IndeGS: Index Supported Graphics Data Server for CFD
Data Postprocessing

Christoph Brochhaus, Thomas Seid|
Data Management and Data Exploration Group
RWTH Aachen University, Germany

{brochhaus,seidl}@informatik.rwth-aachen.de

ABSTRACT

Virtual reality techniques particularly in the field of CFD
(computational fluid dynamics) are of growing importance
due to their ability to offer comfortable means to interac-
tively explore 3D data sets. The growing accuracy of the
simulations brings modern main memory based visualiza-
tion frameworks to their limits, inducing a limitation on
CFD data sizes and an increase in query response times,
which are obliged to be very low for efficient interactive ex-
ploration. We therefore developed “IndeGS”, the index sup-
ported graphics data server, to offer efficient dynamic view
dependent query processing on secondary storage indexes
organized by “IndeGS” offering a high degree of interactiv-
ity and mobility in VR environments in the context of CFD
postprocessing on arbitrarily sized data sets.

Our demonstration setup presents “IndeGS” as an inde-
pendent network component which can be addressed by ar-
bitrary VR visualization hardware ranging from complex se-
tups (e.g. CAVE, HoloBench) over standard PCs to mobile
devices (e.g. PDAs). Our demonstration includes a 2D vi-
sualization prototype and a comfortable user interface to
simulate view dependent CFD postprocessing performed by
an interactive user freely roaming a fully immersive VR envi-
ronment. Hereby, the effects of the use of different distance
functions and query strategies integrated into “IndeGS” are
visualized in a comprehensible way.

1. INTRODUCTION

In recent years, numerical simulations in the area of fluid
dynamics offer a very high level of accuracy and reproducibil-
ity and replace tedious and expensive experiments which
often strongly depend on environmental conditions. Simu-
lations are an acknowledged method, both in industrial de-
velopment and in research, in the domains of e.g. physics,
automotive engineering and analysis of aerodynamic forces.
These methods are generally described as computational
fluid dynamics (CFD). During a post-processing step certain
features and results of the CFD data sets are extracted out

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1354

a) CAVE b) HoloBench

Figure 1: Examples of VR Hardware

of the simulation results by request of an interactive user,
who usually is an expert in the field of CFD. The results
are commonly visualized in virtual reality environments, e.g.
the HoloBench, a stereo projection table composed of two
right-angled projection surfaces, or two- to six-sided rear
projection systems called CAVE (cf. figure 1), or even small
mobile devices like PDAs. They offer a high degree of inter-
activity by letting users immerse into the visualized objects.
Common post-processing tasks include isosurface extraction
(“display regions with a temperature of exactly 125°C”) or
particle tracing (“display the path of object located at start-
ing position (zo, yo, 20) over time”). State-of-the-art frame-
works using standard PCs, which allow for lower costs and
a high degree of scalability, perform these tasks by storing
the CFD data sets in main memory and quickly extracting
interesting features by completely scanning the data set.

With increasing CPU powers, computers are able to pro-
duce larger and larger simulation data sets that quickly ex-
ceed main memory limitations, calling for an effective and
efficient organization of the CFD data sets with external
memory access structures. Another negative effect of the
immense data sets, which are often many gigabytes in size,
is the increasing response time of post-processing queries.
New access methods, presented in the following chapters,
avoid slowing down the user’s flow of work by speeding up
processing time until a result is presented and ready for vi-
sual inspection.

We developed the index based graphics data server “In-
deGS” offering secondary storage methods to break the main
memory limitation. Furthermore, it offers various dynamic
view dependent access methods to deliver a good and quick
first impression of the results enabling the user to change
view and post-processing parameters “on the fly” during
query processing with immediate response from the system.
In our demonstration setup we offer the ability to explore
the effects of different access methods and dynamic user be-
haviors during the course of post-processing.



CFD Simulation Hardware

Index Generator

generate raw

simulation

dat t

create indexes > A

Aowaw Arepuodas ui
saxapul 3l0ls

query parameters

| Query

iresultdatastream

Interface

uondepe Aianb
olweuAp

Visualizers: § 5

i3 5

o ©

[ [

= =

CT) [ ] E

) ()

3 o] —
GUIs:

Usern

Query

data stream
Processor

IndeGS

Figure 2: System Architecture

2. SYSTEM ARCHITECTURE

Figure 2 shows the system architecture of our demonstra-
tion setup. The dotted area shows the CFD simulation com-
ponents which are not part of our demonstration. These
simulators generate huge amounts of raw data by perform-
ing numerical simulations of interactions of fluids or gases
on complex surfaces of arbitrary level of detail. From these
raw data sets, our index generator creates secondary storage
based indexes which are described in section 3.1.

The central element of our demonstration is the graph-
ics data server “IndeGS”. Queries are received by the query
interface, which interacts with the query processor. The
query processor accesses secondary storage indexes and ex-
tracts the results via access methods described section 3.2.
Result data will then be streamed to the client visualizer
which initiated the query. These clients run independently
of “IndeGS” on different instances in the network. They
can be complex hardware configurations like a CAVE or
a HoloBench, but they can also run on standard PCs or
mobile devices like PDAs. For our mobile demonstration
setup, we concentrated on the use of notebooks. In contrast
to complex VR setups, where the user’s position and move-
ments are acquired by tracking devices, the user of our demo
controls the view parameters with standard input hardware
like keyboard and mouse. Postprocessing type and param-
eters are entered via a GUIL. During query processing, “In-
deGS” reacts to changes regarding view point and direc-
tion and adapts the result stream to maintain view depen-
dency. At any time during query execution, postprocess-
ing can be restarted with different parameters at user’s re-
quest. Typical post-processing queries are isosurface extrac-
tion (e.g. “create isosurface with temperature = 125°C”),
range queries (e.g. “display cells with temperature between
100°C and 120°C”) and arbitrary combinations e.g. with ge-
ometrical selection (“display cells with temperate = 125°C
and humidity = 70% only in certain region of data set”).

1355

Data sets available in our demonstration setup are a simu-
lation of a fuel injection into a combustion engine cylinder
and simulated aerodynamic flows over the surface and in the
surrounding of a delta wing airplane.

3. DESCRIPTION OF “INDEGS”

For the purpose of efficient CFD post-processing on data
sets of almost arbitrary size, we developed our graphics
data server “IndeGS” which can be integrated in any vir-
tual reality framework via a clearly defined communication.
“IndeGS” is connected to the freely available and power-
ful toolkit ViSTA [7] used for integrating VR technology in
technical and scientific applications. A more detailed expla-
nation of the techniques used in “IndeGS” can be found in
[3]. The experiments conducted there prove the efficiency of
“IndeGS” in the field of CFD post-processing on different
real-world data sets.

3.1 Index Structure

To cope with the immense data sets generated during
CFD simulations, “IndeGS” organizes and stores the data
in secondary index structures derived from well-known spa-
tial data structures like the R-Tree family (R-Tree [4], R*-
Tree [1] , X-Tree [2]), which have proven to be appropriate
for indexing spatial data and which use minimum bounding
rectangles (MBRs) that serve as directory nodes during tree
traversal. The data itself is stored on leaf node level. For the
detailed discussion of the techniques realized in “IndeGS”,
we refer to [3].

The CFD data sets handled by “IndeGS” are based on
the open standard VTK [6]: they consist of cells (tetrahe-
dra, pyramids etc.) which are defined by their corner points.
Each corner point carries additional scalar information (tem-
perature, pressure, density etc.), depending on the executed
simulation. For example, the delta wing data set consists
of 3 time steps with 15 million cells, 4,5 million data points



4

0
¢) human vision oriented
hv-distance

N

N

N\

b) quadratic form

Figure 3: Distance Function Isolines Overview

and 8 scalar values each, resulting in a file size of approx.
2.5 GB.

3.2 Query Processing

To lower costly operation times of complex VR hardware
and to increase efficiency of expert users performing CFD
post-processing, it is of utmost importance to reduce query
times and to allow the user to get a quick first impression
of the query result. The access methods offered by “In-
deGS” show the following benefits: (1) results close to the
viewer are presented rapidly, (2) results in direct line of sight
are ranked with higher priorities, (3) changing view position
and view direction are reflected by dynamic query adaption.
Queries g are specified by the following parameters:

q := (view point v, view direction a, box b,

scalar range sci, ..., scalar range scp).

v is the exact position of the viewer in or around the vi-
sualized data set and a the view direction specified as a
three-dimensional vector. Box b specifies the geometrical
range of the query. Usually, this box covers the complete
range of the three dimension, as no results shall be omitted
from the result set, except in the case of “geometrical selec-
tion” post-processing. Ranges of the scalar values sc; can
be specified to meet the requirements of each query. In the
case of isosurface extraction for a certain scalar, the corre-
sponding range sc; has to be set to the designated value. A
cell is considered active, if all its values intersect with the
corresponding ranges specified in q.

The first two benefits from above are realized by ranking
and streaming all result cells depending on the users posi-
tion and its view direction in the VR environment. Cells in
the proximity and in the line of sight of the user are thereby
delivered before cells which contribute less to the overall im-
pression of the complete result set. The ranking based on
k-nearest neighbor search using priority queues is presented
in [5], which perform a recursive walk through the under-
lying spatial data structure by calculating priority/distance
approximations (MINDIST) for MBRs in directory nodes
and exact priorities/distances for objects in leaf nodes based
on distances like Euclidean distance etc.. The result set is
incrementally streamed to the visualizer, while intermediate
MBRs and cells are kept in a queue according to their prior-
ities. The query point is set to the users standpoint and the
nearest neighbor search is performed until all results cells
have been streamed to the visualizing component of the VR
framework. Besides depth-first search, our “IndeGS” offers
a variety of distance functions to be used for ranking result
cells, which we discuss in following.

1356

2,000 cells

a) ranked (Euclidean)

3 A

—g

4,000 cells 6,000 cells

o

fﬂ,’» W

b) ranked (quadratic form)

~ ~ =

c) ranked (human vision oriented, hv-distance)

Figure 4: Distance function examples

3.2.1 Distance Functions

The most common distance function is the Euclidean dis-
tance (cf. figure 3a). Combined with query processing tech-
niques from above, result cells are visualized in a growing
spherical manner around the user’s standpoint v. Thus, the
standpoint v of the user is taken into account and cells closer
to the user are presented before cells farther away. To in-
crease the speed of appearance of result cells in the direct
line of sight and improve the “first impression” of the result
at the same time, we also consider quadratic form distance
functions, where the shape of the isoline ellipsoid is stretched
in direction of the axis of sight (cf. figure 3b).

To further integrate the view direction and in particular
the view orientation into our system, we developed a new
distance function reflecting characteristics of human vision
(referred to by us as hv-distance). Growth of the result set
is accelerated in direction of the line of sight and at the
same time delayed in the area of human peripheral vision.
The corresponding isolines are illustrated in figure 3c¢): the
distance of p is defined by the radius of the ellipsoid which
crosses p and v with center point m, which lies on the line
of sight a starting at v. Elements behind the user (located
in the hatched region defined by the hyperplane running
through v and perpendicular to a) are treated separately,
after all cells in front have been streamed to the visualizer.
A user standing at point v with line of sight a will first be
presented elements directly in front of her or him close to
the a axis, and elements farther away from v and a will
appear later (peripheral vision). For the exact mathemat-
ical derivation of the corresponding distance definition, we
refer the reader to [3]. The required definition of an ap-
propriate MINDIST-function can also be found there. The
MINDIST-functions of both quadratic form and hv-distance
function each apply a customized gradient technique to find
the location on the MBR which has the least distance to the
query point.

Thus “IndeGS” offers access methods with different de-
grees of view dependency: depth-first traversal of the index
delivers all result cells in random order. Ranking with Eu-
clidean distance incorporates the user’s standpoint. With
quadratic form distance functions, the view axis is consid-
ered, and with the hv-distance function, the view orientation
is also taken into account during ranking.



Figure 5: Dynamic Query Execution Example

Figure 4 shows an example of an isosurface extraction with
a scalar value of 0.2 for mach number from the delta wing
data set at different stages during query processing (after
2,000, 4,000, 6,000 cells). The screenshots show a section
of the tip of the delta wing from a bird’s eye view with the
user’s position and view direction depicted by the arrows.

3.2.2 Dynamic Query Processing

Another important aspect of CFD post-processing is the
dynamic behavior of users: the change of the user’s stand-
point and view orientation has a direct influence on the pri-
orities of the result objects. As “IndeGS” is using a prior-
ity queue for ranking elements, this queue will be reorga-
nized if certain view parameters change, depending on the
distance function used. The Euclidean distance is robust
against changes of view direction. The calculated priorities
of elements in the queue only change, when the user/query
point moves. Quadratic form and hv-distance functions are
influenced also by a view direction change. When these
changes happen during query execution, the queue will be
be rearranged to guarantee a correct ranking and smooth
query processing. As a user might trigger many queue re-
arrangements by moving around in the VR environment
and rapidly changing view directions, a careful examina-
tion and optimization of these rearrangements is inevitable.
We therefore developed techniques to avoid that queue rear-
rangements noticeably decelerate query processing by only
triggering rearrangements if the change of view parameters
exceeds a certain threshold. This leads to a lower number
of rearrangements, but at cost of the quality of the rank-
ing, which will not be correct until the queue is reorganized.
Other heuristics implemented in “IndeGS” in order to keep
the average queue sizes low are described in [3].

Figure 5 shows the same isosurface extraction as in figure
4 from a bird’s eye view, but with a moving user (depicted
by the arrows). It can be clearly observed that the result
set is growing in front of the user, whenever a new query
is triggered (here: one arrow represents one view modifica-
tion). This screenshot shows query execution up to 9,000
out of ~ 150,000 result cells.

4. DEMONSTRATION BENEFITS

With the help of our demonstration setup, it is possible to
examine and display the effects of the use of different access
methods offered by “IndeGS” in the context of CFD post-
processing in a comprehensible and vivid way. By including
a visualization client running on standard PC hardware, the
use of “IndeGS” and its functionality can be easily demon-
strated without being constrained to expensive and complex

1357

first person

bird’s eye

5,000 cells
a) unranked

15,000 cells | 5,000 cells | 15,000 cells

b) ranked

Figure 6: Query processing ‘“delta wing tip”

VR hardware. The user can start arbitrary post-processing
queries on different data sets and experience how “IndeGS”
reacts to dynamic query updates from freely chosen per-
spectives. “IndeGS” itself reports information about query
processing in a text window including block reads, number
of result cells, processing times and index parameters.

Figure 6 shows more screenshots of an isosurface extrac-
tion on the delta wing data set at two different stages of
query processing (after 5,000 and 15,000 returned cells) for
unranked and ranked result streams and from two different
perspectives.

Figures 4 to 6 show, that our demonstration enables the
exploration of the potentials of “IndeGS” in a vivid and
comprehensible way by performing CFD post-processing on
example sets and examining the effects of different access
methods.

5. ACKNOWLEDGMENTS

The authors would like to thank Christian Bischof and
Marc Wolter from the Center for Computing and Commu-
nication of the RWTH Aachen University for providing ac-
cess to their virtual reality infrastructure and for supporting
the integration of “IndeGS” in the ViSTA framework. We
also thank Christian Klaus and Dennis Meichsner for their
valuable work on the basic implementation of the graphics
data server.

6. REFERENCES

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and

B. Seeger. The R*-Tree: An Efficient and Robust

Access Method for Points and Rectangles. In SIGMOD

Conference, pages 322-331, 1990.

S. Berchtold, D. A. Keim, and H.-P. Kriegel. The

X-Tree: An Index Structure for High-Dimensional

Data. In VLDB Conference, pages 28-39, 1996.

[3] C. Brochhaus and T. Seidl. Efficient Index Support for
View-Dependent Queries on CFD Data. In SSTD
Conf., pages 5774, 2007.

[4] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In SIGMOD Conf., pages 47-57,
1984.

[5] G. R. Hjaltason and H. Samet. Ranking in Spatial
Databases. In SSD, pages 83-95, 1995.

[6] W. Schroeder, K. Martin, and B. Lorensen. The
Visualization Toolkit. Kitware Inc., 2004.

[7] T. van Reimersdahl, T. Kuhlen, A. Gerndst,

J. Heinrichs, and C. Bischof. ViSTA - a multimodal,
platform-independent VR-Toolkit based on WTK,
VTK, and MPIL. In IPT Workshop, 2000.

2



