
A Generic solution for Warehousing

Business Process Data

Fabio Casati, Malu Castellanos, Umeshwar Dayal, Norman Salazar1
Hewlett-Packard, Palo Alto, CA, USA

{firstname.lastname}@hp.com

1 In cooperation with Ralph Gerhardt (HP Consulting), Manoj Kumar (HP India), Harry Jia (HP China), and the entire HP BPDO team.

Fabio Casati is now with the University of Trento. Norman Salazar is now with UPC Barcelona.

Abstract

Improving business processes is critical to any

corporation. Process improvement requires analysis as

its first basic step. Process analysis has many unique

challenges: i) companies execute many business

processes, and devising ad hoc solutions for each of

them is too costly. Hence, generic approaches must be

sought; ii) the abstraction level at which processes need

to be analyzed is much higher with respect to the

information available in the process execution

environment; iii) the rapidly increasing need of co-

developing the process analysis and the process

automation solution and the scale of the problem makes

it hard to cope with frequent changes in the sources of

process data. To address these problems, we have

developed a process warehousing solution, used by HP

and its customers. In this paper we describe the solution,

the challenges we had to face, and the lessons we

learned in implementing and deploying it.

1. INTRODUCTION AND MOTIVATION

Business process improvement has always been at the heart of any

ocess

improvement was on automation: workflow and other middleware

technologies were used to reduce human involvement by better

systems integration and automated execution of the business logic.

The total or partial automation of the process and/or of part of its

steps creates the unprecedented opportunity to gain visibility on

process executions. In fact, executions of process steps now leave

some kind of temporary or permanent trace in one or more

systems (databases, web sites, messages in transfer on a message

broker, etc). The ability to analyze process execution information

and to measure the quality, efficiency, and timeliness of process

execution as well as to understand areas for improvements

provides immense benefits to companies as it is key to achieving

the goal of better and cheaper process execution. Recent and well-

known financial crises have also prompted lawmakers to impose

stringent regulatory requirements for monitoring and reporting on

process executions, reinforcing the need for process analysis [4].

Furthermore, process analysis and reporting is the cornerstone

of one of the fastest growing businesses in the IT sector, that of

business process outsourcing (BPO). BPO involves delegating the

execution of (part of) a business process to another company.

Processes that are typical candidates for outsourcing include travel

expense reimbursement, invoice payment, or employee payments,

and in general all those processes that every company must deal

 A key need

in BPO is that of being able to describe and formalize Service

Level Agreements (SLAs). In fact, when a company executes its

own processes, it does so in a best effort manner. When it

outsources the process to other companies, it wants to formally

define the quality levels that it expects. This implies being able to

define and monitor SLAs for business processes. From a

report on SLAs and to analyze process executions to meet SLAs at

lower cost.

The common approach to analyzing data from transactional

systems is to collect it into a data warehouse (using extract,

transform, load tools) and then leverage an OLAP tool to slice and

dice data along different dimensions. This is also the sensible

approach for process analysis.

Process data warehousing, however, presents interesting

challenges. First, developing ad hoc, process-specific solutions for

warehousing and reporting on process data is not a sustainable

model. The problem is even more relevant in BPO, as the provider

of outsourcing services needs to support (monitor and analyze)

different versions of the same process for different customers,

possibly also with variations in reporting requirements for each

customer. Consequently, the principal objective and one of the

main challenges -- of our work has been that of developing a

general and reusable solution for process data warehousing,

applicable to most or all the processes in a corporation. We have

verified through experience that designing a generic solution is

non-trivial but possible, as the nature of the process data and of

the analysis needs share key aspects that make a common solution

feasible. The solution we have developed captures the common

aspects while leaving room for the all-important customer-specific

and geography-specific customizations.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1128

Figure 1. The invoice payment process

A second challenge in process data warehousing is that of

abstracting process data. The typical process executed in the

IT system is very detailed and consists of dozens of steps,

including manual operations (e.g., scanning invoices),

database transactions, and application invocations. However,

reporting at this level of detail is confusing for analysts who

have in mind a much higher level picture of the process. The

common wisdom is that analysts, and especially business

analysts and managers, perceive a process as being composed

of approximately 5 to 7 steps. SLAs and key performance

indicators (KPIs) are also defined on abstracted versions of a

process2.

A third interesting and novel challenge, which is today

specific of the BPO domain, but which is likely to extend to

in-house process execution as well, is that the business

process automation application and the analysis/reporting

application are co-developed. This means that the reporting

solution should be in place by the time the business process

application goes live, or very shortly thereafter. The

challenge here is that, during development, changes to the

data sources and even to the reporting requirements are fairly

frequent. To make things worse, once processes are in place

and start to operate in a dynamic multi-customer

environment, continuous adaptations are required. Hence, it

is important to devise a method for minimizing the impact of

changes and be able to quickly modify and re-test the ETL

(extract, transform, and load) procedures,, the warehouse

model

2 In the following we will generally refer to SLAs and KPIs

as metrics

industry), and the reports.

In this paper we describe how we have addressed these

challenges as well as the lessons learned in developing and

deploying our solution, including also alternative approaches

that did not prove to be satisfactory. Specifically, the paper

makes the following contributions:

 We analyze and classify analysis requirements for

process data warehousing.

 We provide a configurable warehouse model that can

satisfy complex reporting needs for virtually any process,

also taking into account performance constraints. The model

addresses key recurring problems such as the trade-off

between the need to model heterogeneity (each process is

different) and that of defining a uniform representation for

all processes (to support reusability and cross-process

analysis).

 We show how to abstract from low-level data about

executed processes to higher-level views of the same

process, suitable for reporting purposes. The approach is

based on defining abstract processes and then mapping the

process progression to events occurring in the source

systems.

 We describe how to ETL process data, and in particular

how to semi-automatically maintain ETL procedures in the

wake of changes in the source applications.

 We show how the solution can be quickly prototyped

using an emulation environment to get early feedback from

users. This is essential, as it invariably happens that

reporting requirements change considerably after users view

the first version of the analysis system. Hence, tackling this

problem means saving months of effort.

1129

2. PROBLEM DESCRIPTION AND

REQUIREMENTS

2.1 Business process execution

environments

This section describes, by means of a simple example, the

typical process execution and source data environments on

top of which the solution has to be deployed. The

assumptions are very general as the solution should be

applicable to different situations.

Figure 1 shows an abstracted version of an invoice

management process. The actual implemented process is

much more complex, and its definition may not even fit on a

page. In large companies, this process is run several

thousands of times per month. Due to the volumes, and to the

penalties involved in late payments, it is imperative that it be

performed in an efficient and timely manner. Hence it is one

of the many processes for which analysis is important.

The process begins with the receipt and scanning of the

invoice document in case of paper invoices. Then the data is

indexed (extracted from the image and entered in a database)

and validated. Then, also based on comparison of invoices

with purchase orders, the order information as well as vendor

payment information are updated. The invoice and the

information updates are then audited (via automatic error

checks, and possibly a manual audit which is performed

occasionally depending on the seniority of the employee who

has done the initial validation). If the invoice passes all the

checks, then the process ends (the invoice will then go

through payment, not described here). Otherwise, it will be

returned to the vendor.

Processes are typically supported by a combination of

systems and technologies, which include scanning and

document management systems, databases, ERP systems,

custom applications (including Web applications for data

entry or to facilitate/track approvals), and in some cases also

workflow systems which automate part (but rarely all) of the

process logic. In general, information from all these systems

is needed for process analysis and reporting.

2.2 Common reporting requirements

Over the past couple of years we have analyzed reporting

requirements for many different processes, with the goal of

identifying common requirements. This makes possible a

unified approach to reporting and analysis, so that the effort

for setting up the analysis for a new process or customer

consists mostly of customization rather than development.

We have found that all of the reporting requirements can be

classified along the following categories of metrics:

 Process metrics: these are based on process progression

data only (i.e., activation and completion of steps), and

include:

o Metrics on basic process statistics (process and step

durations, or volumes)

o Metrics on the time interval between the

start/completion of a step and the start/completion of

another. For example, we may want to monitor the

time taken from indexing to correction, because this

is a measure of the performance of a certain

department.

o Path and outcome metrics, such as the number of

times a loop is executed (e.g., how many times a

correction cycle is needed) or the percentage of time

a process ends at a certain end node.

o Correlation with previous step: very often we have

encountered the need to report on steps in relation to

the previous one. This is common when there are

some exception-handling steps which are executed

when the previous step fails. ous

general different instances can take different paths

through the process .

-- Resource metrics:

o Performance of human and automated resources

in executing steps.

o Correlation between resources and process

metrics (which resources statistically lead to

successful or unsuccessful executions, or which

resources have statistically led processes to

follow certain paths in their execution)

 Business data metrics:

o Correlation of business data (e.g., invoice data,

vendor data) with process data. For example, analysis

of efficiency and quality of execution based on

invoice type.

o Correlation between business data and resources. For

example, number of invoices from a given center

processed by a given employee.

The underlying requirement for all of the above metrics

is that they are defined and computed on abstracted versions

of the process, not on the actual implemented version. We

have witnessed this need consistently throughout all

reporting requirements, except when the actual process was

itself very simple.

In the following we show how we have addressed the

requirements on the metrics via a data warehousing approach

that is process-independent, and how we have addressed the

requirements on abstraction via a mapping and correlation

mechanism that drives a process-aware ETL procedure. We

then show how we have tackled the problems related to

application-reporting co-development and rapid prototyping.

3. PROCESS DATA WAREHOUSE

MODEL

Defining a generic model for a process data warehouse has

the following challenges:

 Multi-level instance data (facts): a process execution

has related facts at different levels of granularity, including

step-level facts (e.g., step durations), process instance-level

facts, and data-related facts (values and changes to business

data). Facts may have to be self-correlated, especially in

.

 Business data associated with a process instance is

always different from process to process, can in general

have complex structures, and can change at every step

1130

during the process, so that its representation becomes

complex (and hard to generalize).

 Process and step executions go through a lifecycle. For

example, steps are created (they are ready for execution),

assigned to users, locked or activated (people begin to work

on them), reassigned to different users, unlocked (people

stop working on them), and completed. All these are events

that should in principle be modeled. They are again facts,

which are at a granularity even lower than that of the step

(i.e., at the level of step status changes), and which depend

on the business process and on the system supporting them

(e.g., different workflow systems have different lifecycle

phases for steps and processes). Also, the number of states

in the lifecycle visited for each step execution is in principle

unlimited (for example a step can be suspended and re-

activated several times).

Figure 2 shows the most significant elements of the data

warehouse model. Representing dimensions is fairly easy

and, since it does not pose any particular new challenges, it

represent facts. At the step-level, the approach we took is to

model all step execution facts in a single table, with one row

per step execution (see table task execution in Figure 2). This

design has some limitations: one is that we represent

information from different source systems (and for processes

that have different step properties and lifecycles) within the

possibly infinite set of step-related events into a limited set of

attributes. However, we have experienced that this approach

is more effective than the alternatives of i) representing step

facts at the granularity of step status changes and ii) using

different step tables for information coming from different

systems, and hence having different properties.

In fact, the vast majority of step-related queries are

related to a limited number of measures (namely, step

which can be computed at ETL time and which can be

summarized at the step execution level (see duration related

columns, e.g., New_To_Ended_Duration_Sec). Furthermore,

in terms of analyzing the resources that performed the steps,

what is always queried is information about the first user to

whom a step is initially assigned for execution, and the last

user who finally completes the step (see processor-related

columns, e.g., Final_Proc_Key note that in business

process terminology, users who execute steps of a process are

e re-assigned from

user to user, this is infrequent and it has never been a target

of reporting requirements in any of the cases we have

analyzed. The issue of sourcing data from processes in which

step lifecycles follow different models is solved by

recognizing that in practice there are only three step states

that are relevant: creation, activation (somebody begins to

work on a step), and completion. This is sufficient to model

reporting requirements in virtually any system, and more

complexity than this is unnecessary as it is not understood by

business users. Finally, modeling tasks in one table is very

convenient as it allows us to perform analyses that go across

processes (e.g., analyze resource performance or aggregating

measures on step level SLA violations regardless of the

process). Performance is not impacted as bitmap indexes and

partitions make it feasible to deal with high volume tables

when process-specific analysis is needed.

The problem of self-

the correlation in the tuples. While we often found that

queries ask for information on a step with respect to the

previous one (e.g., retrieve all the steps that lead to the

subsequent execution of the index validation step), the kind

of information required on the previous step is limited.

Hence, we add columns (see those with prefix Previous) to

the task execution fact table to explicitly store this

information, computed at ETL time. The alternative option

was to store in each tuple a link to the entry in the same table

that describes the previous task. However, this leads to much

slower queries (hundreds of times slower) unless we create a

unique index for fast access to step data, but with

considerable space penalty and data loading performance

issues.

At the process instance level, a different approach is

required. Here, we still define a generic process instance fact

table that contains basic process information (e.g., start time,

end time, duration, initiator, etc). However, we need to store

business data as well for the analysis. While in general

business data can have arbitrary structures, the typical need is

that of representing a (process type-specific) tuple of data

elements for each instance, such as <invoiceID,

customerName, Amount,..>. Hence, the solution here is to

create a table per process type, which contains process

specific data (e.g., Invoice_Business_Data in Figure 2) along

with process instance-level progression data, essentially

replicating much of the information present in the

process_instance table. For example, the

Invoice_Business_Data table has the Receive_Date_Key

element that represent the date in which the process instance

starts. Similarly, the payment date corresponds to when the

instance ends.

This replication is necessary to simplify correlated

business/progression analysis, as joining with the

process_instance table should be avoided if possible. Note

that the process_instance table is still needed as often it is

necessary to perform analyses that go across instances of

different processes. The size of the tuples is typically quite

small so this duplication is feasible in the vast majority of

cases.

Perhaps surprisingly, queries that require correlation of

step-level information with process instance or business data

are infrequent. However, they do occur, and, although this is

discouraged by many, we handle this via links (referencing

columns) between the fact tables at the step and process

granularities (from a step fact to its process instance fact, and

from the process instance fact to its business data fact). In

Figure 2, for example, the Top_Work_Object_Key in the task

execution data refers to the process instance data, while the

Entity_Table_Key in the process data refers to the business

data. We found that performance is acceptable (with proper

indexing) in most cases, unless we go into volumes in the

order of several tens of million of rows.

Note that we only have one generic step instance table

but many business data tables; hence the pointer to the

business data table (Entity_Table_Key in Figure 2) is blind:

it does reference an entry in some business data table, but

which one is not specified. This is not a limitation as when

1131

such a step-process correlation is needed along with (process

type-specific) business data, the analysis is necessarily

process type-specific, and the query writer has to be aware of

which business data table to join. This approach does not

preclude more complex structures for business data (e.g.,

having an invoice line item table along with invoice data), as

long as t

process.

Calendar_Date

Calendar_Date_Key

System_Date

Day_of_Week

Day_Number_Of_Week

Day_Number_Of_Month

Day_Number_In_Year

Week_Ending_Date

Week_Number_In_Month

Employee

Employee_Key

Employee_UEID

First_Name

Last_Name

Display_Name

Employee_email

Employee_Phone

Process_Instance

Work_Object_Key

Work_Object_Id

Process_Start_Date_Key (FK)

Process_End_Date_Key (FK)

Process_Duration

Process_Start_Time_Key (FK)

Process_End_Time_Key (FK)

Process_Instance_Status_Key (FK)

Entity_Table_Key

Process_Instance_Status_Info

Process_Instance_Status_Key

Has_Exception_Occurred

Process_Instance_Status

Proc_Inst_Last_Step_Created

Proc_Inst_Last_Step_Completed

Process_Type

Process_Type_Key

Process_Name

Entity_Data_Table_Name

Process_Group

Queue

Queue_Key

Queue_Type

Queue_Name

Task_Action_Info

Task_Action_Key

Task_Action

Task_Action_Reason

Task_Execution

Top_Work_Object_Key (FK)

Task_Type_Key (FK)

Process_Type_Key (FK)

Previous_Task_Type_Key (FK)

Previous_Task_Action_Id (FK)

State_New_Time_Id (FK)

State_Active_Time_Id (FK)

State_New_Date_Key (FK)

State_Active_Date_Key (FK)

Task_Action_Key (FK)

New_To_Ended_Duration_Secs

New_To_Active_Duration_Secs

Active_To_Ended_Duration_Secs

Task_Flag_Key (FK)

Entity_Data_Key

This_Queue_Key (FK)

Previous_Queue_Key (FK)

Final_Proc_Key (FK)

Initial_Proc_Key (FK)

Previous_Final_Proc_Key (FK)

State_Ended_Date_Key (FK)

State_Ended_Time_Key (FK)

Message_Sent_Count

Task_Flags

Task_Flag_Key

Is_First

Is_Last

Task_Status

Has_Deadline_Expired

Task_Type

Task_Type_Key

Task_Type_Desc

Task_Max_Duration

Entity_Data_Table_Name

Time

Time_Key

Timestamp_In_Seconds

Hour

Minutes

Seconds

AM_PM_Flag
Invoice_Business_Data

Invoice_Key

Invoice_Number

Receive_Date_Key

Invoice_Status_Info_Key

Business_Center_Key

Payment_Terms_Key

Invoice_Reversal_Date_Key

Scan_Date_Key

Invoice_Date_Key

Due_Date_Key

Posting_Date_Key

BaseLine_Date_Key

Payment_Date_Key

Vendor_Key

Transaction_Currency_Key

Figure 2. Process warehouse model (not all attributes are

shown)

In summary, the key solutions are: i) single granularity

for steps; ii) single fact table for any step of any process, with

aggregation of most common measures that are at the step

event granularity; iii) correlation with previous step data

handled via additional columns; iv) separate business data

tables per each process type; v) blind links to handle step-

process correlation with business data. This structure works

for any process, and can be easily implemented.

These design decisions are the result of a large number of

experiments and the exploration of many different

alternatives. Having this common design shortened the

warehouse design cycle for new processes to nearly zero, and

report writing has also been considerably simplified due to

the many commonalities in the reports for different

processes. This translated into very significant savings in

development time. Indeed, the first design took about six

months, while the addition of a second process only required

three weeks. Note that these savings occur both when we add

a process over the same schema as well as when we create a

new, separate schema,

process data warehouse design.

4. COLLECTING, ABSTRACTING, AND

LOADING PROCESS DATA

4.1 Mapping events to abstract processes

The problem of providing abstracted process representations

for warehousing and reporting has two facets: first, we need

to provide users with a way to model the abstraction, that is,

to describe the high level process and how its progression

maps to underlying IT events. Second, we need to have an

ETL mechanism that, based on the abstract process definition

and the events occurring on the different systems, loads the

warehouse with abstracted process execution data. Modeling

abstract processes involves the following:

1. Describing the process flow (Figure 1) as needed for

analysis, along with relevant business data (also possibly

abstracted with respect to the actual business data).

2. Specifying how the abstracted business data for each

process is populated and maintained, based on a mapping

between business data and IT events that mark the

progression of the process. For example, one can define an

invoice business data structure, and state that the audit result

attribute should be populated when a message of type audit

is sent over a message bus, and the value of parameter

response in this message should be taken as the value. Note

that the mapping must include a definition of the correlation

logic, information used to associate events to the correct

business data instance (and indirectly to the correct process

instance, see below). For example, one can specify that,

when the audit message occurs, only instances of invoice

whose invoiceID attribute is equal to the invoice number

parameter of the message should be updated (Figure 3).

3. Associating the start and completion of each step with

changes to the abstract business data, to define progression

information. For example, we associate the completion of

the audit step with the fact that the audit result attribute

becomes populated (Figure 3). In this way, we can map IT

events, through the business data, into events at the level of

the abstract process instance.

Figure 3. Mapping audit message event to audit step

completion

1132

4. Associating steps to human or automated resources.

This is again based on mapping to the abstract business data.

For example, one can specify that the resource that

completed the audit step is to be determined by looking at

column auditor of the invoice abstract data.

Modeling is performed via a component called HP

Business Process Insight (BPI) [2]. This is a stand-alone tool

that can also be applied as a real-time process monitoring

solution (the attentive reader will have noticed that if we are

progression of abstract processes in real time), though here

we describe its concepts and application in the context of

process data warehousing.

BPI provides a Java interface that allows users to provide

the specifications described above (Figure 1). Specifications

are then accessed by the ETL to know how to map process

data across levels of abstractions, and how to construct

business data (Figure 4). Event data is captured by deploying

probes that monitor source systems for events of interest and,

when the event occurs, store the event occurrence

information (event name and its parameters) into an event log

database (one table per event, storing event name, occurrence

time, and its parameters, one per column). For example, a

table audit that stores audit events would have attributes

eventID, timestamp, invoiceID, result, auditor, etc. The

probing mechanism used (openadaptor [3]) is provided by a

third party and is not part of our work.

Figure 4. Extraction and abstraction of process data

At data loading time, the ETL function goes through the

events (reads all the event tables, whose names and types are

also stored by the modeler, so they are known) orders them

by time, and, based on the defined mappings between data

and events, it generates a set of changes to abstract business

data, i.e., a change log, timestamped, based on the event

timestamp. For example, it creates a set of records for the

invoice abstract process data, possibly with many records for

the same invoice instance, if more than one event for that

invoice occurred in the extraction period.

 Next, the process progression is computed, based on the

the data changes in the specified order and detecting changes

that are relevant for the progression. At this time, besides

marking the progression (i.e., creating records for the step

execution data), the latest value of the abstract business data

is also stored, and this information is then ready to be loaded

in the warehouse.

An alternative modeling approach involved mapping the

process progression directly to events instead of indirectly,

via changes to the abstract business data. However, this level

of indirection is helpful given that i) many different events

may cause the same change to a business data item (e.g., if

the process is implemented on a different IT infrastructure),

ii) the same business data can sometimes be used to support

and mark the progression of instances of different process

types, and iii) in practice, for abstract processes the

progression is often dependent on business data changes, and

in the rare cases where this is not true, an ad hoc dummy data

element can be created in the business data for this purpose.

Hence, this approach on average reduces the specification

and maintenance effort and makes the specifications more

robust to changes in the information sources (which often

requires event specifications to be updated, but no changes

are needed to business data or progression information).

4.2 ETL generation and maintenance

Analogously to what we did for the process data warehouse

model, we have been able to factor the common aspects of

ETL into a generic solution that applies to any business

process. In contrast to the way ETL is normally done in data

warehousing, where data extracted from the source(s) lands

into a staging area and a single transformation stage maps it

into the target warehouse tables, our solution requires a two-

phased transformation stage (see Figure 5). This two-phased

transformation is the result of our abstraction requirement

where the events monitored in the underlying systems are

mapped to data changes -first phase of the transformation-,

and from those to process progression second phase of the

transformation- (see Figure 4). The mappings used in both

transformation phases are those defined with BPI as part of

the abstraction modeling (see #2, #3 in section 4.1) The main

challenges that we faced were to find a way to semi-automate

the creation and maintenance of the staging area, and the

execution and maintenance of the mappings. To this end, we

devised two generic procedures as part of our solution:

 One procedure automates the creation and maintenance

of the staging area where event data extracted from the

source logs not only lands but is mapped -- using the

mapping procedure described below -- to a set of changes

on abstract business data (first phase of the transformation).

 The other procedure automates the generation of

executable transformation scripts from the mappings

specified in the abstract process model (section 4.1). Such

transformation scripts are used for mapping data to different

abstraction levels in each transformation phase.

 One important design principle was that of being agnostic

with respect to the underlying tool (i.e., home-grown or

commercial) supporting the execution of the ETL

procedures automatically generated by our solution.

4.3 Staging Area

The staging area in ETL is a database (could be files but

we have chosen to use a database) where extracted data is

1133

staged to get it ready to be loaded into a data warehouse. It

basically serves two purposes: as a landing area where

extracted data lands, eliminating the need to repeat an

extraction if anything goes wrong (extracting data may

impact the operation of the source), and as a working area

where data is checked and prepared for loading. It is in the

staging area where different sets of tables need to be created

for various purposes. Normally, landing and image tables

(explained below) are created, but our solution also includes

an intermediate set of tables to handle the two-phased

transformation stage where the result from the first

transformation phase needs to be staged to be used as input to

the second transformation phase.

To populate the process data warehouse it is necessary to

first extract the data from the different event log databases

into the landing tables of the staging area. To define the

schema of such tables we use a GUI that allows the user to

check off the tables and fields from where data will be

extracted from each event log. This procedure generates a

schema definition script in SQL DDL for creating the

corresponding landing tables.. For example, if the message

broker log had a table for audit messages with fields

<invoice_id, amount, result> and all of these fields need to

be extracted to map an audit message event into a change to

the result data of the corresponding invoice, then they will be

checked off and the following DDL statement will

automatically be generated:

USE LANDING_AREA

CREATE AUDIT TABLE (invoice_id char(15), amount

decimal (6,2), result char{12))

Normally, once data has been extracted into landing

tables, it is checked for duplicates and for determining if it is

an insertion, update or deletion. To this end, the tuples in the

landing tables are compared with their counterparts in the

image tables. Image tables, as the name suggests, keep an

image of the last version of the records extracted from the

sources since the first extraction cycle (or since the last time

the staging area was flushed). There is one image table for

each landing table with exactly the same schema. Therefore,

the same DDL script used to create the landing tables is used

to create the image tables as well. Once data in the landing

tables has been checked, erroneous data is sent to error tables

for later reprocessing, and non erroneous data is copied to the

image tables, while the landing tables are truncated just

before the next extraction. Scripts are generated to do the

necessary comparisons and detection of errors. For example,

for each landing-image table pair, a script is automatically

created to compare the business key of each tuple in the

landing table with those in the image table. If a match is

found, the remainder of both tuples is compared, and if they

still match, then the tuple in the landing table is discarded as

it is considered a duplicate (i.e., a tuple that had already been

extracted in a previous ETL cycle). If the rest of the tuple

the tuple in the landing table is marked

treated as an update to the corresponding tuple in the

warehouse. If there is no match on the business key of a tuple

in a landing table, then it is a new tuple and therefore it is

<invoice_id, amount, result>, and in the audit image table

with same schema another tuple with invoice_id=100 is

found, and the values of its other attributes are <500,

and processed in some previous ETL cycle. When a tuple is

either a new tuple (i.e., insert) or an update, it is

timestamped. It is the new data in the image tables that is

transformed into the target tables of the process data

warehouse.

To implement the two-phased transformation, we have

introduced another set of tables, which we call intermediate

tables whose purpose is to stage the output of the first

transformation phase to be used as input for the second

transformation phase. These tables have the same schema as

their counterpart business data tables in the process data

warehouse. Therefore, the same DDL used to create those

tables, is used for the creation of the intermediate ones. In

contrast to the other two sets of tables (i.e., landing and

image) which are populated by an SQL statement of the form

INSERT INTO table SELECT attributes FROM

source_table|landing_table, the intermediate tables are

populated by the execution of the mappings from IT events to

business data changes (#2 in section 4.1) specified as part of

the abstracted process model defined for BPI. For example,

once the audit message has been extracted into the

corresponding audit landing table, and it has been detected

and marked as a new (i.e., insert) tuple and copied into the

audit image table, the tuple is mapped into the progression of

the audit step marking its completion according to the

mapping that associates the completion of the audit step with

the fact that the audit result attribute becomes populated. In

the next section we will describe how the mappings are

executed via scripts that are automatically generated.

An alternative approach could be to have two separate

ETL processes, one that extracts data from the event sources

and maps it into business data changes loaded in the process

data warehouse, and another that extracts business data from

the process data warehouse and maps it into process

progression data loaded into the warehouse. However, this

alternative is less efficient given that business data changes

need to be extracted (after being loaded into the data

warehouse) and staged to isolate the warehouse from any

impact when extracting such data for the second ETL

process. Furthermore, additional tables would have to be

created in the warehouse because the business data tables in

the process data warehouse only keep one record for each

business data instance (e.g., per invoice). Thus,,all the change

records, but the last one, for a given business data instance

coming from the same extraction would be lost, but these

would have been needed to mark the corresponding

progression of the abstract process through different process

steps.

Once the structures of the different tables in the staging

area are created, they need to be populated. Landing tables

are completely refreshed at every extraction cycle by simply

inserting the data extracted from the event log sources into

the corresponding landing tables using INSERT-SELECT

SQL statements. Image tables are incrementally refreshed at

every extraction cycle by copying the appropriate tuples (i.e.,

new inserts and updates) from landing tables into the

corresponding image tables. Intermediate tables are

1134

populated as the result of executing the mappings from IT

events to business data changes. Finally, data in the

intermediate tables is mapped to process progression data

loaded into the target tables of the process data warehouse.

The procedure to automatically execute both kinds of

mappings will be explained in the next section.

Figure 5. Transformation phases

A solution that creates and populates the staging area is

not complete if it cannot cope with change. Log structures

and business data structures may change, so it is important

for the staging area to be automatically maintained. Our

solution can detect changes to the source schema by

periodically retrieving and comparing the source schema

definitions with their previous versions, prompting the user

to identify those changes that are important from a reporting

perspective (e.g., not all columns of a newly added table

may be required for warehousing and reporting, whereas

modifications or deletions of columns with a counterpart in

the staging area always have an impact). For those changes

identified by the user as relevant, corresponding ALTER

TABLE statements to modify the staging area schema are

automatically issued.

5. TESTING AND RAPID

PROTOTYPING VIA EMULATION

We mentioned earlier in the paper that one of the main issues

with process data warehousing, especially when many

different processes are analyzed and even more so in a BPO

environment, is that of co-developing the warehousing

solution along with the process management applications.

Such co-development has two major issues: i) unlike

traditional warehousing problems, source data is typically

unavailable until very late in the project, as the source

applications have not been developed yet; ii) the source and

their data stores change frequently as redesigns are made

during the development cycle. The implications are that it is

hard even to begin development test of the ETL, warehouse,

and reports, and waiting until the completion of the source

application easily implies delays of several months.

Even more importantly, we have experienced that

customers and analysts consistently give the wrong reporting

requirements in the beginning, because of poor initial

understanding of the process and of the capabilities of data

warehouses and reporting tools. Hence, it is absolutely

essential to rapidly prototype the warehousing solution (well

before the source process application has been completed) to

get feedback on the reporting requirements and incorporate

the many requests for change that invariably come. Though

this may seem like a minor detail, it is actually a major

headache for any reporting solution and can easily result in

millions of dollars in extra development costs and delays.

To address the problem, we first recognized that what we

needed was an emulation environment that supports testing

and prototyping of:

 Events and data in the sources generated according to

the correct process logic (the order of steps in the process),

and corresponding to events and data useful to mark the

progression of the flow.

 Data on resources that contribute to the step executions,

e.g., on users and applications that contribute to executing

steps. This data should be correctly correlated, meaning that

delays in application executions should correspond to delay

in step executions. This consistency is important again for

the purpose of receiving user feedback, but it helps

considerably also to detect errors in the ETL procedure.

 Business data associated with the process. Again, this

should be as meaningful as possible to collect feedback.

Completely random data, such as randomly generated

strings to denote customer names or meaningless invoice

amounts, make it very hard to get valuable feedback.

To perform validation and prototyping, we need to

generate the above in a way that is as realistic as possible.

This means that we actually need to fill the sources with

process data and business data, we actually need to deploy

probes to collect events and load event logs, and we actually

need probes to monitor resources and collect resource data.

The importance of emulating rather than simulating the data

is that now we can actually test the data extraction process,

including those based on probes that monitor source systems

and generate monitoring data or extract business data.

We also need flexibility to simulate different conditions

(resource unavailability, poor performances, SLA violations,

and the like) both for the sake of testing and for user

validation. All of the above can only be achieved by

emulating the process-based application.

We next observed that, in process-based applications,

there are two specifications that are available early and that

are reasonably stable: i) the process model, and ii) most of

the database schemas. They are the first artifact being

designed and where the most care is placed. Furthermore, if

specific tools (e.g., workflow tools) are used for different

parts of the process, then the schemas of the databases and

logs written by these tools are known (and stable).

Once we have process models and data schemas, we can

emulate the execution of the process. We created an

infrastructure for this. The infrastructure includes a process

execution engine (PEE), used to model the process, which

can be the actual one or a simplified version of it, but

1135

sufficient at least to match the level of detail of the desired

abstract process. For example, we can model the process of

Figure 1. We currently use Weblogic as PEE, but any other

modern workflow system would serve the same purpose.

Data

generation

Web service

getPoolValue(context,

poolName, <parameters>)

setEventGeneration(distribution,

callbackURL, template)

Pool settings

getContext(distribution,

callbackURL, template)

Emulated

business data

Figure 6. Process emulation via the data generation web

service

Each step in the process is assigned for execution to a

data generation web service. This is a Web service that we

developed and that has three main purposes: i) wait a random

amount of time before returning from a method call (the

random function can be specified), to emulate executions of

different durations; ii) generate meaningful business data,

e.g., customer names; iii) act as a configurable event

generator, which produces events of different types, with

parameter values following different distributions, and with

event generated according to random functions. Such a

service can provide for all the process enactment needs: it

can generate events that create new process instances, can

simulate step executions of different durations when invoked

by the steps, and can return meaningful business data (Figure

6).

The data generator service has a number of built-in pools

with, for example, names of (fictitious) people, email

addresses, names of customers, and the like. Clients can

request an entry from the pool, resulting in a name being

returned, chosen randomly. Alternatively, names in the pool

can be ordered so that certain names are returned more often

than others, based on probability distributions that are part of

the pool definition. Numeric pools are again based on

probability distributions, or can be sequences of values, with

the meaning that each time a sequence pool is accessed, the

next value in the pool is returned. Events of interest can be

defined by registering a template (setEventGenerator

function in Figure 6), which is an XML document that may

contain parameters, represented by pool names. Based on the

time distribution specified as part of the function call, an

event is generated at different point in time. The event is

represented by the XML document where pool names are

replaced with pool values, again taken on the distributions

which are part of the pool definitions.

Once a process is started, each step binds to the data

generator service and calls the getPoolValue function, which

requests a value from a specified pool to be returned, after a

random duration has elapsed (Figure 6). This return value is

used to edit process data in the PEE and drive the execution

of the process (e.g., take a certain path based on decision

conditions).

The call also includes the possibility of defining a SQL

statement, which is parametric analogously to the event

template defined above. The SQL statements describe which

tables should be modified by the service execution, and how.

It is executed at the end of the waiting period. This allows for

the generation of source business data. For example, in the

audit step, we could include the following statement in the

call:
INSERT INTO AUDIT_RESULTS (INVOICE_ID,

AUDITOR, RESULT) VALUES (%INVOICE_ID%,

%PERSON%,%YES-NO-RESULT%)

Though not detailed in this paper, calls to the data

generator web service occur within a context, which can be

created for each process instance and that is useful for

example to specify that all invoice IDs generated for the

same context have the same value. The context can also be

used to specify DB connection information, so that the web

service knows where to execute the SQL statements.

This infrastructure is the essence of what is needed to

emulate the generation of meaningful source data, which in

turn is the basis for both testing ETL and warehouse as well

as for quickly building reports with meaningful data to get

feedback from the users. The process described above can be

developed quickly, as we do not have to implement the steps

(the implementation is represented by the data generation

services), and specifying the flow logic is also easy,

especially if at first we are interested in rapid prototyping

more than testing, and hence we can emulate the abstracted

process rather than the actual one. It does not provide all the

flexibility that may be required in the general case (e.g., we

may want to simulate a behavior in which invoice audits are

successful based on invoice amount or based on the person

processing the invoice, and this requires custom coding), but

we have experienced that this is sufficient in most situations.

6. DISCUSSION AND CONCLUSION

Our work significantly extends our previous contribution on

the subject [1], which was limited to warehousing data

coming from workflow systems (and hence with fixed,

known schema) and did not deal with abstraction, modeling

of reporting requirements such as step correlation or step

status changes, ETL maintenance, and rapid report

prototyping. We also introduce significant variations to the

original model design based on accumulated experience.

The other closely related work is that of workflow

analysis systems and business activity monitoring systems,

such as [5,8]. These efforts provide a warehouse schema that

is independent of the business process, but that is dependent

on the process meta-model, as that is built into the workflow

engine. There is no specific capability to collect and

aggregate data coming from sources that are not the

workflow engine itself, neither in terms of warehouse model

1136

or ETL, and there is no support for process abstraction.

Similarly, there is no support for rapid prototyping.

During the last two decades there has been a vast amount

of work for automating the generation of mappings. One of

the best efforts is the Clio project from IBM [6] where given

value correspondences between source and target schemas,

Clio can produce logical assertions, basic and nested [7], that

can be converted into executable programs. Our work differs

mappings that exclusively match the users specified

correspondences, instead it produces mappings that capture

other correspondences not specified by the user but that are

part of the execution semantics of abstract process

progression by factoring out commonalities derived from the

predefined structure and semantics of the process warehouse

model and of the types of mappings specific to the process

warehousing domain. To the best of our knowledge, we are

not aware of any work done in this direction.

Finally, we mention that the framework described above

has been validated over a variety of HP and customer

processes. Although it can be implemented with a variety of

implementation is based on an Oracle database for the

 as ETL, and

BusinessObjects XI for the front end reporting.

While we did execute performance tests for high volume

data and the model and approach is targeted for high volumes

(especially as in BPO environments there are many

customers on the same platform and high volumes are the

norm), to date our customer scenarios only included

applications with relatively low volumes of transactions, in

the order of tens of thousands per month with overall sizes of

fact tables in the order of a few millions. Another limitation

is that the abstraction aspect only applies when it is

reasonably easy to associate process progression with IT

events. This is true in the vast majority of the cases, though

in some situations the mapping is not trivial, mostly due to

the difficulty of correlating events with the correct process

instances. For example, the start of a step may be associated

to a user accessing a web page (say to enter invoice

information), but this event per se may carry no additional

contextual data and hence although we know indexing (i.e.,

the process step corresponding to invoice data population) is

being done, we do not know for which process instance.

Associating the event to the correct process instance may

require additional parameters such invoice number or

customer id.

REFERENCES

[1] Warehousing workflow data: challenges and

[2] Business Process Insight 2.0. Information available at

www.managementsoftware.hp.com/products/bpi/

s guide. Nov 2005.

https://openadaptor.openadaptor.org/pg/

[4] www.sarbanes-oxley-forum.com

[5] FileNet Business Activity Monitor. Available at

filenet.com/English/Products/All_Products/bam.asp

[6] Schema Mapping as Query Discovery. R.J.Miller et al.

Proceeding of VLDB 2000.

[7] Nested Mappings: Schema mapping reloaded. A.Fuxman

et al. Proceeding of VLDB 2006.

[8] WebMethods. Business Activity Monitoring: The new

face of BPM. June 2006.

1137

