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ABSTRACT
Workload management for business intelligence (BI) queries
poses different challenges than those addressed in the online
transaction processing (OLTP) context. The fundamental
problem is that the execution times of BI queries can range
from milliseconds to hours, and it is difficult to estimate
these times accurately. Key challenges raised by this prob-
lem are how to identify queries that are not performing prop-
erly and what to do about them.
We propose here a workload management system for con-
trolling the execution of individual queries based on realistic
customer service level objectives. In order to validate our
proposal, we have implemented an experimental system that
includes a dynamic execution controller that leverages fuzzy
logic. We present results from a number of experiments that
we ran using workloads based on actual industrial workloads
and customer objectives that we gathered by interviewing
industry practitioners.
Our experiments show that even a handful of moderately
mis-behaving problem queries can have a significant impact
on a workload consisting of thousands of queries. We were
surprised when our experiments also demonstrated that false
positives – incorrectly identifying a normal query as a prob-
lem – can also have significant consequences. For those rea-
sons, it is very important that an execution controller be as
accurate as possible – avoiding both false positives and false
negatives. Our experiments also validate that our execution
controller can markedly improve the execution of a workload
that includes problem queries.

1. INTRODUCTION
Workload management of a very large data warehouse is
like juggling thousands of opaque bags between hundreds of
workers while sporadically the CEO of the company walks by
and throws in a new bag, which then needs preferential treat-
ment. Most of the bags contain feathers, some contain base-
balls, and a few turn out to contain bowling balls. Heavy
bags can slow a worker’s juggling speed, making process-
ing times unpredictable. There are financial consequences if
various bags are not processed within given periods of time,
but the consequences and deadlines are not visible to the
workers.
Our goal is to enable the automatic scheduling and manage-
ment of such a system. We believe that the key challenges
that we must address for this are: first, we must be able
to translate customer expectations into service level objec-
tives; second, we must have strategies for scheduling jobs

with uncertain resource requirements; and third, we must
be able to accurately detect and handle “problem queries” –
improperly functioning queries that may not complete and
that may consume resources that could otherwise be used
by properly functioning queries.
The very reasons that make workload management partic-
ularly relevant to data warehouses also make it especially
challenging in that context. BI queries exhibit a huge vari-
ance in response times. Most queries are known to exe-
cute in under a minute, but some small number of them
require hours of execution time. According to conventional
wisdom, the presence of even a few poorly written or opti-
mized queries can significantly impact the performance of a
data warehouse system by taking up resources that could
otherwise be used by properly functioning queries. It is
not straightforward to estimate accurately how long a long-
running query will take. Although customers may have ser-
vice level agreements (SLAs) that spell out financial con-
sequences, and although jobs have deadlines, the deadlines
are not necessarily explicit, nor is it straightforward (or even
necessarily possible) to link SLAs to deadlines.
Database administrators today thus struggle with questions
like:

• How long should they wait before killing an unexpect-
edly long-running query?

• When should they run a newly arrived interactive query
if the currently executing batch of queries is in danger
of missing its deadline?

• What if the newly arrived interactive query was sub-
mitted by their CEO?

We believe that it is critical that workload management au-
tomate such decisions. Analysts currently predict that data
warehouses are moving from the current scenario of sched-
uled batched workloads with hundreds of standard reports
and limited numbers of interactive queries, towards a fu-
ture scenario of mixed workloads characterized by continu-
ous loading, thousands (or tens of thousands) of standard
reports, and thousands of users [7].
There are three main components to our approach. First, we
categorize workload types according to their service level ob-
jectives (SLO). We do this because these objectives dictate
how the workloads should be treated. Second, we recognize
the difficulty of estimating the execution times of BI queries
in a multi-stream environment, and have considered how
scheduling could accommodate this uncertainty in the face
of service level objectives. Third, in order to identify and
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control the execution of problem queries (queries that run
much longer than expected), we recognized that our execu-
tion manager needs a flexible mechanism for identifying and
handling problem queries. To this end, we have built an exe-
cution management component that leverages fuzzy logic to
incorporate both quantitative measurements and heuristics
in an intuitive manner.
We begin by discussing related research efforts and available
commercial offerings in Section 2. We have implemented a
prototype system for the purpose of validating policies and
strategies for workload management. We describe the com-
ponents of our approach and implementation in Section 3.
Because to the best of our knowledge, service level agree-
ments for data warehouses do not address query-level re-
quirements, we interviewed a number of practitioners and
distilled a characterization of customer expectations for BI
workloads and how they map to job-specific penalties in Sec-
tion 3.1. Our system features an execution controller that
leverages fuzzy logic to provide an intuitive and flexible em-
bodiment of management rules, which we describe in Sec-
tion 4. In order to validate the effectiveness of our system,
we used our prototype to test a variety of workload man-
agement strategies based on real workloads. We discuss this
effort in Section 5. Finally, we present our conclusions, as
well as ongoing work, in Section 6.

2. RELATED WORK
In this section, we consider two main areas of related work:
(1) researchers who use workload management to address
quality of service (QoS) in database systems (DBMS) and
(2) efforts to address problem queries in DBMS workloads.
Most prior work in workload management has considered
service-level performance objectives in the context of the
OLTP, as opposed to BI, DBMS. Krompass et al. [9] present
an adaptive QoS management that is based on an economic
model which adaptively penalizes individual requests. Their
model derives adaptive penalties for individual requests by
differentiating between opportunity costs for underachiev-
ing an SLA threshold and marginal gains for (re-)achieving
an SLA threshold. Their system includes a database com-
ponent that schedules requests depending on their deadline
and their associated penalty. Schroeder et al. [18] present
a framework for providing QoS where the response time re-
quirements are specified in an SLA. To meet the multiclass
response time goals, the number of concurrently executing
requests is dynamically adjusted using a feedback control
loop which considers the available hardware resources and
concurrently executing queries in the database.
If we think of SLOs as related to workload management
techniques for resource allocation, we share a focus with
researchers such as [9, 18, 6, 3, 13], who consider how to
govern resource allocation for queries with widely varying
resource requirements in multi-workload environments. For
example, Davison and Graefe [6] present a framework for
query scheduling and resource allocation that uses concepts
from microeconomics to manage resource allocation.
A major difference between such work and ours is that we
consider the case where some problem queries are not enti-
tled to resources, and therefore in addition to admission con-
trol and scheduling, we also consider actions such as killing
the problem queries. Also, their focus is OLTP, not BI,
and thus they make assumptions such as transaction-specific
SLAs, and do not consider workloads with a huge variance

in uncertain execution times.
Most other researchers have considered problem queries as
something to be prevented via resource tuning (e.g., page
replacement algorithms) or addressed manually, as opposed
to something to be dealt with via workload management
policies. Benoit [1] presents a goal-oriented framework that
models resource tuning parameters as a resource tree. Their
model includes knowledge of how resource parameters im-
pact database performance and how all resources are inter-
related. The goal is to model DBMS resource usage for
the purposes of (1) diagnosing problem resources and (2)
determining how to adjust parameters in order to increase
performance; they do not address the evaluation of workload
management mechanisms or model the state of an individual
query’s execution. Weikum et al. [21] discuss what metrics
are appropriate for signaling a performance problem. They
focus on tuning decisions at different stages: system config-
uration, database configuration, application tuning, adjust-
ment of operational parameters.
We are very interested in work in query progress indicators,
because we view such mechanisms as potentially providing
valuable monitoring input to a workload management sys-
tem such as ours. However, most current work in query
progress indicators tends to assume that the progress indi-
cator considers each query in isolation, A notable exception
is Luo et al. [12], who propose a multi-query SQL progress
indicator that can consider the impact of other queries run-
ning in the system. Furthermore, most also assume that the
progress indicator has visibility into the remaining cost of
each running query (e. g., [12]), or that the number of tuples
processed by each query operator are known (e. g., [5, 10,
11, 4]). Such operator-level information can be prohibitively
expensive to obtain when multiple queries are executing si-
multaneously. That said, we believe the area of multi-query
SQL progress indicators is quite relevant to our goals and
look forward to more developments and hope that as this
technology becomes more practical we’d be able to incorpo-
rate it as an input to our workload management policies.
Most commercial database systems have developed their
own mechanisms for dealing with problem queries. For ex-
ample, the HP-UX Workload Manager [19], the IBM Query
Patroller for DB2 [15], the SQLServer Query Governor [14],
Teradata’s Dynamic Workload Manager [20], and Oracle’s
Database Resource Manager [16] all provide functionality
to control queries that exceed limits such as estimated row
counts, processing times, or joins. IBM’s Query Patroller
for DB2 [8] and Oracle’s Database Resource Manager [16]
let the administrator define user-groups to which a static
priority and a share of system resources for each group is
assigned. The higher the priority of a group, the more re-
sources it is assigned. However, the static prioritization is
not associated with response time requirements or SLA con-
formance. Similarly, the SQLServer Query Governor pre-
vents queries whose estimated query costs exceed a user-set
upper cost limit from starting, as opposed to stopping them
after they reach a predefined limit. However, these limi-
tations are not associated with response time requirements
nor with service level objectives, nor have we seen any sys-
tematic study validating the effectiveness of such strategies
and mechanisms.

3. PROTOTYPE IMPLEMENTATION
We have implemented a prototype workload management
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system in order to validate the various components of our
approach. Figure 1 sketches a high level architecture of
our workload management system. In this section, we walk
through the components of our prototype.

3.1 Service Level Objectives
We model a workload as composed of one or more jobs. Each
job consists of an ordered set of typed queries submitted by
a client, and is associated with a service level performance
objective as well as a submission style. Each query type
maps to a tree of operators, and each operator in a tree
maps in turn to its resource costs. Our current implementa-
tion associates the cost of each operator with the dominant
resource associated with that particular operator type (e.g.,
disk or memory).
Before we can compare workload management strategies, we
must have a model of the relative benefits of workload man-
agement. We distinguish between customer-facing service
level objectives (e.g., the service level agreements commonly
expressed in contracts) and job-facing service level objec-
tives (e.g., adaptive penalty functions that can be used to
optimize the scheduling of individual queries).
We interviewed a number of practitioners with experience
in database workload management for a small variety of
database products and customer environments, and found
that customer-facing service level objectives seem to tend
to fall into three categories: (1) Deadline-driven: In this
scenario, the customer wants a given job to complete by a
specified clock time. For example, a data load job could
be required to complete before 5 am GMT. (2) Concrete
quantities of computing time: In this scenario, the customer
specifically expects a certain quantity of computing time or
machine availability at a certain level of priority. (3) Chal-
lenge: In this scenario, a customer has a job which incurs
known costs in an existing environment, and the require-
ment is that the job execute at least as well under a new
environment with a specified set of constraints. Notably, we
heard no constraints on query execution times.
For the purposes of this study, we focused on the first cat-
egory – deadline driven objectives because that is the one
in which we foresee that query scheduling and management
could make the biggest impact. Within that scenario we
further identified three categories of jobs:

1. Batch jobs composed of routine queries run at regular
intervals where the entire job must be either completed
or aborted by the soft deadline.

2. Batch jobs where at a minimum a certain percentage
of the job must be completed by the soft deadline.

3. Interactive jobs that can be submitted at any time.
Interactive jobs are submitted by special request for
business reasons, and thus are potentially more valu-
able than a batch job.

We consider an open model in which we have scheduled
batch jobs and interactive jobs that arrive according to a
stochastic process. All jobs are associated with soft dead-
lines by which they must complete. Interactive queries are
of greater importance than batch queries (approximately 15
times more “valuable,” according to our interviews).
Each job consists of a set of one or more transactions. Each
database transaction consists of a set of one or more typed
queries that will be submitted sequentially to the database
system and leave the system after being processed.
We model a job as a tuple (clientId, typeId, slaId, start-
Time), where clientId is an identifier for the client submit-
ting the job, typeId is an identifier for the type of job (e.g.,
batch or interactive), slaId is an identifier for the service level
objective (SLO) associated with that job, and startTime is
the time that the job starts. In the case of a batch job,
startTime is known a priori. In the case of an interactive
job, startTime is set when the job arrives.
We model customer-facing service level objectives as a tu-
ple, (deadline, jobType, minWork), where deadline is the
soft deadline by which the job should be complete, jobType
indicates whether the job is interactive or batch, and min-
Work indicates the minimum portion of the work that must
be done. In the case of a batch job, the DBMS-facing ser-
vice level objective is then to minimize the end-to-end exe-
cution time (makespan). In the case of an interactive job,
the DBMS-facing service level objective is then to minimize
the sum of the various queries’ elapsed times (flow time).

3.2 Workload Management
The left-hand side of the box labeled DBMS lists compo-
nents that provide fundamental workload management func-
tionality – admission control, scheduling, and execution con-
trol. Each of these modules represents a knob which can be
adjusted to select from a variety of workload management
policies and algorithms. The right-hand side of the box con-
tains the query optimizer, execution engine, and runtime
monitor. These components provide core database func-
tionality and supply information to workload management
components but do not implement workload management
policies.
We distinguish between jobs that are measured according to
makespan (end-to-end execution times) and those that also
seek to minimize flow time (the cumulative elapsed time-per-
job). Both the OLTP and BI environments include queries
whose times can range from milliseconds to hours. In the
OLTP environment, workloads that seek to minimize flow
time tend to feature small, short lived, predictable queries
(e.g., an automatic teller machine). Long-running queries,
such as index creation or backup activities, tend to be sys-
tem batch jobs that are measured by makespan.
In order to provide maximum flexibility, our system decou-
ples the task of controlling the work to be done by each
resource from the task of detecting and responding to over-
load situations. The first task is controlled through admis-
sion control and scheduling policies; the second task is ac-
complished via execution controller and the rules it imple-
ments. Our system supports the insertion and specification
of policies for each of the elements of workload management:
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admission control, scheduling, and execution control. Our
intent is to enable the comparison of the effectiveness of
various algorithms for different types of workloads.
Admission control policies determine the submission of queries
to the execution engine, and thus play three functions in
workload management. First, when a new job arrives, ad-
mission control evaluates the DBMS’s multiprogramming
level, and either submits or enqueues each of the job’s queries.
Second, our framework can be configured to support mul-
tiple admission queues. Admission control policies regulate
the distribution of queries among these queues, for example
adding queries to queues based on estimated cost or dom-
inant resource. Third, the SLA Manager uses the require-
ments formulated in the service level agreements (SLA) to
calculate workload-specific service level objectives for the
workload. The SLA Management uses this SLO informa-
tion to perform admission control and assign workload com-
ponents to appropriate queues maintained by an Execution
Control. Next, when the execution engine has finished pro-
cessing a query, admission control selects the next query for
execution. In our system, this is done by evaluating the
amount of work waiting in each queue (if there are multi-
ple queues), and selecting the first query from the queue
with the most work remaining. Once queries have been en-
queued, the Scheduler’s policies determine the ordering of
the queries within a queue – for example, by estimated cost.
Scheduling algorithms determine in which order which jobs
should be processed by which resources. As noted by [2],
the complexity of a database system prohibits establishing
an optimal schedule dynamically, and realistically, heuristics
must suffice. Furthermore, [24, 25] demonstrate that under
lax timing conditions (1.5 times the minimum) even the sim-
plest heuristics achieved nearly 100% performance, and that
although simple heuristics perform poorly under strict tim-
ing conditions where the scaled time is 1.1 times the min-
imum time, even in that case combining simple heuristics
with simple backtracking leads to significant improvement.
We focus at this time not on finding a better scheduling
heuristic, but rather on how classes of scheduling algorithms
apply to customer SLOs. [2] distinguish between three classes
of time-critical database scheduling algorithms, based on the
degree of knowledge they have regarding resource require-
ments: (1) algorithms with incomplete resource require-
ment knowledge, where an upper time-bound is impossible
to achieve (e.g., priority scheduling); (2) algorithms with full
knowledge of resource requirements (e.g., algorithms that
detect and resolve conflicts among tasks over resources, such
as conflict-avoiding transaction class preanalysis); and (3)
hybrid optimistic algorithms that do not require full know-
ledge of resource requirements and compensate by respond-
ing to overload situations (where the scheduler must cope
with with unschedulable tasks) by increasing throughput.
In our context, we have incomplete resource requirement
knowledge, because we do not know a priori exactly how
long each job will use each resource. That said, the customer
objectives give us objective criteria we can use to decide how
to respond to overload situations:

• Rewards and penalties (tardiness penalty, earliness re-
ward). This is an explicit factor for batch jobs, and is
implied for interactive jobs.

• Makespan, meaning the total amount of time end-to-
end needed to finish a given set of jobs). This is a

priority for both batch and interactive jobs.

• Average flow time, meaning the total time including
wait time for all jobs. This is a priority for interactive
jobs, but not for batch jobs. Note that if an interactive
job contains only one query, then that job’s flowtime
will be the same as its makespan.

We model choice of scheduling algorithm as a tuple of the
form, (jobtype, schedulingalgorithm, configuration) for each
type of job, jobtype, supported by our workload manage-
ment system, where schedulingalgorithm is an identifier for
a scheduling algorithm implemented by our system and con-
figuration is a set of (parameter, value)-tuples that capture
configuration choices for that scheduling algorithm. As we
describe in Section 5, we have included two classic schedul-
ing algorithms in our initial implementation: first-in-first-
out (FIFO) and two queues.
Finally, we implement our execution control using a fuzzy
execution controller that takes as input a configurable set of
rules for how to detect and respond to overload situations
based on the type of job, the rewards and penalties associ-
ated with the job, and the values placed on flow time and
throughput. We defer discussion of the execution controller
to Section 4.

3.3 Execution Engine / DBMS Core
The Execution Engine performs the operations required to
execute the query. We chose to build an execution engine
simulator to implement the execution engine component.
One reason for this decision was that it would otherwise
require a prohibitive amount of time to experiment with
workloads that take hundreds of hours to run. Second, we
needed to insert problems into our workloads in a control-
lable manner for our experiments, Finally, due to the scale
and complexity of BI systems, performance might otherwise
not be repeatable due to the difficulty in controlling the ex-
ecution environment.
Implementing the execution engine in this way enables us
to drive our experiments from arbitrary workloads of vary-
ing numbers of queries and query sizes generated from data
gathered from real workloads. Our simulated execution en-
gine also introduces the imprecision into the costs of the
queries as derived from the query optimizer (estimated costs).
We have written a set of tools to translate log/output files
generated by the execution of commercial workloads into an
XML input file that specifies the objectives, jobs, queries,
resource usage, and problems of an experimental workload.
We can thus build arbitrary workloads of varying numbers of
queries and query sizes from data gathered from real work-
loads.
The Execution Manager monitors runtime statistics, and is
capable of submitting control commands to the Execution
Engine. Our system establishes a feedback loop between
the database management system and the Execution Man-
ager. For example, if the Execution Manager decides that
a query’s current execution cost falls significantly outside of
the expected distribution for execution costs for that query’s
type, then it may choose to take action (e.g., kill) one or
more of the currently running queries.

4. EXECUTION CONTROL
We implemented the execution control component to sup-
port fuzzy logic-based rules. To this end, we leveraged the
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open source Fuzzy Engine for Java, a Java library for inter-
preting fuzzy rules expressed as text strings [17].
Our workload management system relies on the execution
controller to govern the flow of the running system at execu-
tion-time. Figure 2 shows the architecture of the execu-
tion controller. As queries execute, the execution controller
uses runtime statistics to identify potential workload prob-
lems. The fuzzy controller component of the execution con-
trol then executes corrective actions to rectify the workload
problems.
Before explaining the details of our execution controller, we
motivate why we explored this direction and give an intro-
duction of the fuzzy logic basics.

4.1 Motivation for Using a Fuzzy Controller
We identify three pragmatic issues that we must address in
order to automate the management of overload situations in
BI workloads. One, the classification of queries according to
their expected behavior involves a degree of uncertainty be-
cause query execution times are not entirely predictable. A
query may have identical SQL code as one submitted yester-
day, but during execution it becomes apparent that because
of new, heavily skewed data, we can no longer be certain of
its execution time. Two, there are numerous factors that
must be considered when governing query execution. Prac-
titioners can attest to the difficulty of both database siz-
ing (which attempts to predict the capabilities of a system
as a whole with regard to a proposed workload) and query
progress estimation (which focuses on the performance of a
single query). Capturing management logic in an accessible
framework is thus a practical challenge. One of our inter-
viewed practitioners lamented that he didn’t want to be told
about input and output cardinalities at the various stages of
an operator tree for all the queries being currently executed
– he needs to know how the system is running and if there
is a bad query that he should cancel. Three, due to the
complexity of data warehouse systems, complete knowledge
about the state of the system and the queries running in it is
not available. Even if a database could monitor everything,
the performance overhead would be prohibitive.
We believe that the fuzzy logic paradigm addresses all these
issues. Fuzzy logic is designed to reason about sets whose
members belong to a given set with some degree. Rules are
expressed in terms of membership in these sets; it accom-
modates intermediate degrees of truth [22]. In addition, the
fuzzy controller does not need complete knowledge about
the queries it manages. The degree to which knowledge is

Fuzzy controller
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Figure 3: Architecture of a Fuzzy Controller

incomplete is an inherent part of the model. Furthermore, a
fuzzy controller can be extended incrementally when new
knowledge does become available by adding new linguis-
tic variables and new rules, respectively. Thus one of the
strengths of fuzzy logic is that it provides an implementation
framework for building management interfaces that are easy
to understand (enabling database administrators to govern
the system using intuitive sentences instead of rules) [22].

4.2 Fuzzy Logic Basics
Fuzzy controllers are special rule-based systems based on
fuzzy logic [23]. Figure 3 summarizes the workflow of a fuzzy
controller. The fuzzy controller obtains monitored data from
the component to be managed. Using these values, the con-
troller converts the monitored values into appropriate fuzzy
sets in the fuzzification step. The inference engine uses the
fuzzy sets to evaluate the fuzzy rule base and generate the
sets for the output variables, which are converted into a
vector of crisp values during the defuzzification step. The
defuzzified values represent the actions the fuzzy controller
uses to control the workload.
The membership grade of elements of fuzzy sets ranges from
0 to 1 and is defined by a membership function. Let X be
an ordinary (i. e., crisp) set, then

A = {(x, µA (x)) | x ∈ X} with µA : X → [0, 1]

is a fuzzy set in X. The membership function µA maps
elements of X into real numbers in [0, 1]. A larger (truth)
value µ denotes a higher membership grade.
Linguistic variables are variables whose states are fuzzy sets
(linguistic terms). A linguistic variable is characterized by
its name, the set of linguistic terms, and a membership func-
tion for each linguistic term. Figure 4 shows an example
for the linguistic variable progress and the assigned trape-
zoid membership functions for the three linguistic terms low,
medium, and high.
During the fuzzification phase, the controller maps the crisp
values of the measurements (e. g., the progress of a query) to
the corresponding linguistic input variables (e. g., progress)
by calculating membership grades using the membership
functions of the linguistic variables. For example, based on
the membership functions in Figure 4, a progress p = 0.3
(30%) for a query is 33% low (µlow(p) = 0.33), 67% medium
(µmedium(p) = 0.67), and 0% high (µhigh(p) = 0.0).
In the inference phase, the fuzzy rule base is evaluated using
the fuzzified measurements. We show two example rules.

IF relDatabaseTime IS high AND progress IS high

THEN reprioritize IS applicable

IF relDatabaseTime IS high AND

(progress IS low OR progress IS medium)
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THEN cancel IS applicable

where relDatabaseTime and progress denote input variables
and cancel and reprioritize output variables described in
Section 4.3. The second rule states that “hopeless” queries
(i.e., the ones that are late but for which not much work
has been done) can be canceled. In contrast to that, the
first rule allows a query to get higher priority if it is late but
almost complete.
Fuzzy logic evaluates conjunctions and disjunctions of truth
values in the antecedent of a rule using the minimum and
maximum function. For our example, we assume that the
relative database time of the monitored query takes a value
r and that the membership grades for the linguistic vari-
able relDatabaseTime are µlow(r) = 0.0, µmedium(r) = 0.3,
and µhigh(r) = 0.7 (membership functions for the linguis-
tic variable relDatabaseTime are not shown in a figure).
Thus, the truth values of the antecedents in the example
rules above evaluate to min (0.7, max (0.67, 0.33)) = 0.67
and min (0.7, 0.0) = 0.0.
The implication rule in classical logic that the consequent
is true if the antecedent evaluates to true is not applicable
for fuzzy logic because the truth value of the antecedent is
a decimal value between 0 and 1. Thus, literature proposes
several different inference functions for fuzzy logic. We use
the popular max-min inference function that clips off the
fuzzy set specified in the consequent of a rule at a height
corresponding to the degree of truth of the rule’s antecedent.
After rule evaluation, all fuzzy sets referring to the same out-
put variable are combined using the fuzzy union operation:
µA∪B(x) = max (µA (x) , µB (x)) for all x ∈ X

The resulting combined fuzzy set is the result of the in-
ference step. The fuzzy set for the consequent of the first
example rule is shown in Figure 5.
During the defuzzification phase, a crisp output value is cal-
culated from the fuzzy set that results from the inference
phase. Again, literature lists several defuzzification meth-
ods, from which we chose the established maximum method.
This method determines the smallest value at which the
maximum truth value occurs as result. As shown in Fig-
ure 5, the crisp value for the applicability of action cancel is
0.67. Assuming that the applicability for action reprioritize
is defined analogously, action reprioritize is not applicable
at all. Since the execution controller will execute the action
with the higher applicability, the respective query will be
canceled.

4.3 Execution Control Details
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Our execution controller leverages information gathered at
runtime to manage the queries concurrently running in the
database. As mentioned in Section 4.2, there are several
metrics that are monitored and used to compute the in-
put variables for the rules, respectively. We recognize that
an actual system may not support all these. For example,
we understand that monitoring work per operator could be
prohibitively expensive. That said, we wanted our system
to support the possibility of such monitoring to be done so
that its costs and benefits could be evaluated.
Our list of monitored metrics include the following (ordered
by the probable cost of obtaining the information):

Priority The priority of a query has impact on the resource
allocation. The higher the priority, the more resources
the query gets, compared to other queries.

Number of cancellations A count for the number of times
an individual query has been canceled.

Operator progress This abstract metric is monitored on
the operator level for each currently active operator.
Depending on the type of the operator, this metric
represents for example the number of tuples read from
disk or the number of I/O operations. The query op-
timizer returns an estimate for this metric for each
operator. Using the monitored (actual) data divided
by the estimate, we get the relative work of an op-
erator. This allows us to (1) get an estimate of the
progress of a query and (2) decide whether or not the
estimates for a query are way off. We assume an intel-
ligent query cost estimator that updates its estimates
during run-time.

Resource contention The number of queries that are com-
peting with a query for resources.

Resource Progress Ratio of the work performed thus far
on a given resource, compared to the expected work
to be performed by a query on that resource. This
metric should be considered in perspective of the mon-
itored/expected work

Database time We define the database time for a query as
the time the query is executing in the database (i.e.,
no wait times in the queue before the database). If
the query is still running, the elapsed time is the time
between start of the execution and the current point in
time. Analogous to the relative work of an operator,
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we define the relative database time of a query as the
actual elapsed database time for a query divided by
the estimated database time for that particular query.
This information can then be used to help determine
whether or not a query’s performance is suffering.

Based on these metrics, we are focusing on three actions that
can be executed on a query in order to control the workload
(an implicit fourth action is “noop” which denotes that none
of the other actions is executed).

Reprioritize This action increases the priority of the query.
If a query is re-prioritized, the resources are redistribu-
ted immediately among the queries according to the
priorities of the individual queries.

Kill This action kills a running query and immediately frees
the resources used by this query. Any intermediate
results generated during the execution of the query
are disposed. After killing a query, pending queries (if
any) are admitted to the database and the resources
are redistributed.

Resubmit A killed query can be resubmitted to the sys-
tem, i.e., the query is enqueued again. This action can
either be executed transparently to the user (i.e., the
user does not see that a query has been killed) or be
user-induced (i. e., the user has been notified and he
manually resubmits the query). For the rest of this
paper, we denote killing queries without automatic re-
submission as abort while cancel denotes killing and
automatically resubmitting the query. For the latter
case, we identified three options for how to treat re-
submission, which we describe here along with their
drawbacks.

The query can be immediately re-enqueued. Never-
theless, if the query was blocked by a problem query
that hogs the resources of the system, the query would
be delayed again if the problem is still running if the
killed query re-enters the system.

Thus, the resubmission of a killed query could be de-
layed for a specified amount of time. Nevertheless,
there is no guarantee that the conditions that caused
the initial delay will have disappeared.

For this purpose, a killed query can be resubmitted
when the queries that were running simultaneously
with the killed query have left the system. This ap-
proach increases the makespan of the delayed queries,
possibly unnecessarily.

For the purposes of our implementation, we chose the
first option. We use FIFO to schedule queries, and
our experiments show that the delay until the query
is processed again is generally sufficient to prevent the
previous contention.

5. EVALUATION
In order to characterize the potential impact of unexpected
behavior (unexpectedly heavy items in a workload), as well
as the ability of our fuzzy execution controller to react to
these problems, we have performed a number of experi-
ments, some of which we present here.
In particular, we explore the following:

• Impact of problem queries. In these experiments,
we show the impact of problem queries on a workload
without any execution control on both interactive and
batch objectives.

• Execution controller. These experiments show the
impact of the execution controller with the multi-pro-
gramming level (MPL) set to one.

• False positives: Accuracy requirements for the

execution controller. In this experiment, we show
the impact of an over-aggressive execution control pol-
icy on both batch and interactive objectives.

Note that although the workloads driving our experiments
are derived from actual commercial workloads, the execu-
tion times derived from the simulation are not intended to
map literally to actual time units. Since the focus of our ex-
periments is to show the relative impact of problem queries
and the effectiveness of managing the problems, we present
the times in this section in the artificial time unit given by
the simulation.

5.1 Experimental Workloads
Before discussing the experiments in detail, we first describe
the two workloads used for the experiments. Both workloads
contain two jobs that are executed in parallel. The inter-
active job contains about 1100 queries with relatively low
estimated costs. The processing time for nearly all of the
queries in the workload we observed for deriving the data
for the interactive job ranged from milliseconds to seconds;
about 40 ran for longer than a minute, and a small handful
of those ran for around ten minutes. The mean costs of the
queries in the batch job are about 1000 times higher than
the mean costs of the interactive job. The queries in the
commercial workload we observed for deriving the data for
the batch job completed after several minutes to hours.
Our experimental framework allows us to generate arbitrary
workloads from the observed data of workloads executed
on a real database system. Thus, we created a problem
workload, which is based on the normal workload described
above.
The problem workload models a workload where some batch
queries run longer than expected. Our model comprises two
parameters. The first parameter denotes how much the ex-
ecution of a problem query is “stretched” compared to a
normal query. For example, an unexpected high execution
time in the database can be caused by data skew, i.e,̇ the
optimizer underestimated the actual costs of the query. The
second parameter describes whether a query shows a prob-
lem behavior after it is killed and resubmitted. For example,
this behavior can be observed when there is not enough main
memory for the execution of the query. After killing and re-
submitting the query, there might be enough resource for
that particular operator, such that the query can complete
without exhibiting problem behavior.
In total, we added 75 problem queries (about 4.5%) to the
batch job in the problem workload. These problem queries
consisted of 50 queries with a stretch factor of 10 (meaning
that they would run about ten times longer than expected),
20 queries with a stretch factor of 100, and 5 queries with
a stretch factor of 1000. With each of the problem queries,
we associated a probability that the problem prevails if the
query is canceled (and resubmitted).
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The interactive jobs in both workloads begin arriving shortly
after the processing of the batch job starts. In our model,
the interactive jobs arrive one at a time – an interactive
query is submitted only after its predecessor has completed
and returned results to the submitting client. As the inter-
active jobs consist of a single query each, flowtime becomes
equivalent to makespan. Furthermore, we configured the
simulated execution engine such that it admits pending in-
teractive queries before their batch counterparts. All batch
queries are maintained in a FIFO queue, i. e., in the order
they were registered at the database system. This reflects
the settings that could be implemented with today’s com-
mercial database systems.

5.2 Impact of Problem Queries
We first investigated the workload in the presence of problem
queries at various multi programming levels. Figures 6(a)
and 6(b) show the makespan of the jobs executed in the pres-
ence of a small number of problem queries (problem work-
load) compared to the makespan of executing the jobs in
the normal workload. Notice that all of these curves show
a “knee”. At low MPLs, the system is underutilized. Af-
ter reaching an optimal range of MPL, the system becomes
over-utilized, i. e., the queries suffer too much from resource
contention.
As expected, the makespan for the batch workload increases
in the presence of unexpectedly long-running queries (Fig-
ure 6(a)). But, as indicated in Figure 6(b), the long-running
batch queries in the problem workload also impact the inter-
active workload. The main reason for the makespan increase
is because the average wait time for an interactive query to
enter the system increases due to the increased average pro-
cessing time of the batch queries.

5.3 Evaluation of Workload Management
Based on the findings of the problem query experiments, we
wanted to evaluate the effectiveness of the workload man-
agement actions proposed in Section 4. For the following
experiments, we used the relative database time, progress,
and the number of cancellations of a query as metrics for
deciding whether or not to abort or cancel a query.

5.3.1 Effectiveness of Workload Management Actions
First, we want to evaluate the effectiveness of the workload
management actions with near-perfect knowledge of the sys-
tem. For controlling the precision of the estimated process-
ing times for queries – which is a complex task even in our
controlled environment – we set the MPL to 1. At this MPL,
the execution of batch and interactive queries is interleaved
because each time an interactive query completes, a batch
query is admitted to the database and the successor of the
completed query has to wait for the batch query to complete.
Queries are identified as long-running using the monitored
value r for the relative database time. This is defined as
an interval [1, 1.1], i. e., the truth value for relative database
time is high is 0 for values r < 1.0 and 1 for values r > 1.1.
For 1.0 ≤ r ≤ 1.1 the truth value increases linearly. We do
not consider the progress of queries because in this setting,
we assume that only the processing time for problem queries
exceeds the respective estimate.
The makespan of the interactive job decreased from 0.68
(problem workload in Figure 6(b)) to 0.17 due to decreased
wait times. With workload management actions taken, it

is guaranteed that the time a query stays in the system is
in the range of its estimated processing time, irrespective
of whether it is a problem query or not. “Normal” queries
run to completion, problem queries are either aborted or
canceled. Thus, especially in the presence of queries with an
unpredicted long processing time, the wait time of pending
interactive queries is bounded because they do not have to
wait for their problem counterparts to complete.
Applying workload management actions, the makespan of
the batch job in presence of long-running queries is decreased
from about 1.41 (Figure 6(a), looking at MPL=1) to about
0.33. For handling the workload problems, the execution
controller triggered 119 actions for the 75 problem queries.
No false positives were identified. From these 119 actions,
101 cancel operations were executed. One would expect that
canceling a query would increase the makespan of the batch
job because the amount of work done before the cancellation
is lost and the processing starts from scratch after resubmis-
sion. However, this effect is over-compensated by aborting
18 queries which still showed the problem behavior after
canceling them twice.

5.3.2 Impact of False Positives
Ideally we would like to cancel just the problem queries.
However, we cannot assume the perfect knowledge to achieve
this goal. Thus, we wanted to evaluate the impact of work-
load management actions on an environment with less accu-
rate knowledge about the processing time of a query. There-
fore, we conducted an experiment at MPL=4. Even in our
controlled environment, estimating the query execution time
cannot be done with arbitrary precision when several queries
are running simultaneously. In order to derive reasonably
accurate processing time estimates, we calibrated our times
for non-problem queries by running them in our simulated
environment under specific MPL and measuring execution
times. The main focus of this experiment is to understand
the impact of handling problem queries too aggressively.
Figure 7(a) demonstrates that rectifying the workload man-
agement problems aggressively is done at the costs of execut-
ing more actions and canceling and aborting false positives
– queries that are actually not problem queries. The ‘x’ axis
of the figure measures “aggressiveness” in terms of when we
consider the relative database time as “high”. Aggressive-
ness is negatively correlated with the relative database time;
i. e., the lower the values in the interval, the more aggres-
sive the execution control is. False positives occur because
the actual processing time for some normal queries is up to
1.3 times higher than predicted. That is to say, when the
threshold value for the variance in time of a “problem” ver-
sus “non-problem” query overlaps with the natural variance
in query execution times, then false positives are likely to oc-
cur. When the wait time for identifying problem queries lies
outside normal variance, then the number of false positives
drops.
A number of queries in the experiment above were false pos-
itives because the execution control did not consider the
progress of a query before killing it. Thus, the execution
controller executed actions even for queries that were al-
most complete. We therefore experimented with different
thresholds for the progress and kept the time for identifying
long-running queries constant at [1, 1.1].
Figure 7(b) presents the number of false positives incurred,
along with the number of actions executed, for that experi-
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Figure 7: Number of False Positives and Number of Actions Executed

ment. Similar to the previous experiment, the left-hand ‘y’
axis denotes the number of actions taken and the right-hand
‘y’ axis the number of false positives. The ‘x’ axis plots
aggressiveness as the threshold indicating the amount of
progress made after which we would not kill a long-running
query. Queries whose progress is below this threshold are
canceled. In contrast to Figure 7(a), in this figure aggres-
siveness is positively correlated with progress. Higher num-
bers in the intervals indicate that the progress of the query
must be higher in order to “survive”. As can be seen, con-
sidering the progress helps to control the number of false
positives and, thus, the number of actions executed – but,
again, only if the controller does not execute actions too
aggressively.
Figure 8 illustrates how progressively aggressive control poli-
cies impact makespan in the realistic case that cancel and
resubmit actions are associated with costs. In the figure,
we report the makespan for the experiment shown in Fig-
ure 7(a).
Similar to the experiments at MPL=1, the makespan of both
jobs drop. The makespan of the batch and interactive jobs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

[1
.5

,1
.6

]

[1
.4

,1
.5

]

[1
.3

,1
.4

]

[1
.2

,1
.3

]

[1
.1

,1
.2

]

[1
.0

,1
.1

]

E
la

ps
ed

 ti
m

e

Aggressiveness (Relative Database Time)

Interactive
Batch

Figure 8: Makespan for Batch and Interactive Jobs

1113



with problem queries but no actions takes are 1.02 and 0.34
(see Figures 6(a) and 6(b)), looking at MPL=4) compared
to values between 0.15 and 0.19 (batch), and 0.08 and 0.1
(interactive) with actions taken. This drop is due to not
completing some of the long-running queries.
As shown in the figure, when cancel and resubmit actions
incur costs, the benefit of canceling the problem queries
is balanced by the cost of the control action, and impact
makespan and flowtime. If we cancel many queries, the
makespan for the interactive job even drops – but at the
costs of the batch job. In our experiment, overaggressively
canceling queries resulted in a 25% makespan increase for
the batch job compared to a less aggressive controller, even
for moderate costs of executing workload management ac-
tions.
In conclusion, our experiments demonstrated that, first, the
presence of even a few problem queries can have a nega-
tive impact on makespan. Second, that if the execution
controller is overly-aggressive in treating problem queries,
then it is likely to invoke a large number of superfluous
control actions against harmless individual queries. Third,
that a progress indicator, if one is available, can signifi-
cantly help reduce the number of spontaneous actions. And
finally, fourth, that when control actions incur penalties,
those penalties can outweigh the benefits of canceling actual
problem queries when a control policy is overly aggressive.

6. CONCLUSION AND ONGOING WORK
In summary, we designed and implemented a workload man-
agement system that can automatically admit, schedule, and
control the execution of BI workloads according to the ex-
pectations of the customers who own them. To this end,
we have interviewed practitioners and present some insights
regarding the nature of customer expectations and how they
translate to the service level objectives that a workload man-
agement system would consume. Because we recognize that
query cost estimation and query progress estimation are
open problems, we have utilized fuzzy logic in the design of
our execution controller. Fuzzy logic enables us to capture
in a format that humans can easily understand the many
trade-offs that the execution controller makes when making
its decisions. In order to test our system, we acquired ex-
amples of both batch and interactive industrial workloads,
along with multiple traces from their execution at various
multi-programming levels.
Our experiments bore out conventional wisdom’s assertion
that the presence of even a few poorly written or opti-
mized queries can significantly impact the performance of
a database system. More surprisingly, our experiments also
demonstrated the considerable impact of “false positives” –
properly executing queries that are incorrectly identified as
problems. This impact reflects the cost of canceling and re-
running a properly executing query that was in fact perform-
ing slowly in reaction to the presence of an actual problem
query.
Because false positives and false negatives both carry signif-
icant penalties, it is tremendously important that problem
queries be identified with great accuracy. We show that our
execution controller can identify problem queries without in-
curring an excess of either false negatives or false positives.
For next steps, we want to investigate problem queries by in-
terviewing practitioners and building a taxonomy to charac-
terize the impact that problem query have on a database sys-

tem. We also plan to add new workload management poli-
cies and control actions to our prototype, and perform ex-
periments to validate their effectiveness. Finally, we would
like to perform a large number of experiments so as to better
understand the impact of variance in query costs on system
performance.
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