window cannot

provide a significant speedup over the baseline as it does for other

queries. The maximum speedup is for the “Simple Query” which

has the fewest computations among all six queries.

5.4 Running Full Workloads
In the next experiment, we compare the overall performance of

IGNITE with enabling Start-Fetch and Request Window against

the baseline system using a set of clients executing a mix of

queries from the TPC-H benchmark. And in this experiment, we

also test a major commercial data integration system (we call it

DBMS X for licensing restrictions) as a comparison. We choose

eight standard TPC-H queries: #1, #3, #4, #5, #7, #8, #9, and #10.

The query execution sequence of each client is listed in Table 2,

which is generated according to the TPC-H throughput test

specification by removing unused queries. We vary the number of

concurrent clients from one to twelve and measure the throughput.

Unlike the last group of experiments in which concurrent queries

are arranged to arrive simultaneously, this experiment cannot pre-

determine the arrival time of each query from different execution

streams. Therefore, data sharing opportunities are determined

dynamically by the DIOP technique and the DAW technique as

discussed in this paper. The experimental results in Figure 7 show

that the request window can significantly improve the throughput

of IGNITE by providing data sharing across concurrent queries.

Simple Query

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

Number of Clients

T
o

ta
l

re
sp

o
n

se
 t

im
e

(s
ec

)

Baseline

Request Window

TPC-H Q1

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12

Number of Clients
T

o
ta

l
re

sp
o

n
se

 t
im

e
(s

ec
)

Baseline

Request Window

TPC-H Q5

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12

Number of clients

T
o

ta
l

re
sp

o
n

se
 t

im
e

(s
ec

) Baseline

Request window

TPC-H Q7

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12

Number of clients

T
o

ta
l

re
sp

o
n

se
 t

im
e

(s
ec

)

Baseline

Request window

TPC-H Q8

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12

Number of clients

T
o

ta
l

re
sp

o
n

se
 t

im
e

(s
ec

)

Baseline

Request window

TPC-H Q9

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12

Number of clients

T
o

ta
l

re
sp

o
n

se
 t

im
e

(s
ec

)

Baseline

Request window

0

100

200

300

400

500

600

0 2 4 6 8 10 12

Number of Clients

T
h

r
o

u
g

h
p

u
t(

q
u

e
r
ie

s/
h

o
u

r
)

SIGMODXYZ with Request Window

SIGMODXYZ

DBMS X

Figure 6: Total response times for executing concurrent same queries that simultaneously arrive. Without enabling Request

Window, data transfers dominate the query executions. By minimizing data transfers, total times are reduced significantly.

Figure 7：：：：TPC-H throughput for three systems with varying

the number of clients from 1 to 12.

1228

When the number of concurrent clients is 12, IGNITE with

Request Window can perform an outstanding throughput speedup

over two opponent systems.

From the graph, we can also see that our IGNITE system has a

higher throughput than the DBMS X even without enabling

Request Window. This may be explained by the difference in

implementing the wrapper: the IGNITE utilizes a wrapper for the

PostgreSQL database built on the libpq library, while the DBMS

X utilizes a wrapper built on the ODBC interface.

6. FURTHER DISCUSSIONS

6.1 Application Range
Request Window is suitable for running concurrent DSS queries,

which often contain aggregations on the results of a join operation

between multiple relations. For such queries, current IGNITE

optimizer prefers hash-join-based query plans. Although pushing

sorting down to sources to accelerate sort-merge join is an

attractive strategy in data integration applications, it is only useful

for multi-join based on a common attribute. Moreover, many data

sources do not support sorting operation, which only accept

queries with the input of a target relation and a selection predicate,

although the query form does not always follow the SQL syntax.

For this situation, it is impossible to push sorting down. If the

IGNITE optimizer chooses a sort-merge join for a query involving

such sources, the sorting operations will be executed by the

engine of IGNITE. Because sorting is also a blocking operator as

the hash operator, there will be wait opportunities in the query

plan which can be utilized by Request Window.

If a query contains multi-join based on a common attribute and

involved sources accept sorting, then Request Window is not

useful. To execute a single such query, the engine should push all

sorting operations down and merge ordered tuples from each

source. In this case, pure Start-Fetch execution without Request

Window works well because each data request has not any

available wait opportunity. However, to run multiple concurrent

such queries, whether and how Request Window can be used to

reduce data transfers and source burdens is unsure. We are

planning to improve the current query optimizer to challenge such

situation.

In addition, for queries that contain union of multiple relations

from different data sources, Request Window is suitable.

6.2 Estimating Delay Times
Request Window is actually a framework that allows alternative

implementations for each component. For the DIOP technique, a

concrete implementation can make the most conservative

estimations as we do using our approximate approach, or can

utilize a more accurate but more complex model to make exact

estimations.

To estimate delay times of data requests in DIOP, the big

challenge is the cardinality estimation of the result of each

request. To do this, current IGNITE system maintains various

statistics information for each registered remote relation with the

help of data source wrappers.

However, as discussed in [11][12], statistics information of some

sources may be not available in data integration so that making

exact estimations for query cardinality is very difficult. Currently,

IGNITE cannot deal with this situation and it can only trust the

values returned by wrappers. Fortunately, the Black-Box approach

to query cardinality estimation introduced in [19][20] shows the

feasibility of accurately estimating query cardinality using

machine-learning techniques without knowing data distribution.

We are learning the Black-Box approach and planning to design

and implement a new component to estimate delay times in DIOP.

6.3 Compatibility
Request Window can work together with the semantic caching

technique if the latter is feasible in a specific application. Even if

the query engine side has caches of some semantic regions, the

remainder queries, which cannot be answered only by cached

regions, need to be sent to data sources. Request Window still can

deal with those remainder queries. Moreover, because the data

request can be partially answered by cached regions, the

remainder query part will have an enlarged “wait opportunity”

considering the corresponding result will not be consumed before

the query engine has consumed cached result tuples.

7. CONCLUSION & FUTURE WORK
It is feasible to extend traditional RDBMS to support distributed

query processing. Yet the big challenge is how to provide data

sharing across concurrent distributed query instances without the

memory/disk hierarchy, the foundation of RDBMS’s buffer pool

management mechanism. We present Request Window as the

solution. Its core idea is to combine multiple similar data requests

to only one common data request and make concurrent query

execution instances share the common result data. The benefit of

exploiting such data sharing is the ability of significantly reducing

the amount of result data that will have to be transferred over the

network and the burdens of data sources for processing data

requests. Request Window does not require that multiple queries

must arrive simultaneously. It utilizes the DIOP technique to

detect the delay opportunity for a data request, and utilizes the

DAW technique to construct a group of data requests processed as

a batch dynamically. We implemented these techniques in

IGNITE, a PostgreSQL-based data integration system. The

experimental results show that our solution for data sharing can

significantly improve throughput when processing concurrent

distributed TPC-H queries in IGNITE.

Table 2: TPC-H query sequences of 12 concurrent clients for

the throughput experiment. Eight queries are selected. We

generate this table according to the TPC-H throughput test

specification. (C for Client) CCCC Q1Q1Q1Q1 Q2Q2Q2Q2 Q3Q3Q3Q3 Q4Q4Q4Q4 Q5Q5Q5Q5 Q6Q6Q6Q6 Q7Q7Q7Q7 Q8Q8Q8Q81 3 5 7 10 8 9 1 42 10 9 8 5 7 1 4 33 8 5 4 7 1 9 10 34 5 4 9 8 10 1 7 35 4 7 3 1 5 8 10 96 10 3 8 9 7 4 1 57 8 4 1 9 3 5 7 108 1 5 8 9 7 4 3 109 8 3 10 4 1 7 9 510 1 7 10 9 3 4 8 511 10 1 8 4 5 3 9 712 1 7 8 9 4 5 10 3

1229

In future, we shall extend Request Window in three aspects.

Supporting Subquery: How to detect and exploit waiting

opportunities when executing various forms of subqueries is a

challenge, for which we need to develop flexible model for

estimating delays in DIOP.

Using Black-Box Approach: To estimate query cardinality and

total transfer times of data requests, the Black-Box approach

based on machine-learning methods [20] seems to be a better way,

which can avoid maintenance work of statistics information of

sources, and is suitable for general data integration scope beyond

federated DBMS.

Adding Window Notification: Currently the wrapper can only

trust the one-off delay annotation given by DIOP. We are

studying how to monitor query execution progress and re-

calculate delay times, and then use window notification to hasten

window issuing.

8. ACKNOWLEDGEMENTS
We sincerely thank Professor Xiaodong Zhang for helping us

better understand capabilities and limitations of the cache

mechanism in various contexts. We thank Dr. Zhiwei Xu for his

excellent suggestions about the idea and the experiment. And we

also thank the VLDB reviewers for their helpful comments. This

work is supported in part by the National Science Foundation of

China (Grant No. 90412010) and the China National 973 Program

(No. 2005CB321807).

9. REFERENCES
[1] J. A. Blakeley, C. Cunningham, N. Ellis, B. Rathakrishnan,

and M. C. Wu. “Distributed/Heterogeneous Query

Processing in Microsoft SQL Server.” In Proc. ICDE,

2005.

[2] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.

Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S.

Madden, V. Raman, F. Reiss, and M. Shah.

“TelegraphCQ: Continuous Dataflow Processing for an

Uncertain World.” In Proc. CIDR, 2003.

[3] C. Cook. “Database Architecture: The Storage Engine.”

Microsoft SQL Server 2000 Technical Article, July 2001.

Available at: http://msdn.microsoft.com/library.

[4] N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan.

“Pipelining in Multi-Query Optimization.” In PODS, 2001.

[5] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, and

M. Tan. “Semantic Data Caching and Replacement.” In

Proc. VLDB, 1996.

[6] P. M. Fernandez. “Red Brick Warehouse: A Read-Mostly

RDBMS for Open SMP Platforms.” In Proc. SIGMOD,

1994.

[7] M. J. Franklin, B. T. Jonsson, and D. Kossmann.

“Performance tradeoffs for Client-Server Query

Processing.” In Proc. SIGMOD, 1996.

[8] G. Graefe. “Query Evaluation Techniques for Large

Databases.” ACM Computing Surveys, 25(2), pp. 73–170,

June 1993.

[9] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki.

“QPipe: A Simultaneously Pipelined Relational Query

Engine.” In Proc. SIGMOD, 2005.

[10] L. M. Hass, D. Kossmann, E. L. Wimmers, and J. Yang.

“Optimizing Queries Across Diverse Data Sources.” In

Proc. VLDB, 1997.

[11] Z. G. Ives, D. Florescu, M. T. Friedman, A. Y. Levy, and

D. S. Weld. “An Adaptive Query Execution System for

Data Integration.” In Proc. SIGMOD, 1999.

[12] Z. G. Ives, A. Y. Halevy, and D. S. Weld. “Adapting to

Source Properties in Processing Data Integration Queries”

In Proc. SIGMOD, 2004.

[13] T. Johnson and D. Shasha. “2Q: A Low Overhead High

Performance Buffer Management Replacement

Algorithm.” In Proc. VLDB, 1994.

[14] B. Jonsson, M. Arinbjarnar, B. Jorsson, M. J. Franklin, and

D. Srivastava. “Performance and Overhead of Semantic

Cache Management.” In ACM TOIT, 6(3), pp. 302-331,

August 2006.

[15] V. Josifovski, P. Schwarz, L. M. Hass, and E. Lin. “Garlic:

a New Flavor of Federated Query Processing for DB2”. In

Proc. SIGMOD, 2002.

[16] D. Kossmann. “The State of the Art in Distributed Query

Processing.” ACM Computing Surveys, 32(4), pp. 422-

469, December 2000.

[17] R. Lee and M. Zhou. “Extending PostgreSQL to Support

Distributed/Heterogeneous Query Processing.” In

Proc.DASFAA, 2007.

[18] S. Lyer and P. Druschel. “Anticipatory Scheduling: A Disk

Scheduling Framework to Overcome Deceptive Idleness in

Synchronous I/O.” In Proc. SOSP, 2001.

[19] T. Malik, R. Burns, N. Chawla, and A. Szalay. “Estimating

Query Result Sizes for Proxy Caching in Scientific

Database Federations.” In SuperComputing, 2006.

[20] T. Malik, R. Burns, and N. Chawla. “A Black-Box

Approach to Query Cardinality Estimation.” In Proc.

CIDR, 2007.

[21] N. Megiddo and D. S. Modha. “ARC: A Self-Tuning, Low

Overhead Replacement Cache.” In Proc. FAST, 2003.

[22] M. F. Mokbel, M. Lu, and W. G. Aref. “Hash-Merge Join:

A Non-blocking Algorithm for Producing Fast and Early

Join Results.” In Proc. ICDE, 2004.

[23] E. J. O'Neil, P. E. O'Neil, and G. Weikum. “The LRU-K

Page Replacement Algorithm for Database Disk

Buffering.” In Proc. SIGMOD, 1993.

[24] PostgreSQL homepage, 2007. http://www.postgresql.org.

[25] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. “Efficient

and Extensible Algorithms for Multi Query Optimization.”

In Proc. SIGMOD, 2000.

[26] G. M. Sacco and M. Schkolnick. “Buffer Management in

Relational Database Systems.” In ACM TODS, 11(4), pp.

473-498, December 1986.

[27] T. K. Sellis. “Multiple Query Optimization.” In ACM

TODS, 13(1), pp. 23-52, March 1988.

[28] M. Stonebraker and G. Kemnitz. “The POSTGRES Next

Generation Database Management System”. In

Communications of ACM, 34(10), pp. 78-92, 1991.

[29] TPC Homepage. TPC-H benchmark. www.tpc.org

[30] T. Urhan and M. J. Franklin. “XJoin: A reactively-

scheduled pipelined join operator.” IEEE Data Engineering

Bulletin, 23(2), June 2000.

[31] S. Viglas, J. F. Naughton, and J. Burger. “Maximizing the

Output Rate of Multi-Way Join Queries over Streaming

Information Sources.” In Proc. VLDB, 2003.

[32] T. Walter. “Explaining cache — NCR CTO Todd Walter

answers your trickiest questions on Teradata’s caching

functionality.” http://www.teradata.com/t/page/116344/.

[33] Y. Zhao, P. M. Deshpande, J. F. Naughton, and A. Shukla.

“Simultaneous Optimization and Evaluation of Multiple

Dimensional Queries”. In Proc. SIGMOD, 1998.

1230

