
XSeek: A Semantic XML Search Engine Using Keywords∗

Ziyang Liu
Arizona State University

ziyang.liu@asu.edu

Jeffrey Walker
Arizona State University

jeffrey.walker@asu.edu

Yi Chen
Arizona State University

yi@asu.edu

ABSTRACT

We present XSeek, a keyword search engine that enables
users to easily access XML data without the need of learn-
ing XPath or XQuery and studying possibly complex data
schemas. XSeek addresses a challenge in XML keyword
search that has been neglected in the literature: how to
determine the desired return information, analogous to in-
ferring a “return” clause in XQuery. To infer the search
semantics, XSeek recognizes possible entities and attributes
in the data, differentiates search predicates and return spec-
ifications in the keywords, and generates meaningful search
results based on the analysis.

1. INTRODUCTION

Keyword search provides a user-friendly information dis-
covery mechanism for web and scientific users to easily ac-
cess XML data without the need of learning a structured
query language or studying possibly complex and evolving
data schemas. However, due to the lack of expressivity and
inherent ambiguity, there are two main challenges in per-
forming keyword search on XML data intelligently.

1. Unlike XQuery, where the connection among data nodes
matching a query is specified precisely using variable
bindings and where clauses, we need to automatically
connect the keyword matches in a meaningful way.

2. Unlike XQuery, where the data nodes to be returned
are specified using a return clause, we should effectively
identify the desired return information.

Several attempts have been made to address the first chal-
lenge [3, 2, 9, 7] by selecting and connecting keyword matches
through a variant concept of lowest common ancestor, re-
ferred as VLCA in this paper (such as SLCA [9], MLCA [7],
interconnection [2], etc.). However, it is an open problem of
how to automatically and effectively infer return nodes, the
names of the data nodes that are the goal of user searches.

∗This research is partially supported by NSF IIS-0612273.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 2328, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 9781595936493/07/09.

There are two baseline approaches for determining return
nodes adopted in the existing works. One is to return the
subtrees rooted at VLCA nodes [3, 9], named as Subtree

Return. Alternatively, we can return the paths in the XML
tree from each VLCA node to its descendants that match an
input keyword, as described in [1, 4], named as Path Return.
However, neither approach is effective in identifying return
information as shown in the following examples.

Let us look at the sample queries listed in Figure 2 on
XML data in Figure 1(a). For Q1 (Rockets), it is likely that
a user is interested in the information about Rockets. Both
Subtree Return and Path Return first compute the VLCA of
keyword matches, which is the match node itself: Rockets

(0.2.0.0), then output this node. However, to echo print
the user input without any additional information is not
informative. Ideally, we would like to return the subtree
rooted at the team node with ID 0.2.

Consider Q2 and Q3. By issuing Q2 (Mutombo, center),
the user is likely to be interested in the information about
the player whose name is Mutombo and who is a center in a
team. Therefore the subtree rooted at the player node with
ID 0.2.4.0 is an desired output. In contrast, Q3 (Mutombo,
position) indicates that the user is interested in a particular
piece of information: the position of Mutombo.

As we can see, input keywords can specify predicates for
a search, or specify desired return nodes. However, exist-
ing approaches fail to differentiate these two types of key-
words. In particular, the Path Return approach returns the
paths from the VLCA player node (0.2.4.0) to Mutombo

and center for Q2, and the path from player (0.2.4.0) to
Mutombo and position for Q3, respectively. On the other
hand, since Q2 and Q3 have the same VLCA node, player
(0.2.4.0), Subtree Return outputs the subtree rooted at this
node for both queries, even though the user indicates that
only position information is of interest in Q3.

Now look at a more complex query Q4 (team, Rockets,
center), intending to find information about the player who
is a center in the team Rockets. The desired query result is
shown in Figure 1(b). The Subtree Return approach outputs
the whole tree rooted at team (0.2), and requires the user
him/herself to search the relevant player information in this
big tree. On the other hand, Path Return outputs the path
from team to Rockets and to center, without providing any
additional information about player (0.2.4.0).

As we can see from the above sample queries, existing
approaches fail to effectively identify relevant return nodes.
They may return too much information and therefore require
users to manually exam large trees (low precision); or return

1330



�
(a) (b)

Figure 1: Sample XML Document(a) and Search Result for Q4(b)

too little information to be informative (low recall).
The only works that have considered the problem of iden-

tifying return nodes are [5, 6]. Both require schema infor-
mation, and require users and/or system administrators to
specify the schema of the output.

In this demonstration, we present an XML keyword search
engine, XSeek [8], that addresses the problem of identifying
meaningful return nodes for XML keyword search without
schema information or user preference solicitation. XSeek
has several salient features compared with existing keyword
search engines for XML data.

1. To the best of our knowledge, XSeek is the first XML
keyword search engine that automatically infers desir-
able return nodes to form query results.

2. XSeek determines return nodes of two types: explicit

return nodes that can possibly be inferred from input
keywords; implicit return nodes that are not part of
the keywords, but can be identified from XML data.

3. To infer explicit return nodes, XSeek analyzes keyword
match patterns and classifies keywords into two cate-
gories: the ones that specify search predicates, and the
ones that indicate the return information that the user
is seeking for.

4. To identify implicit return nodes, XSeek analyzes the
structure of XML data and differentiates three types
of information: entities in the real world, attributes of
entities, and connection nodes.

5. Query results consist of data nodes that match predi-
cates or inferred return nodes.

6. Empirical evaluation shows that XSeek generates search
results with significantly improved precision and recall
compared with Subtree Return and Path Return ap-
proaches with good scalability.

2. INFERRING SEARCH SEMANTICS

Identifying and Connecting Keyword Matches. XSeek
adopts the approach proposed in [9] for defining VLCA nodes
and connecting keyword matches through their VLCA nodes 1.
An XML node is named as a VLCA node if its subtree con-
tains matches to every keyword in the query, and none of its
descendants contains every keyword in its subtree. Keyword
matches in a subtree rooted at a VLCA node are consid-
ered as closely related and are connected through the VLCA
node; while the matches that are not descendants of any
VLCA node are determined as irrelevant and discarded.

For example, consider Q3 on XML data in Figure 1(a).
There is one match to keyword Mutombo: 0.2.4.0.0.0, and
two matches to position: 0.2.4.0.1 and 0.2.4.1.1. According
to the definition, player (0.2.4.0) is the only VLCA node,
which connects relevant matches: Mutombo (0.2.4.0.0.0) and
position (0.2.4.0.1). Note that though players (0.2.4) has
matches to both keywords in its subtree, it is not a VLCA
node, and position (0.2.4.1.1) is considered as irrelevant.

As illustrated in Section 1, simply outputting match nodes
and their connection or outputting the whole subtrees rooted
at VLCA nodes are not desirable in many cases. Next we
discuss how to infer meaningful return nodes for XML key-
word search.

Analyzing XML Data Structure. XSeek analyzes the
structure of XML data, differentiates nodes representing
entities from nodes representing attributes, similar as the
Entity-Relationship model in relational databases. We be-
lieve that by issuing a query a user would like to find out
information about entities along with their relationships in
a document. Therefore the entities related to the input key-
words are considered in determining return nodes.

For example, for the XML data in Figure 1(a), conceptu-
ally we can recognize two types of entities: team and player.
Entity team has name, division, arena and founded as

1Alternatively, other approaches to compute VLCA nodes
such as MLCA [7], Interconnection [2] can be incorporated
seamlessly into XSeek for identifying and connecting rele-
vant keyword matches.

1331



Q1 Rockets
Q2 Mutombo, center
Q3 Mutombo, position
Q4 team, Rockets, center

Figure 2: Sample Keyword Searches

attributes. player has attributes name, position and
nationality. The relationships between entities are repre-
sented by the paths connecting them. For example, a team

has one or more players. By issuing Q1 Rockets, it is likely
that the user would like to find out the information about
the real world entity that Rockets corresponds to.

However, since XML data may be designed and generated
by autonomous sources, the entity and attribute information
may not be directly available. We use the following inference
for data node categories.

1. If a node has siblings of the same name, then this
indicates a many-to-one relationship with its parent
node, and such a node is considered to represent an
entity.

2. If a node does not have siblings of the same name, and
it has one child, which is a value, then it is considered
to represent an attribute.

3. A node is a connection node if it represents neither an
entity nor an attribute.

The node relationship and node categories can be detected
according to the schema (if available) or the structural sum-
mary of the data.

For the XML data in Figure 1(a), since team has a many-
to-one relationship with its parent node league, we infer
that team represents an entity that has a relationship with
league. Its children name, division, arena, and founded

are considered as attributes of a team entity. On the other
hand, players is considered as a connection node.

Analyzing Keyword Match Patterns. XSeek also ana-
lyzes keyword match patterns to determine return informa-
tion. It classifies input keywords into two categories: pred-
icates and return nodes. Some keywords specify predicates

that restrict the search, corresponding to the where clause
in XQuery. Others indicate desired output type, referred as
explicit return nodes, corresponding to the return clause in
XQuery.

Recall Q2 and Q3 in Figure 2, where the keyword matches
are connected in the same way. However, different pat-
terns of these two queries imply different user intensions.
Q2 searches information about Mutombo and center. Q3

searches the position information of Mutombo. Intuitively,
both Mutombo and center are considered to be predicates,
while position in Q3 indicates a return node.

The immediate question is how to infer predicates and
return nodes in the input keywords. Recall that in a struc-
tured query language such as XQuery or SQL, typically
a predicate consists of a pair of name and value, while a
return clause only specifies names without value informa-
tion (which is expected to be query results). For example,
consider an SQL query: select position from DB where

name = "Mutombo". Based on this observation, we make the
following inference for keyword categories.

1. If an input keyword k1 matches a node name u, and
there does not exist an input keyword k2 matching a

node value v, such that u is an ancestor of v, then we
consider k1 as an (explicit) return node.

2. A keyword that is not a return node is treated as a
predicate.

For example, center in Q2 is considered as a predicate
since it matches a value (0.2.4.0.1.0). Similarly, Mutombo in
Q2 and Q3 is considered as a predicate. team in Q4 is also
inferred as a predicate since it matches a name node (0.2)
which has a descendant value node (0.2.0.0) that matches
another keyword Rockets. On the other hand, position in
Q3 is considered as a return node since it matches the name
of two nodes (0.2.4.0.1, 0.2.4.1.1), neither of which has any
descendant value node matching another keyword in Q3.

Generating Search Results. Once we have identified
the inherent entities and attributes in the data and possible
predicates and explicit return nodes in the input keywords,
XSeek determines the return nodes, and then outputs the
data nodes that match search predicates and return nodes
as query results.

As we have seen, return nodes can be explicitly inferred
from the input keywords for some queries, such as position
in Q3. For queries where all the input keywords are consid-
ered as predicates, no return nodes can be inferred from the
keywords themselves, such as Q2. In this case, we believe
that the user is interested in the general information about
the entities related to the search. We define relevant entities

as the entities in the data that are on the path from a VLCA
node to each match node, as well as the lowest ancestor en-
tity of a VLCA. Relevant entities are considered as implicit

return nodes when the input keywords do not have return
nodes specified, whose attribute information will be output.

In Q2, since both Mutombo and center are inferred as
predicates, there is no return nodes explicitly specified in
the keywords. We first identify the player node (0.2.4.0) as
the VLCA node, which is then determined to be the only
relevant entity and the implicit return node. The name and
attributes of player (0.2.4.0) are output as query results.
Similarly, for Q1, we infer team as an implicit return node
since it is a relevant entity and no explicit return nodes
can be inferred from the query. For Q4, relevant entities
team (0.2) and player (0.2.4.0) are considered to be implicit
return nodes, and their names and attributes are output as
query result.

3. SYSTEM ARCHITECTURE AND IMPLE

MENTATION

The system architecture of XSeek is presented in Figure 3.
The Data Analyzer parses the input XML data, and infers
the inherent entities and attributes in the data. The Index

Builder constructs indexes for efficiently retrieving the infor-
mation about node category, parent, and children. Once a
user issues a query, Keyword Matcher accesses the indexes to
retrieve data matches to each keyword. Match Grouper con-
nects closely related keyword matches together as a group
according to their VLCA nodes [9]. Then, for every group of
keyword matches, the Keyword Analyzer categorizes input
keywords as predicates or explicit return nodes. The Return

Node Recognizer generates return nodes for the query, which
can be explicit return nodes inferred from input keywords,
or implicit return nodes inferred from keyword matches and
entities in the indexes. Finally, the Result Generator out-

1332



�

Figure 3: Architecture of XSeek

puts the search result by returning XML data nodes that
match query predicates and return nodes.

We have implemented XSeek in C++. It takes keywords
and XML documents as input, and returns XML nodes that
match the inferred search predicates and return nodes. The
empirical study of XSeek in comparison with two approaches
Subtree Return and Path Return is presented in [8]. Exper-
iments show that XSeek significantly outperforms Subtree

Return and Path Return in search quality measured by pre-
cision, recall and F-measure, with efficiency.

4. DEMONSTRATION

XSeek has a web-based interface (http://xseek.asu.edu/)
which allows users to specify an XML document and key-
word searches for retrieval. Various sample XML docu-
ments, such as sports, DBLP, Shakespeare’s plays, are pro-
vided. Rather than outputting the whole subtrees or the
paths that contain the keyword matches, XSeek intelligently
infers desired return nodes by analyzing XML documents
and keyword match patterns without eliciting user prefer-
ence. A snapshot of XSeek is shown in Figure 4.

In the demonstration, we also present the search results
produced by Subtree Return and Path Return, as well as the
original XML document fragments for comparison purpose.

The user can provide feedback by scoring the results re-
turned by each approach and/or specifying desired search
results. The user feedback is collected and analyzed for im-
proving the effectiveness of XSeek. Furthermore, statistics
information, such as processing time, the number of queries
so far, average score of each approach, is also available.

Besides demonstrating the functionalities of XSeek, we
present the design, architecture and algorithms we employ
in developing the system. In addition, performance evalua-
tion compared with Subtree Return and Path Return over a
comprehensive test set is exhibited.

5. REFERENCES

[1] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti, and
S. Sudarshan. Keyword Searching and Browsing in
Databases using BANKS. In ICDE, 2002.

[2] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A Semantic Search Engine for XML. In
VLDB, 2003.

[3] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML
Documents. In SIGMOD, 2003.

Figure 4: A Snapshot of XSeek

[4] V. Hristidis, N. Koudas, Y. Papakonstantinou, and
D. Srivastava. Keyword Proximity Search in XML
Trees. IEEE Transactions on Knowledge and Data

Engineering, 18(4), 2006.

[5] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword Proximity Search on XML Graphs, 2003.

[6] G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Précis:
The essence of a query answer. In ICDE, 2006.

[7] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free
XQuery. In VLDB, 2004.

[8] Z. Liu and Y. Chen. Identifying Meaningful Return
Information for XML Keyword Search. In SIGMOD,
2007.

[9] Y. Xu and Y. Papakonstantinou. Efficient Keyword
Search for Smallest LCAs in XML Databases. In
SIGMOD, 2005.

1333


