
HiSbase: Histogram-based P2P Main Memory
Data Management

Tobias Scholl Bernhard Bauer Benjamin Gufler Richard Kuntschke Daniel Weber
Angelika Reiser Alfons Kemper

Technische Universität München
Munich, Germany

{scholl, bauerb, gufler, kuntschk, weberd, reiser, kemper}@in.tum.de

1. INTRODUCTION AND MOTIVATION
Many e-science communities, e. g., medicine, climatology, and

astrophysics, are overwhelmed by the exponentially growing data
volumes that need to be accessible by collaborating researchers.
Nowadays, new scientific results are often obtained by exploring
and cross-correlating data from different distributed sources [3].
However, neither centralized data processing by shipping the data
to the processing site on demand nor a centralized data warehouse
approach scale sufficiently to handle the huge data volumes and
processing demands of future e-science communities and applica-
tions. The former suffers from high transmission costs while the
latter cannot scale to the large amounts of data in combination with
the growing number of queries.

Decentralized Peer-to-Peer (P2P) architectures lend themselves
to provide scalable communication and data management to over-
come the deficiencies of centralized approaches. Based on dis-
tributed hash tables (DHT), new peers and their resources are in-
tegrated seamlessly. Built on top of the P2P overlay network in-
frastructure, communities need a framework for data publication
and efficient data access which adapts to the data and query char-
acteristics of their specific domain. With HiSbase, collaborating
researchers are able to share not only their CPU resources, but also
otherwise unused main memory. HiSbase achieves higher through-
put in query processing as data is distributed across numerous (e. g.,
thousands of) peers according to predominant query patterns. As
a consequence, most processing tasks can be performed locally,
achieving high cache locality as peers mainly process queries on
logically related data. Figure 1 illustrates this approach on an ab-
stract level. In the figure, logically related data originating from
(possibly) different distributed sources are denoted by the same
geometric shapes. HiSbase allocates data fed into the system by
means of community-specific distribution functions. Thereby, re-
lated data objects of various sources—represented by identical ge-
ometric shapes in Figure 1—are mapped to the same peers.

The abstract scenario above is applicable to many e-science do-
mains including climatology, geophysics, and medicine. We use
data and use cases from the astrophysics domain for further illus-
trations, since we are currently developing a distributed informa-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Figure 1: HiSbase architecture.

tion management platform for the German astrophysics commu-
nity (AstroGrid-D) within D-Grid, the German e-science and Grid
Computing initiative. This platform facilitates collaborations with
national as well as international partners.

In e-science, results of different investigations (experiments, sur-
veys, observations, etc.) are compared or combined to gain further
insight or to see the complete picture of a particular phenomenon.
Some astrophysics example use cases are the creation of probability
maps for galaxy clusters and the combination of observational data
from several archives covering, for example, various wavelength
ranges in order to classify spectral energy distributions [5].

Researchers usually want to access logically related subsets of
these data sets. The definitions of such subsets are mostly based
on specific data characteristics. Typical access patterns over astro-
physical data sets are point-near-point and point-in region queries.
Such queries are usually region-based, i. e., they process data within
certain regions of the sky. These regions are specified by the two-
dimensional celestial coordinates right ascension and declination.
Region-based queries can, of course, also contain predicates on at-
tributes other than the celestial coordinates. In case of celestial
objects, other attributes might comprise detection time, catalog-
identifier, temperature, or energy level.

Preserving the locality of data is crucial to allow the efficient
processing of queries on logically related data sets. Data locality is
especially important for the performance of data analysis tasks in
astrophysics as these are mostly accessing data in a region-based
manner. Therefore, randomly mapping data objects across widely
distributed information networks can severely impair the perfor-
mance of typical astrophysical query patterns.

In many application domains, data sets are often highly skewed.

1394



Data skew originates from data spaces with a mix of densely and
sparsely populated regions. The differences in data density may
arise from the original data distribution or from the fact that some
regions have been investigated more extensively than others, i. e.,
more data has been collected and is available. In astrophysics, ce-
lestial objects are not distributed uniformly over the sky due to cer-
tain conditions or events that lead to data concentration (e. g., high
data density in the galactic plane or a supernova).

With HiSbase, we demonstrate how to address this imbalance
of the data distribution while preserving spatial proximity to effi-
ciently process region-based queries (Section 2.1). By calculating
a histogram that equips the DHT infrastructure with a community-
specific data distribution, HiSbase achieves this goal. In this paper,
we concentrate on the Z-quadtree histogram data structure (Sec-
tion 2.2) that we designed to preserve spatial locality for astro-
physics data sets. Z-quadtrees are quadtrees whose leaves cor-
respond to histogram buckets and are linearized on the DHT key
space using a space filling curve. These trees provide efficient ac-
cess to histogram buckets (regions) while balancing the data load
across peers.1

HiSbase incorporates multi-dimensional data and histograms as
follows:

• We precompute the histogram of the actual data space in a
preparatory training phase based on a training set and pass it
to the initial HiSbase peer during startup.

• Additional peers subsequently joining the network receive
their own local copy of the histogram from a neighboring
HiSbase peer.

• HiSbase allocates data at peers according to the precomputed
histogram (Section 2.3) and uses the histogram as a routing
index. Data archives feed data into HiSbase by sending their
data to any HiSbase peer (Section 2.4).

• Every HiSbase peer accepts queries and routes them to a co-
ordinator peer which owns (some of) the data needed to pro-
cess the query. If the coordinator does not cover all the data
relevant to the query, it guides cooperative query processing
among all peers contributing to the query result (Section 2.5).

HiSbase realizes a scalable information economy [1] by building
on advances in proven DHT-based P2P systems such as Chord [10]
and Pastry [7], as well as on achievements in P2P-based query pro-
cessing [4]. HiSbase combines these techniques with histograms
for preserving data locality, spatial data structures such as the quad-
tree [8] for efficient access to histogram buckets, and space filling
curves [6] for mapping histogram buckets to the DHT key space.

Our main contributions within the context of HiSbase entail an
investigation of the potential offered by P2P networks for increas-
ing query throughput in data-intensive e-science applications. One
of the main deficiencies of centralized data management is achiev-
ing sufficient query throughput.

HiSbase targets community-specific collaborations having vast
data volumes with fairly stable data distributions and offers a frame-
work for comparing various à priori calculated histogram data struc-
tures. This is a necessity for efficiently distributing and process-
ing data sets at a large scale and distinguishes HiSbase from re-
lated work which use quadtrees to address frequent changes in data
hot spots [9] or spatial objects [11], i. e., objects with a multi-
dimensional extent. In [9], peers only cover quadtree leaves at
the same level, while HiSbase does not enforce such a restriction.
Tanin et al. [11] map quadtree leaves randomly on an underlying
DHT and require additional routing steps to descend the distributed
1In the following, we use the terms regions and histogram buck-
ets interchangeably. The leaves of a Z-quadtree represent the his-
togram buckets for that particular histogram data structure.

quadtree. HiSbase uses a space filling curve to map the regions and
directly determines which regions contribute to a query result.

2. HISBASE ARCHITECTURE
We use the distributed hash table (DHT) infrastructure Pastry [7]

to manage peers and route messages in HiSbase. While the overall
design of HiSbase abstracts from the underlying DHT implementa-
tion, we deliberately decided to base our implementation on Pastry,
one of the well-established ring-based P2P overlay network struc-
tures with optimized routing performance. Like Chord [10], Pastry
maps data and peers to a one-dimensional key ring. In contrast to
Chord, Pastry optimizes the initial phase of routing by preferring
physical neighbors to speed up communication within the overlay
network.

2.1 Spatial Locality and Skew Handling
In the following, we use a simplified two-dimensional data sam-

ple (see Figure 2(i)) for illustration. Data skew can be addressed
by determining an appropriate histogram function. HiSbase par-
titions the data space in a way such that histogram buckets con-
tain approximately the same number of objects. The functional-
ity of the histogram is comparable to that of the hash function in
traditional DHT structures. In such DHT systems, data is hashed
randomly onto the key ring to achieve an equal distribution of the
data over the participating peers. However, such an equal distribu-
tion comes at the expense of losing the spatial locality of the data.
HiSbase avoids this deficiency by using histograms to partition the
data space into multi-dimensional contiguous regions.

Based on a representative data set, the histogram is calculated
during a training phase. This training set may either be the com-
plete data set or a representative random sample. For our demo
setup, we used random 10% of the input data as training set. Such
an à priori analysis is applicable in many research areas, includ-
ing astrophysics, because the distribution of published data remains
fairly stable. In this paper, we use the Z-quadtree introduced in the
next section as histogram data structure. After the training phase,
the resulting Z-quadtree is passed to the initial peer when starting
HiSbase. Newly arriving peers obtain the histogram from any ex-
isting peer when joining the network, i. e., each HiSbase peer keeps
a local copy of the Z-quadtree.

We choose the number of histogram buckets to be 10 times higher
than the anticipated number of peers. This allows additional peers
to join the network and keeps the size of the histogram at a rea-
sonable level compared to the amount of data transmitted during
query processing. Since arriving peers most presumably join the
P2P network via a physical neighbor peer, histogram transmission
only insignificantly prolongs the standard joining process of the
underlying P2P system.

2.2 Z-Quadtrees
Partitioning schemes resulting in regular shapes (squares or rect-

angles) are preferable in order to limit the complexity of query
processing. Quadtrees [8], which are based on recursive decom-
position, exhibit this characteristic and also adapt to skew in data
distributions. In this paper, we employ a quadtree as histogram
data structure. The leaves of the tree (i. e., histogram buckets) are
mapped to the DHT key ring using the Z-order [6]. Consequently,
we use the term Z-quadtree to denote this histogram data structure.

For a d-dimensional data space, a Z-quadtree is recursively de-
fined to be either a leaf with a d-dimensional hypercube data re-
gion or an inner node with 2d child trees. In our two-dimensional
astrophysical data space, an inner node has four children (quad-
rants) with rectangular data regions. During Z-quadtree build-up,
the training set is sequentially inserted into a single leaf until a pre-
defined threshold is reached. After that, the leaf is split according to

1395



(i) Data sample (ii) Data buckets (iii) Linearization (iv) Z-quadtree structure (v) Peer mapping

Figure 2: Processing an illustrative data sample with a Z-quadtree histogram.

the quadtree splitting strategy. Figure 2(ii) shows the final decom-
position of the data sample with a bucket threshold of three objects.
Finally, the Z-quadtree leaves are linearized using a space filling
curve such as the Z-order, as illustrated in Figure 2(iii). This cor-
responds to numbering the leaves of the Z-quadtree (Figure 2(iv))
with region ids according to a depth-first tree traversal.

Space filling curves preserve spatial proximity which is essential
if a peer manages several regions. Due to the use of a space fill-
ing curve, these regions constitute neighboring Z-quadtree leaves.
Queries spanning the corresponding regions can thus be efficiently
processed locally at the responsible peer.

In contrast to the original quadtree which is intended as a spatial
data structure, the Z-quadtree is used for data dissemination, query
processing, and as a routing index. The actual data is not stored in
the Z-quadtree itself.

Lookups performed during the feeding stage and during query
processing benefit from the regular structure of Z-quadtree leaf re-
gions and are described in more detail below. Not all leaves will be
completely filled because the object threshold for buckets merely is
an upper bound. In pathological cases, e. g., if most data items are
concentrated in a comparatively small area of the data space, the
tree might degenerate having numerous empty leaves. While we
define the Z-quadtree top-down, we actually build the histograms
bottom-up during the training phase. This is advantageous, since
building the quadtree top-down would additionally require to guess
the splitting threshold in advance.

We currently investigate other splitting techniques with various
trade-offs. The original quadtree bisects each dimension (which
results in four quadrants in the two-dimensional case). One variant
of the Z-quadtree uses a different splitting strategy by individually
calculating the median for each dimension as the split coordinate.

2.3 Mapping Peers
Region identifiers—determined by the space filling curve—are

mapped to the one-dimensional DHT address space in ascending
order using an equidistant distribution to cover the whole key ring.
HiSbase randomly hashes peers onto the identifier space. Region
(bucket) assignment is done implicitly by the routing mechanism
of the underlying DHT structure, i. e., region ids are mapped to the
closest peer on the ring. Peer communication is performed inde-
pendently from the current number of peers by routing messages
to the DHT identifiers of regions. The histogram structure created
during the training phase therefore also serves as a routing index
for HiSbase. Figure 2(v) shows how the evenly distributed region
ids (0–6) are mapped to the randomly distributed peers (a, b, c, d)
on the DHT key space.

2.4 Feeding the Data
Archives feed data directly into the P2P architecture as suggested

by Figure 1. Data integration is not in the focus of this demo—we
assume that the data being fed into HiSbase adheres to a common
schema or is already properly transformed. In HiSbase, the his-
togram, a community-specific data allocation function, determines
which peers should store which data objects. Thus, every peer

maintains all data from any archive located in its assigned regions.
Data feeding proceeds by data archives sending their data to any

HiSbase peer. For each data item d (e. g., a tuple from a relational
database system), the peer performs a lookup in the histogram H,
retrieving the region id r the data item belongs to. Subsequently, d
is sent to r. Finally, HiSbase uses the histogram to route d to the
peer responsible for r, which is the peer closest to r on the DHT key
ring (cf. Figure 2(v)). Of course, this approach can be optimized
by using bulk feeding where data items for the same region are
transmitted in a single message.

Peers store data objects contained in their assigned regions in a
database system. HiSbase does not require any specific database
system, thus enabling the use and comparison of traditional as well
as main memory based database systems.

2.5 Region-based Queries
Region-based queries can be submitted to any peer in the HiSbase

network. The peer receiving the query extracts the referenced multi-
dimensional area A from the query predicate. The set S of region
identifiers intersecting with A is determined by a lookup in the his-
togram H. We select an arbitrary region id rc from S and choose
the peer c which is responsible for rc as the coordinator. The co-
ordinator distributes the query to peers covering region ids from S
and collects intermediate results.

Using a Z-quadtree histogram, S is obtained by a tree traversal.
If the region of an inner node intersects with the query area A, its
children are processed recursively. Identifiers of intersecting leaf
regions are added to S.

For example, given the HiSbase instance of Figure 2(v), peer a
may receive the query with the query area depicted by the thick-
lined rectangle in Figure 2(ii). By coincidence, this peer covers
one of the two relevant region ids 1 and 3. As the coordinator, it
forwards the query to region id 3, which is covered by peer b. After
receiving both, the results from its local database (it covers region
id 1) and those from peer b, the coordinator sends the results back
to the client for further processing.

Since HiSbase routes queries to responsible peers via region iden-
tifiers, peers covering several regions will receive the same query
multiple times, once for each region. To avoid multiple query
evaluation, a hash value is calculated for each query to recognize
whether the query has been processed previously.

We compared query throughput of a small local area HiSbase
configuration and of a wide-are deployment on PlanetLab with a
central database server. First results indicate that HiSbase achieves
super-linear query throughput and provides a stable and scalable
data management infrastructure. Currently, we are combining our
data load balancing approach with query load balancing techniques
to efficiently handle query hot spots. We are considering several ap-
proaches such as replication and introducing a peer hierarchy where
idle peers can support overloaded nodes by trading their own his-
togram buckets for data from the overloaded peer. We also plan
to incorporate query statistics in the histogram creation during the
training phase.

1396



(i) Optical wavelength

(ii) X-ray wavelength

Figure 3: A multi-wavelength view on the milky way (Source:
http://adc.gsfc.nasa.gov/mw/).

3. DEMONSTRATION OUTLINE
We use cross-match queries as an example application from the

astrophysics domain to describe the functionality of HiSbase. As-
trophysicists use cross-matching to determine whether data points
from different archives are likely to stem from the same celestial
object. Researchers take several point sources from an area (e. g.,
the milky way in Figure 3) in one data set and look for matching
sources in other data sets.

Using catalog data from our astrophysical cooperation partners,
we will demonstrate the following aspects of HiSbase:

• We present a Java-based implementation of HiSbase using
the FreePastry2 implementation of Pastry. People can in-
teract with the HiSbase network during the demonstration,
using a graphical user interface (see Figure 4).

• The demonstrated HiSbase instance is deployed in a wide-
area setting, on about one hundred nodes distributed world-
wide on the PlanetLab3 testing platform and on the resources
of the AstroGrid-D project using different database systems
(DB2, PostgreSQL, Derby) to reflect the heterogeneity of the
database landscape within e-science communities.

• The application interface offers additional access to the cur-
rent state of the demonstration node. The state information
includes currently covered regions and the neighbor connec-
tivity. Additionally, the data samples used and the histograms
generated during the training phase are shown.

• The demonstration laptop is one of the HiSbase peers, covers
part of the data, and takes part in the processing of region-
based queries. Users can either write their own SQL queries
or choose cross-matching queries from a predefined set. We
adopted existing code for SQL cross-matching queries [2]
and added a special xmatch pattern to simplify queries.

• We show the efficient coordination of queries spanning mul-
tiple peers.

• We evaluate the Z-quadtree and other histogram techniques
with regard to query throughput and the preservation of spa-
tial locality. Queries submitted to the HiSbase application
can be displayed in both the histogram currently used by the
infrastructure and in an alternative histogram to allow the
comparison of histogram variants.

The data sample for the demonstration comprises about 137 million
objects from subsets of the ROSAT (25 million objects), SDSS (84
million objects), and TWOMASS (28 million objects) catalogs and
has a size of about 50 GB.

2http://freepastry.org
3http://www.planet-lab.org

Figure 4: HiSbase GUI.

Acknowledgments. This work is part of the AstroGrid-D project within
the D-Grid initiative and is funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) under contract 01AK804F and by Microsoft
Research Cambridge (MSRC) under contract 2005-041.

4. REFERENCES
[1] R. Braumandl, A. Kemper, and D. Kossmann. Quality of Service in

an Information Economy. ACM Trans. on Internet Technology,
3(4):291–333, Nov. 2003.

[2] J. Gray, M. A. N. Santisteban, and A. S. Szalay. The Zones
Algorithm for Finding Points-Near-Point or Cross-Matching Spatial
Datasets. Technical Report MSR-TR-2006-52, Microsoft Research,
Microsoft Cooperation, Redmond, WA, USA, Apr. 2006.

[3] J. Gray and A. Szalay. The World-Wide Telescope. Communications
of the ACM, 45(11):50–55, Nov. 2002.

[4] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica. Querying the Internet with PIER. In Proc. of the Intl. Conf.
on Very Large Data Bases, pages 321–332, Berlin, Germany, Sept.
2003.

[5] R. Kuntschke, T. Scholl, S. Huber, A. Kemper, A. Reiser, H.-M.
Adorf, G. Lemson, and W. Voges. Grid-based Data Stream
Processing in e-Science. In Proc. of the IEEE Intl. Conf. on e-Science
and Grid Computing, page 30, Amsterdam, The Netherlands, Dec.
2006.

[6] J. Orenstein and T. Merrett. A class of data structures for associative
searching. In Proc. of the ACM SIGACT-SIGMOD Symp. on
Principles of Database Sys., pages 181–190, Waterloo, Ontario,
Canada, Apr. 1984.

[7] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, Decentralized
Object Location and Routing for Large-Scale Peer-to-Peer Systems.
In Proc. of the IFIP/ACM Intl. Conf. on Distributed Systems
Platforms, pages 329–350, Heidelberg, Germany, Nov. 2001.

[8] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison Wesley, 1990.

[9] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Supporting
Multi-dimensional Range Queries in Peer-to-Peer Systems. In Proc.
of the IEEE Intl. Conf. on Peer-to-Peer Computing, pages 173–180,
Aug. 2005.

[10] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. In Proc. of the ACM SIGCOMM Intl. Conf. on
Data Communication, pages 149–160, San Diego, CA, USA, Aug.
2001.

[11] E. Tanin, A. Harwood, and H. Samet. Using a distributed quadtree
index in peer-to-peer networks. VLDB Journal, 16:165–178, Feb.
2007.

1397

http://adc.gsfc.nasa.gov/mw/
http://freepastry.org
http://www.planet-lab.org

	1 Introduction and Motivation
	2 HiSbase Architecture
	2.1 Spatial Locality and Skew Handling
	2.2 Z-Quadtrees
	2.3 Mapping Peers
	2.4 Feeding the Data
	2.5 Region-based Queries

	3 Demonstration Outline
	4 References

