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Abstract 

Improving business processes is critical to any 

corporation. Process improvement requires analysis as 

its first basic step. Process analysis has many unique 

challenges: i) companies execute many business 

processes, and devising ad hoc solutions for each of 

them is too costly. Hence, generic approaches must be 

sought; ii) the abstraction level at which processes need 

to be analyzed is much higher with respect to the 

information available in the process execution 

environment; iii) the rapidly increasing need of co-

developing the process analysis and the process 

automation solution and the scale of the problem makes 

it hard to cope with frequent changes in the sources of 

process data. To address these problems, we have 

developed a process warehousing solution, used by HP 

and its customers. In this paper we describe the solution, 

the challenges we had to face, and the lessons we 

learned in implementing and deploying it.  

1. INTRODUCTION AND MOTIVATION 

Business process improvement has always been at the heart of any 

ocess 

improvement was on automation: workflow and other middleware 

technologies were used to reduce human involvement by better 

systems integration and automated execution of the business logic. 

The total or partial automation of the process and/or of part of its 

steps creates the unprecedented opportunity to gain visibility on 

process executions. In fact, executions of process steps now leave 

some kind of temporary or permanent trace in one or more 

systems (databases, web sites, messages in transfer on a message 

broker, etc). The ability to analyze process execution information 

and to measure the quality, efficiency, and timeliness of process 

execution as well as to understand areas for improvements 

provides immense benefits to companies as it is key to achieving 

the goal of better and cheaper process execution. Recent and well-

known financial crises have also prompted lawmakers to impose 

stringent regulatory requirements for monitoring and reporting on 

process executions, reinforcing the need for process analysis [4]. 

Furthermore, process analysis and reporting is the cornerstone 

of one of the fastest growing businesses in the IT sector, that of 

business process outsourcing (BPO). BPO involves delegating the 

execution of (part of) a business process to another company. 

Processes that are typical candidates for outsourcing include travel 

expense reimbursement, invoice payment, or employee payments, 

and in general all those processes that every company must deal 

 A key need 

in BPO is that of being able to describe and formalize Service 

Level Agreements (SLAs). In fact, when a company executes its 

own processes, it does so in a best effort manner. When it 

outsources the process to other companies, it wants to formally 

define the quality levels that it expects. This implies being able to 

define and monitor SLAs for business processes. From a 

report on SLAs and to analyze process executions to meet SLAs at 

lower cost. 

The common approach to analyzing data from transactional 

systems is to collect it into a data warehouse (using extract, 

transform, load tools) and then leverage an OLAP tool to slice and 

dice data along different dimensions. This is also the sensible 

approach for process analysis.  

Process data warehousing, however, presents interesting 

challenges. First, developing ad hoc, process-specific solutions for 

warehousing and reporting on process data is not a sustainable 

model. The problem is even more relevant in BPO, as the provider 

of outsourcing services needs to support (monitor and analyze) 

different versions of the same process for different customers, 

possibly also with variations in reporting requirements for each 

customer. Consequently, the principal objective  and one of the 

main challenges -- of our work has been that of developing a 

general and reusable solution for process data warehousing, 

applicable to most or all the processes in a corporation. We have 

verified through experience that designing a generic solution is 

non-trivial but possible, as the nature of the process data and of 

the analysis needs share key aspects that make a common solution 

feasible. The solution we have developed captures the common 

aspects while leaving room for the all-important customer-specific 

and geography-specific customizations. 
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Figure 1. The invoice payment process 

 

 

A second challenge in process data warehousing is that of 

abstracting process data. The typical process executed in the 

IT system is very detailed and consists of dozens of steps, 

including manual operations (e.g., scanning invoices), 

database transactions, and application invocations. However, 

reporting at this level of detail is confusing for analysts who 

have in mind a much higher level picture of the process. The 

common wisdom is that analysts, and especially business 

analysts and managers, perceive a process as being composed 

of approximately 5 to 7 steps. SLAs and key performance 

indicators (KPIs) are also defined on abstracted versions of a 

process2.  

A third interesting and novel challenge, which is today 

specific of the BPO domain, but which is likely to extend to 

in-house process execution as well, is that the business 

process automation application and the analysis/reporting 

application are co-developed. This means that the reporting 

solution should be in place by the time the business process 

application goes live, or very shortly thereafter. The 

challenge here is that, during development, changes to the 

data sources and even to the reporting requirements are fairly 

frequent. To make things worse, once processes are in place 

and start to operate in a dynamic multi-customer 

environment, continuous adaptations are required.  Hence, it 

is important to devise a method for minimizing the impact of 

changes and be able to quickly modify and re-test the ETL 

(extract, transform, and load) procedures,, the warehouse 

model 

                                                                 
2 In the following we will generally refer to SLAs and KPIs 

as metrics 

industry), and the reports. 

In this paper we describe how we have addressed these 

challenges as well as the lessons learned in developing and 

deploying our solution, including also alternative approaches 

that did not prove to be satisfactory. Specifically, the paper 

makes the following contributions: 

 We analyze and classify analysis requirements for 

process data warehousing.  

 We provide a configurable warehouse model that can 

satisfy complex reporting needs for virtually any process, 

also taking into account performance constraints. The model 

addresses key recurring problems such as  the trade-off 

between the need to model heterogeneity (each process is 

different) and that of defining a uniform representation for 

all processes (to support reusability and cross-process 

analysis).  

 We show how to abstract from low-level data about 

executed processes to higher-level views of the same 

process, suitable for reporting purposes. The approach is 

based on defining abstract processes and then mapping the 

process progression to events occurring in the source 

systems. 

 We describe how to ETL process data, and in particular 

how to semi-automatically maintain ETL procedures in the 

wake of changes in the source applications. 

 We show how the solution can be quickly prototyped 

using an emulation environment to get early feedback from 

users. This is essential, as it invariably happens that 

reporting requirements change considerably after users view 

the first version of the analysis system. Hence, tackling this 

problem means saving months of effort. 
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2. PROBLEM DESCRIPTION AND 

REQUIREMENTS 

2.1 Business process execution 

environments 

This section describes, by means of a simple example, the 

typical process execution and source data environments on 

top of which the solution has to be deployed. The 

assumptions are very general as the solution should be 

applicable to different situations.   

Figure 1 shows an abstracted version of an invoice 

management process. The actual implemented process is 

much more complex, and its definition may not even fit on a 

page. In large companies, this process is run several 

thousands of times per month. Due to the volumes, and to the 

penalties involved in late payments, it is imperative that it be 

performed in an efficient and timely manner. Hence it is one 

of the many processes for which analysis is important.    

The process begins with the receipt and scanning of the 

invoice document in case of paper invoices. Then the data is 

indexed (extracted from the image and entered in a database) 

and validated. Then, also based on comparison of invoices 

with purchase orders, the order information as well as vendor 

payment information are updated. The invoice and the 

information updates are then audited (via automatic error 

checks, and possibly a manual audit which is performed 

occasionally depending on the seniority of the employee who 

has done the initial validation). If the invoice passes all the 

checks, then the process ends (the invoice will then go 

through payment, not described here). Otherwise, it will be 

returned to the vendor.  

Processes are typically supported by a combination of 

systems and technologies, which include scanning and 

document management systems, databases, ERP systems, 

custom applications (including Web applications for data 

entry or to facilitate/track approvals), and in some cases also 

workflow systems which  automate part (but rarely all) of the 

process logic. In general, information from all these systems 

is needed for process analysis and reporting. 

2.2 Common reporting requirements  

Over the past couple of years we have analyzed reporting 

requirements for many different processes, with the goal of 

identifying common requirements. This makes possible a 

unified approach to reporting and analysis, so that the effort 

for setting up the analysis for a new process or customer 

consists mostly of customization rather than development. 

We have found that all of the reporting requirements can be 

classified along the following categories of metrics: 

 

 Process metrics: these are based on process progression 

data only (i.e., activation and completion of steps), and 

include: 

o Metrics on basic process statistics (process and step 

durations, or volumes) 

o Metrics on the time interval between the 

start/completion of a step and the start/completion of 

another.  For example, we may want to monitor the 

time taken from indexing to correction, because this 

is a measure of the performance of a certain 

department. 

o Path and outcome metrics, such as the number of 

times a loop is executed (e.g., how many times a 

correction cycle is needed) or the percentage of time 

a process ends at a certain end node. 

o Correlation with previous step: very often we have 

encountered the need to report on steps in relation to 

the previous one. This is common when there are 

some exception-handling steps which are executed 

when the previous step fails. ous 

general different instances can take different paths 

through the process . 

-- Resource metrics:  

o Performance of human and automated resources 

in executing steps. 

o Correlation between resources and process 

metrics (which resources statistically lead to 

successful or unsuccessful executions, or which 

resources have statistically led processes to 

follow certain paths in their execution) 

 Business data metrics: 

o Correlation of business data (e.g., invoice data, 

vendor data) with process data. For example, analysis 

of efficiency and quality of execution based on 

invoice type. 

o Correlation between business data and resources. For 

example, number of invoices from a given center 

processed by a given employee. 

The underlying requirement for all of the above metrics 

is that they are defined and computed on abstracted versions 

of the process, not on the actual implemented version. We 

have witnessed this need consistently throughout all 

reporting requirements, except when the actual process was 

itself very simple. 

In the following we show how we have addressed the 

requirements on the metrics via a data warehousing approach 

that is process-independent, and how we have addressed the 

requirements on abstraction via a mapping and correlation 

mechanism that drives a process-aware ETL procedure. We 

then show how we have tackled the problems related to 

application-reporting co-development and rapid prototyping. 

3. PROCESS DATA WAREHOUSE 

MODEL 

Defining a generic model for a process data warehouse has 

the following challenges: 

 Multi-level instance data (facts): a process execution 

has related facts at different levels of granularity, including 

step-level facts (e.g., step durations), process instance-level 

facts, and data-related facts (values and changes to business 

data). Facts may have to be self-correlated, especially in 

. 

 Business data associated with a process instance is 

always different from process to process, can in general 

have complex structures, and can change at every step 
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during the process, so that its representation becomes 

complex (and hard to generalize). 

 Process and step executions go through a lifecycle. For 

example, steps are created (they are ready for execution), 

assigned to users, locked or activated (people begin to work 

on them), reassigned to different users, unlocked (people 

stop working on them), and completed. All these are events 

that should in principle be modeled. They are again facts, 

which are at a granularity even lower than that of the step 

(i.e., at the level of step status changes), and which depend 

on the business process and on the system supporting them 

(e.g., different workflow systems have different lifecycle 

phases for steps and processes). Also, the number of states 

in the lifecycle visited for each step execution is in principle 

unlimited (for example a step can be suspended and re-

activated several times). 

Figure 2 shows the most significant elements of the data 

warehouse model. Representing dimensions is fairly easy 

and, since it does not pose any particular new challenges, it 

represent facts. At the step-level, the approach we took is to 

model all step execution facts in a single table, with one row 

per step execution (see table task execution in Figure 2). This 

design has some limitations: one is that we represent 

information from different source systems (and for processes 

that have different step properties and lifecycles) within the 

possibly infinite set of step-related events into a limited set of 

attributes. However, we have experienced that this approach 

is more effective than the alternatives of i) representing step 

facts at the granularity of step status changes and ii) using 

different step tables for information coming from different 

systems, and hence having different properties.  

In fact, the vast majority of step-related queries are 

related to a limited number of measures (namely, step 

which can be computed at ETL time and which can be 

summarized at the step execution level (see duration related 

columns, e.g., New_To_Ended_Duration_Sec). Furthermore, 

in terms of analyzing the resources that performed the steps, 

what is always queried is information about the first user to 

whom a step is initially assigned for execution, and the last 

user who finally completes the step (see processor-related 

columns, e.g., Final_Proc_Key  note that in business 

process terminology, users who execute steps of a process are 

e re-assigned from 

user to user, this is infrequent and it has never been a target 

of reporting requirements in any of the cases we have 

analyzed. The issue of sourcing data from processes in which 

step lifecycles follow different models is solved by 

recognizing that in practice there are only three step states 

that are relevant: creation, activation (somebody begins to 

work on a step), and completion. This is sufficient to model 

reporting requirements in virtually any system, and more 

complexity than this is unnecessary as it is not understood by 

business users. Finally, modeling tasks in one table is very 

convenient as it allows us to perform analyses that go across 

processes (e.g., analyze resource performance or aggregating 

measures on step level SLA violations regardless of the 

process). Performance is not impacted as bitmap indexes and 

partitions make it feasible to deal with high volume tables 

when process-specific analysis is needed. 

The problem of self-

the correlation in the tuples. While we often found that 

queries ask for information on a step with respect to the 

previous one (e.g., retrieve all the steps that lead to the 

subsequent execution of the index validation step), the kind 

of information required on the previous step is limited. 

Hence, we add columns (see those with prefix Previous) to 

the task execution fact table to explicitly store this 

information, computed at ETL time. The alternative option 

was to store in each tuple a link to the entry in the same table 

that describes the previous task. However, this leads to much 

slower queries (hundreds of times slower) unless we create a 

unique index for fast access to step data, but with 

considerable space penalty and data loading performance 

issues.  

At the process instance level, a different approach is 

required. Here, we still define a generic process instance fact 

table that contains basic process information (e.g., start time, 

end time, duration, initiator, etc). However, we need to store 

business data as well for the analysis. While in general 

business data can have arbitrary structures, the typical need is 

that of representing a (process type-specific) tuple of data 

elements for each instance, such as <invoiceID, 

customerName, Amount,..>. Hence, the solution here is to 

create a table per process type, which contains process 

specific data (e.g., Invoice_Business_Data in Figure 2) along 

with process instance-level progression data, essentially 

replicating much of the information present in the 

process_instance table. For example, the 

Invoice_Business_Data table has the Receive_Date_Key 

element that represent the date in which the process instance 

starts. Similarly, the payment date corresponds to when the 

instance ends. 

This replication is necessary to simplify correlated 

business/progression analysis, as joining with the 

process_instance table should be avoided if possible. Note 

that the process_instance table is still needed as often it is 

necessary to perform analyses that go across instances of 

different processes. The size of the tuples is typically quite 

small so this duplication is feasible in the vast majority of 

cases.  

Perhaps surprisingly, queries that require correlation of 

step-level information with process instance or business data 

are infrequent. However, they do occur, and, although this is 

discouraged by many, we handle this via links (referencing 

columns) between the fact tables at the step and process 

granularities (from a step fact to its process instance fact, and 

from the process instance fact to its business data fact). In 

Figure 2, for example, the Top_Work_Object_Key in the task 

execution data refers to the process instance data, while the 

Entity_Table_Key in the process data refers to the business 

data. We found that performance is acceptable (with proper 

indexing) in most cases, unless we go into volumes in the 

order of several tens of million of rows.  

Note that we only have one generic step instance table 

but many business data tables; hence the pointer to the 

business data table (Entity_Table_Key in Figure 2) is blind: 

it does reference an entry in some business data table, but 

which one is not specified. This is not a limitation as when 
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such a step-process correlation is needed along with (process 

type-specific) business data, the analysis is necessarily 

process type-specific, and the query writer has to be aware of 

which business data table to join. This approach does not 

preclude more complex structures for business data (e.g., 

having an invoice line item table along with invoice data), as 

long as t

process.  
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Figure 2. Process warehouse model (not all attributes are 

shown) 

 

In summary, the key solutions are: i) single granularity 

for steps; ii) single fact table for any step of any process, with 

aggregation of most common measures that are at the step 

event granularity; iii) correlation with previous step data 

handled via additional columns; iv) separate business data 

tables per each process type; v) blind links to handle step-

process correlation with business data.  This structure works 

for any process, and can be easily implemented.  

These design decisions are the result of a large number of 

experiments and the exploration of many different 

alternatives. Having this common design shortened the 

warehouse design cycle for new processes to nearly zero, and 

report writing has also been considerably simplified due to 

the many commonalities in the reports for different 

processes. This translated into very significant savings in 

development time. Indeed, the first design took about six 

months, while the addition of a second process only required 

three weeks. Note that these savings occur both when we add 

a process over the same schema as well as when we create a 

new, separate schema, 

process data warehouse design. 

4. COLLECTING, ABSTRACTING, AND 

LOADING PROCESS DATA 

4.1 Mapping events to abstract processes 

The problem of providing abstracted process representations 

for warehousing and reporting has two facets: first, we need 

to provide users with a way to model the abstraction, that is, 

to describe the high level process and how its progression 

maps to underlying IT events. Second, we need to have an 

ETL mechanism that, based on the abstract process definition 

and the events occurring on the different systems, loads the 

warehouse with abstracted process execution data. Modeling 

abstract processes involves the following: 

1. Describing the process flow (Figure 1) as needed for 

analysis, along with relevant business data (also possibly 

abstracted with respect to the actual business data). 

2. Specifying how the abstracted business data for each 

process is populated and maintained, based on a mapping 

between business data and IT events that mark the 

progression of the process. For example, one can define an 

invoice business data structure, and state that the audit result 

attribute should be populated when a message of type audit 

is sent over a message bus, and the value of parameter 

response in this message should be taken as the value. Note 

that the mapping must include a definition of the correlation 

logic, information used to associate events to the correct 

business data instance (and indirectly to the correct process 

instance, see below). For example, one can specify that, 

when the audit message occurs, only instances of invoice 

whose invoiceID attribute is equal to the invoice number 

parameter of the message should be updated (Figure 3). 

3. Associating the start and completion of each step with 

changes to the abstract business data, to define progression 

information. For example, we associate the completion of 

the audit step with the fact that the audit result attribute 

becomes populated (Figure 3). In this way, we can map IT 

events, through the business data, into events at the level of 

the abstract process instance. 

 

 
Figure 3.  Mapping audit message event to audit step 

completion 
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4. Associating steps to human or automated resources. 

This is again based on mapping to the abstract business data. 

For example, one can specify that the resource that 

completed the audit step is to be determined by looking at 

column auditor of the invoice abstract data. 

Modeling is performed via a component called HP 

Business Process Insight (BPI) [2]. This is a stand-alone tool 

that can also be applied as a real-time process monitoring 

solution (the attentive reader will have noticed that if we are 

progression of abstract processes in real time), though here 

we describe its concepts and application in the context of 

process data warehousing.  

BPI provides a Java interface that allows users to provide 

the specifications described above (Figure 1). Specifications 

are then accessed by the ETL to know how to map process 

data across levels of abstractions, and how to construct 

business data (Figure 4). Event data is captured by deploying 

probes that monitor source systems for events of interest and, 

when the event occurs, store the event occurrence 

information (event name and its parameters) into an event log 

database (one table per event, storing event name, occurrence 

time, and its parameters, one per column). For example, a 

table audit that stores audit events would have attributes 

eventID, timestamp, invoiceID, result, auditor, etc. The 

probing mechanism used (openadaptor [3]) is provided by a 

third party and is not part of our work.    

 

 
 

Figure 4. Extraction and abstraction of process data 

 

At data loading time, the ETL function goes through the 

events (reads all the event tables, whose names and types are 

also stored by the modeler, so they are known) orders them 

by time, and, based on the defined mappings between data 

and events, it generates a set of changes to abstract business 

data, i.e., a change log, timestamped, based on the event 

timestamp. For example, it creates a set of records for the 

invoice abstract process data, possibly with many records for 

the same invoice instance, if more than one event for that 

invoice occurred in the extraction period. 

 Next, the process progression is computed, based on the 

the data changes in the specified order and detecting changes 

that are relevant for the progression. At this time, besides 

marking the progression (i.e., creating records for the step 

execution data), the latest value of the abstract business data 

is also stored, and this information is then ready to be loaded 

in the warehouse.  

An alternative modeling approach involved mapping the 

process progression directly to events instead of indirectly, 

via changes to the abstract business data. However, this level 

of indirection is helpful given that i) many different events 

may cause the same change to a business data item (e.g., if 

the process is implemented on a different IT infrastructure), 

ii) the same business data can sometimes be used to support 

and mark the progression of instances of different process 

types, and iii) in practice, for abstract processes the 

progression is often dependent on business data changes, and 

in the rare cases where this is not true, an ad hoc dummy data 

element can be created in the business data for this purpose. 

Hence, this approach on average reduces the specification 

and maintenance effort and makes the specifications more 

robust to changes in the information sources (which often 

requires event specifications to be updated, but no changes 

are needed to business data or progression information). 

4.2 ETL generation and maintenance 

Analogously to what we did for the process data warehouse 

model, we have been able to factor the common aspects of 

ETL into a generic solution that applies to any business 

process. In contrast to the way ETL is normally done in data 

warehousing, where data extracted from the source(s) lands 

into a staging area and a single transformation stage maps it 

into the target warehouse tables, our solution requires a two-

phased transformation stage (see Figure 5). This two-phased 

transformation is the result of our abstraction requirement 

where the events monitored in the underlying systems are 

mapped to data changes -first phase of the transformation-, 

and from those to process progression second phase of the 

transformation- (see Figure 4). The  mappings used in both 

transformation phases are those defined with BPI as part of 

the abstraction modeling (see #2, #3 in section 4.1) The main 

challenges that we faced were to find a way to semi-automate 

the creation and maintenance of the staging area, and the 

execution and maintenance of the mappings.  To this end, we 

devised two generic procedures as part of our solution: 

 One procedure automates the creation and maintenance 

of the staging area where event data extracted from the 

source logs not only lands but is mapped -- using the 

mapping procedure described below -- to a set of changes 

on abstract business data (first phase of the transformation). 

 The other procedure automates the generation of 

executable transformation scripts from the mappings 

specified in the abstract process model (section 4.1).  Such 

transformation scripts are used for mapping data to different 

abstraction levels in each transformation phase.  

 One important design principle was that of being agnostic 

with respect to the underlying tool (i.e., home-grown or 

commercial) supporting the execution of the ETL 

procedures automatically generated by our solution. 

4.3 Staging Area 

The staging area in ETL is a database (could be files but 

we have chosen to use a database) where extracted data is 
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staged to get it ready to be loaded into a data warehouse. It 

basically serves two purposes: as a landing area where 

extracted data lands, eliminating the need to repeat an 

extraction if anything goes wrong (extracting data may  

impact the operation of the source), and as a working area 

where data is checked and prepared for loading. It is in the 

staging area where different sets of tables need to be created 

for various purposes. Normally, landing and image tables 

(explained below) are created, but our solution also includes 

an intermediate set of tables to handle the two-phased 

transformation stage where the result from the first 

transformation phase needs to be staged to be used as input to 

the second transformation phase.  

To populate the process data warehouse it is necessary to 

first extract the data from the different event log databases 

into the landing tables of the staging area. To define the 

schema of such tables we use a GUI that allows the user to 

check off the tables and fields from where data will be 

extracted from each event log.  This procedure generates a 

schema definition script in SQL DDL for creating the 

corresponding landing tables.. For example, if the message  

broker log had a table for audit messages with fields 

<invoice_id, amount, result> and all of these fields need to 

be extracted to map an audit message event into a change to 

the result data of the corresponding invoice, then they will be 

checked off and the following DDL statement will 

automatically be generated: 

USE LANDING_AREA 

CREATE AUDIT TABLE (invoice_id char(15), amount 

decimal (6,2), result char{12)) 

 

Normally, once data has been extracted into landing 

tables, it is checked for duplicates and for determining if it is 

an insertion, update or deletion. To this end, the tuples in the 

landing tables are compared with their counterparts in the 

image tables. Image tables, as the name suggests, keep an 

image of the last version of the records extracted from the 

sources since the first extraction cycle (or since the last time 

the staging area was flushed). There is one image table for 

each landing table with exactly the same schema. Therefore, 

the same DDL script used to create the landing tables is used 

to create the image tables as well. Once data in the landing 

tables has been checked, erroneous data is sent to error tables 

for later reprocessing, and non erroneous data is copied to the 

image tables, while the landing tables are truncated just 

before the next extraction. Scripts are generated to do the 

necessary comparisons and detection of errors. For example, 

for each landing-image table pair, a script is automatically 

created to compare the business key of each tuple in the 

landing table with those in the image table. If a match is 

found, the remainder of both tuples is compared, and if they 

still match, then the tuple in the landing table is discarded as 

it is considered a duplicate (i.e., a tuple that had already been 

extracted in a previous ETL cycle). If the rest of the tuple 

the tuple in the landing table is marked 

treated as an update to the corresponding tuple in the 

warehouse. If there is no match on the business key of a tuple 

in a landing table, then it is a new tuple and therefore it is 

<invoice_id, amount, result>, and in the audit image table 

with same schema another tuple with invoice_id=100 is 

found, and the values of its other attributes are <500, 

and processed in some previous ETL cycle. When a tuple is 

either a new tuple (i.e., insert) or an update, it is 

timestamped. It is the new data in the image tables that is 

transformed into the target tables of the process data 

warehouse.  

To implement the two-phased transformation, we have 

introduced another set of tables, which we call intermediate 

tables whose purpose is to stage the output of the first 

transformation phase to be used as input for the second 

transformation phase.  These tables have the same schema as 

their counterpart business data tables in the process data 

warehouse. Therefore, the same DDL used to create those 

tables, is used for the creation of the intermediate ones. In 

contrast to the other two sets of tables (i.e., landing and 

image) which are populated by an SQL statement of the form 

INSERT INTO table SELECT attributes FROM 

source_table|landing_table, the intermediate tables are 

populated by the execution of the mappings from IT events to 

business data changes (#2 in section 4.1) specified as part of 

the abstracted process model defined for BPI. For example, 

once the audit message has been extracted into the 

corresponding audit landing table, and it has been detected 

and marked as a new (i.e., insert) tuple and copied into the 

audit image table, the tuple is mapped into the progression of 

the audit step marking its completion according to the 

mapping that associates the completion of the audit step with 

the fact that the audit result attribute becomes populated. In 

the next section we will describe how the mappings are 

executed via scripts that are automatically generated.  

An alternative approach could be to have two separate 

ETL processes, one that extracts data from the event sources 

and maps it into business data changes loaded in the process 

data warehouse, and another that extracts business data from 

the process data warehouse and maps it into process 

progression data loaded into the warehouse. However, this 

alternative is less efficient given that business data changes 

need to be extracted (after being loaded into the data 

warehouse) and staged to isolate the warehouse from any 

impact when extracting such data for the second ETL 

process. Furthermore, additional tables would have to be 

created in the warehouse because the business data tables in 

the process data warehouse only keep one record for each 

business data instance (e.g., per invoice). Thus,,all the change 

records, but the last one, for a given business data instance 

coming from the same extraction would be lost, but these 

would have been needed to mark the corresponding  

progression of the abstract process through different process 

steps.  

Once the structures of the different tables in the staging 

area are created, they need to be populated. Landing tables 

are completely refreshed at every extraction cycle by simply 

inserting the data extracted from the event log sources into 

the corresponding landing tables using INSERT-SELECT 

SQL statements. Image tables are incrementally refreshed at 

every extraction cycle by copying the appropriate tuples (i.e., 

new inserts and updates) from landing tables into the 

corresponding image tables. Intermediate tables are 
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populated as the result of executing the mappings from IT 

events to business data changes. Finally, data in the 

intermediate tables is mapped to process progression data 

loaded into the target tables of the process data warehouse. 

The procedure to automatically execute both kinds of 

mappings will be explained in the next section. 

 

 

Figure 5. Transformation phases 

 

A solution that creates and populates the staging area is 

not complete if it cannot cope with change. Log structures 

and business data structures may change, so it is important 

for the staging area to be automatically maintained. Our 

solution can detect changes to the source schema by 

periodically retrieving and comparing the source schema 

definitions with their previous versions, prompting the user 

to identify those changes that are important from a reporting 

perspective  (e.g., not all columns of a newly added table 

may be required for warehousing and reporting, whereas 

modifications or deletions of columns with a counterpart in 

the staging area always have an impact). For those changes 

identified by the user as relevant, corresponding ALTER 

TABLE statements to modify the staging area schema are 

automatically issued. 

 

 

5. TESTING AND RAPID 

PROTOTYPING VIA EMULATION 

We mentioned earlier in the paper that one of the main issues 

with process data warehousing, especially when many 

different processes are analyzed and even more so in a BPO 

environment, is that of co-developing the warehousing 

solution along with the process management applications. 

Such co-development has two major issues: i) unlike 

traditional warehousing problems, source data is typically 

unavailable until very late in the project, as the source 

applications have not been developed yet; ii) the source and 

their data stores change frequently as redesigns are made 

during the development cycle. The implications are that it is 

hard even to begin development test of the ETL, warehouse, 

and reports, and waiting until the completion of the source 

application easily implies delays of several months. 

Even more importantly, we have experienced that 

customers and analysts consistently give the wrong reporting 

requirements in the beginning, because of poor initial 

understanding of the process and of the capabilities of data 

warehouses and reporting tools. Hence, it is absolutely 

essential to rapidly prototype the warehousing solution (well 

before the source process application has been completed) to 

get feedback on the reporting requirements and incorporate 

the many requests for change that invariably come. Though 

this may seem like a minor detail, it is actually a major 

headache for any reporting solution and can easily result in 

millions of dollars in extra development costs and delays. 

To address the problem, we first recognized that what we 

needed was an emulation environment that supports testing 

and prototyping of: 

 Events and data in the sources generated according to 

the correct process logic (the order of steps in the process), 

and corresponding to events and data useful to mark the 

progression of the flow.  

 Data on resources that contribute to the step executions, 

e.g., on users and applications that contribute to executing 

steps. This data should be correctly correlated, meaning that 

delays in application executions should correspond to delay 

in step executions. This consistency is important again for 

the purpose of receiving user feedback, but it helps 

considerably also to detect errors in the ETL procedure. 

 Business data associated with the process. Again, this 

should be as meaningful as possible to collect feedback. 

Completely random data, such as randomly generated 

strings to denote customer names or meaningless invoice 

amounts, make it very hard to get valuable feedback. 

To perform validation and prototyping, we need to 

generate the above in a way that is as realistic as possible. 

This means that we actually need to fill the sources with 

process data and business data, we actually need to deploy 

probes to collect events and load event logs, and we actually 

need probes to monitor resources and collect resource data. 

The importance of emulating rather than simulating the data 

is that now we can actually test the data extraction process, 

including those based on probes that monitor source systems 

and generate monitoring data or extract business data. 

We also need flexibility to simulate different conditions 

(resource unavailability, poor performances, SLA violations, 

and the like) both for the sake of testing and for user 

validation. All of the above can only be achieved by 

emulating the process-based application. 

We next observed that, in process-based applications, 

there are two specifications that are available early and that 

are reasonably stable: i) the process model, and ii) most of 

the database schemas. They are the first artifact being 

designed and where the most care is placed. Furthermore, if 

specific tools (e.g., workflow tools) are used for different 

parts of the process, then the schemas of the databases and 

logs written by these tools are known (and stable). 

Once we have process models and data schemas, we can 

emulate the execution of the process. We created an 

infrastructure for this. The infrastructure includes a process 

execution engine (PEE), used to model the process, which 

can be the actual one or a simplified version of it, but 
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sufficient at least to match the level of detail of the desired 

abstract process. For example, we can model the process of 

Figure 1. We currently use Weblogic as PEE, but any other 

modern workflow system would serve the same purpose. 

  

Data 

generation 

Web service

getPoolValue(context, 

poolName, <parameters>)

setEventGeneration(distribution, 

callbackURL, template )

Pool settings

getContext(distribution, 

callbackURL, template )

Emulated 

business data

 
Figure 6. Process emulation via the data generation web 

service 

 

Each step in the process is assigned for execution to a 

data generation web service. This is a Web service that we 

developed and that has three main purposes: i) wait a random 

amount of time before returning from a method call (the 

random function can be specified), to emulate executions of 

different durations; ii) generate meaningful business data, 

e.g., customer names; iii) act as a configurable event 

generator, which produces events of different types, with 

parameter values following different distributions, and with 

event generated according to random functions. Such a 

service can provide for all the process enactment needs: it 

can generate events that create new process instances, can 

simulate step executions of different durations when invoked 

by the steps, and can return meaningful business data (Figure 

6).  

The data generator service has a number of built-in pools 

with, for example, names of (fictitious) people, email 

addresses, names of customers, and the like. Clients can 

request an entry from the pool, resulting in a name being 

returned, chosen randomly. Alternatively, names in the pool 

can be ordered so that certain names are returned more often 

than others, based on probability distributions that are part of 

the pool definition. Numeric pools are again based on 

probability distributions, or can be sequences of values, with 

the meaning that each time a sequence pool is accessed, the 

next value in the pool is returned. Events of interest can be 

defined by registering a template (setEventGenerator 

function in Figure 6), which is an XML document that may 

contain parameters, represented by pool names. Based on the 

time distribution specified as part of the function call, an 

event is generated at different point in time. The event is 

represented by the XML document where pool names are 

replaced with pool values, again taken on the distributions 

which are part of the pool definitions. 

Once a process is started, each step binds to the data 

generator service and calls the getPoolValue function, which 

requests a value from a specified pool to be returned, after a 

random duration has elapsed (Figure 6). This return value is 

used to edit process data in the PEE and drive the execution 

of the process (e.g., take a certain path based on decision 

conditions).  

The call also includes the possibility of defining a SQL 

statement, which is parametric analogously to the event 

template defined above. The SQL statements describe which 

tables should be modified by the service execution, and how. 

It is executed at the end of the waiting period. This allows for 

the generation of source business data. For example, in the 

audit step, we could include the following statement in the 

call: 
INSERT INTO AUDIT_RESULTS (INVOICE_ID, 

AUDITOR, RESULT) VALUES (%INVOICE_ID%, 

%PERSON%,%YES-NO-RESULT%) 

Though not detailed in this paper, calls to the data 

generator web service occur within a context, which can be 

created for each process instance and that is useful for 

example to specify that all invoice IDs generated for the 

same context have the same value. The context can also be 

used to specify DB connection information, so that the web 

service knows where to execute the SQL statements. 

This infrastructure is the essence of what is needed to 

emulate the generation of meaningful source data, which in 

turn is the basis for both testing ETL and warehouse as well 

as for quickly building reports with meaningful data to get 

feedback from the users. The process described above can be 

developed quickly, as we do not have to implement the steps 

(the implementation is represented by the data generation 

services), and specifying the flow logic is also easy, 

especially if at first we are interested in rapid prototyping 

more than testing, and hence we can emulate the abstracted 

process rather than the actual one. It does not provide all the 

flexibility that may be required in the general case (e.g., we 

may want to simulate a behavior in which invoice audits are 

successful based on invoice amount or based on the person 

processing the invoice, and this requires custom coding), but 

we have experienced that this is sufficient in most situations.  

6. DISCUSSION AND CONCLUSION 

Our work significantly extends our previous contribution on 

the subject [1], which was limited to warehousing data 

coming from workflow systems (and hence with fixed, 

known schema) and did not deal with abstraction, modeling 

of reporting requirements such as step correlation or step 

status changes, ETL maintenance, and rapid report 

prototyping. We also introduce significant variations to the 

original model design based on accumulated experience. 

The other closely related work is that of workflow 

analysis systems and business activity monitoring systems, 

such as [5,8]. These efforts provide a warehouse schema that 

is independent of the business process, but that is dependent 

on the process meta-model, as that is built into the workflow 

engine. There is no specific capability to collect and 

aggregate data coming from sources that are not the 

workflow engine itself, neither in terms of warehouse model 
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or ETL, and there is no support for process abstraction. 

Similarly, there is no support for rapid prototyping. 

During the last two decades there has been a vast amount 

of work for automating the generation of mappings. One of 

the best efforts is the Clio project from IBM [6] where given 

value correspondences between source and target schemas, 

Clio can produce logical assertions, basic and nested [7], that 

can be converted into executable  programs. Our work differs 

mappings that exclusively match the users specified 

correspondences, instead it produces mappings that capture 

other correspondences not specified by the user but that are 

part of the execution semantics of abstract process 

progression by factoring out commonalities derived from the 

predefined structure and semantics of the process warehouse 

model and of the types of mappings specific to the process 

warehousing domain. To the best of our knowledge, we are 

not aware of any work done in this direction. 

Finally, we mention that the framework described above 

has been validated over a variety of HP and customer 

processes. Although it can be implemented with a variety of 

implementation is based on an Oracle database for the 

 as ETL, and 

BusinessObjects XI for the front end reporting.  

While we did execute performance tests for high volume 

data and the model and approach is targeted for high volumes 

(especially as in BPO environments there are many 

customers on the same platform and high volumes are the 

norm), to date our customer scenarios only included 

applications with relatively low volumes of transactions, in 

the order of tens of thousands per month with overall sizes of 

fact tables in the order of a few millions.  Another limitation 

is that the abstraction aspect only applies when it is 

reasonably easy to associate process progression with IT 

events. This is true in the vast majority of the cases, though 

in some situations the mapping is not trivial, mostly due to 

the difficulty of correlating events with the correct process 

instances. For example, the start of a step may be associated 

to a user accessing a web page (say to enter invoice 

information), but this event per se may carry no additional 

contextual data and hence although we know indexing (i.e., 

the process step corresponding to invoice data population) is 

being done, we do not know for which process instance. 

Associating the event to the correct process instance may 

require additional parameters such invoice number or 

customer id.  
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