
CallAssist: Helping Call Center Agents in Preference
Elicitation

Ullas Nambiar Himanshu Gupta Mukesh Mohania
IBM India Research Lab

New Delhi, India
{ubnambiar, higupta3, mkmukesh}@in.ibm.com

1. INTRODUCTION
The increasing complexity of products and services being

offered by businesses has made providing customers with
easy access to technical assistance an important business
function. Therefore, most businesses operate call centers
to respond to product related queries from consumers. An
emerging model is to let a third-party to run the contact
center for a business. Preference elicitation - the process
of asking queries to determine preferences is a key function
performed by call-center agents. In this paper, our focus is
on helping call-center agents to efficiently elicit customer’s
preference.

Example: Suppose the customer query is: “Hi, this is
John. I wanted to know the status of DVDs I ordered from
ABC.com.” 2

To answer the above query, the call center agent will
need additional information about the transaction. An ob-
vious solution is to request for an unique identifier such
as customer id or credit card and look for recent transac-
tions. Often a unique transaction id might not be known
to the customer during the call. The resulting query over
the underlying database could then return a large number
of transactions done by the customer at ABC.com. Dur-
ing discussions with managers we were informed that new
agents often found it difficult to quickly identify the transac-
tion of interest during such conversations. The difficulty in-
creases as agents are often given a dumb terminal over which
advanced search functions are not made available and also
the ranking models are often decided by the back-end CRM
systems. Suppose the process model and database schema
of the example store are as described in Figure 1. Given
the complexity of the processes and corresponding database
schemas, even a well-trained agent would need much time
to determine the transactions that are relevant to current
conversation. Often, the agent will ask a series of queries
to narrow down the list of transactions further. Formulat-
ing the right set of queries has many challenges. Foremost
among them is the need to quickly identify the attributes
for which either the customer has provided binding values

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

or can easily provide them if asked. Therefore, only agents
with extensive knowledge about the business process and
back-end database can quickly and satisfactorily answer the
queries posed by customers. Moreover, agent must formu-
late queries that progressively reduce the context of the con-
versation. However, the task of checking whether a query
has reduced the context and then formulating a new query
that further narrows the context can become a non-trivial
task if a large number of transactions map to the conver-
sation. This indirectly reflects in large agent training times
and long ramp-up periods for new agents. In fact, a recent
survey 1 shows that 12% of incoming calls are abandoned
due to high wait times. With agent time being a premium
commodity at a call center, techniques to reduce the call
duration by helping agent to quickly extract the structured
information relevant to the customer’s query becomes nec-
essary.

Figure 1: Example of a complex business process
(top) and associated relational schema

While the problem of automating call center tasks has
received some attention recently [4, 7, 1], much of the work
looks at automated call routing or solution lookup. In this
demo, we present CallAssist - a domain-independent system
that adaptively extracts relevant information from back-end
databases and suggests queries to progressively narrow the
context of the real-time conversation.

The CallAssist Approach: We begin by assuming that
all conversations handled by CallAssist will refer to a unique
structured information stored in a back-end database. In
other words, every conversation will contain the context of

1Available at http://www.incoming.com/statistics/performance.aspx

1338



Figure 2: Architecture of CallAssist System

some entity 2 stored in a database. Hence, we start by iden-
tifying keywords - terms of interest appearing in the con-
versation. Our interest is in terms that might appear in a
entity and since most attribute bindings are done using noun
phrases, we select noun phrases as keywords. Accordingly,
in the above example John, DVD and ABC.com are selected
as keywords. Since the context defined as the entities con-
taining a combination of the terms John, DVD, ABC.com is
quite broad, a large number of entities will be relevant to the
conversation. To narrow the list, we then formulate easy to
answer yet highly classifying queries based on the extracted
set. This is the guiding principle behind our approach - mea-
sure the context of a conversation as the number of entities
that can map to the conversation and then suggest queries
whose answers will lead to a reduction in the mapped set of
entities. An added contribution of our system is the abil-
ity to extract relevant content without requiring the user to
present hard-to-remember facts such as transaction ids or
share sensitive information like social security and credit
card numbers. This will enable the call center to provide
better privacy guarantees to its customers. Our solution is
domain-independent and can be used by an agent with mini-
mal understanding of the business. Thus, another advantage
of using CallAssist is the reduction in agent training time, a
major cost factor when inducting a new agent or relocating
agent to a different business.

Challenges: The first challenge in realizing our approach
is: How to efficiently map relevant structured information to
a given conversation? Once we handle the above challenge,
we can extract a set of entities that are ranked according
to their relevance to the conversation. The extracted entity
set could help the agent formulate future queries. However,
if the entity set is large in size and the template has many
features, then a number of queries can be formulated by the
agent with not all being equally effective. This leads to our
second challenge: Which query when answered will lead to

2An entity is a “thing” of significance, either real or con-
ceptual about which the relational database holds informa-
tion [3]

highest reduction in the context of the conversation? The
real-time nature of the conversation brings an additional
challenge: The entity extraction and relevant query sugges-
tion tasks must be performed with near real-time response as
a constraint.

Solutions: Given a real-time audio call as input, CallAssist
starts by converting the call into a text stream using an Au-
tomatic Speech Recognition (ASR) system. Then CallAssist
maps keywords appearing in the stream to entities in the
database. To perform the mapping, we extend the mapping
techniques developed in the EROCS [2] system. EROCS
mapped unstructured text from static and complete docu-
ments to entities stored in a database while in the call-center
conversation transcripts are noisy and arrive in as a contin-
uous stream from the ASR system. Since the input is a
continuous stream, CallAssist ensures that the entities re-
turned are updated based on the new keywords that are
extracted from the stream. We continuously help the agent
refine the context of the conversation by suggesting queries
over attributes with highest information gain. To the best of
our knowledge, there is no prior work that suggests context
narrowing queries to a call-center agent.

2. THE CALLASSIST SYSTEM
The architecture of CallAssist and the flow of information

through the system is illustrated in Figure 2. CallAssist
consists of three main subsystems: an Automatic Speech
Recognition(ASR) system, the Context Controller and
Entity Mapper.

2.1 Extracting Relevant Structured Informa-
tion

Entity:An entity is a “thing” of significance, either real or
conceptual about which the relational database holds infor-
mation [3].
Entity-template: An entity template specifies (a) the en-
tities to be matched in the document and (b) for each entity,
the context information that can be exploited to perform the
match.

Formally, an entity template is a rooted tree with
each node labeled using a table in the given relational
database.The entities are extracted based on the entity-
template associated with the audio call given as input.
Based on the IVR input, we can classify the call into new
customer, tracking past order, filing complaint etc. and also
identify the entity-template to be used for processing the
incoming call.

CallAssist assumes that an ASR system such as the IBM
research prototype described in [8] is available for transcrib-
ing the input speech data. The output from ASR is streamed
to Entity Mapper via the Context Controller. The output
from Stream Segmenter (SS) - a subset of the audio con-
versation that has been buffered; is sent to Entity Mapper
as the unstructured text to which entities have to mapped.
The entities are defined by the template which is also given
as input. To perform the mapping we extend the entity ex-
traction framework described in [2]. The extensions are to
overcome the challenges brought out by the streaming na-
ture of input text, the inaccuracy introduced by ASR system
and the need to provide answers in real-time. Once the best
matching entities are identified, Entity Mapper returns the
top-K relevant entities to the Context Controller. These
entities are then shown to the agent.

1339



2.2 Suggesting Context Narrowing Queries
An important contribution of CallAssist is that of sug-

gesting context narrowing queries to the agent. The Query
Builder (QB) identifies such queries based on the current
state of the conversation (as captured by SS) and the rel-
evant entities that are returned by the Mapper. Given our
assumption of a single best entity, ê, for every conversation,
the set of entities Et returned by Entity Mapper can be
seen as a partial definition of ê. Hence, QB must formulate
a query that can quickly reduce the size of Et. Essentially,
this amounts to identifying the attribute that can classify Et

into the largest number of disjoint subsets. We use infor-
mation gain [6] as the measure to decide the attribute over
which to formulate the query. We avoid picking attributes
such as transaction ids, invoice numbers, etc which would
have large number of distinct values but would be difficult
for the customer to provide. The task performed by QB is
equivalent to identifying the attribute that might appear at
the top of a decision tree built over Et. Building the com-
plete tree would help us identify a sequence of queries that
when asked in order could identify a single entity belonging
to Et. However, for a certain Et we cannot guarantee that ê

is present in Et since it is not based on the complete conver-
sation. Therefore, building the complete decision tree and
asking a series of queries may often lead to in-optimal use
of time. Hence, in the current implementation QB identifies
a single query for each distinct Et.

Given the limited space available on the agent’s desktop,
we must ensure that only the most relevant parts of an en-
tity are displayed to the agent. The information (set of
attributes) displayed must explain why the given set of en-
tities were chosen from all the entities available. Moreover,
the queries suggested by QB should involve the attributes
that are being displayed, so that the agent is aware of what
answers to expect from the customer. Thus, deciding an
output schema for the extracted entities at run-time is a
non-trivial task. In fact, this problem quickly becomes NP-
Complete as shown in [5]. Hence, in our current implemen-
tation, we assume that a output template corresponding to
each entity template is given at design time. We plan to
extend the heuristics identified in [5] to develop dynamic
display solutions.

3. DEMONSTRATION
In this demo we will showcase CallAssist’s domain inde-

pendent approach for efficiently generating preference elic-
itation queries to help a call-center agent. Figure 3 and
Figure 4 show sequential screenshots of the interface dis-
played to the call-center agent during a conversation. We
will give an end-to-end demonstration of the CallAssist sys-
tem with focus on the coping with inaccuracies introduced
by ASR during transcription and the need for continuously
generating relevant suggestions under strict response-time
constraints.

3.1 Dealing with Noisy Transcripts
The input to CallAssist is a noisy stream of text data.

The ability of CallAssist to suggest entities of interest is
therefore dependent on how well it can handle the noise
in the input. Generally, ASR systems are known to have
30-40% error in transcription of call-center conversations.
Since, CallAssist is only focussing on the noun phrases, only
errors introduced in the noun phrase transcription would af-

Figure 3: CallAssist Interface Displaying Call Tran-
script, Relevant Entities and Suggested Query

Figure 4: CallAssist Interface Displaying Reduced
Entity Set based on Customer Feedback

fect the system. Furthermore, only terms appearing in the
database will be effectively used by CallAssist. Therefore,
using a controlled vocabulary derived from the database to
tune the ASR system can further reduce the inaccuracies in
the system. We will demonstrate that higher transcription
accuracy can be obtained using a controlled vocabulary us-
ing a dataset consisting of both manually and automatically
generated transcripts from 900 calls received by a US Car
Rental Agency. The ASR system used to transcribe the calls
is trained over a controlled vocabulary consisting of model
names, cities etc. We use CKER (Controlled Keywords Er-
ror Rate), measured as S+D+I

N
× 100 , where N is the total

number of controlled vocabulary terms in the manually gen-
erated transcript, and S, I and D are the total number of
substitution, insertion, and deletions in the automatic tran-
script. Figure 5 shows that by considering CKER instead of
WER (error over all words) the error is reduced to 30-35%
from 40-45%. The error can be further reduced by using
the vocabulary to fix spelling errors. The CKER+ plot in
Figure 5 which measures the error after converting all terms
within a predefined edit distance from a vocabulary term
to the term further reduces average transcription error to
around 25%.

3.2 Efficiency and Accuracy of CallAssist
Automatic transcription of call-center conversations re-

sults in generation of error-prone text. To help the call-

1340



center agent, CallAssist must efficiently identify the context
of the conversation using the noisy transcript that is contin-
uously streamed by an ASR system. Moreover, customers
involved in a voice conversation with a call-center agent ex-
pect responses in real-time. Hence, CallAssist must provide
informative suggestions to the agent in real-time and the
suggestions must also take into account them latest informa-
tion provided by the customer. Thus, CallAssist must also
ensure that set of relevant entities mapping to a conversation
are continuosuly updated based on the input. Moreover, the
mappings must be done under strict time constraints.

In this demonstration, we will present CallAssist’s ability
to efficiently update the set of relevant entities over a noisy
input stream and with varying response time constraints.
Intuitively, both an increase in transcription error and/or
reduction in response time should lead to reduction in accu-
racy of extracted entities and thereby affect the suggested
queries. However, as evident from Figure 6 and Figure 7,
CallAssist is able to maintain high levels of accuracy in the
face of variation in response time and noise levels of input
transcript. The suggested queries were manually checked for
accuracy by volunteers and were found to be highly relevant.

Figure 5: Comparison of WER, KER and CKER

4. SUMMARY
In this demonstration, we present CallAssist - a domain

independent system for helping a call-center agent to elicit
information from a customer during an audio conversation.
CallAssist’s contributions include - (1) an efficient and ac-
curate approach for generating preference elicitation queries
that depends on (2) an approach for continuously mapping
relevant structured information to the streaming audio con-
versation using minimal contextual information.

Acknowledgments: We thank Shourya Roy and L. V.
Subramaniam for helpful discussions on ASR systems
and providing the transcripts. We thank Amitabh
Ojha and Ashish Verma for helpful discussions and
comments.

5. REFERENCES
[1] D. Carmel, M. Shtalhaim, and A. Soffer. eResponder:

Electronic Question Responder. 7th International
Conference on Cooperative Information Systems,
London, UK, 2000.

Figure 6: Entity Similarity between Response Time
Restricted and Unrestricted Runs of CallAssist

Figure 7: Similarity of Top-15 Entities Extracted
from Transcripts with Varying Accuracy

[2] V. Chakaravarthy, H. Gupta, P. Roy, and M. Mohania.
Efficiently Linking Text Documents With Relevant
Structured Information. In VLDB, September 2006.

[3] P. Chen. The entity-relationship model: Toward a
unified view of data. ACM Transactions on Database
Systems, 1(1):9–36, 1976.

[4] J. Chu-Carroll and B. Carpenter. Vector-based natural
language call routing. Comput. Linguist., 25(3):361388,
1999.

[5] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan.
Ordering the Attributes of Query Results. SIGMOD,
2006.

[6] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[7] G. Riccardi, A. Gorin, A. Ljolje, and M. Riley. A
spoken language system for automated call routing.
ICASSP 97, Germany, 1997.

[8] H. Soltau, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
and G. Zweig. The IBM 2004 Coversational Telephony
System for Rich Transcription. IEEE ICASSP, March
2005.

[9] M. Tang, B. Pellom, and K. Hacioglu. Call-type
classification and unsupervised training for the call
center domain. Automatic Speech Recognition and
Understanding Workshop, November 2003.

1341


