
Deadline and QoS Aware Data Warehouse

Wen-Syan Li,∗ Dengfeng Gao, Rafae Bhatti, Inderpal Narang
IBM Almaden Research Center

Hirofumi Matsuzawa, Masayuki Numao Masahiro Ohkawa, Takeshi Fukuda
IBM Tokyo Research Laboratory IBM Yamato Software Laboratory

ABSTRACT
A data warehouse infrastructure needs to support the requirement
of (day time) ad hoc query response time and (night time) batch
workload completion time. The following tasks need to be finished
in a batch window: (1) Apply one day’s delta data to the base tables;
(2) refresh MQTs (Materialized Query Tables) for ad hoc queries
and batch workloads; (3) run batch queries. Tools are available
to optimize each step; however, many factors need to be consid-
ered for improving the overall performance of a data warehouse
(i.e. meeting batch window deadline and ad hoc query response
time). We have prototyped a Data Warehouse Operation Advisor
to systematically study each component contributing to the batch
window problem, and then perform global optimization to achieve
desired results!

1. INTRODUCTION
Data Warehouses and Business Intelligence (BI) applications are

the top two priorities for CIO/CTOs (Celent report on December
14, 2005). Many large enterprises have daily transactional infor-
mation stored at the branch level computer systems. The informa-
tion is transmitted to the head quarter data warehouse using ETL
(Extract, Transform, and Load) tools in the early evening for con-
solidation and analysis. The information from various branches is
integrated into a centralized enterprise data warehouse and com-
plex BI applications are executed in the late evening. A material-
ized view or Materialized Query Table (MQT) is an auxiliary table
with precomputed data that can be used to significantly improve the
performance of a database query. MQTs are essential to BI applica-
tion performance. A Materialized Query Table Advisor (MQTA),
such as DB2 Design Advisor [1, 2, 3], is often used to recommend
and create MQTs for enterprise data warehouse (EDW) operations.

The BI applications are run as a batch query workload on the
EDW. In addition to the batch query workload in the evening, there
are ad hoc queries issued in the daytime to find information that
is not part of the batch query workload. A typical operation of an
enterprise data warehouse has the following steps:

∗Corresponding author. Email: wen@almaden.ibm.com

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1. The transactional information from branches is extracted, trans-
formed, and loaded into a staging area of the EDW. After all
the transactional data has been processed into a form, the
transactional data can be loaded into the base tables of the
EDW. The data in the staging area can be viewed as the delta
of the base tables.

2. The delta of the base tables in the staging tables is propagated
to the base tables. The indexes of the base tables are updated
accordingly as well.

3. MQTs designed for the ad hoc queries (i.e. schema-driven)
and their indexes are refreshed and updated for the base table
delta

4. MQTs designed for the batch query workload (i.e. workload-
driven) and their indexes are refreshed and updated for the
base table delta. Note that the step 3 and step 4 can be inter-
changed.

5. Batch query workload is executed.

We illustrate the operational flow of an enterprise data warehouse
in Figure 1. Note that in this figure, the arrow from the box of batch
MQT refresh to the box of batch workload process indicates that the
MQTs are used by the batch workload. Similarly, the arrow from
the box of ad hoc MQT refresh to the box of ad hoc query process-
ing indicates that the MQTs are used by the ad hoc queries, but the
cost is added to the batch window. For enterprise data warehouse
operations, there are two key requirements for the system perfor-
mance. There are

• Deadline to complete the batch workload: The batch work-
load must be completed within a window. For example, the
batch workload may start from the midnight and must be
completed before 8am, when the business performance anal-
ysis reports need to be made available for the management.
In order to run the batch workload, it is required to propagate
the transactional data in the staging area to the base tables,
and to refresh MQTs first. In addition to these tasks associ-
ated with the batch workload, MQTs designed for the ad hoc
queries also need to be refreshed in the evening. The dead-
line to complete the batch workload could be defined as six
hours window or to start at 1am and to complete by 8AM.

• QoS requirement for the average response time for ad hoc
queries: Since it is not feasible to predict the patterns of the
ad hoc queries that may be issued by users. Cube Views Opti-
mization Advisor[4] is designed to recommend MQTs to im-
prove the performance of the ad hoc queries. The MQTs rec-
ommended by Cube Views Advisor is based on schema and
it recommends MQTs to bridge tables to improve join oper-
ations. With more disk space allocated, Cube Views Advisor

1418



Figure 1: Operational Flow of Data Warehouse

can recommend more MQTs to cover a higher percentage
of join operations for the ad hoc queries (probability wise).
Users of the enterprise data warehouse like to have a QoS
requirement defined as the average response time for the ad
hoc queries.

2. CHALLENGES
To improve the performance of query processing in the data ware-

house operation, many vendors have MQTAs, including IBM DB2 [1,
3], RedBrick/Informix [5], Oracle 10g [6], and SQL Server [7].

The MQTA in IBM DB2 is called the DB2 Design Advisor. It
serves as the MQTA in this paper. This advisor was first created
to provide index recommendations. It was later enhanced to rec-
ommend MQTs as well [2, 3]. The MQTs generated by the advi-
sor includes multi-query optimization (MQO) techniques in which
common expressions are found by compiling multiple queries at the
same time [8]. The advisor also allows for a wide range of MQTs
to be selected and maintained. In particular, we support full refresh
MQTs (which are updated periodically by the user) and immediate
refresh MQTs (which are updated whenever the base tables are up-
dated), and impose no restrictions on the complexity of the queries
that define these MQTs.

We now discuss the dependency among steps described in Sec-
tion 1 and discuss the issues and complexity in designing an en-
terprise data warehouse to meet both deadline of the nightly batch
workload completion window and the QoS requirement for ad hoc
queries.

The dependencies between the operations listed in the previous
section can be represented in Figure 2. The x-axis is the available
disk space (or the number of MQTs). The y-axis is the elapsed time.
Curves 1 to 4 are base table delta update time, batch MQT refresh
time, ad hoc MQT refresh time, and batch query processing time.
Curve 5 is the sum of curve 1 to 4, which is the total time needed
to complete the batch operations. Line 6 indicates the upper bound
of the batch window.

The more MQTs for batch queries deployed, the better perfor-
mance the batch queries have. But the MQT refresh time goes up
with increase in the number of MQTs. Similarly, the more indexes
deployed for the batch queries, the better performance of the batch
queries, but the cost for index maintenance is more due to the delta
propagation. There is also a trade-off between ad hoc queries and
batch operations. To meet the QoS requirement of ad hoc queries,
we need to create MQTs for ad hoc queries. But these MQTs are
refreshed in the batch widow thus, make it longer to complete the
batch operations.

As shown in Figure 2, the total time to complete the batch op-
erations will drop when the MQT and index maintenance cost is
less than the benefit and increase when the MQT and index main-
tenance cost surpasses the benefit. The challenge is to recommend

Figure 2: Dependency of Data Warehouse Operation Steps

a set of MQTs and indexes to complete the batch operation within
the batch window while also meeting the QoS requirement for ad
hoc queries.

This kind of solution may or may not exist for a given combi-
nation of the batch window and the QoS requirement for ad hoc
queries. For example, if the QoS requirement is high which means
the expected average response time for ad hoc queries is very short,
more MQTs need to be created for ad hoc queries. The refresh time
for these MQTs is added to the total time of the batch operations. If
the refresh time is long enough, the optimal point of the total time
(curve 6) is higher than the batch window upper bound. In this
case, there is no solution meeting both requirements. Determining
whether the solution exists is very helpful for the data warehouse
users as this indicates better software and/or hardware configura-
tion. To the best of our knowledge, there is no single tool solving
the problem above.

3. SYSTEM ARCHITECTURE
To overcome these challenges above, we designed a Data Ware-

house Operation Advisor on top of DB2 Design Advisor and Cube
Views Advisor. The system architecture of the Data Warehouse
Operation Advisor is shown in Figure 3. Data Warehouse Opera-
tion Advisor includes a capability planner, a cost simulator, and a
calibrator. The workflow of Data Warehouse Operation Advisor is
as follows.

• The capability planner receives the input parameters and sends
the QoS requirement and the batch window upper bound (both
are in elapsed time) to the calibrator.

• For the data warehouse operations that the capability plan-
ner has historic data (including query execution time with

1419



Figure 3: System Architecture of Data Warehouse Operation
Advisor

and without MQTs, MQT refresh time, MQT size, base table
refresh time, etc), the capability planner uses historic data
based on real runs and applies time decay factors. For other
operations that the calibrator has never seen, the capability
planner communicates with the calibrator to calculate their
expected execution times (in elapsed time) by multiplying
cost requirement (in resource time unit) used by query opti-
mizer by an operation specific calibration factor. More de-
tails are described in [9].

• The capability planner calls the Cube Views Advisor to gen-
erate MQT candidates which are then sent to the cost simula-
tor for estimation of the cost and benefit. This cost informa-
tion is returned to the capability planner. The capability plan-
ner recommends the smallest number of MQTs that meet the
QoS requirement based on the ROI of the MQT candidates.

• The capability planner invokes the DB2 Design Advisor to
generate the MQT and index candidates for the batch work-
load together with the cost information.

• Based on the cost information from Design Advisor and the
recommendation of MQTs for ad hoc queries, the capability
planner is able to determine whether a solution exists for the
given requirements. If it exists, the capability planner calcu-
lates the best solution and outputs the recommendation.

4. DATA WAREHOUSE OPERATION AD-
VISOR

We implemented a prototype system of Data Warehouser opera-
tion Advisor. Figure 4 is a sample screen shot of the demonstration
system. It takes a set of input parameters, conducts cost-based anal-
ysis and visualizes the capability planning results on the screen.

The input parameters shown in the upper area of the screen are
described as follows.

1. Set the base table delta (percentage change in data). 1a shows
the delta in current configuration and 1b is the delta in new
configuration.

2. Set the load factor (percentage change in workload). 2a and
2b show the load factor in current configuration (fixes at
100%) and in new configuration respectively.

3. Set the batch operation completion time (in hours). See 3a
and 3b.

4. Set the ad-hoc query average response time (in minutes). See
4a and 4b.

5. Choose which kind of queries to give priority. The chosen
kind of queries will use up the remaining time window (when
requirements are met), or use most of the time window any-
ways (when requirements are not met). A user can choose
whether to give priority to ad-hoc query average response
time or to batch workload completion time.

After setting the input parameters, a user can click the Analyze
button to invoke the capability planning. The Operation Advisor
will perform the cost-based analysis on the MQT and index candi-
dates to determine whether the requirements can be met, and rec-
ommend the set of MQTs and indexes for deployment for optimal
data warehouse performance. The following results are displayed
in the lower area of the screen.

• Batch operation completion time. 7a shows the compari-
son of the current configuration with (i) the new configura-
tion with provisioning, and (ii) the new configuration without
provisioning. 7b, 7c, and 7d demonstrate the breakdown of
batch operation completion Time for current configuration,
new configuration without provisioning, and new configura-
tion with provisioning.

• Ad hoc query average response time. The figure labeled 8 is
the comparison of the current configuration with (i)the new
configuration with provisioning, and (ii) the new configura-
tion without provisioning

• Summary statistics. The area labeled 9 shows the summary
statistics for queries, MQTs, indexes, and routing rates.

If the results show that the performance requirements can not be
met, a user can change the input parameters and repeat the cost-
based analysis until the results meet the requirements. Then the
user can click on the OK button to move to the next step and deploy
the MQTs and indexes.

In Data Warehouse Operation Advisor, we allow the user to do
capability planning. The user (DBA or DW operator) can conduct
what-if analysis. In the illustrated scenario, the batch window is 6
hours and the QoS requirement in terms of average response time
for ad hoc queries is 15 minutes. In this window dump, we show
the user who envisions the transaction volume will increase from
1% to 3% and system load will increase 40% during the last week
of a quarter. The DW operator likes to plan ahead and make sure
the DW can handle the increase of the workloads.

We can see without provisioning, the DW cannot complete its
task within the required batch window. In this window dump, the
advisor actually suggested to drop some indexes to improve delta
loading time and drop some MQTs supporting ad hoc queries. We
do expect the response time to increase for the ad hoc queries (ad-
visor calculates how many MQTs should be dropped while still
meeting QoS requirement).

5. CONCLUDING REMARKS
Data Warehouses and Business Intelligence (BI) applications are

the top two priorities for CIO/CTOs. We have prototyped a Data
Warehouse Operation Advisor to assist enterprise IT staff in config-
uring MQTs and indexes for both ad hoc queries and batch work-
loads. Our system is able to consider batch window deadline and
QoS requirement for ad hoc query response time into consideration.

1420



Figure 4: Window Dump of Data Warehouse Operator

Furthermore, our Data Warehouse Operation Advisor allows the
data warehouse IT staff perform capability planning for foreseen
or potential peak workloads. In this demonstration description, we
highlight the key features of the Warehouse Operation Advisor. It
shows a real and useful tool for data warehouse operations and high
performance BI applications.

6. REFERENCES
[1] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M.

Lohman, and Alan Skelley. DB2 Advisor: An Optimizer
Smart Enough to Recommend Its Own Indexes. In
Proceedings of the International Conference on Data
Engineering, pages 101–110, 2000.

[2] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman,
Adam Storm, Christian Garcia-Arellano, and Scott Fadden.
DB2 Design Advisor: Integrated Automatic Physical Database
Design. In Proceedings of the International Conference on
Very Large Data Bases, pages 1087–1097, 2004.

[3] Daniel C. Zilio, Calisto Zuzarte, Sam Lightstone, Wenbin Ma,
Roberta Cochrane Guy M. Lohman, Hamid Pirahesh, Latha S.
Colby, Jarek Gryz, Eric Alton, Dongming Liang, and Gary
Valentin. Recommending Materialized Views and Indexes
with IBM DB2 Design Advisor. In Proceedings of the

International Conference on Autonomic Computing, pages
180–188, 2004.

[4] IBM Cube Views Optimization Advisor. Information
available at
http://www-128.ibm.com/developerworks/
db2/library/techarticle/dm-0511pay/.

[5] Red Brick.
http://www.informix.com/informix/solutions/dw/redbrick/vista/.

[6] Oracle Corp. http://www.oracle.com/.
[7] Sanjay Agrawal and Surajit Chaudhuri and Vivek R.

Narasayya. Automated Selection of Materialized Views and
Indexes for SQL Database. In Proceedings of the
International Conference on Very Large Data Bases, pages
496–i–505, 2000.

[8] Wolfgang Lehner, Roberta Cochrane, Hamid Pirahesh, and
Markos Zaharioudakis. Fast Refresh using Mass Query
Optimization. In Proceedings of the International Conference
on Data Engineering, pages 391–398, 2001.

[9] Wen-Syan Li, Vishal S. Batra, Vijayshankar Raman, Wei Han,
Kasim Selcuk Candan, and Inderpal Narang. Load and
Network Aware Query Routing for Information Integration. In
Proceedings of the International Conference on Data
Engineering, pages 927–938, 2005.

1421


