
Eliminating Impedance Mismatch in C++

Joseph (Yossi) Gil
∗

and Keren Lenz
Department of Computer Science

Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

yogi, lkeren@cs.technion.ac.il

ABSTRACT

Recently, the C# and the VISUAL BASIC communities were tanta-

lized by the advent of LINQ [18]—the Language INtegrated Query

technology from Microsoft. LINQ represents a set of language ex-

tensions relying on advanced (some say hard to understand) tech-

niques drawn from functional languages such as type inference, λ-

expressions and most importantly, monads. The 3rd edition of C#

just as the 9th of VISUAL BASIC allow programmer to directly

access relational and XML-based databases from within the pro-

gramming language. We show that very similar capabilities can be

achieved in the C++ programming language without relying on any

language extensions, compiler modifications, external processing

tools, or any other vendor specific machinery: ARARAT is a C++

template library whose objective is type safe generation of SQL

statements for access relational database systems. Learning curve

is minimal since ARARAT resembles relational algebra, which is at

the core of SQL.

1. INTRODUCTION
Most software applications, arguably, all but the trivial, use a

database for data management and storage. These applications are

usually written in high level programming languages such as C++,

JAVA [2] and C#. To use such a database, applications must pro-

duce strings containing statements in the database language (usu-

ally SQL) that are sent to the database engine for execution.

A direct use of this naive approach results in tremendous waste

of precious developer resources on the recalcitrant problem [5, 8]

of producing such accurate output. The generation of SQL (or

XPath for that matter) output are nothing but computer programs

produced by computer programs. It is well known that computer

programming is a difficult, costly, and error prone task for humans.

This is the reason that it is doubly more difficult to write computer

programs that generate other programs.

The seam between the programming language and database lan-

guage, that is the programmatic production of SQL commands, is

a source for many potential problems. The generated statements

are usually checked for correctness only at runtime, when executed

∗Research supported in part by the IBM faculty award

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

against the database, which might lead to late discovery of malfunc-

tioning, sometimes even after the product is shipped to customers.

Further, precisely at this seam, exploiting small errors occurring

during this tedious work, SQL injection attacks occur.

The ARARAT system sets its goal at automatic and safe genera-

tion of SQL code from C++. In one way, ARARAT is a C++ lan-

guage enhancement, the first of its kind to offer immunity to these

errors. In another, almost magically, this enhancement is achieved

without any modifications to the compiler.

There are many C++ database access libraries, free, shareware

and commercial including Ultimate++1, Postgress 2, IBPP3, DTL4,

libodbc++5, MySQL C++6, OTL7, SQLAPI++8 SOCI9, Terimber10,

CQL11, SourcePro DB12, but invariably, they are all wrappers around

the SQL server API, taking charge of issues such as connection

management. Security issues and smooth integration with the host

language, as what is offered by ARARAT are not handled.

2. A SHORT EXAMPLE
Table 2.1 introduces a database schema that will be used as a run-

ning example. There are two relations in this database, representing

employees and departments.

Tab. 2.1: A database schema, to be used as running example.

Relation Fields

EMPLOYEE ID(int), FIRST N(varchar), LAST N(varchar),

DEPTNUM(smallint), LOCATION(varchar)

DEPARTMENT ID(smallint), NAME(varchar),

DIVNUM(smallint)

Figure 2.1 shows a simple C++ function that might be used in an

application that uses the database described in Table 2.1: Function

get_employees receives a short integer dept and a string first,

and returns an SQL statement in string format which evaluates to

the set of all employees who work in department dept bearing the

first name first. The function presented in the figure also takes

care of the special cases that first is null or dept is not a valid

department number.

1http://http://www.ultimatepp.org/
2http://http://www.postgresql.org/docs/8.1/interactive/libpq.html
3http://http://www.ibpp.org/
4http://http://dtemplatelib.sourceforge.net/index.htm
5http://http://libodbcxx.sourceforge.net/
6http://http://mysqlcppapi.sourceforge.net
7http://http://otl.sourceforge.net/home.htm
8http://http://www.sqlapi.com/index.html
9http://http://soci.sourceforge.net

10http://http://www.terimber.com
11http://http://www.cql.com/
12http://http://www.roguewave.com/sourcepro/sourcepro.cfm

1386

1 char* get_employees(short dept, char* first) {

2 bool first_cond = true;

3 string s(

4 "SELECT FIRST_N, LAST_N FROM EMPLOYES "

5);

6 if (dept > 0){ //valid dept number

7 s.append("WHERE DEPTNUM = ’ ");

8 s.append(itoa(dept));

9 s.append("’");

10 first_cond = false;

11 }

12 if (first == null)

13 return s;

15 if (first_cond)

16 s.append("WHERE ");

17 else

18 s.append("AND");

19 s.append("FIRST_N= ’ ");

20 s.append(first);

21 s.append("’");

23 return s;

24 }

Fig. 2.1: Function returning an erroneous SQL query string.

The expected returned value of this function is a string such as

SELECT * FROM EMPLOYEES

WHERE

DEPTNUM = ’3’

AND

FIRST_NAME = ’John’

The equivalent function using in ARARAT, is shown in Fig-

ure 2.2.

1 char* get_employees(short dept, char* first) {

2 DEF_V(e,EMPLOYEE[FIRST_N,LAST_N]);

3 if (first != null) e /= (FIRST_N == first);

4 if (dept > 0) e /= (DEPTNUM == dept);

5 return e.asSQL();

6 }

Fig. 2.2: A re-implementation of get_employees (Figure 2.1), using
ARARAT.

Comparing the two figures, we see that the ARARAT version

is much shorter. To understand the ARARAT code all we need to

know is that selection (in the relational algebra sense) is represented

by C++ division operator /, while projection into a set of fields is

carried out by the square brackets operator ([]). Having learned

that, we believe many will agree that the ARARAT code is also

more elegant.

Further, as it turns out, the ARARAT version solves the many

errors found in Figure 2.1, including a misspelled name in line 4,

a syntax error in the case that both parameters are non-nulls (see

line 18), vulnerability to code injection and more. These errors

either cannot happen with ARARAT (SQL code produced by it

is always syntactically correct), or are detected at compile-time

(schema changes or misspelling will result in a compilation error.)

A reformulation of Figure 2.2 in LINQ is shown in Figure 2.3.

Examining the LINQ version, we see that in contrast with the ARARAT

implementation, the query code uses keywords which are reminis-

cent of SQL, but the query code is more complicated, and one must

use an iteration variable to specify the query. Further, the fact that

LINQ has no query objects which can be stored in variables, does

not make it possible to define the query in stages. Instead, one

needs to refine the query result, which can result in loss of opti-

mization opportunities. Further, the projection operation must take

place after the selection, since it eliminates fields that are used in

the selection criterion. As a result the intermediate query results

contain unnecessary fields and more data than necessary is trans-

ferred and processed.

1 void get_employees(short dept, string first){

2 var emps = (from e in employees select e);

3 if (dept != 0)

4 emps = (from e in emps

5 where e.dept == dept select e);

6 if (first != null)

7 emps = (from e in emps

8 where e.firstName.Equals(first)

9 select e);

10 var results = (from e in emps

11 select new {e.firstName, e.lastName});

12 ...

13 }

Fig. 2.3: The LINQ equivalent of Figure 2.2.

3. A BRIEF TUTORIAL
A programmer wishing to execute a database query must create

first a query object, which encodes both the specification of the

query and the scheme of its result. This query object can then be

used for purpose such as

1. Query Execution. method asSQL() sent to a query object re-

turns a valid injection-proof SQL statement representing the

query execution.

2. Type Definition. Macro TUPLE_T, when applied to a query

object returns the type of the tuples that the query object may

return. This type is a simple C++ struct, with a standard

mapping of SQL types to C++ types. Further, this generated

type is assignment compatible with all tuples which include

the same field set. This type can be used as a parameter to

collection and data structures libraries, typically STL.

3. Composing Compound Query Objects. Two query objects

can be combined using relational algebra operators to gener-

ate a compound query objects. A query object can be com-

pound with a boolean selection expression to restrict its result

set, or projected to restrict the columns set. Other composi-

tion operators include sorting and limit selection as in SQL.

A primitive query object for each of the relations in the input

database must be prepared, either manually (the encoding is simple

and straightforward) or by a simple tool. The content of each prim-

itive query object is an encoding of the pseudo-code instruction:

“return all fields of the relation”. The C++ statement
EMPLOYEE.asSQL()

(for example) will return the following SQL statement

select * from EMPLOYEE;

A programmer may compose more interesting query objects out

of the primitives. For this composition, our library provides a num-

ber of functions and overloaded operators. Each of the relational

algebra operators has a C++ counterpart. It is thus possible to write

relational algebra expressions, almost verbatim, in C++.

Figure 3.1 shows a simple C++ program demonstrating how a

compound query object is put together in ARARAT. This query

object is then converted to an SQL statement ready for execution.

In lines 11–16 of this figure, a compound query object is gener-

ated in two steps:

• First (line 11), expression
EMPLOYEE / (DEPTNUM > 3 && SALARY <= 3.14))

evaluates to the query object representing a selection of these

tuples of relation EMPLOYEE in which DEPTNUM is greater than 3

and SALARY is no greater than 3.14.

The syntax is straightforward: the selection criterion is writ-

ten as a C++ Boolean expression, and operator / is used for

applying this criterion to EMPLOYEE.

1387

1 #include "rat" // Global RAT declarations and macros

2 #include "employees.h"

3 // Primitive query objects and scheme of the EMPLOYEE database

5 DEF_F(FULL_N); DEF_F(NUMBER);

6 // Define field names which were not defined in the input scheme

8 int main(int argc, char* argv[]) {

9 const string s = (

10 (EMPLOYEE / (DEPTNUM > 3

11 && SALARY < 3.14)) // Selection of a tuple subset

12 [

13 FIRST_N, LAST_N,

14 FULL_N(cat(LAST_N,", ", FIRST_N)),

15 NUMBER(ID)

16]

17).asSQL();

18 // ... execute the SQL query in s using e.g., ADO.

19 return 0;

20 }

Fig. 3.1: Writing a simple relational algebra expression in ARARAT.

• Then, (lines 12–16), an array access operation, i.e., operator [],

is employed to project these tuples into a relation schema

consisting of four fields: FIRST_N, LAST_N, FULL_N (computed

from FIRST_N and LAST_N), and EMPNUM (which is just field ID

renamed).

Note that the expression cat(LAST_N,", ", FIRST_N) pro-

duces a new (anonymous) field whose content is computed

by concatenating three strings. The function call operator is

then used to associate field name FULL_N with the result of

this computation. Similarly, expression EMPNUM(ID) uses this

operator for field renaming.

After this query object is created, its function member asSQL() is

invoked (in line 17) to convert it into an equivalent SQL statement

ready for execution:

select FIRST_N, LAST_N,

concat(LAST_N,", ", FIRST_N) as FULL_N,

EMPNUM as ID

from EMPLOYEE

where DEPTNUM > 3 and SALARY <= 3.14;

This statement is assigned, as a string, to variable s.

Figure 3.2 shows another function, which uses ARARAT join op-

erator to combine two query objects.

1 DEF_F(EMPNUM); DEF_F(DEPT_NAME);

3 char* emp_nums_and_depts() {

4 return (

5 (EMPLOYEE[EMPNUM(ID), ID(DEPTNUM)]*DEPARTMENT)

6 [EMPNUM, DEPT_NAME(NAME)]).asSQL();

7 }

Fig. 3.2: Using join operator in ARARAT.

In this function, the operator * is used for joining two relations.

Note that field DEPTNUM in relation EMPLOYEE corresponds to field

ID in relation DEPARTMENT. In order to perform a natural join these

fields must have the same name. Therefore, we perform the appro-

priate renaming before the join operation.

It is also worth noting that both relations contain a field named

ID, but its type is different. This is made possible due to the late

binding of a field name to a relation.

As we saw, the usual C++ operators including comparisons and

logical operators may be used in selection condition and in making

the new fields. Table 3.1 summarizes the ARARAT equivalents of

the main operators of relational algebra.

As can be seen in the table, the operators of relational algebra

can be written in C++, using either a global function, a member

function, or (if the user so chooses) with an intrinsic C++ (over-

loaded) operator: selection in relational algebra is represented by

Tab. 3.1: ARARAT equivalents of relational algebra operators.

Relational Algebra Op-

erator

ARARAT

Operator

ARARAT Function SQL equivalent

selection σcR R/c select(R,c)
R.select(c)

select *
from R
where c

projection πf1,f2
R R[f1,f2] project(R,(f1,f2))

R.project((f1,f2))
select f1,f2

from R

union R1∪R2 R1+R2 union(R1,R2)

R1.union(R2)

R1 union R2

difference R1\R2 R1-R2 subtract(R1,R2)

R1.subtract(R2)

R1 - R2

(natural) join R1 ./ R2 R1*R2 join(R1,R2)

R1.join(R2)

R1 join R2

left join R1 =× R2 R1<<R2 left join(R1,R2)

R1.left join(R2)

R1 left

join R2

right join R1×= R2 R1>>R2 right join(R1,R2)

R1.right join(R2)

R1 right

join R2

rename ρa/bR b(a) rename(a,b)
a.rename(b)

a as b

((EMPLOYEE * DEPARTMENT)

/

(DIVNUM == 2))[LOCATION]

(a) Operator overloading version

project(

select(

join(EMPLOYEE,DEPARTMENT),

(DIVNUM == 2)

),LOCATION)

(b) global functions version

EMPLOYEE

.join(DEPARTMENT)

.select(DIVNUM == 2)

.project(LOCATION)

(c) member functions version

Fig. 3.3: Three alternatives C++ expressions to compute a query object
that, when evaluated, finds the locations of employees in division 2:

using (a) overloaded operators (b) global functions, and (c) member
functions.

operator /, projection by operator [], union by operator +, dif-

ference by operator -, natural join by operator *, left join by

operator <<, right join by operator >>, and renaming by the func-

tion call operator operator ().

ARARAT does not directly support Cartesian product. Since the

join of two relations with no common fields is their cross product,

this operation can be emulated (if necessary) by appropriate field

renaming followed by a join.

The translation of any relational algebra expression into C++ is

quite straightforward. Figure 3.3 shows how a query object for find-

ing the locations of employees in division 2 can be generated using

overloaded operators, global functions and member functions.

The composition of query objects with ARARAT is “type safe”,

in the sense that an attempt to generate illegal queries results in a

compilation error. Thus, expressions q1+q2 and q1-q2 fail to com-

pile unless q1 and q2 are query objects with the same set of fields.

Similarly, it is illegal to project onto fields which do not exist in the

relation, or select upon conditions which include such fields.

In the demonstration, we shall explain why the inherent delayed

execution semantics of query objects avoids the hurdles of the mon-

ads semantics as found in LINQ. We will also show how query ob-

jects can be stored in variables, returned by functions, etc.

4. RELATED WORK AND DISCUSSION
LINQ probably represents the culmination of long research effort

on the problem of seamless integration of database processing with

high-level application languages (see, e.g., surveys in [3, 4] as well

1388

as Pascal-R [19], a persistent (extended) version of C [15] [1], inte-

gration of databases into SMALLTALK [10]- [7], the XJ [13] system

integrating XML with JAVA, and many more. Other approaches of

integrating SQL with an application language, include embedding,

e.g., SQLJ [9], SchemeQL [20] and Embedded SQL for C13, li-

braries such as SQL DOM system [17] whose structure reflects the

constraints which the database scheme imposes, and allows produc-

tion of only correct SQL statements, and static analyzer that checks

that the program only produces correct SQL statements [6, 11, 12].

(The hosts of plain SQL wrappers mentioned above will not be dis-

cussed further.)

In comparison to these, and thanks to the template-based im-

plementation, ARARAT achieves a high-level of integration with

the host language without using a software library tailored to the

database. In this respect, ARARAT is somewhat similar to the

HaskellDB [16] system, a database oriented extension of HASKELL [14].

However, unlike HaskellDB, ARARAT supports dynamic queries,

and by relying on C++ is more accessible to application program-

mers.

Another issue common to all approaches is the integration of the

SQL type system with that of the host language. ARARAT auto-

matically defines a record type for each possible fields combina-

tion, with a fixed mapping of SQL types to C++ types. This type

can be used for data retrieval and manipulation.

Admittedly, just like many other systems mentioned above, ARARAT

is language specific. The extension to languages such as JAVA re-

quires modification of the host language to support C++ like tem-

plates; alternatively, one can modify JAVA, just as any other lan-

guage, to support the ARARAT syntax.

Also, just like other research systems it is not a full blown data-

base solution. The current implementation demonstrates the ideas

with a safe generation of queries. ARARAT extensions for integra-

tion of query execution are left for future research, or for a com-

mercialized implementation.

Finally, a few word are in place regarding the the adaptation of

ARARAT to concrete implementation of SQL. It is well known that

commercial vendors introduce their own (some may say idiosyn-

cratic) dialect in adoption of the SQL standard. Simple statements,

such as the ones used here will be understood by all such imple-

mentations. However, realization of more advanced features, such

as nested queries may be very different in different database im-

plementation. The procedure of translating the content of a query

object into an SQL statement must be cognizant of these differ-

ences. This demand can be compared to the requirement that an

implementation of a high level programming language, specifically

a compiler, must be aware of the target language. Writers of multi-

targets compilers address this difficulty by producing object code in

intermediate form, which is then translated to the specific machine

code. The same idea applies to ARARAT: the internal form of a

query object is an arbitrarily complex expression in relational alge-

bra. The familiar post order traversal of such an expression yields

an evaluation procedure whose elements are simple SQL queries,

each of which operates on previously computed intermediate re-

sults, yielding another such result. The final such operation com-

putes the entire query result. This process lends itself to a general

purpose process of translation into an arbitrary SQL implementa-

tion. The cost is of course is in that less-sophisticated database

implementation may miss optimization opportunities, when given

such a sequence of operations. A specialized translator may be in

place for such implementations.

13http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/esqlforc/ec 6 epr 01 3m03.asp,2004.

5. REFERENCES
[1] T. Andrews and C. Harris. Combining language and database

advances in an object-oriented development environment. In

OOPSLA’87.

[2] K. Arnold and J. Gosling. The Java Programming Language.

Addison-Wesley, 1996.

[3] M. P. Atkinson and O. P. Buneman. Types and persistence in

database programming languages. ACM Comput. Surv.,

19(2):105–170, 1987.

[4] M. P. Atkinson and R. Welland. Fully Integrated Data Env.:

Persistent Prog. Lang., Object Stores, and Prog. Env.

Springer, 2000.

[5] T. Bloom and S. B. Zdonik. Issues in the design of

object-oriented database programming languages. In

OOPSLA’87.

[6] A. S. Christensen, A. Møller, and M. I. Schwartzbach.

Precise analysis of string expressions. In SAS’03.

[7] G. Copeland and D. Maier. Making Smalltalk a database

system. SIGMOD Rec., 14(2):316–325, 1984.

[8] J. E. Donahue. Integrating programming languages with

database systems. In Data Types and Persistence (Appin),

Scotland, 1985.

[9] A. Eisenberg and J. Melton. SQLJ Part 1: SQL routines

using the Java programming language. SIGMOD Rec.,

28(4):58–63, 1999.

[10] A. Goldberg. Smalltalk-80: The Interactive Prog. Env.

Addison-Wesley, 1984.

[11] C. Gould, Z. Su, and P. T. Devanbu. Static checking of

dynamically generated queries in database applications. In

ICSE’04.

[12] W. G. J. Halfond and A. Orso. AMNESIA: Analysis and

Monitoring for NEutralizing SQL-Injection Attacks. In

ASE’05.

[13] M. Harren, B. Raghavachari, O. Shmueli, M. Burke,

V. Sarkar, and R. Bordawekar. XJ: Integration of XML

processing into Java, 2003.

[14] S. P. Jones. Haskell 98 Language and Libraries: The

Revisited Report. Cambridge University Press, 2003.

[15] B. W. Kernighan and D. M. Ritchie. The C Programming

Language. Prentice-Hall, 2nd ed., 1988.

[16] D. Leijen and E. Meijer. Domain specific embedded

compilers. In USENIX’99.

[17] R. A. McClure and I. H. Krüger. SQL DOM: compile time

checking of dynamic SQL statements. In ICSE’05.

[18] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling

objects, relations and XML in the .NET framework. In

ICMD’06.

[19] J. W. Schmidt. Some high level language constructs for data

of type relation. ACM Trans. on Database Sys.,

2(3):247–261, 1977.

[20] N. Welsh, F. Solsona, and I. Glover. SchemeUnit and

SchemeQL: Two little languages. In Workshop on Scheme

and Functional Programming (London, UK, 2002).

1389

