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ABSTRACT 

Ontology, an explicit specification of shared conceptualization, has 

been increasingly used to define formal data semantics and improve 

data reusability and interoperability in enterprise information 

systems. In this paper, we present and demonstrate SOR (Scalable 

Ontology Repository), a practical system for ontology storage, 

reasoning, and search. SOR uses Relational DBMS to store 

ontologies, performs inference over them, and supports SPARQL 

language for query. Furthermore, a faceted search with relationship 

navigation is designed and implemented for ontology search. This 

demonstration shows how to efficiently solve three key problems in 

practical ontology management in RDBMS, namely storage, 

reasoning, and search. Moreover, we show how the SOR system is 

used for semantic master data management.  

1. INTRODUCTION 
The Semantic Web provides a common framework that allows data 

to be shared and reused across applications, enterprises, and 

community boundaries [1]. For this purpose, the World Wide Web 

Consortium developed several recommendations: the Resource 

Description Framework (RDF), the RDF Schema (RDFS), the Web 

Ontology Language (OWL), and the SPARQL for RDF query (a 

candidate recommendation). RDF is a data model for information 

representation and exchange on the Web. RDFS and OWL are used 

to publish and share ontologies which are explicit and common 

descriptions of domain knowledge and provide support for efficient 

knowledge management. Universal Resources Identifiers (URIs) 

and ontologies are central to Semantic Web. The former is to 

uniquely identify resources and the latter is to make the meanings 

of the data explicit by linking the data to sets of domain concepts 

and properties and making inference on them. Description Logics 

(DL) is the logic foundation of the OWL and a DL knowledgebase 

includes a Terminology Box (TBox) and an Assertion Box (ABox). 

The TBox introduces the terminology, i.e., the vocabulary of an 

application domain, while the ABox contains assertions about 

named individuals (i.e., instances) in terms of this vocabulary. 

Correspondingly, DL reasoning includes TBox reasoning (i.e., 

reasoning with concepts) and ABox reasoning (i.e., reasoning with 

individuals). Ontologies define concepts (classes) and relations 

(properties) in a domain and sometimes are called the TBox in 

knowledge representation. From the perspective of data 

management, ontologies could be considered as a data model 

(similar to relational schema and XML schema) and the data can be 

regarded as the instances of ontologies (corresponding to ABox of a 

DL knowledgebase). There are three key enabling technologies for 

the use of ontologies in practice.  

� How to store ontologies and their instances of large scale (even 

hundreds of millions of triples) in relational databases. How to 

support scalable ontology storage by leveraging well-developed 

optimization features of RDBMSes.  

� How to effectively support reasoning in relational databases. 

� Besides structured SPARQL queries, how to provide a convenient 

and friendly search diagram for ontologies. 

In this demonstration, we present efficient solutions to the above 

three problems and show the use of the SOR in an IBM product 

prototype on semantic master data management. 

2. ONTOLOGY STORAGE AND 

REASONING IN DATABASES 
In the past several years, we have seen the development of ontology 

repositories for the use in semantic web applications. In general, 

ontology repositories can be divided into two major categories, i.e., 

native stores [4] and database based stores [3,5,6,7]. Native stores 

are directly built on the file system, whereas database based 

repositories use relational or object relational databases as the 

backend store. Compared with database based stores, native stores 

greatly reduce the load and update time. However, database systems 

provide many query optimization features, thereby contributing 

positively to query response time. It is reported in [9] that a simple 

exchange of the order of triples in a query may make the response 

time of native stores 10 times (or even more) slower. Furthermore, 

native stores need to re-implement functionalities of a relational 

database such as transactions processing, query optimization, access 

control, logging and recovery. One potential advantage of database 

based stores is that they allow users and applications to access both 

ontologies and other enterprise data in a more seamless way at the 

lower level, namely database level. For instance, The Oracle RDF 

store [6] translates an RDF query into a SQL query which can be 

embedded into another SQL query retrieving non-RDF data. In this 

way, query performance could be improved by efficiently joining 

RDF data and other data using well-optimized database query 

engines. Efforts are needed to better integrate native ontology stores 

with RDBMSes. So, here we focus on ontology storage and 

reasoning in databases. 
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Generally, an ontology store, such as Jena, Sesame and the Oracle 

RDF store, mainly uses a relational table of three columns (Subject, 

Property, Object) to store all triples (hereinafter, we call such a 

table as the triple table.), in addition to symbol tables for encoding 

URIs and literals with internal unique IDs. The Oracle RDF store [6] 

supports so-called rulebases and rule indexes. A rulebase is an 

object that contains rules which can be applied to draw inferences 

from RDF data. Two built-in rulebases are provided, namely RDFS 

and RDF (a subset of RDFS). A rule index is an object containing 

pre-calculated triples that can be inferred from applying a specified 

set of rulebases to RDF data. Materializing inferred results by rule 

indexes would definitely speed up retrieval. Jena2 provides by 

default several rule sets with different inference capability. These 

rule sets could be applied on the data stored in the triple table and 

implemented in memory by forward chaining, backward chaining or 

a combination of them. Several ontology stores adopt binary tables 

for storage, instead of the triple table. These stores, such as DLDB-

OWL [3] and Sesame on PostgreSQL [5], create a table for each 

class (resp. each property) in an ontology. A class table stores all 

instances belonging to the same class and a property table stores all 

triples which have the same property. An obvious drawback of 

these stores is the alteration of the schema (e.g., deleting or creating 

tables) when ontologies change. Also, it is not suitable for very 

huge ontologies having tens of thousands of classes, such as 

SnoMed ontology. Too many tables will increase serious overhead 

to databases. 

In summary, there are several features among the above well-known 

ontology stores on top of RDBMS. 

� The triple table is very flexible and thus widely used. Often, 

multiple self-joins on this table are needed for query answering. 

� Rule inference is also often adopted for reasoning and inferred 

results can be materialized in databases, such as the Oracle RDF 

store (the rulebase and rule indexes) and Sesame. 

� A main-memory Description Logics (DL) reasoner or rule 

reasoner could be used for reasoning as well, such as Jena. 

It is desirable to design schema to effectively support rule reasoning 

in databases and leverage efficient indexes on the triple table for 

performance improvement. 

2.1 Schemes for the Scalability of the SOR  
SOR is a significant extension of our previous work on OWL 

ontology repository [2] by performance improvement and the 

support of more practical features for enterprise applications (such 

as concurrency and guided navigation). Figure 1 shows its 

architecture. The import module consists of an OWL parser and two 

translators. The parser parses OWL documents into an in-memory 

EODM model (EMF ontology definition metamodel) [10], and then 

the DB translator populates all ABox assertions into the backend 

database. The function of the TBox translator is twofold, one is to 

populate all asserted TBox axioms into a DL reasoner and the other 

is to obtain inferred results from the DL reasoner and insert them 

into the database. Several DL reasoners, such as pellet, are mature 

enough for TBox reasoning in memory. But scalable ABox 

reasoning is still challenging and thus the focus of the SOR. Firstly, 

SOR uses a DL reasoner to infer complete subsumption relationship 

among classes. Then, the rule engine conducts ABox reasoning 

based on a set of rules translated from OWL-lite. Currently, the 

inference rules are implemented using SQL statements. The storage 

module is intended to store both original triples, as well as inferred 

assertions by the DL reasoner and the rule inference engine. But, 

there is a way to distinguish original assertions from inferred 

assertions via a specific flag. A SPARQL query is translated into a 

single SQL statement which is directly evaluated by the database. 

Obviously, this enables the straightforward integration of a 

SPARQL query with other SQL queries. Furthermore, triples in 

SOR can be exported and indexed by a full text search engine so 

that users can navigate ontologies via relationship among instances. 

 

Figure 1. The Component Diagram of the SOR 

As introduced in the above, the Oracle RDF store, Jena2 and 

Sesame mainly use a triple table to store ontology in relational 

databases. In particular, they persist OWL ontologies as a set of 

RDF triples and do not consider specific processing for complex 

class descriptions generated by OWL constructors (intersection, 

cardinality, someValueFrom restrictions, etc). The highlight of 

SOR’s schema is that all predicates in the ABox inference rules 

have corresponding tables in the database. Therefore, these rules 

can be easily translated into sequences of relational algebra 

operations. For example, Rule Type(x,C) :- Rel(x,R, y) . Type(y,D) 

. SomeValuesFrom(C,R,D) has four predicates in the head and 

body, resulting in three tables: RelationshipInd, TypeOf and 

SomeValuesFrom. It is straightforward to use SQL select and join 

operations among these three tables to execute this rule. Leveraging 

well-optimized database engines for rule inference is expected to 

significantly improve reasoning efficiency. That is, each predicate 

of the rules corresponds to a sort of triples which are stored in a 

separate table, instead of a big triple table. This is more efficient 

since some self-joins on a big triple table are changed to joins 

among small-sized tables. 

We categorize tables of the database schema of SOR into 4 types: 

atomic tables, TBox axiom tables, ABox fact tables and class 

constructor tables, as shown in Figure 2. The atomic tables include: 

Ontology, PrimitiveClass, Property, Datatype, Individual, Literal 

and Resource. These tables encode the URI with an integer (the ID 

column), which reduces the overhead caused by long URIs to a 

minimum. The hashcode column is used to speed up search on 

URIs and the ontologyID column denotes which ontology a URI 

comes from. The Property table stores characteristics (symmetric, 

transitive, etc.) of properties as well. To leverage built-in value 

comparison operations of databases, boolean, datetime and numeric 

literals are separately represented using the corresponding data 

types provided by databases. There are three important kinds of 

ABox assertions involved in reasoning: TypeOf triples, object 

property triples and datatype property triples. They are stored in 

three different tables, namely tables TypeOf, RelationshipInd and 

RelationshipLit. A view named Relationship is constructed as an 

entry point to object property triples and datatype property triples. 

Triples irrelevant to reasoning, such as those with RDFS:comment 

as the property, are stored in Table Utility. Tables SubClassOf, 

SubPropertyOf, Domain, Range, DisjointClass, InversePropertyOf 
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are used to keep TBox axioms. The class constructor tables are used 

to store class expressions. SOR decomposes a complex class 

description into instantiations of OWL class constructors, assigns a 

new ID to each instantiation and stores it in the corresponding class 

table. Taking an axiom Mother ≡ Woman ⊓ ∃hasChild.Person as 

an example, we first define S1 for ∃hasChild.Person in Table 

SomeValuesFrom. Then I1, standing for the intersection of Woman 

and S1, will be defined in Table IntersectionClass. Finally, {Mother ⊑  I1, I1 ⊑  Mother} will be added to the SubClassOf table. Such a 

design is motivated by making the semantics of complex class 

description explicit. In this way, all class nodes in the OWL 

subsumption tree are materialized in database tables, and rule 

inference can thus be easier to implement and faster to execute via 

SQL statements. Also, a view named Classes is defined to provide a 

view of both named and anonymous classes in OWL ontologies. 

Currently, most database systems support primary clustering 

indexes. In this design, an index containing one or more keyparts 

could be identified as the basis for data clustering. All records are 

organized on the basis of their attribute values for these index 

keyparts by which the data is ordered on the disk. More precisely, 

two records are placed physically close to each other if the 

attributes defining the clustering index keyparts have similar values. 

Clustering indexes could be faster than normal indexes since they 

usually store the actual records within the index structure and the 

access on the ordered data needs less IO costs. In practice, it is not 

suitable to create an index on a column with few distinct values 

because the index does not narrow the search too much. But, a 

clustering index on such a column is a good choice because similar 

values are grouped together on the data pages. Considering that real 

ontologies have limited number of properties, the property column 

of the triple table, such as the RelationshipInd table of SOR, can be 

a good candidate for clustering. So, it is valuable to use clustering 

indexes on triple tables for performance purpose. 

Similar to unclustered indexes, the clustering index typically 

contains one entry for each record as well. More recently, Multi-

Dimensional Clustering (MDC) [12] is developed to support block 

indexes which is more efficient than normal clustering indexes. 

Unlike the primary clustering index, an MDC index (also called 

MDC table) can include multiple clustering dimensions. Moreover, 

the MDC supports a new physical layout which mimics a multi-

dimensional cube by using a physical region for each unique 

combination of dimension attribute values. A physical block 

contains only records which have the same unique values for 

dimension attributes and could be addressed by block indexes, a 

higher granularity indexing scheme. Block indexes identify multiple 

records using one entry and are thus quite compact and efficient. 

Queries using block indexes could benefit from faster block index 

scan, optimized prefetching of blocks, as well as lower path length 

overheads while processing the records. Our evaluation results [11] 

showed that the MDC indexes could dramatically improve query 

performance (20 times faster and even more) and the set of indexes 

P*, (P,O), (S,P,O) on the triple table gives the best result for most 

queries of the UOBM benchmark [9] over the SOR, where P* 

means an MDC index, other two represent composite unclustered 

indexes. Additionally, the MDC index could be built on the table 

defining typeOf information, grouping the records by classes. 

In summary, we proposed following schemes to make the SOR be a 

scalable ontology repository. 

� The schema is designed based on inference rules, where each 

predicate in the rule corresponds to a table in the database. This is 

greatly different from the Oracle RDF store and Jena2 which use 

a big triple table to store all triples. Rule inference can be 

effectively implemented by simple SQL select and join operations 

in well-optimized database engines. Also, the SOR can process 

OWL ontology better than general RDF stores since it considers 

the support of complex OWL expressions in databases. 

� The primary clustering and the MDC indexes are analyzed and 

proposed to use on the triple table for performance improvement. 

� Also, typed literals are categorized into four major types aligned 

with the datatypes supported by popular RDBMSes and 

separately stored to support efficient value comparison (thus 

improve performance for queries involving literal comparison). 

2.2 Faceted Search with Relationship Query 
One of the important functions of an ontology repository is to 

provide an efficient and effective way for end users to intuitively 

“view” ontologies. Faceted search is a promising way to search and 

explore categorized data [8]. From an ontology perspective, faceted 

search combines conjunctive class query (for example, “Find all 

products which belong to both PDAs and mobile phones”, where 

“PDAs” and “mobile phones” are two classes in TBox.) with full 

text search in an intuitive way. However, it does not support query 

involving relations in its current form. Taking the query “Find 

computer monitors sold in stores that have a partnership with 

IBM” as an example, “computer monitors” and “stores” are two 

classes, “IBM” is an instance in the data, and “sold in” and 

“partnership with” are two relations in ontology. Obviously, this 

kind of relationship queries is desirable for end users. In SOR, we 

define and implement faceted search with relationship navigation. 

Each instance is considered as a virtual document as shown in 

Figure 3. Particularly, we index relations among instances by 

leveraging the index structure of Lucene and develop an efficient 

algorithm to estimate the count of instances at each navigation step. 

 

Figure 3. The Index Structure of An Instance 

Due to space limitation, figure 4 briefly shows the proposed faceted 

search paradigm with relationship navigation. The sub-figure above 

the black bold line is just classic faceted search, whereas the sub-

figure in the bottom clearly show all relations associated with 

instances which satisfy search conditions in the last step. By this 

kind of relation browsing, users can navigate from one instance to 

another one. The proposed search diagram allows users to navigate 

ontologies by walking up relationships (links) among instances.  

3. DEMONSTRATION 
Following demonstrations are conducted to show the scalability and 

the friendly search diagram of the SOR and its real use cases. 

�The effectiveness of the schemas and the scalability of SOR. 

We will demonstrate the effectiveness of the schemas and the 

scalability of SOR on a real customer data set which include 

4,200,000 product items and more than 120M triples. The 
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expressivity of the ontology is OWL-Lite. We demonstrate the 

scalability of SOR by observing its performance changing on the 

UOBM data sets [9] with different sizes. Also, we will show the 

translated SQL queries from SPARQL queries and explain the 

translation method and process. 

�Faceted Search combined with relationship navigation. We 

will demonstrate the new user interaction paradigm that supports 

relationship navigation and full text search in ontology hierarchical 

structure. The user interaction extends the classic faceted search 

paradigm with relationship query. We will demonstrate how this 

user interaction for querying, searching and browsing is applied on 

ontologies to help user navigate large amount of the data easily. 

�Real use scenarios of SOR in enterprise applications. SOR has 

been used to build an IBM product prototype on semantic master 

data management [13]. We would like to demonstrate how real 

ontologies are exploited to manage master data in terms of 

modeling, storage and search. Ontology’s values for master data 

management include computable relations representation among 

master data, formal and expressive definition for categories, 

dynamic queries on master data based on ontology reasoning, and 

guided navigation by faceted search with relationship queries. We 

will demonstrate how SOR is used to realize these attractive 

features for master data management in detail. We also highlight 

requirements from real applications for ontology systems and the 

corresponding solutions in SOR. 
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