
SOR: A Practical System for Ontology Storage, Reasoning
and Search

Jing Lu 1,2, Li Ma 1, Lei Zhang 1, Jean-Sébastien Brunner 1, Chen Wang 1, Yue Pan 1, Yong Yu2
robert_lu@sjtu.edu.cn, malli@cn.ibm.com, lzhangl@cn.ibm.com

brunner@cn.ibm.com, chwang@cn.ibm.com, panyue@cn.ibm.com, yyu@cs.sjtu.edu.cn
1
IBM China Research Laboratory

ZhongGuanCun Software Park #19
Dong Beiwang road, ShangDi, Beijing 100094, China

 2
Shanghai JiaoTong University

No.1954, Hua Shan Road
Shanghai 200030, China

ABSTRACT

Ontology, an explicit specification of shared conceptualization, has

been increasingly used to define formal data semantics and improve

data reusability and interoperability in enterprise information

systems. In this paper, we present and demonstrate SOR (Scalable

Ontology Repository), a practical system for ontology storage,

reasoning, and search. SOR uses Relational DBMS to store

ontologies, performs inference over them, and supports SPARQL

language for query. Furthermore, a faceted search with relationship

navigation is designed and implemented for ontology search. This

demonstration shows how to efficiently solve three key problems in

practical ontology management in RDBMS, namely storage,

reasoning, and search. Moreover, we show how the SOR system is

used for semantic master data management.

1. INTRODUCTION
The Semantic Web provides a common framework that allows data

to be shared and reused across applications, enterprises, and

community boundaries [1]. For this purpose, the World Wide Web

Consortium developed several recommendations: the Resource

Description Framework (RDF), the RDF Schema (RDFS), the Web

Ontology Language (OWL), and the SPARQL for RDF query (a

candidate recommendation). RDF is a data model for information

representation and exchange on the Web. RDFS and OWL are used

to publish and share ontologies which are explicit and common

descriptions of domain knowledge and provide support for efficient

knowledge management. Universal Resources Identifiers (URIs)

and ontologies are central to Semantic Web. The former is to

uniquely identify resources and the latter is to make the meanings

of the data explicit by linking the data to sets of domain concepts

and properties and making inference on them. Description Logics

(DL) is the logic foundation of the OWL and a DL knowledgebase

includes a Terminology Box (TBox) and an Assertion Box (ABox).

The TBox introduces the terminology, i.e., the vocabulary of an

application domain, while the ABox contains assertions about

named individuals (i.e., instances) in terms of this vocabulary.

Correspondingly, DL reasoning includes TBox reasoning (i.e.,

reasoning with concepts) and ABox reasoning (i.e., reasoning with

individuals). Ontologies define concepts (classes) and relations

(properties) in a domain and sometimes are called the TBox in

knowledge representation. From the perspective of data

management, ontologies could be considered as a data model

(similar to relational schema and XML schema) and the data can be

regarded as the instances of ontologies (corresponding to ABox of a

DL knowledgebase). There are three key enabling technologies for

the use of ontologies in practice.

� How to store ontologies and their instances of large scale (even

hundreds of millions of triples) in relational databases. How to

support scalable ontology storage by leveraging well-developed

optimization features of RDBMSes.

� How to effectively support reasoning in relational databases.

� Besides structured SPARQL queries, how to provide a convenient

and friendly search diagram for ontologies.

In this demonstration, we present efficient solutions to the above

three problems and show the use of the SOR in an IBM product

prototype on semantic master data management.

2. ONTOLOGY STORAGE AND

REASONING IN DATABASES
In the past several years, we have seen the development of ontology

repositories for the use in semantic web applications. In general,

ontology repositories can be divided into two major categories, i.e.,

native stores [4] and database based stores [3,5,6,7]. Native stores

are directly built on the file system, whereas database based

repositories use relational or object relational databases as the

backend store. Compared with database based stores, native stores

greatly reduce the load and update time. However, database systems

provide many query optimization features, thereby contributing

positively to query response time. It is reported in [9] that a simple

exchange of the order of triples in a query may make the response

time of native stores 10 times (or even more) slower. Furthermore,

native stores need to re-implement functionalities of a relational

database such as transactions processing, query optimization, access

control, logging and recovery. One potential advantage of database

based stores is that they allow users and applications to access both

ontologies and other enterprise data in a more seamless way at the

lower level, namely database level. For instance, The Oracle RDF

store [6] translates an RDF query into a SQL query which can be

embedded into another SQL query retrieving non-RDF data. In this

way, query performance could be improved by efficiently joining

RDF data and other data using well-optimized database query

engines. Efforts are needed to better integrate native ontology stores

with RDBMSes. So, here we focus on ontology storage and

reasoning in databases.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage, the

VLDB copyright notice and the title of the publication and its date appear, and

notice is given that copying is by permission of the Very Large Database

Endowment. To copy otherwise, or to republish, to post on servers or to

redistribute to lists, requires a fee and/or special permissions from the publisher,

ACM.

VLDB ’07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1402

Generally, an ontology store, such as Jena, Sesame and the Oracle

RDF store, mainly uses a relational table of three columns (Subject,

Property, Object) to store all triples (hereinafter, we call such a

table as the triple table.), in addition to symbol tables for encoding

URIs and literals with internal unique IDs. The Oracle RDF store [6]

supports so-called rulebases and rule indexes. A rulebase is an

object that contains rules which can be applied to draw inferences

from RDF data. Two built-in rulebases are provided, namely RDFS

and RDF (a subset of RDFS). A rule index is an object containing

pre-calculated triples that can be inferred from applying a specified

set of rulebases to RDF data. Materializing inferred results by rule

indexes would definitely speed up retrieval. Jena2 provides by

default several rule sets with different inference capability. These

rule sets could be applied on the data stored in the triple table and

implemented in memory by forward chaining, backward chaining or

a combination of them. Several ontology stores adopt binary tables

for storage, instead of the triple table. These stores, such as DLDB-

OWL [3] and Sesame on PostgreSQL [5], create a table for each

class (resp. each property) in an ontology. A class table stores all

instances belonging to the same class and a property table stores all

triples which have the same property. An obvious drawback of

these stores is the alteration of the schema (e.g., deleting or creating

tables) when ontologies change. Also, it is not suitable for very

huge ontologies having tens of thousands of classes, such as

SnoMed ontology. Too many tables will increase serious overhead

to databases.

In summary, there are several features among the above well-known

ontology stores on top of RDBMS.

� The triple table is very flexible and thus widely used. Often,

multiple self-joins on this table are needed for query answering.

� Rule inference is also often adopted for reasoning and inferred

results can be materialized in databases, such as the Oracle RDF

store (the rulebase and rule indexes) and Sesame.

� A main-memory Description Logics (DL) reasoner or rule

reasoner could be used for reasoning as well, such as Jena.

It is desirable to design schema to effectively support rule reasoning

in databases and leverage efficient indexes on the triple table for

performance improvement.

2.1 Schemes for the Scalability of the SOR
SOR is a significant extension of our previous work on OWL

ontology repository [2] by performance improvement and the

support of more practical features for enterprise applications (such

as concurrency and guided navigation). Figure 1 shows its

architecture. The import module consists of an OWL parser and two

translators. The parser parses OWL documents into an in-memory

EODM model (EMF ontology definition metamodel) [10], and then

the DB translator populates all ABox assertions into the backend

database. The function of the TBox translator is twofold, one is to

populate all asserted TBox axioms into a DL reasoner and the other

is to obtain inferred results from the DL reasoner and insert them

into the database. Several DL reasoners, such as pellet, are mature

enough for TBox reasoning in memory. But scalable ABox

reasoning is still challenging and thus the focus of the SOR. Firstly,

SOR uses a DL reasoner to infer complete subsumption relationship

among classes. Then, the rule engine conducts ABox reasoning

based on a set of rules translated from OWL-lite. Currently, the

inference rules are implemented using SQL statements. The storage

module is intended to store both original triples, as well as inferred

assertions by the DL reasoner and the rule inference engine. But,

there is a way to distinguish original assertions from inferred

assertions via a specific flag. A SPARQL query is translated into a

single SQL statement which is directly evaluated by the database.

Obviously, this enables the straightforward integration of a

SPARQL query with other SQL queries. Furthermore, triples in

SOR can be exported and indexed by a full text search engine so

that users can navigate ontologies via relationship among instances.

Figure 1. The Component Diagram of the SOR

As introduced in the above, the Oracle RDF store, Jena2 and

Sesame mainly use a triple table to store ontology in relational

databases. In particular, they persist OWL ontologies as a set of

RDF triples and do not consider specific processing for complex

class descriptions generated by OWL constructors (intersection,

cardinality, someValueFrom restrictions, etc). The highlight of

SOR’s schema is that all predicates in the ABox inference rules

have corresponding tables in the database. Therefore, these rules

can be easily translated into sequences of relational algebra

operations. For example, Rule Type(x,C) :- Rel(x,R, y) . Type(y,D)

. SomeValuesFrom(C,R,D) has four predicates in the head and

body, resulting in three tables: RelationshipInd, TypeOf and

SomeValuesFrom. It is straightforward to use SQL select and join

operations among these three tables to execute this rule. Leveraging

well-optimized database engines for rule inference is expected to

significantly improve reasoning efficiency. That is, each predicate

of the rules corresponds to a sort of triples which are stored in a

separate table, instead of a big triple table. This is more efficient

since some self-joins on a big triple table are changed to joins

among small-sized tables.

We categorize tables of the database schema of SOR into 4 types:

atomic tables, TBox axiom tables, ABox fact tables and class

constructor tables, as shown in Figure 2. The atomic tables include:

Ontology, PrimitiveClass, Property, Datatype, Individual, Literal

and Resource. These tables encode the URI with an integer (the ID

column), which reduces the overhead caused by long URIs to a

minimum. The hashcode column is used to speed up search on

URIs and the ontologyID column denotes which ontology a URI

comes from. The Property table stores characteristics (symmetric,

transitive, etc.) of properties as well. To leverage built-in value

comparison operations of databases, boolean, datetime and numeric

literals are separately represented using the corresponding data

types provided by databases. There are three important kinds of

ABox assertions involved in reasoning: TypeOf triples, object

property triples and datatype property triples. They are stored in

three different tables, namely tables TypeOf, RelationshipInd and

RelationshipLit. A view named Relationship is constructed as an

entry point to object property triples and datatype property triples.

Triples irrelevant to reasoning, such as those with RDFS:comment

as the property, are stored in Table Utility. Tables SubClassOf,

SubPropertyOf, Domain, Range, DisjointClass, InversePropertyOf

1403

are used to keep TBox axioms. The class constructor tables are used

to store class expressions. SOR decomposes a complex class

description into instantiations of OWL class constructors, assigns a

new ID to each instantiation and stores it in the corresponding class

table. Taking an axiom Mother ≡ Woman ⊓ ∃hasChild.Person as

an example, we first define S1 for ∃hasChild.Person in Table

SomeValuesFrom. Then I1, standing for the intersection of Woman

and S1, will be defined in Table IntersectionClass. Finally, {Mother ⊑ I1, I1 ⊑ Mother} will be added to the SubClassOf table. Such a

design is motivated by making the semantics of complex class

description explicit. In this way, all class nodes in the OWL

subsumption tree are materialized in database tables, and rule

inference can thus be easier to implement and faster to execute via

SQL statements. Also, a view named Classes is defined to provide a

view of both named and anonymous classes in OWL ontologies.

Currently, most database systems support primary clustering

indexes. In this design, an index containing one or more keyparts

could be identified as the basis for data clustering. All records are

organized on the basis of their attribute values for these index

keyparts by which the data is ordered on the disk. More precisely,

two records are placed physically close to each other if the

attributes defining the clustering index keyparts have similar values.

Clustering indexes could be faster than normal indexes since they

usually store the actual records within the index structure and the

access on the ordered data needs less IO costs. In practice, it is not

suitable to create an index on a column with few distinct values

because the index does not narrow the search too much. But, a

clustering index on such a column is a good choice because similar

values are grouped together on the data pages. Considering that real

ontologies have limited number of properties, the property column

of the triple table, such as the RelationshipInd table of SOR, can be

a good candidate for clustering. So, it is valuable to use clustering

indexes on triple tables for performance purpose.

Similar to unclustered indexes, the clustering index typically

contains one entry for each record as well. More recently, Multi-

Dimensional Clustering (MDC) [12] is developed to support block

indexes which is more efficient than normal clustering indexes.

Unlike the primary clustering index, an MDC index (also called

MDC table) can include multiple clustering dimensions. Moreover,

the MDC supports a new physical layout which mimics a multi-

dimensional cube by using a physical region for each unique

combination of dimension attribute values. A physical block

contains only records which have the same unique values for

dimension attributes and could be addressed by block indexes, a

higher granularity indexing scheme. Block indexes identify multiple

records using one entry and are thus quite compact and efficient.

Queries using block indexes could benefit from faster block index

scan, optimized prefetching of blocks, as well as lower path length

overheads while processing the records. Our evaluation results [11]

showed that the MDC indexes could dramatically improve query

performance (20 times faster and even more) and the set of indexes

P*, (P,O), (S,P,O) on the triple table gives the best result for most

queries of the UOBM benchmark [9] over the SOR, where P*

means an MDC index, other two represent composite unclustered

indexes. Additionally, the MDC index could be built on the table

defining typeOf information, grouping the records by classes.

In summary, we proposed following schemes to make the SOR be a

scalable ontology repository.

� The schema is designed based on inference rules, where each

predicate in the rule corresponds to a table in the database. This is

greatly different from the Oracle RDF store and Jena2 which use

a big triple table to store all triples. Rule inference can be

effectively implemented by simple SQL select and join operations

in well-optimized database engines. Also, the SOR can process

OWL ontology better than general RDF stores since it considers

the support of complex OWL expressions in databases.

� The primary clustering and the MDC indexes are analyzed and

proposed to use on the triple table for performance improvement.

� Also, typed literals are categorized into four major types aligned

with the datatypes supported by popular RDBMSes and

separately stored to support efficient value comparison (thus

improve performance for queries involving literal comparison).

2.2 Faceted Search with Relationship Query
One of the important functions of an ontology repository is to

provide an efficient and effective way for end users to intuitively

“view” ontologies. Faceted search is a promising way to search and

explore categorized data [8]. From an ontology perspective, faceted

search combines conjunctive class query (for example, “Find all

products which belong to both PDAs and mobile phones”, where

“PDAs” and “mobile phones” are two classes in TBox.) with full

text search in an intuitive way. However, it does not support query

involving relations in its current form. Taking the query “Find

computer monitors sold in stores that have a partnership with

IBM” as an example, “computer monitors” and “stores” are two

classes, “IBM” is an instance in the data, and “sold in” and

“partnership with” are two relations in ontology. Obviously, this

kind of relationship queries is desirable for end users. In SOR, we

define and implement faceted search with relationship navigation.

Each instance is considered as a virtual document as shown in

Figure 3. Particularly, we index relations among instances by

leveraging the index structure of Lucene and develop an efficient

algorithm to estimate the count of instances at each navigation step.

Figure 3. The Index Structure of An Instance

Due to space limitation, figure 4 briefly shows the proposed faceted

search paradigm with relationship navigation. The sub-figure above

the black bold line is just classic faceted search, whereas the sub-

figure in the bottom clearly show all relations associated with

instances which satisfy search conditions in the last step. By this

kind of relation browsing, users can navigate from one instance to

another one. The proposed search diagram allows users to navigate

ontologies by walking up relationships (links) among instances.

3. DEMONSTRATION
Following demonstrations are conducted to show the scalability and

the friendly search diagram of the SOR and its real use cases.

�The effectiveness of the schemas and the scalability of SOR.

We will demonstrate the effectiveness of the schemas and the

scalability of SOR on a real customer data set which include

4,200,000 product items and more than 120M triples. The

1404

expressivity of the ontology is OWL-Lite. We demonstrate the

scalability of SOR by observing its performance changing on the

UOBM data sets [9] with different sizes. Also, we will show the

translated SQL queries from SPARQL queries and explain the

translation method and process.

�Faceted Search combined with relationship navigation. We

will demonstrate the new user interaction paradigm that supports

relationship navigation and full text search in ontology hierarchical

structure. The user interaction extends the classic faceted search

paradigm with relationship query. We will demonstrate how this

user interaction for querying, searching and browsing is applied on

ontologies to help user navigate large amount of the data easily.

�Real use scenarios of SOR in enterprise applications. SOR has

been used to build an IBM product prototype on semantic master

data management [13]. We would like to demonstrate how real

ontologies are exploited to manage master data in terms of

modeling, storage and search. Ontology’s values for master data

management include computable relations representation among

master data, formal and expressive definition for categories,

dynamic queries on master data based on ontology reasoning, and

guided navigation by faceted search with relationship queries. We

will demonstrate how SOR is used to realize these attractive

features for master data management in detail. We also highlight

requirements from real applications for ontology systems and the

corresponding solutions in SOR.

4. REFERENCES
[1] W3C Semantic Web Activity, http://www.w3.org/2001/sw/.

[2] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva:

An OWL ontology storage and inference system. In Proc. of

Asia Semantic Web Conference, pp.429-443, 2006.

[3] Pan, Z., and Heflin, J., DLDB: Extending relational databases

to support semantic web queries. In Proceddings of Workshop

on Practical and Scaleable Semantic Web Systems, 2003.

[4] Kiryakov, A., Ognyanov, D., and Manov, D, OWLIM - a

pragmatic semantic repository for OWL. In Proceedings of the

2005 International Workshop on Scalable Semantic Web

Knowledge Base Systems, 2005.

[5] Broekstra, J., Kampman, A., van Harmelen, F., Sesame: A

generic architecture for storing and querying rdf and rdf

schema. ISWC 2002, pp.54–68, 2002.

[6] Murray C., Alexander N., Das S., Eadon G., Ravada S., Oracle

Spatial Resource Description Framework (RDF), 10g Release

2 (10.2), 2005.

[7] Wilkinson, K., Sayers, C., Kuno, H. A., and Reynolds, D.,

Efficient RDF storage and retrieval in Jena2. VLDB Workshop

on Semantic Web and Databases, pages 131-150, 2003.

[8] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted

metadata for image search and browsing. In Proc. of the

SIGCHI conference on Human factors in computing systems,

pages 401–408, 2003.

[9] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a

complete owl ontology benchmark. In Proc. of European

Semantic Web Conference, pp.125–139, 2006.

[10] IODT, IBM’s Integrate Ontology Development Toolkit,

http://www.alphaworks.ibm.com/tech/semanticstk, 2005

[11] Brunner, J., Ma, L., Wang, C., Zhang, L., Wolfson, D. C..,

Explorations in the Use of Semantic Web Technologies for

Product Information Management. WWW 2007. pp.747-756.

[12] Bhattacharjee, B., Padmanabhan, S., and Malkemus, T.,

Efficient Query Processing for Multi-Dimensionally Clustered

Tables in DB2, In Proceedings of the 29th Conference on Very

Large Data Bases, pages 963–974, 2003.

[13] Morris, H.D. and Vesset, D. Managing Master Data for

Business Performance Management: The Issues and

Hyperion's Solution, IDC white paper, 2005.

Figure 2. The Schema of the SOR Figure 4. Faceted Search with Relationship Navigation

1405

