
Damia – A Data Mashup Fabric for Intranet Applications
Mehmet Altinel, Paul Brown, Susan Cline, Rajesh Kartha, Eric Louie, Volker Markl, Louis Mau,

Yip-Hing Ng, David Simmen, Ashutosh Singh

IBM Almaden Research Center
650 Harry Road

 San Jose, CA 95120, USA

{maltinel, pbrown1, clines, kartha, ewlouie, marklv, louismau, yipng, simmen, asingh}@us.ibm.com

ABSTRACT
Damia is a lightweight enterprise data integration service where
line of business users can create and catalog high value data feeds
for consumption by situational applications. Damia is inspired by
the Web 2.0 mashup phenomenon. It consists of (1) a browser-
based user-interface that allows for the specification of data
mashups as data flow graphs using a set of operators, (2) a server
with an execution engine, as well as (3) APIs for searching,
debugging, executing and managing mashups. Damia offers a
framework and functionality for dynamic entity resolution,
streaming and other higher value features particularly important in
the enterprise domain. Damia is currently in perpetual beta in the
IBM Intranet.

In this demonstration, we showcase the creation and execution of
several enterprise data mashups, thereby illustrating the
architecture and features of the overall Damia system.

1. INTRODUCTION
A mashup is a web application that combines content from two or
more applications to create a new application [9]. Situational
applications are enterprise web applications built on-the-fly to
solve a specific business problem [1]. They are often developed
without involvement of the IT department and operate outside of
its control. They combine data from a variety of enterprise sources
such as SAP or Office applications, back-end databases, and
content management systems. Any distinction between mashups
and situational applications will become progressively blurred as
situational applications augment enterprise data with data outside
the firewall. In effect, situational applications are enterprise
mashups.
Enterprise mashups present a data problem, as they can access,
filter, join, and aggregate data from multiple sources; however,
these data machinations are typically done in the application
mixed with business and presentation logic. In Damia, we aim to
develop an enterprise-oriented data mashup platform on which
such applications can be built quickly, by enabling a clean
separation between the data machination logic and the business
logic. In this demonstration proposal, we present the key aspects
of the Damia mashup platform which facilitates the specification
and execution of enterprise data mashups in IBM’s corporate

intranet.
To our knowledge, the only other similar service is Yahoo Pipes
[12]. Pipes allows for the specification of a data flow graph to
combine data feeds, which can be RSS or Atom or RDF. Pipes
focuses on merging feeds or on enhancing existing feeds by
transforming them via webservice calls (e.g., language translation,
location extraction).
Damia goes beyond Yahoo Pipes in several ways: (1) Damia has a
principled data model of tuples of sequences of XML, which is
more general than Yahoo Pipes. (2) Damia’s focus on enterprise
data allows for ingestion of a larger set of data sources such as
Notes, Excel, XML, as well as data from emerging information
marketplaces like StrikeIron [10]. (3) Damia’s data model allows
for generic joins of web data sources.

2. The Damia System
This section provides an overview of Damia system by briefly
describing main components, which are depicted in Figure 1.

2.1 User interface
Situational applications are typically created by departmental
users with little programming knowledge; consequently
visualization of data mashup operations is critical for any mashup
platform. Considering this key aspect, we developed a browser-
based user interface that allows Damia users to perform major
operations easily and intuitively. The GUI provides facilities for
composing new data mashups, searching data sources or existing
mashups, and managing stored mashups. The mashup
composition follows programming-by-example model which
makes the development process more natural and less error prone.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Damia
GUI

Directory
Services

Scalability
Services

Execution
Engine

Execute Compile Search Debug Manage

Storage
Services

Applications

API
Layer

Users

Core Components

Damia Server REST Calls

Figure 1: Architecture of the Damia server

1370

Figure 2 shows a snapshot of the Damia mashup editor, which
was implemented with the dojo toolkit [4]. It communicates with
the server through a set of REST API interfaces, as illustrated in
Figure 1. The GUI allows users to drag and drop boxes,
representing Damia operators, onto a canvas and to connect them
with edges representing the flow of data between those operators.
Users can use a preview feature to see the result of the data flow
at any point in the process. The Damia editor interacts with a
meta-data repository in order to suggest options for creating
"touch points" for joins, grouping, and other operations that
require that data be first put in a standard representation. Once the
data flow is completed, the result is serialized as an XML
document and delivered to the server for further processing.

2.2 Execution Engine
Figure 3 provides a high-level view of Damia execution engine.
The Damia engine contains four layers: (1) At the core, Damia
relies on PHP environment [8] as its runtime. PHP was an
attractive choice for our runtime engine as it has abundant features
for accessing web data and for processing XML data. (2)
Primitive Damia operators are implemented as PHP classes. They
can be wired to each other to create a data flow graph. The
primitives provide the expressive power to map most of XQuery
to Damia. (4) Feed-Friendly Operators, which are implemented
using the primitive operators, provide an XML feed abstraction.
An XML feed is as an XML document with a repeating element.
XML feeds generalize Atom and RSS feeds, an Atom feed for
instance is an XML feed with <entry> as repeating element.
Operators can import, filter, transform, augment, sort, and merge

XML feeds. (4) Higher-value features are implemented as
extensions modules within the engine. These features will be
discussed in more detail in section 4.
Damia Operators and Data Model
The Damia operators produce and consume tuples of sequences. A
sequence is an ordered set of items wherein an item can be an
atomic value or an XML node. The Damia data model provides a
closed data model which allows new data mashups to be
composed with existing ones. The data model is simpler analog to
the one used in XQuery (for example, we do not support node
identity). On the other hand, Damia goes beyond most XQuery
implementations by supporting sophisticated operators such as
group by, probabilistic joins, annotation, etc.
In general, there are three classes of Damia operators: ingestion,
augmentation, and publication. Ingestion operators are sources in
the Damia data flow graph, in that they bring data feeds into the
system. Damia comes with ingestion operators for REST and
SOAP Web Services, Excel Spreadsheets, Lotus Notes databases,
as well as screen scraping for HTML pages. The overall system of
ingestion operators is extensible, as any data source can be
ingested into Damia by providing simply a SOAP or REST
wrapper. In the terms of the Damia data model, an ingestion
operator takes a data object and translates it into a tuple of
sequences of XML data.
Augmentation operators are internal nodes of the data flow graph.
Damia is extensible in that user defined operators can be written
in PHP and can be plugged into the engine or can be made

Figure 2: The Damia Mashup Editor

1371

available as web services. Damia provides operators to extract
information from sequences (Extract), to filter tuples (Filter), to
iterate over items in a sequence (Iterate), to construct a new
sequence from other sequences (Construct), as well as operators
to join (Fuse), sort (Sort), aggregate (Group), and perform other
sophisticated operations over the sequence data.

Figure 3: Damia Features

Publication operators are the sinks of the data flow graph. They
transform the result of the mashup into common output formats
like JSON, HTML, and various XML formats (e.g. Atom, RSS).
Damia publication operators can be extended to produce other
formats.

2.3 Storage Services
This component handles the storage and retrieval of data feeds
created by the Damia community. In addition to publishing data
feeds created via Damia data flows, a user can publish resources
like Excel Spreadsheets or XML documents to the Damia system,
to make them consumable by mashups. It is possible to share
published resources with others or to keep them private.
The Damia mashup repository stores both the graphical mashup
specification serialized as XML as well as the PHP code that the
mashup specification was compiled into. Users execute stored
mashups by calling a REST URL provided by the Damia system.

2.4 Directory Services
The Damia system manages metadata for resources and mashups.
One aspect of the directory services is to provide basic search
functionality on mashup names, descriptions, and creators.
However, we envision Damia to be an ecosystem with a
community of users growing around it. Damia therefore also
provides features for community tagging and rating of mashups.

2.5 Scalability Services
The Damia system is currently implemented over a LAMP stack.
There is a wide variety of libraries available in the LAMP
ecosystem to offer scalability solutions. We exploited several PHP
Pear packages [7] for caching and indexing of mashup resources.
Mashup resources are cached in two ways: (1) when they are
accessed during execution, (2) periodically the system pro-
actively crawls specified sources in anticipation of future requests.
The system keeps track of resource usage statistics to improve
cache performance.
Damia employs a local XML database to store and index cached
resources. Currently DB2/XML [3] is used for this purpose.

3. DEMONSTRATION OVERVIEW
We plan to show unique features of the Damia platform through a
demonstration scenarios that combines live data from an RSS feed
with a data from an Excel spreadsheet.
In this scenario, an insurance agent wants to know which of his
home-owner insurance customers are at risk because of a storm.

Figure 4: Spreadsheet with policy holders

The insurance agent ingests a spreadsheet (Figure 4) with his
insurance policies into Damia, and merges it with a severe
weather alert RSS feed from the National Weather Service. In this
way, the insurance agent will see the insurance policies of all
people affected by a severe weather warning. In the mashup, the
weather RSS feed needs to be transformed first to extract city
names. In addition, the weather alert RSS feed needs to be filtered
for cities in Texas. The results are then sorted by city before being
returned as an atom feed which then is displayed in a feed reader
or application wiki. In this demonstration, we will show how the
mashup is incrementally specified in the GUI using Damia
operators (see Figure 2). We will also illustrate the GUI preview
function facilitating debugging of a mashup during its
specification. We will show how this mashup can be specified as a
streaming mashup listening to the severe weather feed, so that
automatic e-mail notifications are sent to the agent whenever one
of his policies is affected by a severe weather event. Finally, we
will run this mashup live and show the resulting policies at risk.

4. Further Research Challenges
This section summarizes advanced features that we are currently
exploring as enhancements to Damia:
Ingestion of "Enterprise Data": Mashup applications available
on the Web today commonly focus on the consumption of URL
addressable resources. However, enterprise data sources are
typically exposed in many other forms such as office documents,
email, pure databases, etc. So, enterprise mashup platforms must
provide enterprise-oriented tools and mechanisms to tap into non-
URL addressable sources, and make them available for the
developers. In Damia, we developed a set of predefined wrappers
for this purpose. Furthermore, we consider utilizing existing page-
scraping tools (e.g. Kapow [5] or Lixto [6]) to turn web pages
(inside and outside of the firewall) into ready-to-use data sources
in the Damia server.
Another unique characteristic of creating enterprise mashups is to
cope with a multitude of authentication models used to access
enterprise data sources. Although we utilize an LDAP-based
single sign-on system in the current prototype, this is actually an
open research issue, and we are investigating new techniques to
embrace this heterogeneity.

construct

PHP

PHP

Lineage tracking

Streaming

Optimized
access

Import
Fuse

Agg
Iterate

Dynamic entity resolution

Search

DOM Curl

Security

Higher Value
Functionalitie Primitive

Operators

Construct Sort

Extract Group By

Core runtime
support

Uncertainty

Scalability

Merge-Feed

Publish-Feed
Filter-Feed

Transform-Feed

Group-Feed

Augment-Feed

Feed
Operators

1372

Dynamic Entity Resolution: By definition, the quality of mashup
applications is directly related to how they can help to bring data
together from multiple sources. Therefore, the level of
sophistication in matching different entities is a key distinguishing
feature for any data mashup platform. This standardization
problem is usually addressed in two dimensions: (1) identification
of semantically known entities, and (2) resolving differences in
representations. We observe that more and more standardization
services are becoming available on the Internet for most
commonly used data types1. A similar trend is also noticeable
within enterprise systems with widespread adaptation of master
data management products. This observation is taken into account
in the design of dynamic entity resolution module, thereby
enabling to exploit growing number of standardization services
with little effort.
During mashup design, the Damia system displays applicable
standardization services to users and expects them to choose the
right ones for the mashup2. At runtime, the system can find out
possible touch points between entities and can generate the right
set of transformation functions to perform the join. For the cases
where the Damia server cannot detect the entities, there are
facilities for users to introduce the entities into the system and
select/register suitable standardization services for entity
matching. Our flexible design allows utilizing existing tools and
platforms (e.g. ClearForest [2], UIMA [11]) for the detection of
known entities in input sources. Once the entity matching task is
completed, its steps are remembered to help future users when
they try to use same sources in their mashups. Such a
“folksonomy-based” approach is aimed at taking the advantage of
collective power of Damia community to deliver a promising
framework for large-scale data integration.
Streaming: RSS and Atom feeds are a norm on the Internet. Huge
amount of information today is available via feed interfaces.
Taking this fact into account, we designed the Damia system to
understand and consume feeds effortlessly. Feeds are inherently
“push-based”, i.e. their content is dynamically updated at the
source without any notification. To be able to cope with this
streaming aspect, the Damia system includes mechanisms to
detect and process the changes in the feeds, and to deliver
notifications to its applications. In enterprise domains, there are
many useful mashup scenarios where this feature is extremely
valuable, particularly for reporting and dashboarding applications.
Search: Mashup applications are typically created in large
numbers since they tightly focus on a specific situation
concerning a small group of users. Hence, a common problem is
how to find a right mashup application or a data source in mashup
corpus when they are needed. An effective search mechanism for
mashups requires the understanding of not only the properties of
input sources but also how they are processed in data flow. We
performed an initial investigation on this problem, and developed
a preliminary search mechanism. We believe this is an important
research area, and are working on enhancing the current solution.
Lineage: Mashups on the Web usually do not provide any metrics
on data quality as this issue is not considered central. However,
this is not always true for enterprise mashups applications, as
sometimes important business decisions may be made based on

1 Geocoding service for address types is the prime example. Many Internet
companies including Yahoo and Google provide this service.
2 Programming-by-example enables us to perform this task.

their outcome. In such cases, when an enterprise data mashup is
composed with other mashups, it becomes very critical to be able
to provide lineage information for its users to assess its data
quality. Again, this is an active research area, and we only
implemented basic mechanisms to address this issue.
Uncertainty: It is not always the case that all operations return
exact results in mashups. There may be situations where uncertain
results are inevitable: (1) Data sources may return probabilistic (or
ranked) data. Typical example is when a search engine result is
fed into the mashup. (2) Entity matching may not yield exact
results in some cases. Hence, the result of joins may become
probabilistic. When an uncertainty is introduced in the system, it
has to be understood and modeled in the data flow. Like the
lineage problem, this aspect is mostly ignored in Web mashups,
but it may be crucial in some class of enterprise mashups. We
implemented a set of operators (join, sort, aggregate, etc.) which
can deal with probabilistic aspects in the data flow. We are
actively exploring new probabilistic models, improving the
existing operators and adding new ones.

5. CONCLUSIONS
Proliferation Web 2.0 technologies and ever increasing number of
available Web data services gave rise to phenomenal growth of
mashup applications on the Internet. We anticipate that enterprise
systems will greatly benefit from this new trend by means of
enterprise-oriented mashup development platforms. We are laying
the foundations of such a platform in the Damia project.
In this paper, we presented our initial Damia prototype, which
includes a mashup-oriented data flow engine enriched with novel,
enterprise-specific advanced functionalities. Most notable features
include a folksonomy-based standardization service, a intuitive
GUI front-end, a hosted, scalable mashup server architecture,
unique ingestion facilities and utilities for mashup search and
management. Going forward, we aim to use this prototype as a
playground to explore many interesting research directions
outlined in this paper.

6. ACKNOWLEDGMENTS
We thank Garret Hourihan, Ken Coar and Kathy Saunders for
helping in building the system. We also thank Anant Jhingran,
Hamid Pirahesh, and many colleagues in IBM for inspirational
discussions. We furthermore thank all IBMers who have used and
continue to use Damia to build situational applications.

7. REFERENCES
[1] A. Jhingran, “Enterprise Information Mashups: Integrating

Information, Simply”, VLDB 2006: 3-4.
[2] Clearforest Inc., http://www.clearforest.com/
[3] DB2 pureXML™ technology, http://www-

306.ibm.com/software/data/db2/xml/
[4] Dojo, the Javascript toolkit, http://dojotoolkit.org/
[5] Kapow Technologies, http://www.kapowtech.com/
[6] Lixto Software Gmbh, http://www.lixto.com/
[7] PEAR - PHP Extension and Application Repository,

http://pear.php.net/
[8] PHP: Hypertext Preprocessor, http://www.php.net/
[9] Programmable Web, http://www.programmableweb.com/
[10] Strikeiron Inc., http://www.strikeiron.com/
[11] Unstructured Information Management Architecture

(UIMA), IBM Research, www.research.ibm.com/UIMA/.
[12] Yahoo Pipes, http://pipes.yahoo.com/pipes/

1373

