
FluxCapacitor∗ : Efficient Time-Travel Text Search

Klaus Berberich, Srikanta Bedathur, Thomas Neumann, Gerhard Weikum
Max-Planck Institute for Informatics

Saarbrücken, Germany

{kberberi, bedathur, neumann, weikum}@mpi-inf.mpg.de

ABSTRACT
An increasing number of temporally versioned text collec-
tions is available today with Web archives being a prime ex-
ample. Search on such collections, however, is often not sat-
isfactory and ignores their temporal dimension completely.
Time-travel text search solves this problem by evaluating a
keyword query on the state of the text collection as of a user-
specified time point. This work demonstrates our approach
to efficient time-travel text search and its implementation in
the FluxCapacitor prototype.

1. INTRODUCTION
Driven by the need to preserve digital content for fu-

ture generations, and fueled by rapidly falling storage costs,
an increasing number of large-scale versioned text collec-
tions are available today. Web archives (e.g., the Inter-
net Archive [1]) and wikis that have built-in version-control
mechanisms (e.g., Wikipedia [3]) are prime examples of such
prevalent versioned collections.

Access to these collections and especially search on them
is still rather limited. The search functionality offered by
Wikipedia, for instance, considers only the most recent ver-
sions of articles in the encyclopedia. On Web archives, either
(i) a search functionality is often completely missing, as in
the case of the Internet Archive whose Wayback machine [2]
only offers per URL lookups of archived versions, or (ii) dif-
ferent versions are treated as independent documents, thus
potentially diluting query results with nearly-identical doc-
ument versions. Neither approach is appropriate to serve
historical information needs like the following,

In preparation for a documentary, a journalist needs to
research changing political and societal opinions about the
war in Iraq that began in 2003.

This information need cannot be effectively satisfied us-
ing standard Web search-engines, since many of the relevant
Web pages have disappeared in the meanwhile and results
are therefore dominated by more recent content. The Inter-
net Archive, on the other hand, is likely to have preserved

∗In the “Back to the Future” movie trilogy the flux capacitor
is the device that enables time travel.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

the relevant contemporary Web pages, but our journalist is
unlikely to know their precise URLs. The key for a satisfac-
tory solution is the temporal dimension of the text collec-
tion.

In order to serve such historical information needs effec-
tively, a time-travel text search functionality is needed that
allows the user to enrich a keyword query q by a time point t,
or the temporal context of the query. This time-travel query
is then evaluated over the state of the temporally versioned
text collection as of time t.

Given that the targeted data sets are at the order of Ter-
abytes (as the English Wikipedia) or even Petabytes (as
the Internet Archive), näıve approaches to time-travel text
search fail to scale and do not provide quick response times
as today’s users are accustomed to.

Our approach builds on the highly scalable inverted file
index that has become the de facto standard for large-scale
text-indexing. The structure of the index is extended to
deal with temporally versioned text. The index is kept com-
pact by means of the novel approximate temporal coalescing
technique. This tunable technique capitalizes on the high
redundancy in successive versions of the same document.
Experiments have shown that it can reduce index size by
more than 60% without noticeably affecting top-10 query
results. Two principled sublist materialization techniques to
trade-off index size and query performance complete our ap-
proach. The key idea behind these techniques is that query
processing can be speeded up significantly, if shorter index
lists that contain information valid for a contiguous time in-
terval are maintained. Experiments have shown that these
two techniques can achieve close-to-optimal query perfor-
mance inducing only a small blowup of the index.

The demonstrated FluxCapacitor prototype provides
an efficient implementation of the aforementioned techniques
for time-travel text search. The system’s scalability and the
viability of our approach has been proven on two large-scale
real-world data sets: (i) a subset of the Internet Archive
comprising weekly crawls of 11 .gov.uk sites throughout the
years 2004 and 2005, and (ii) the complete revision history
of the English Wikipedia (which will be the dataset used for
the demonstration). In addition, FluxCapacitor offers an
intuitive user interface and provides quick response times to
time-travel queries.

The remainder of this paper is organized as follows. In
Section 2 we give an overview of the novel techniques that
FluxCapacitor is based on. The architecture and imple-
mentation of the system are described in Section 3. The
final Section 4 outlines our demonstration.

1414

2. TIME-TRAVEL TEXT SEARCH
The inverted file is the de facto standard method for large-

scale text-indexing, and lies at the heart of many systems in-
cluding modern-day search engines. In FluxCapacitor, we
make significant extensions to this powerful and well-studied
text indexing structure to make it amenable for time-travel
text search.

As a document relevance model in this work we adopt
OKAPI BM25 [9] as the state-of-the-art technique having its
roots in probabilistic information retrieval. For a given key-
word query a document’s relevance score is determined as a
sum of idf ·tf products, where idf is a keyword-specific mea-
sure reflecting the keyword’s relative occurrence frequency
in the text collection and tf is a keyword-document-specific
measure indicating the keyword’s occurrence frequency within
the document. Further details are omitted for space reasons.

An inverted file index consists of a vocabulary, commonly
organized as a B+-Tree, that maps each term to its idf -score
and an inverted list. The inverted list Lv of a term v contains
a list of postings, each of which has the form (d, p), where
d is a document identifier and p is the so-called payload
of the entry. The payload p typically contains information
about the tf -score of v in d, but in some cases can contain
auxiliary information such as the positional information of
the term occurrence in d. For a recent survey about inverted
file indexes we refer to [11]. Further, we refer to [7, 10] as
two recent approaches that reduce index size by exploiting
redundancy in the collection.

In standard text search systems, the inverted index is built
over the latest snapshot of the corpus at regular intervals,
and the previous index is no longer maintained. Such a stan-
dard inverted index built on the latest snapshot of English
Wikipedia required 184, 825, 636 postings – approximately
2.8 Gigabytes of storage (assuming 16 bytes per posting).

In contrast, supporting time-travel text search function-
ality demands that all historical indexing information such
as, postings in each inverted list, past payload details, and
past idf -scores of all terms, be completely retained. How-
ever, simply accumulating all the past indexes over time
will incur significant storage costs and seriously hampers the
query processing. Our innovations address this very issue,
and comprise three stages that we detail in the remainder
of this section.

2.1 Temporal Extensions
IDF

“iraq”

“war”

TF

(d1, 11.2, [t1, t2))

(d1, 10.6, [t2, t5))

“iraq”

(d8, 10.9, [t7, t9))

Figure 1: Temporal Extensions

In the first stage, we extend the inverted file for time-
travel text search as illustrated in Figure 1. As can be seen
from the figure, idf -scores and tf -scores are decoupled in
our system. We note that idf -scores are time-varying in
our setting, so that we conceptually manage a collection of
time series. The data volume that is managed here and

the overall impact on query processing performance are low
in comparison to tf -scores. Therefore, we do not provide
further details about the management of idf -scores here and
concentrate on the more challenging tf -scores.

In detail, for inverted list postings we include a validity
time-interval [tb, te) to denote the duration during which the
the associated payload information was valid. This results
in the following structure of postings: (d, p, [tb, te)) (as can
be seen in Figure 1). Note that now there is one posting for
every version of each document in the collection.

As a consequence of this temporal extensions, the index-
size blows up significantly. For instance, on the English
Wikipedia dataset, the thus temporally extended index for
the full revision history for 5 years contains 8, 634, 711, 830
postings – requiring more than 257 Gigabytes (assuming 32
bytes per extended posting)! The next step of approximate
temporal coalescing is designed to dramatically reduce this
blow up.

2.2 Approximate Temporal Coalescing

time
sc
or
e

non-coalesced
coalesced

Figure 2: Approximate Temporal Coalescing

The key observation that helps to effectively counter the
index-size blow-up is that most changes in a versioned doc-
ument collection are minor, leaving large parts of the doc-
ument untouched. As a consequence, the payload of many
postings belonging to neighboring versions of a document
differ only slightly or not at all. Approximate temporal
coalescing reduces the number of postings in an index list
by merging sequences of temporally adjacent postings (of a
document) that have almost equal payloads, while keeping
the maximal error made bounded by a tunable parameter ε.
This idea is illustrated in Figure 2, which plots non-coalesced
and coalesced scores of postings belonging to a single docu-
ment. Approximate temporal coalescing is greatly effective
given such fluctuating payloads and reduces the number of
postings from 9 to 3 in the example.

The problem of finding a compact way to perform ap-
proximate temporal coalescing for a given threshold ε on
the maximal error made, is equivalent to finding the com-
pact piecewise constant representation of a time-series [8].
as well as to generating a compact relative-error bounded
histogram [6]. We adapt the techniques proposed for these
two problems to develop a linear-time algorithm that gener-
ates nearly-optimal temporal coalescing for the given error
threshold.

Clearly, with increasing value of ε we can achieve greater
index size reduction. Our empirical observations on a range
of datasets has revealed the following: Even with very small
(non-zero) values of ε, we noticed a sharp drop in the index
size. We scrutinized the extent to which the final result rank-
ing is affected as a consequence of approximate temporal
coalescing. Our experiments on a variety of datasets includ-
ing Wikipedia revealed that coalescing hardly disturbs the
obtained top-10 and top-100 ranked results. We computed

1415

the result overlap and Kendall’s τ between the top-100 re-
sults obtained on the original and our temporally coalesced
indexes for various values of ε. On the Wikipedia dataset,
for ε = 0.05, as an example, we observed a result overlap of
more than 90% and a Kendall’s τ of 0.85 indicating strong
agreement in the order of results. Note that the correspond-
ing index size was only 6.43% of the original index size.

2.3 Sublist Materialization
During query processing, postings are read sequentially

from each of the inverted index lists and the postings that
do not satisfy the given temporal context are discarded. As
a consequence, query processing efficiency on our time-travel
inverted index is adversely affected by the wasted I/O due to
postings that are read and then discarded. Although tempo-
ral coalescing implicitly addresses this problem by reducing
the overall index list size, still a significant overhead remains.
The sublist materialization stage is specifically aimed at ad-
dressing this performance concern.

The key idea is to identify contiguous subintervals from
the total time-span of the index list such that by separately
materializing valid postings from corresponding subintervals
any time-travel query can be answered efficiently. Note that
coalesced postings that span different subintervals chosen
for materialization are replicated in each of these material-
ization.

At a first glance, it may seem counterintuitive to reduce
index size in the first step (using temporal coalescing), and
then, to increase it again using the sublist materialization
techniques presented in this section. However, we reiterate
that our main objective is to improve the efficiency of pro-
cessing queries, not to reduce the index size alone. The use
of temporal coalescing improves the performance by reduc-
ing the index size, while the sublist materialization improves
performance by judiciously replicating entries.

Note that, for a given temporal context, t, the optimal
(in performance) sublist would consist of only those entries
which are valid during t, nothing else. Clearly, it is imprac-
tical to materialize such optimal sublists for all time-points
spanned by the collection.

We formulate two variants of the sublist materialization
problem: in the first variant, a performance guarantee is
retained such that the achieved performance is worse than
optimal at most by a user-defined threshold. In the second
variant, the index size blow-up due to sublist materializa-
tions is upper bounded by a user-specified threshold factor
and a configuration is determined that satisfies this con-
straint while providing optimal expected performance.

We experimented with different values of the user-defined
thresholds on a variety of datasets. For example, when guar-
anteeing that performance be at most twice the optimal per-
formance for any time-point, we obtained a configuration
that required close to 1% the space of the configuration giv-
ing optimal performance! Similarly, for the second variant,
allowing a blow-up factor of 2 we achieve expected perfor-
mance that is within 30% of the optimal performance.

For a more detailed description of the techniques outlined
in this section we refer to [4].

3. ARCHITECTURE & IMPLEMENTATION
In this section we describe FluxCapacitor’s system ar-

chitecture and its main components illustrated in Figure 3.

Web-based GUI

FLUXCAPACITOR Server

Query Processor

DB DB DB

Time-Travel

Text Index

Metadata

&

Snippets

IDF Score

Time-Series

Temporally Versioned
Text Collection

Figure 3: FLUXCAPACITOR’s System Architecture

The Web-based GUI is implemented using Google’s
AJAX Toolkit. Figure 4 shows a screenshot of the user inter-
face that has the following key components: (1) search box
for entering keyword queries, (2) dynamically updated result
size estimate over time for the entered keyword query giving
the user a hint on interesting temporal contexts, (3) time-
line by clicking on which the temporal context is determined
and the time-travel query is evaluated, and (4) result pre-
sentation including title, snippet, relevance score, as well as
creation timestamp of the result.

When a time-travel query (e.g., “Iraq war” as of June
26th, 2005) is submitted in the GUI, it is sent to the FLUX-
CAPACITOR Server. There, the Query Processor com-
ponent takes the following steps:

i) Retrieval of idf scores for the query keywords.
ii) Selection of appropriate index lists from the time-travel

text index (the key technique of this work as described
in Section 2), followed by the query evaluation on the
selected lists.

iii) Enrichment of query results with metadata (e.g., the
corresponding version timestamps) and snippets.

The server application runs inside an Apache Tomcat 5.5
servlet engine and is implemented in Java 1.5. All data (i.e.,
idf -score time-series, the time-travel text index, metadata,
and snippets) is currently kept in an Oracle 10g database.
The techniques for loading a temporally versioned text
collection into our system (as depicted in the bottom of
Figure 3), including approximate temporal coalescing and
the sublist materialization techniques delineated in Section 2,
are implemented in Java 1.5 as well.

4. DEMONSTRATION
Our demonstration will showcase the power and utility

of FluxCapacitor using the full revision history of the
English Wikipedia during 2001-2005. This dataset is pub-
licly available and comprises a total of 892,255 documents
in 13,976,915 versions. This large dataset will assist in high-
lighting the following key points.

1416

(a) June 18th, 2002 (b) June 26th, 2005

Figure 4: FLUXCAPACITOR’s Web-based GUI showing results for “Iraq war” and two temporal contexts

Figure 5: Result size distribution for “podcasting”

Temporal Exploration
Using a collection of example keyword queries such as “Iraq
war”, “Enron”, “intelligent design”, “david beckham”, “pod-
casting” etc., under various temporal contexts, we illustrate
the use of time-travel querying as a means of temporal ex-
ploration of the underlying corpus.

For example, using the query “Iraq war”, one can observe
how the top-results change to reflect the current opinions
of Wikipedians. Specifically, for temporal contexts before
the invasion of Iraq, shown in Figure 4(a), top results relate
to the country Iraq and its war-torn history. Results later
on, in late 2002 and early 2003, reflect the disarmament cri-
sis, anti-war movements and the following invasion of the
country. Finally, for temporal contexts in 2004 and 2005,
as shown in Figure 4(b), query results relate to the analy-
sis and criticism of the war, for example, the article titled
Opposition to the 2003 Iraq War can be seen to be one of the
top-ranked results.
User Interface
We demonstrate the utility of our simple, yet powerful graph-
ical user interface in formulating time-travel queries with
almost the same ease as in prevalent Web search-engines.
Knowledge of the distribution of expected results across the
timeline of the corpus can provide an intuitive hint as to the
choice of the temporal context. In our user interface, we in-
clude a histogram of estimated result size distribution, which
is dynamically updated as the user enters new keywords into
the search box. Note that we align this histogram with the
timeline used for choosing the temporal context, thus mak-

ing the choice intuitive and effortless. Consider the screen-
shot for the query “podcasting” shown in Figure 5. Clearly,
there was no “podcasting” until as recent as 2004, which is
reflected in the estimated result size distribution displayed.
Thus, it gives an immediate visual feedback to the user that
choosing a temporal context, t < 2004, will be of no use.
Efficiency
As our main innovations in FluxCapacitor are geared
towards achieving increased query processing efficiency, it
forms a key aspect of our demonstration. We pose a variety
of “hard” queries involving keywords with very low selec-
tivity, and those which exhibit significant bursts of activity,
so as to showcase the performance of FluxCapacitor. For
most of these queries, we have been able to achieve response
time of below 1 sec.

Finally, we invite the participation of all visitors to a
hands-on session trying out their favorite time-travel queries
on Wikipedia with FluxCapacitor.

5. REFERENCES
[1] http://www.archive.org.

[2] http://www.archive.org/web/web.php.

[3] http://www.wikipedia.org.

[4] K. Berberich, S. Bedathur, T. Neumann, G. Weikum.
A Time Machine for Text Search. SIGIR, 2007.

[5] K. Berberich, S. Bedathur, G. Weikum. A Pocket
Guide to Web History. SPIRE, 2007.

[6] S. Guha, K. Shim, J. Woo. REHIST: Relative Error
Histogram Construction Algorithms. VLDB, 2004.

[7] M. Hersovici, R. Lempel, S. Yogev. Efficient Indexing
of Versioned Document Sequences. ECIR, 2007.

[8] E. J. Keogh, S. Chu, D. Hart, M. J. Pazzani. An Online
Algorithm for Segmenting Time Series. ICDM, 2001.

[9] S. E. Robertson and S. Walker. OKAPI/Keenbow at
TREC-8. TREC, 1999.

[10] J. Zhang and T. Suel. Efficient Search in Large
Textual Collections with Redundancy. WWW, 2007.

[11] J. Zobel and A. Moffat. Inverted Files for Text Search
Engines. ACM Comput. Surv., 38(2):6, 2006.

1417

