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ABSTRACT
RadixZip is a block compression technique for token streams.
It introduces RadixZip Transform, a linear time algorithm
that rearranges bytes using a technique inspired by radix
sorting. For appropriate data, RadixZip Transform is analo-
gous to the Burrows-Wheeler Transform used in bzip2, but
is both simpler in operation and more effective in compres-
sion. In addition, RadixZip Transform can take advantage of
correlations between token streams with no computational
overhead. Experiments over practical data show that for
common token streams, RadixZip is superior to bzip2.

1. INTRODUCTION
Token streams arise naturally in logging systems and data

warehouses, both of which store large volumes of data. Log
files created by Google’s web-servers, for example, record a
variety of events such as clicks on advertisements, queries
submitted at http://www.google.com and requests to web
services like GMail. A log record has (key, value) pairs [24]
where the key represents the name and type of the value.
At Google, a stream of log records is divided into blocks.
Within each block, values are first grouped by key and then
compressed. A stream of values with the same key consti-
tutes a token stream.

In relational data warehouses, tables are commonly stored
in row-major format, also known as the n-ary Storage Model
(NSM). Tables can instead be stored in column-major for-
mat, also called the fully decomposed storage model (DSM)
by Copeland and Khoshafian [11]. DSM optimizes perfor-
mance for SQL queries that involve a small set of columns.
However, record deletion and updates to multiple columns
of a record become expensive. A useful compromise between
NSM and DSM is to divide a stream of records into blocks
and to store records within a block in column-major for-
mat. This idea was introduced in the “partition attributes
across” (PAX) format by Ailamaki et al [2]. In PAX, a col-
umn within a block constitutes a token stream.
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Compression of token streams can be carried out by a va-
riety of techniques. If the domain of token values is small
and known a priori, then the simplest compression tech-
nique is to employ a static dictionary that maps values to
fixed codes, which themselves can be encoded with standard
compression techniques such as Huffman encoding [18]. gzip

(based on Liv-Zempel coding [37, 38]) and bzip2 (based on
the Burrows-Wheeler Transform [9]) are slower but more
powerful techniques. Both can work with token values whose
domain is not known. Different methods are used in practice
based on access performance requirements. Huffman encod-
ing or gzip are common low-overhead choices for frequently
accessed data, and bzip2 is a stronger but more costly choice
for long-term storage.

RadixZip Transform is a linear time algorithm for rearrang-
ing bytes in a block of tokens using a technique inspired
by radix sorting. The algorithm is simple, fast and easy
to implement. It replaces the Burrows Wheeler Transform
(BWT) in bzip2 for dealing with tokenized streams, and im-
proves in both run-time performance and compression ratio
for such data. We also show how RadixZip Transform can be
used without additional performance cost to improve com-
pression of multiple correlated token streams.

Experiments over three real world datasets confirm that
RadixZip beats bzip2 in terms of both compression ratio and
throughput (compression and decompression rates). RadixZip

can achieve compression ratios as high as 15:1, beating bzip2

by as much as 10-20%. Compression and decompression
rates were also high, beating bzip2 by about 10% overall;
for certain streams, the improvement was as high as 10:1.
For highly correlated token streams, RadixZip was able to
improve over bzip2 by a factor of over 300:1.

Roadmap: An overview of RadixZip is presented in §2.
The core routine RadixZip Transform is described in detail in
§3. Its output is fed to the backend compressor, which is de-
scribed in §4. Comparison with Burrows-Wheeler Transform
and bzip2 is done in §5. We extend RadixZip to work over
correlated streams in §6. Experiments over real datasets are
described in §7. The applicability of RadixZip to relational
data, XML documents and on Google logs data is outlined
in §8. Finally, we survey table compression techniques in §9
before concluding the paper in §10.
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2. OVERVIEW OF RadixZip
RadixZip divides a stream of tokens into blocks and com-

presses each block individually. Block boundaries coincide
with token boundaries. Tokens come in two flavors:

Fixed-width tokens: All tokens have identical length.
For example, a sequence of 32-bit IP addresses, or a series
of strings of equal length can be used as fixed-width tokens.

Example 2.1. A block with fixed-width 3 letter words:

a s p c o t a s p b o p a s p

The same block in matrix format:

a s p
c o t
a s p
b o p
a s p

Variable-width tokens: Tokens may not have the same
length. For example, a sequence of strings terminated by a
special character can constitute variable-width tokens.

Example 2.2. A block of ✧-terminated strings:

p o t ✧ i t ✧ p o t ✧ a ✧ i t ✧

The same block in matrix format:

p o t ✧
i t ✧
p o t ✧
a ✧
i t ✧

RadixZip compresses a block by applying RadixZip Trans-

form (§3), followed by backend compression (§4). We will
show that all of these steps are linear time, giving us:

Theorem 2.1. RadixZip is linear time.

RadixZip shares its backend with bzip2, but replaces the
Burrows-Wheeler Transform with RadixZip Transform.

3. RadixZip Transform
The input to RadixZip Transform is a block of b bytes

with t tokens. Let c denote the length of the longest to-
ken. RadixZip Transform consists of two steps: transpose
and permute, which are described in §3.1 and §3.2. Each
of these steps preserves size, producing a block with b bytes.

3.1 transpose
transpose performs matrix transposition by storing to-

kens in column-major format instead of row-major format.

Fixed-width tokens: The matrix is dense, so the trans-
formation is straightforward. For instance, the block in Ex-
ample 2.1 is transformed into

a c a b a s o s o s p t p p p

which is a concatenation of the three columns of the matrix:
abaca, sosos and ptppp.

Variable-width tokens: The matrix is sparse. For i ∈

[1, c], the i-th column is stored by concatenating together
the i-th bytes of those tokens whose length is i or more.
Algorithm 1 contains pseudo-code showing this in detail.
For instance, the block in Example 2.2 is transformed into

p i p a i o t o ✧ t t ✧ t ✧ ✧ ✧

which is a concatenation of the four columns of the matrix:
pipai, oto✧t, t✧t✧ and ✧✧.

Algorithm 1 transpose (tokens[1:t])

output ← empty
for i← 1 to t do

len ← tokens[i].length
for j ← 1 to len do

if len ≥ i then
append(output, tokens[i][j])

end if
end for

end for

transpose is an invertible transformation. For fixed-
width tokens, inversion amounts to matrix transposition of
a dense matrix. For variable-width tokens, inversion is com-
plicated by the fact that widths must be deduced from token
delimiters in the block. Still, a single scan over the block
suffices for inversion. The first t bytes correspond to the
first bytes of the t tokens. Subsequent bytes are appended
to tokens whose delimiters have not yet been encountered.

Lemma 3.1. transpose and its inverse take O(b) time
each where b denotes the number of bytes in the block.

Proof. For variable-width columns, time taken is pro-
portional to the sum of widths of all tokens. Since trans-
pose and its inverse both read and write every byte ex-
actly once regardless of whether the input is fixed-width or
variable-width, both are linear time.

3.2 permute

Algorithm 2 permute (perm[1:t]), columns[1:c][1:t]

output ← empty
π ← perm
for i← 1 to c do

append-column(output, columns[i], π)
π ← stable-sort(columns[i], π)

end for

Algorithm 2 shows the next step in RadixZip Transform:
permute. The first input parameter is perm[1:t], which is
a permutation over the set [1, t]. We explain the role of
this parameter in §6, where we study compression of mul-
tiple correlated blocks. For the current section, where we
deal with a single block, it suffices to assume that perm is
the identity permutation, i.e., ∀i: perm[i] = i. The second
parameter for permute is columns[1:c][1:t], which denotes
the dense matrix representation of the output produced by
transpose. For fixed-width columns, all entries of the form
columns[i][j] are defined. However, in the case of variable-
width columns, columns[i][j] is undefined if j-th token is less
than i bytes long.

The first method used by permute is append-column,
which is defined below. Permutation π is applied to column
and the result is appended to output. After permuting a col-
umn containing undefined characters, those characters are
removed before appending the result to output.
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append-column(output, column[1:t], π[1:t])
for j ← 1 to t do

if (column[π[j]] is defined) then
append column[π[j]] to output

end if
end for

The next method used is stable-sort(column, π), which
first applies permutation π to column to yield π(column)
and then computes the unique permutation corresponding to
stable sorting of π(column). This permutation is returned.

Some observations about permute:

➢ At the end of the i-th iteration in permute, permuta-
tion π corresponds to the sort order of columns 1 thru
i taken together, with the i-th byte being the most
significant. So at the end of the last iteration, the fi-
nal permutation corresponds to the (stable) sort order
of all tokens, with the last byte of each token being
treated as the most significant byte.

➢ permute (perm, columns) is equivalent to first per-
muting all tokens by perm, and then invoking per-
mute (identity, columns), where identity is equal to
the identity permutation.

➢ The final permutation could be passed as a parameter
to further invocations of RadixZip. This is useful when
compressing multiple blocks where corresponding to-
kens in the blocks are correlated (see §6).

Example 3.1 shows permute run across our original fixed-
width example. The input permutation is the identity per-
mutation. For each column, a new permutation is computed
by sorting that column. To break ties, we obtain the indices
of all the matching characters, and extract those indices
from the previous permutation in order. The column itself
is permuted by the previous permutation before being ap-
pended to the output.

Example 3.1. permute run across example 2.1:

1 a 1 a s 4 s p 4 p
2 c 3 c o 2 s t 1 t
3 a 5 a s 1 s p 3 p
4 b 4 b o 3 o p 5 p
5 a 2 a s 5 o p 2 p

The final permutation 41352 represents the sort order of
the five tokens using last byte most significant order, and
can be used as input to future calls to permute. The block
in Example 2.1 is thus transformed by transpose and per-
mute into the block shown below:

a c a b a s s s o o p t p p p

Similarly, example 3.2 shows permute run across our
original variable-width example. Note that although later
columns are smaller due to terminated tokens, the permu-
tations are still equal in size to the total number of tokens.

Example 3.2. permute run across example 2.2:

1 p 4 p o 1 ✦ t 1 t ✧ 1 ✦
2 i 2 i t 3 t ✧ 3 t 3 ✦
3 p 5 p o 2 t t 2 ✦ ✧ 2
4 a 1 a ✧ 5 o 5 ✦ 5
5 i 3 i t 4 o ✧ 4 4

The final permutation 13254 again represents the sort or-
der of the tokens. However, this time the length of the
tokens is the most significant ordering factor; shorter tokens
are last regardless of the value of the final byte. The block
in Example 2.2 is transformed into

p i p a i ✧ t t o o t t ✧ ✧ ✧ ✧

Inversion of permute: permute is invertible without re-
quiring any additional information about variable widths.
Each column c can be recovered given the permutation re-
sulting from the recovery of column c − 1. Thus, given
the same input permutation we can sequentially recover all
columns. We first retrieve the first column from the first t

bytes. We then identify the permutation π corresponding
to its stable sort order, apply π−1 to the next column to
retrieve that column, and so on. We illustrate the idea by
walking through the output of transpose and permute on
the variable-width tokens shown in Example 2.2. The first 5
bytes pipai constitute the first column because there were
5 tokens in the block. We set π to the permutation that
denotes the stable sort order of pipai. Since no termina-
tors were encountered in the first column, we read the next
5 bytes: ✧ttoo. We apply π−1 to these bytes to obtain
oto✧t. π is now set to the stable sort order of the recovered
column oto✧t.

Since the second column has 1 terminator, we know that
the third column has only 4 bytes. Moreover, we know that
the undefined character(s) are always last, since they follow
either terminators or other undefined characters which are
last alphabetically. Thus, we can read 4 bytes, tt✧✧, and
pad the column with an undefined character to obtain a 5
byte column tt✧✧ . We apply π−1 to recover t✧t ✧. Sim-
ilarly, we know the last column has 2 bytes and 3 undefined
characters since we have observed an additional 2 termina-
tors in the third column. 2 bytes are read and padded to a 5
byte column ✧✧ before recovering the last column ✧ ✧
and recomputing the final π by sorting the result.

Lemma 3.2. permute and its inverse are O(b) time op-
erations, where b is the number of bytes in the block.

4. BACKEND COMPRESSION
Output from RadixZip Transform is passed through a se-

ries of three steps: Move To Front, Run-Length and Group

Huffman. These three steps are also used in bzip2 after the
Burrows-Wheeler Transform has been applied to a block.
These components may be reproduced using the Vcodex
package, written by Kiem-Phong Vo at AT&T Labs1.

➢ Move To Front coding was introduced by Bentley et
al [5], which reduces entropy by moving recent char-
acters to the front of an encoding array. We further
use an enhanced version discovered by Vo and Vo [33]
that uses a heuristic to predict and move characters
to the front before their turn. When Move To Front is
applied to the output of Burrows-Wheeler Transform
or RadixZip Transform, it tends to produce long runs
of zeros interspersed by other characters.

➢ Run-Length coding replaces a run of zeros by encoding
its length, using two special characters. For example,

1http://www.research.att.com/∼gfs/download/ref/
vcodex/vcodex.html
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lengths 0 thru 13 could be encoded by H, T, HH, TT,

HT, TH, HHH, TTT, HHT, TTH, THH, HHT, HTH, THT.
Such an encoding is logarithmic in the size of the run.
We used the Run-Length encoder deployed in Julian
Seward’s bzip2 implementation, the details of which
are not published anywhere.

➢ Group Huffman is an improvement over the well known
Huffman coder [18] which reduces string size to ap-
proach its 0-th order entropy by assigning variable
length prefix-free codes to every character. Group Huff-

man uses a clustering method first proposed by David
Wheeler, which is also used in bzip2.

Lemma 4.1. Compression and decompression by Move To

Front, Run-Length and Group Huffman are linear time.

5. COMPARISON WITH bzip2
In this Section, we show how RadixZip Transform improves

upon the Burrows-Wheeler Transform (BWT) in terms of
both performance (compression and decompression speed)
and compression ratio. For illustration, we will use the fol-
lowing block of variable-width tokens:

o n e ✧
t w o ✧
o n e ✧
o n e ✧
t h r e e ✧
t w o ✧
o n e ✧
t h r e e ✧
o n e ✧

Figure 5.1 shows the output of both BWT and RadixZip

Transform run on this input. Traditionally, BWT rearranges
bytes in a block by the sort order of all its suffixes. How-
ever, we have chosen to re-arrange bytes by the sort order
of prefixes read right to left. The final compression ratio
achieved by bzip2 should not be altered significantly with
this modification to BWT, and this simplifies our compar-
ison to RadixZip Transform. RadixZip Transform rearranges
bytes by the sort order of its prefixes read right to left, where
prefixes are limited to token boundaries. RadixZip Transform

could also instead be reversed to use suffixes with little im-
pact on compressed size. However, this results in slower
compression and decompression due to cache behavior.

5.1 Better Compression
As shown in Figure 5.1, both BWT (using full prefixes

up to the beginning of the block) and RadixZip Transform

(using prefixes limited to token boundaries) produce a large
number of runs. This behavior is expected because many
tokens are repeated and the total number of unique tokens
is quite small. However, as we will see, RadixZip Transform

improves in a number of ways.
The prefix for a character constitutes its context. The

basic philosophy underlying both BWT and RadixZip Trans-

form is that a character can be predicted by its context.
So sorting by prefixes should create regions of low local en-
tropy. By limiting prefixes to token boundaries, RadixZip

Transform avoids context pollution. For example, all of the
‘n’ characters are grouped by RadixZip Transform, because
the prefix ‘o’ is always followed by ‘n’. However, in BWT,

since prefixes extend all the way to the first character of the
block, context pollution occurs: the ‘o’ prefixes that begin
‘one’ are interspersed with the ‘o’ prefixes that end ‘two’.
This causes the ‘n’ run to be broken up by ‘✧’ characters.

Furthermore, RadixZip Transform restricts each character
to remain within its column. It is a common case that
various columns will have different character distributions.
In these cases, RadixZip Transform ensures that these local
statistics are preserved. For example, the terminating char-
acter ✧ appears in exactly two columns because there are
only two distinct token lengths. RadixZip Transform results
in the total area that ✧ appears in being smaller than with
the BWT. This impacts the Move To Front encoder: since
each character in Move To Front coding is encoded as the
number of distinct characters that have appeared since it
last occurred, restricting the occurrences of a character to a
smaller region results in a greater frequency of low numbers.
This in turn benefits the final entropy coder.

Burrows Wheeler
Transform

o
one✧two✧one✧one✧three✧two✧one✧three ✧

one✧two✧one✧one✧three ✧
one ✧

one✧two✧one✧one✧three✧two✧one✧three✧one ✧
one✧two✧one✧one ✧

one✧two✧one✧one✧three✧two✧one ✧
one✧two✧one ✧

one✧two✧one✧one✧thre e

one✧two✧one✧one✧three✧two✧one✧thre e

one✧two✧one✧one✧th r
one✧two✧one✧one✧three✧two✧one✧th r

on e

one✧two✧one✧one✧three✧two✧one✧three✧on e

one✧two✧one✧on e
one✧two✧one✧one✧three✧two✧on e

one✧two✧on e

o n
one✧two✧one✧one✧three✧two ✧

one✧two ✧
one✧two✧one✧one✧three✧two✧one✧three✧o n

one✧two✧one✧o n
one✧two✧one✧one✧three✧two✧o n

one✧two✧o n

one✧two✧one✧one✧thr e
one✧two✧one✧one✧three✧two✧one✧thr e

one✧two✧one✧one✧three✧t w

one✧t w

one✧two✧one✧one✧t h
one✧two✧one✧one✧three✧two✧one✧t h

one✧two✧one✧one✧three✧tw o

one✧tw o

one✧two✧one✧one✧three✧ t
one✧two✧one✧one✧three✧two✧one✧three✧ o

one✧ t

one✧two✧one✧one✧ t
one✧two✧one✧one✧three✧two✧one✧ t

one✧two✧one✧ o

one✧two✧one✧one✧three✧two✧ o

one✧two✧ o

RadixZip

Transform

o

t

o
o

t

t

o
t

o

o n

o n
o n

o n

o n

t w
t h

t w

t h

th r

th r
on e

on e

on e
on e

on e

tw o

tw o

one ✧
one ✧
one ✧
one ✧
one ✧
two ✧
two ✧
thr e
thr e

thre e

thre e

three ✧
three ✧

Figure 1: Re-arrangement of bytes by BWT is done
by sorting prefixes by reading them right to left.
In RadixZip Transform, sorting is first done by prefix
length and then sorting prefixes of identical length
by reading them right to left.
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5.2 Improved Performance
Complexity: There are a number of linear-time suf-

fix sorting algorithms for the BWT. As these algorithms
are based upon complicated data partitioning strategies,
they are not always efficient in practice [26]. By contrast,
RadixZip Transform mirrors a simple radix sort while rear-
ranging input bytes. Thus it can run much faster than
linear-time suffix sorting algorithms. In addition, because
of its simplicity, an implementation of RadixZip Transform

would be less likely to contain bugs or present security holes.

Memory: Linear time suffix sorting algorithms require
additional memory for their data structures. The best known
algorithm requires three integers per input byte. On the
other hand, RadixZip Transform requires additional main
memory that is proportional to the number of tokens. Specif-
ically, it requires two permutations which are written back
and forth as successive columns are processed. Each permu-
tation is an array of size equal to the number of tokens, thus
RadixZip Transform requires two integers per token.

Cache performance: RadixZip Transform rearranges only
one column at a time, whereas suffix sort can move bytes
from anywhere in the input to anywhere else. For large-sized
tokens, the size of a column is much smaller than the block
size. So byte movements incur fewer cache miss penalties.

6. CORRELATED STREAMS
Two token streams are said to be correlated if the tokens

in one stream can be predicted by the tokens of the other.
In the real world, token streams corresponding to columns
of a relation in an RDBMS are often correlated. For exam-
ple, country codes of incoming requests at Google servers
are likely to be correlated with IP addresses of front-end
servers. Or in a database of addresses, area codes of tele-
phone numbers are likely to be correlated with zip codes.

In Vczip [33], Vo and Vo demonstrated that applying sort
orders from one byte column to another can remove redun-
dancy present in correlated byte-columns. Byte-columns in
such a relationship are called predictor and predictee respec-
tively; the predictor passes a permutation to the predictee.
We use a similar idea in RadixZip: given two blocks with cor-
related tokens, we first apply RadixZip Transform to the first
block and identify the permutation π returned by permute
(see §3.2 for details). We then pass π to permute when it
is invoked for the second block. This is logically equivalent
to applying the permutation to all the tokens in the second
block before running RadixZip over it.

Vo and Vo also showed that usage of multiple predictors
for breaking ties in sort order often improves compression.
It is easy to see that these ideas carry over to RadixZip over
multiple token streams. Consider the example in Figure 2.

In this case, using column IP Address as a predictor im-
proves the compression of column Browser. This is because
each user prefers a particular browser on each computer.
However, computers are used by more than one user, who
may use different browsers. Thus, breaking ties in the sort
order using the column Client ID can improve compres-
sion. Using Client ID alone does not suffice either, since
users use different browsers on different computers. This is
demonstrated in Figure 3.

Vczip handles the situation described above by comput-
ing a secondary predictor for each column. This secondary
predictor is used to break ties. However, with RadixZip, the

IP Address Client ID Browser

1.1.1.1 a Firefox
2.2.2.2 b Explorer
1.1.1.1 a Firefox
1.1.1.1 b Maxthon
2.2.2.2 b Explorer
2.2.2.2 a Opera
1.1.1.1 a Firefox
1.1.1.1 a Firefox
2.2.2.2 b Explorer
1.1.1.1 a Firefox
2.2.2.2 b Explorer
1.1.1.1 a Firefox

Figure 2: Hypothetical log with two users on two
computers

By IP Address By Client ID By both
Firefox Firefox Firefox
Firefox Firefox Firefox
Maxthon Opera Firefox
Firefox Firefox Firefox
Firefox Firefox Firefox
Firefox Firefox Firefox
Firefox Firefox Opera
Explorer Explorer Maxthon
Explorer Maxthon Explorer
Opera Explorer Explorer
Explorer Explorer Explorer
Explorer Explorer Explorer

Figure 3: Sorting of column Browser by various pre-
dictors. Using both IP Address and Client ID gives
the best compression ratio.

permutation passed from one predictor is already influenced
by the permutation passed to that predictor when it was
compressed. This is a powerful effect: all prior sort orders
are used to break ties (this is because stable sort was per-
formed for each block). For the table in Figure 3, one might
imagine that IP Address was used as a predictor for Client
ID to some benefit because each user had a preferential com-
puter, shown below.

Original order a b a b b a a a b a b a
Sorted by IP address a a b a a a a b b a b b

As we can see by the spacing, with only two exceptions,
using IP Address as a predictor for Client ID results in a
complete division between the two IDs. Thus, passing a sort
order from IP Address to the permute method for Client
ID improves compression. Doing so would also change the
permutation that is produced by RadixZip Transform to in-
clude IP Address as a secondary predictor, since it uses sta-
ble sorting. It could use whatever predictor was used for IP
address as a tertiary predictor and so on. The sort orders
produced by RadixZip Transform can thus incorporate many
predictors with no additional overhead. That said, deter-
mining what predictors to use from amongst a collection of
streams is left as a subject for future work.
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7. EXPERIMENTAL RESULTS
We experimented with three datasets:

• Census data: The current population survey in USA
is carried out by the Bureau of Labor Statistics and the
Census Bureau. It is available at http://www.bls.

census.gov/cps ftp.html. The survey report con-
sists of a stream of fixed-width records, each of which is
sub-divided into fixed-width fields described in ftp://

www.bls.census.gov/pub/cps/basic/200508/augnov05dd.

txt We divided the overall stream into individual streams,
one per field. Each stream is tokenized into fixed-width
tokens.

• Forest cover data: Forest cover data is collected by
the US Forest Service Region 2 Resource Information
System. The data describes measurements of land-
scape attributes in 30 × 30 meter cells. It is avail-
able as part of the UC Irvine Knowledge Discovery in
Databases corpuses of large data at http://kdd.ics.
uci.edu/databases/covertype/covtype.data.gz. The
data consists of a stream of records, one record per cell.
Each record is a comma-separated list of integers in
text format. Each integer represents some attribute of
the cell. We divided the dataset into multiple streams,
one per attribute.

• Ads clicks logs: Google web-servers create a record
of every click-through of Google ads. Such records
contain a variety of attributes like timestamps, IP ad-
dresses and details of ad impressions. Many of these
attributes are categorical in nature. We divided ad
records into individual streams, one stream per at-
tribute. These streams are grouped into four types: in-
tegers, strings, floats and doubles. Streams of integers
and strings constitute variable-width streams whereas
streams of floats and doubles constitute fixed-width
streams.

Figure 4 compares RadixZip and bzip2 for various streams
in census data, there being one stream per attribute. The X
axes denote compressed stream sizes. The larger the value
along the X axes, the more that stream contributes to over-
all compression ratio. For larger streams, RadixZip generally
outperforms bzip2. Overall, RadixZip achieved a compres-
sion ratio of 15:1 which represents a 10-20% improvement.

For some streams, RadixZip was worse than bzip2. This
is probably because data in these streams was not well-
structured, making the columns produced by byte trans-
position meaningless.

RadixZip performs poorly against bzip2 on streams whose
compressed size is 1000 or less. This suggests that RadixZip

probably needs sufficient average width of tokens to become
effective. This is supported by plots in Figure 5, which show
RadixZip performs better when width of tokens is larger.

Figure 4 also shows the compression and decompression
speed of RadixZip as a ratio against bzip2. In decompression
we see a consistent gain of about 10% over bzip2. There are
a few outliers where RadixZip loses by significant amounts to
bzip2, which appear to be mostly on very small compressed
streams. This is likely due to the data size being insuffi-
cient for the difference between RadixZip Transform and the
Burrows-Wheeler Transform to be significant. In this case,
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Figure 4: RadixZip to bzip2 ratios v compressed
stream size across all streams in census data.

other factors such as our use of an additional transpose
step and a predictive step in Move To Front dominate.

In compression, we also see consistent gains, but they also
get markedly better for streams which compress to less than
about 20k, barring the same outliers as with decompres-
sion. As we can see in Figure 6, RadixZip tends to compress
faster on streams that compress better. This is likely due to
improved cache performance when recalculating permuta-
tions between the byte columns. Better compression tends
to coincide with more repetitive tokens in the streams. This
creates smaller alphabets in the byte columns, which leads
to reduced modification of the carried permutations. Con-
versely, with bzip2, repetitive substrings adversely impact
the underlying suffix sort algorithm and force it to use its
slower fallback algorithm. Using more modern suffix sorting
algorithms in bzip2 would reduce this difference, however
RadixZip remains a fundamentally faster approach.
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Figure 5: RadixZip to bzip2 ratios v stream width
across all streams in census data.

Figure 7 shows the compression results of RadixZip as a
ratio against bzip2 on the largest streams in the forest cover
data. In this case, we see that RadixZip consistently loses.
The forest cover data contains columns with measurements
of various terrain attributes, which are fairly random within
a range. As such most digits after the first are randomly
distributed. After transpose, the resulting byte-columns
after the first have little meaning, and so RadixZip performs
poorly. For some of the columns, the losses are significant,
where’s RadixZip’s byte column based approach has mis-
aligned the digits of measurements which spanned different
powers of 10 (i.e. 99 and 100). It is thus important to note
that not all token streams are amenable to RadixZip.

Figure 8 shows the compression results of RadixZip as a
ratio against bzip2 on the ad clicks data. For variable-length
integer and float columns, we see results similar to the census
data: a net improvement of about 10%. For string data, we
see a net loss of about 1%. In this case, we see benefits
for some string columns which contain categorical data such
as region codes or browser languages, but losses for many
columns which contain unorganized text such as long URLs.
This was partially offset by the best gaining string column
for RadixZip which contained a stream of identifying strings
of Google’s advertising partners. This data is both large and

Figure 6: (De)compression speed v compression ra-
tio for all streams in census data.

RadixZip bzip2

613195 324651
606062 295820
570618 500948
509128 409766
507856 461411
478430 382884
452378 157132
444642 393210
400000 349486
329478 274870

Figure 7: Compressed stream sizes in forest cover
data.

categorical. Again, the best compression would result from
selective use of the two compressors.

Figure 9 shows a small sampling of hand-picked depen-
dency relationships from the census data. We compare com-
pression using bzip2 alone, RadixZip alone, and using RadixZip

when passed a permutation from a predictor column from
the same dataset. As we can see, potential compression
benefits are large, reaching as high as 99.8%. When correla-
tion is accurate enough to approach functional dependency,
using a predictor can compress a stream to nearly zero, rep-
resenting the fact that it contains no new information over
its predictor. This shows that there are situations in real
data where passing permutations in RadixZip is a valuable
tool. Note also that there are cases where using a predictor
leads RadixZip to win over bzip2 where it would not have be-
fore. These correlations are not necessarily the best possible
that could have been chosen to minimize the size of the set
as a whole; a good method for determining the best set of
dependency relationships is still necessary.
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Figure 8: RadixZip to bzip2 ratios v compressed
stream size across streams in AdClicks data

8. RadixZip IN PRACTICE
There are many real world datasets which consist of record

sequences that can be decomposed into fields. Any such se-
quence of records can be split into token streams, one stream
per field, which may be amenable to RadixZip. For example:

➢ Relational tables: Records in a relational table consist
of tuples. Each tuple has as many members as the
number of columns in the table schema. A sequence of
tuples can be broken into token streams in a natural
way with one stream per column.

➢ XML data: As shown in the XMill [21], an effective
compression technique is to store the XML tree sep-
arately, and to group the values in leaf nodes into
containers such that there is one container per unique
XML path expression. Each container amounts to a
token stream.

➢ Log records at Google: The storage format at Google
for storing log records is simply a byte string that en-

bzip2 RadixZip predictor % reduction
16003 16357 32 99.8 %
13741 13348 28 99.8 %
21559 20555 63 99.7 %
16156 16310 45 99.7 %
14518 19751 86 99.6 %
12076 12398 52 99.6 %
10078 10664 44 99.6 %
26213 25187 120 99.5 %
24948 23392 124 99.5 %
12084 12416 62 99.5 %
29503 27586 153 99.4 %
11650 12091 73 99.4 %
11992 12346 99 99.2 %
11681 12109 110 99.1 %
10681 10185 95 99.1 %

Figure 9: Compression of census data streams with
prediction

codes a list of (key, value) pairs [24]. Four kinds of
values are supported: strings, doubles, floats and inte-
gers. The key associated with a value denotes its type
and its name. The record format at Google provides
two interesting features: (a) sets are supported by al-
lowing multiple (key, value) pairs to have the same key,
and (b) embedding is supported by allowing strings to
represent byte-strings that encode other records recur-
sively. Thus a sequence of records can be compressed
by separating structure from content, along the lines
of XMill: the parse tree of a record is stored separately
and values are valued if they share the same key.

➢ Serialized objects: For transmission of objects across
the wire, and for persistent storage, pickling [6] or se-
rialization of objects in languages like Java [14] and
CORBA [32] is employed. For compression, a sequence
of objects can be transformed by separating structure
(the definition of objects) from content (the values as-
sociated with members of object instances). Values
can be grouped to form token streams, some of which
would be compressed best by RadixZip.

Warehousing and Archival: Large data warehouses
store hundreds of terabytes of raw data. Storage require-
ments for log records collected by companies like Google are
two orders of magnitude larger. Query workload over such
data is typified by long-running queries for analysis, report-
ing and data mining. Google has developed the Sawmill sys-
tem [24] for such queries, which carry out sequential scans
over raw data.

The overall cost of infrastructure for logs storage and anal-
ysis is proportional to the total number of bytes occupied by
log files. However, not all records are popular: recently gen-
erated records are read far more often than old ones. Since
the majority of bytes correspond to rather old records, it
makes sense to maximize compression ratio (by a suitable
combination of gzip, bzip2 and RadixZip) at the cost of slower
decompression times.

Categorical datasets: RadixZip works especially well
when tokens are drawn from a categorical domain. Exam-
ples include strings of browser names, IP addresses from a
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specific country, language codes, country codes, etc. Non-
categorical domains include search queries strings posted at
http://www.google.com, timestamps.

Impact of block size: Although RadixZip is linear time,
careful coding is necessary because cache-performance can
be heavily impacted by block size. Computing the permu-
tation for each column in permute (see §3.2 for details) is
the bottleneck operation since it involves writes to random
indices in a large integer array. So choosing the block size
such that a permutation can fit entirely in cache should im-
prove throughput. Note that the size of the permutation is
proportional to the number of tokens, which is much less
than the number of bytes in a block. Thus the block size
can sometimes be much larger than the cache size.

Training: RadixZip outperforms bzip2 often, but not in
all cases. For maximum compression of a set of records that
has been decomposed into multiple token streams, we should
identify the best possible algorithm per token stream. When
the number of records is very large, say of the order of bil-
lions, it suffices to train over a small sample (of the order
of tens of thousands of records). The goal of training is to
identify the best algorithm per token stream by comparing
various algorithms over the sample. Generally speaking, the
nature of such token streams does not change significantly
over long periods of time, nor do the correlations between
them [7, 33]. So training does not have to be repeated of-
ten. Finally, invocations of RadixZip over correlated blocks
can be improved by passing permutations from one block to
another. Identifying correlated blocks automatically is an
interesting research problem.

9. TABLE COMPRESSION: A SURVEY
We will now survey existing compression methods that are

being used to encode database or tabular data. These range
from simple techniques for use on frequently accessed data,
to heavier compression algorithms for long-term storage.

9.1 Lightweight Compression Techniques

9.1.1 Column-oriented Storage
Traditionally, relational databases stored tuples in a page

in row-major format. An alternative called “vertical par-
titioning” was proposed by Copeland and Khoshafian [11].
A relational table was instead divided into as many tables
as the number of columns. That way, one page would con-
tain values in a single column. This scheme slows down
updates since multiple pages have to be modified. How-
ever, selection conditions over columns run much faster. A
compromise between traditional format and vertical parti-
tioning was suggested by Ailamaki et al [2]; paging would
still be done on whole rows, but tuples within a page were
stored in column-major format. Subsequently, research into
column-oriented data storage has continued, as exemplified
by experimental systems like C-Store [30] and commercial
systems like Sybase IQ [22]. Recent work by Harizopoulos
et al [16] identifies workloads under which column-oriented
systems outperform row-oriented systems.

9.1.2 Compression by Simple Encoding Techniques
In both row-oriented and column-oriented storage sys-

tems, individual members of a tuple can be compressed by
a variety of lightweight encoding techniques:

• Null value suppression: It is common for large por-
tions of database or tabular data to have a lot of NULL
values; so compression can be improved by suppressing
them [28, 36]. INGRES [31], one of the earliest rela-
tional databases, employed NULL value suppression.

• Dictionary/Domain encoding: A global dictionary
that maps values to fixed-length codes is created. Indi-
vidual values in a column are replaced by their codes.
For example, if there are only eight possible values for
a column of type char(12), then only 3 bits per value
are necessary. Domain encoding has been explored by
various groups [10,13,15,28,30, 39]. Recently, Raman
and Swart [27] have developed this idea further by us-
ing Huffman encoding [18] and exploiting correlations
between columns by pairing them into single tuples.

• Delta compression: In a relational database, tables
are commonly stored by sorting the tuples with some
attribute treated as the sort key. Occasionally, mul-
tiple columns are concatenated to derive the sort key.
Sorted keys can be efficiently compressed by storing
only the differences between successive keys.

• Bit-mapped indices: These are commonly used in
data warehouses. The basic idea originated in work
by O’Neil and Graefe [23]. Compressed bitmaps were
investigated by Amer-Yahia and Johnson [3]. For a
survey of other space-saving tricks and techniques used
in data warehouses, see the survey by Sarawagi [29].

Lightweight compression is now supported by commercial
databases, such as IMS [12], DB2 [19] and Oracle [25]. Its
impact on query performance has been studied by various
groups: Graefe and Shapiro [15], Amer-Yahia and John-
son [3], Goldstein, Ramakrishnan and Shaft [13], Johnson [20].
Recently, Holloway et al [17] have studied the performance
of various lightweight techniques over modern processors.
Abadi, Madden and Ferriera [1] show how compression can
be integrated into column-oriented systems.

9.2 General-Purpose Compression
Two general purpose compressors used widely are gzip,

based on Liv-Zempel encoding [37, 38], and bzip2, based on
the Burrows-Wheeler Transform [9] (BWT). gzip achieves
compression by identifying repeated occurrences of long sub-
strings and replacing them by an encoding of the length of
the sub-string and the offset at which the previous occur-
rence of this sub-string can be found. Offsets are limited to
a maximum value called the “window size”. The BWT rear-
ranges characters in a block by the sort order of the suffixes
of these characters. If suffixes provide a good context for
characters, this creates regions of locally low entropy, which
can be exploited by various back-end compressors. This re-
quires sophisticated data structures for suffix arrays.

9.3 Specialized Techniques for Tabular Data
Two techniques have recently been discovered at AT&T

Labs for compression of large tables with fixed-width columns.
PZip [7, 8] is a stream compressor while Vczip [33, 34] is a
block compressor. Both algorithms require training, i.e.,
some data structure is computed over a small subset of the
records, which is then used during compression.
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9.3.1 PZip
PZip, by Buchsbaum et al at AT&T Labs [7, 8], is the

first compressor to address tabular data with fixed width
records. Although records may contain fields, they are ig-
nored and only byte-columns are handled. The ordering of
these columns is permuted and they are then divided into
disjoint subsets.

Each subset of columns is traversed in row major format
and fed to a backend compressor like gzip. Computing the
optimal ordering and partitioning of columns is an NP-hard
problem and expensive even to approximate. As such, a
heuristic is used, and then is only trained over a small sub-
set of records with the results being used for a much larger
set. A complete graph is created with one node per column.
The edges between two nodes are labeled by an estimates of
the co-compressibility of the columns corresponding to the
two nodes. A Traveling Salesman Problem approximation
is used to compute a near-optimal ordering of the columns.
Subsets are identified by dynamic programming. Note that
an optimal ordering of pair-wise co-compressibilities does
not necessarily result in an optimal compression across all
columns. Moreover, an optimal partitioning of an optimal
ordering is not necessarily optimal over all possible order-
ings. However, the algorithms employed by PZip work very
well; the authors claim 55%-75% improvement over gzip.

An interesting experiment would be to study the efficacy
of a PZip-like approach as a pre-processor for compression
by RadixZip instead of gzip, as a group of columns produced
by PZip can be treated as a stream of tokens of fixed width.

9.3.2 Vczip
Vczip is compressor based on the Vcodex framework de-

veloped by Kiem-Phong Vo at AT&T Labs [35]. Vczip in-
cludes a table compression technique based on column de-
pendency [33, 34]. Byte-column dependencies are relation-
ships in which the contents of one byte-column can be pre-
dicted given the contents of some others. For example, in a
table of phone records and addresses, one might imagine the
contents of a byte-column from a person’s area code might
be better guessed given the contents of byte-columns from
their zip code. Again, the problem of computing the opti-
mum predictors for each column is NP-hard and an efficient
and effective heuristic was developed to find effective sets
of predictors with maximum size two. Like with PZip, this
heuristic is applied on a small header of records and the re-
sults are used for a larger set. Each predictor set is used
as a context to sort its predicted columns. Like RadixZip,
this is similar in principle to the Burrows-Wheeler Trans-
form. Vczip improves over PZip by an average of 30% and
is currently the best known compressor for table data.

As mentioned earlier, a stream of records in a table is a
subclass of a token stream, that additionally contains sev-
eral internal fields. Vczip and RadixZip share the idea of ap-
plying a permutation from one context to a target column.
Whereas Vczip passes these permutations across a distance
and uses a number of predictors bounded to two, RadixZip

carries them sequentially and uses a potentially great num-
ber of predictors. These distinctions are due to the fact
that Vczip aims to work with ’tokens’ that contain some
unknown internal structure, whereas RadixZip assumes its
tokens are minimal units. Still, RadixZip’s method for car-
rying sorted permutations across multiple columns might be
an improvement to Vczip worth investigating.

9.4 Lossy Compression
SPARTAN is a lossy compressor for large tables by Babu

et al [4]. SPARTAN aims to exploit correlations between
attributes as detected via a Bayesian Network. These cor-
relations are then utilized by constructing CaRT models. A
CaRT model computes a value in the predictee based on the
corresponding values in the predictors. They are chosen to
be accurate within a provided error bound, and succinctly
encodable. These models replace the actual values, which
may be discarded.

Although SPARTAN also aims to exploit correlations, it
cannot be directly applied to lossless compression since the
predictees are not encoded. In order to to achieve lossless
compression that exploits correlation, it would need to be
extended with some method of encoding the predictee that
improves coding based on the accuracy of the estimate pro-
vided by CaRT model.

An interesting experiment would be to see if the correla-
tions computed by SPARTAN would serve as useful predic-
tors for passing permutations with RadixZip.

10. CONCLUSIONS
RadixZip is a new algorithm for compressing streams of

tokens. It improves upon traditional compressors like bzip2

that are oblivious to token boundaries. RadixZip can also
efficiently exploit correlations between streams of tokens.
The applicability of RadixZip extends to structured datasets
in general. These include tables in relational databases, log
records created by web servers, XML data and serialized
objects created in languages like Java and CORBA.
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