Semi-Automatic Schema Integration in Clio*

Laura Chiticariut
UC Santa Cruz
laura at cs.ucsc.edu

1. INTRODUCTION

Schema integration is the problem of finding a unified represen-
tation, called the integrated schema, from a set of source schemas
that are related to each other. The relationships between the source
schemas can be represented via correspondences between schema
elements or via some other forms of schema mappings such as con-
straints or views. The integrated schema can be viewed as a means
for dealing with the heterogeneity in the source schemas, by pro-
viding a standard representation of the data. Schema integration has
received much of attention in the research literature [1, 2, 6, 8, 10]
and still remains a challenge in practice. Existing approaches re-
quire substantial amount of human feedback during the integration
process and moreover, the outcome of these approaches is a single
integrated schema. In general, however, there can be multiple pos-
sible schemas that integrate data in different ways and each may be
valuable in a given scenario.

In this demonstration we showcase a novel schema integration
method that is capable of enumerating multiple interesting integrated
schemas. In addition to the systematic enumeration of schemas, our
system provides easy-to-use capabilities for searching and refining
the enumerated schemas via user interaction, and a visual interface
that facilitates the user’s understanding of the schema integration
task at hand.

The schema integration system is built in conjunction with Clio
[7], a schema mapping system that produces a declarative mapping
specification describing the relationship between a source and a tar-
get schema, based on a set of correspondences between their at-
tributes. From the declarative mapping specification, Clio further
generates executables (queries or code) that transform an instance of
the source schema into an instance of the target schema. In partic-
ular, when used together with the schema integration module, Clio
will generate the data transformations from the source schemas to
the newly constructed integrated target schema.

*This work was funded in part by the U.S. Air Force Of-
fice for Scientific Research under contract FA9550-07-1-0223.
TSupported in part by NSF CAREER Award IIS-0347065 and NSF
grant 1IS-0430994. Work partially done while at IBM Almaden.

*On leave from UC Santa Cruz.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Mauricio A. Hernandez
IBM Almaden Research Center
{mauricio,kolaitis,lucian} at almaden.ibm.com

Phokion G. Kolaitist Lucian Popa

*Relational
*XML Schema
Source
schema S, f—
Of Concept
Hierarchies
S, concepts l
Match
Concepts
Enumerate
Merging
Alternatives
+Corresp. 8,1, 8,1, +Comesp. ST, 51,

Figure 1: System architecture.

1.1 Schema Integration Process

Figure 1 depicts the architecture of our schema integration sys-
tem. We now describe the schema integration procedure imple-
mented in our system. Details of the algorithms and their perfor-
mance can be found in the full version of this paper [3]. Section 2
describes this process using an example.

We assume we are given an integration scenario consisting of two
or more relational and XML source schemas (describing data in a
common domain) together with a set of correspondences that relate
pairs of elements in these schemas. Correspondences signify “se-
mantically equivalent” elements in two schemas. They can be spec-
ified by the user directly in the visual interface of Clio, or Clio may
also infer correspondences using schema matching techniques [9].
For simplicity, we show only two source schemas in Figure 1. The
architecture and the usage of the system remains the same in the
more general case when more source schemas are used.

Concept Extraction: The first step of our integration method is to
recast each source schema, with its constraints and nesting, into a
higher-level concept hierarchy (with no constraints or nesting). In-
tuitively, a concept represents one category of data that can exist
according to a schema (e.g., “project”, “department”, “employee of
a department”). The concepts in a schema form a natural hierarchy
(e.g., “employee of a department” is a sub-concept of “department”).
To generate the concepts, we make use of an existing Clio mod-
ule that extracts concepts from the relational or XML schemas; this
module was used as a stepping stone towards the generation of map-
pings and queries that convert data from one schema to another [7].
In the same spirit, extraction of source concepts is a preliminary step

1326

here towards generating the integrated schemas. Most of our subse-
quent integration method operates at the higher level of abstraction
that is offered by the concept hierarchies.

Concept matching and merging: We identify matching concepts
in different hierarchies, based on correspondences between their at-
tributes. For every pair of matching concepts we have two alterna-
tives: either merge them into one integrated concept, or leave them
as separate concepts. We enumerate all possible ways of merging,
to create an enumeration of the possible sets of integrated concepts.
Each set of integrated concepts has its own hierarchy that is derived
from the input concept hierarchies. Furthermore, each such inte-
grated hierarchy of concepts can be recast (back) as an integrated
schema. Hence, the result of this step is an enumeration of candi-
date integrated schemas.

For each integrated schema, as a byproduct of the generation pro-

cess, the system also produces the set of correspondences between
the elements of the source schemas and the elements of the inte-
grated schema. Based on these correspondences, we can then use
Clio’s mapping generation component (not shown in Figure 1) to
obtain a more precise (executable) specification of the relationship
between the source schemas and the target.
Integrated Schema Refinement: The final step of our integration
methodology is to interactively assist the user in deciding the final
target schema. Users can browse and search through the generated
schemas based on several criteria. Furthermore, we allow users to
enter constraints on the merging process itself, based on their do-
main knowledge, as well as the integrated schemas they have al-
ready seen. For instance, users may specify that two or more source
concepts should never appear merged in the integrated schema. We
avoid the full enumeration of a potentially large space of integrated
schemas by combining partial enumeration of schemas with the user
constraints. We demonstrate how this user interaction can easily,
and in a systematic way, narrow down the (potentially large) set of
candidate schemas to a few relevant ones.

1.2 Technical Contribution

Our main technical contribution is the implementation of a schema
integration system operating as outlined above. To the best of our
knowledge, this is the first semi-automatic schema integration method
that systematically enumerates multiple, meaningful, integrated sche-
mas, while at the same time incorporating user feedback into the
enumeration process. Our method applies to integration scenarios
consisting of two or more relational and XML schemas, but oper-
ates at a logical, conceptual, level that abstracts away the physical
details of relational or XML schemas and makes it easy to express
user requirements. Hence, our method can be applied to any logical
models (not necessarily extracted from schemas), for as long as they
can be expressed as concept hierarchies. In addition, we have shown
in [3] that our methodology has the following properties.

e Each generated integrated schema is capable of representing all
information from the sources and does not represent any extra
information not present in the sources. Moreover, the structure
present in the source schemas is preserved, as much as possible.

e Our enumeration algorithm avoids duplication of work during
the exploration of the space of merging configurations by avoid-
ing to enumerate different configurations that yield the same
schema. In doing so, we make use of a polynomial-delay al-
gorithm [4] for enumeration of all boolean vectors satisfying a
set of Horn clauses. Polynomial-delay [5] means that the delay
between generating any two consecutive outputs (satisfying as-
signments in our case) is bounded by a polynomial in the size of
the input. Intuitively, this is the best one can do when the number
of outputs is exponential in the size of the input.

B ﬂﬁle:DeptDB.nsd B }iﬁle:ﬂrgDB.xsd
[=}- [€] DeptDB {+} = [€] OrgDB {=}

= € dept [0,*] {} = [EF org [0.*] 4
R . . Iﬂ dno (string) ===sssssssssanens aame @ oid (string)
[Ek dname Gtring) * - [Ek oname (string)
[E} country Guing) ..., - [E address [0,*] f=}
2 B emp (o ok Bk city (string)
[EL dno (string) [Ek country (string)
[EL eid (sving) ... - & emp [0,*] i}
[EL ename (string) 0 [€k eid (string)
[EL Function (string) [Ek ename (string)
= [E grant [0.*] {m} = € phone [0,%] fw}
[EL dno (string) [Ek number (string)
[E} amount (string) , [E} type (string)
weeeeioesaiee €L pid (string) [E fund [0.*] -}
= [EF project [0,*] {m} [EL amount (string)
thesesssssece [E) pid (string) [Ek pname (string)
[EL pname (string)
[Ek year (sting)

Figure 2: Two source schemas and their correspondences.

2. DEMONSTRATION OVERVIEW

In this section we describe our methodology by means of a simple
example integration scenario shown in Figure 2. We emphasize that
schema integration tasks often deal with large source schemas. Dur-
ing the actual demonstration, we also plan to use a real life and larger
scenario to show how our techniques facilitate the task of schema in-
tegration and scale in such scenarios. We will also illustrate n-way
schema integration scenarios (with n > 2) showing how multiple
related schemas can be merged into one schema.

2.1 Example Integration Scenario

Figure 2 shows two input XML schemas: DeptDB and OrgDB.
DeptDB represents information about departments with their em-
ployees and grants, as well as the projects for which grants are
awarded. The arrows in DeptDB represent referential constraints:
a grant has references to both a department and a project elements.
OrgDB is a variation of DeptDB, where employees and funds are
now grouped by organizations. Furthermore, OrgDB includes addi-
tional information not present in DeptDB (e.g., organizations have
addresses and employees have phones.)

Given such source schemas, the preliminary step towards the com-
putation of an integrated schema in our method is to provide a set
of correspondences between the schemas. These correspondences
are bi-directional and signify potentially equivalent elements in the
two schemas. We only need to consider correspondences between
atomic elements, which are the elements that carry actual data. We
also use the name attributes for such atomic elements. In our im-
plementation, correspondences are manually entered (drawn) by the
user using Clio. Figure 2 depicts the correspondences as the lines
across the two schemas. Not all attributes need to be an end-point of
a correspondence. Also, in general, an attribute can be the end-point
of multiple correspondences.

2.2 Extracting Concept Hierarchies

Once mappings between source schemas are established, users
can request the creation of integrated schemas. The first step of our
integration methodology is to convert each source schema into the
corresponding concept hierarchy. The concept hierarchies that are
implicit in our example source schemas are illustrated in Figure 3A.
A concept is specified as a relation name with a set of associated
attributes. For example, the concepts of a “department” and of an
“employee of a department” that are implicit in the schema DeptDB
are represented as the relations dept and respectively, emp with the

1327

A Tagﬁ Schema
A [dept] [project] B = lorgl -3 filetintegratedXMLSchema_1_64329.xsd
dno pid joid - [integratedXMLSchema_1
dname pname Biaine o rek -
country year 1 € dept-org [0,%]{..}
[dept] [eL dno (string}
T \/ dno [address] [€} dname (string)
dname extends [org] [E} country (string)
[emp] [grant] country org]: oid deptorg] dno = [E emp-emp [0,7]{..}
dept]: dno dept]: dno org oname [de&—org] dname (€ dno Gring)
[dept]: dname [dept]: dname [dept -org]: country [€k ename (string)
[dept]: country dept]: country [emp] Coum’y [Function (string)
gl:ame prol_ecg: Bl:ame extends [dept] (€ eid (string)
project]: = [
function project]: year dept]: dno [emp] &= [phone [0,"K..}
amount dept]: dname extends [org] [number (string)
[dept]: country oral oid deptorg]: dno [€} type (string)
eid org oname dept—o’gfdname = Ef grant-project-fund [0,K..}
[org] ename 9 g dr d (s
function dept-org]: city [E} pid (string)
oid ename [d_ept—org]. country (€ vear (string)
oname gl:ame [€k amount (string)
[grant] extends [fund] function L I%dpname (string)
[dept]. [project] extends [org] - E TEE :ﬁl[p;?{"'}
strin
dept]: dno org]: oid g
[address] [emp] [fund] [dept]: dname org|: oname
" - dept]: country amount
org]: oid org]: oid org]: oid Pyt
org oname org oname lorg|: oname project]: pid pname [ggﬁjm] g:gme c
amount PTOJ_GC:]- pname [dept % - city
: year
country ename pname ap"'g]uﬁ] yeal [phone] [tfepwrg] CO'"‘"Y
T extends [emp] Bname
" org]: oid r
[phone] [project] / org]: oname ;(rar?ount
org]: oid pid lomp]: eid
org - oname pname [emp]: ename
[emp]: eid year number
[emp]: ename type
number
type

Figure 3: Screenshots from the visual interface: (A) source concepts hierarchies; (B) graph of matching source concepts and an

integrated hierarchy; (C) an integrated schema.

corresponding attributes shown in Figure 3A.

Some concepts, such as dept and project, are top-level concepts
and correspond to the top-level sets of a schema. These are stan-
dalone concepts; for example, a department and, respectively, a project
tuple may exist in an instance of DeptDB independently of any other
elements. In contrast, emp is a sub-concept of dept, since an em-
ployee element can only exist in the context of a department, ac-
cording to the nesting structure of DeptDB. Consequently, the emp
concept includes all attributes of an employee element together with
the attributes in department. Similarly, grant is a sub-concept of
both dept and project, due to the referential constraints in DeptDB,
and inherits all attributes of these concepts.

In our visual interface, the sub-concept relationship is shown via
directed edges from a concept to its immediate super-concepts. (To
avoid clutter, we do not show transitive edges in the hierarchies.)
Also, we prefix all inherited attributes with the name of the super-
concept that they are inherited from, to distinguish them from at-
tributes specific to that concept (i.e., that do not appear in any of its
super-concepts). For example, the attributes inherited from depart-
ment are prefixed with dept: in the employee concept.

2.3 Enumerating Integrated Schemas

The second step of our approach is to merge the concept hierar-
chies in all possible ways. In doing so, we first identify matching
concepts in different hierarchies by taking into account the corre-
spondences between their attributes.

Two concepts A and B match (i.e., they can be merged) if and
only if there is a correspondence between an attribute specific to
A and an attribute specific to B. For example, dept matches with
org and hence they may be merged. However, grant and address
do not match, since there is nothing specific to grant that matches
something specific to address. Indeed, it is unintuitive to merge
grant with address just because their attributes inherited from dept

and respectively, org match. However, it is intuitive to merge grant
(or project) with fund.

Figure 3B illustrates a different view of the concept hierarchies.
(Ignore the third column of concepts for now.) This view illustrates
the graph of matching concepts, where every pair of concepts that
match is connected by a matching edge. The sub-concept edges are
not shown in this view, to avoid clutter. Rather, they are specified
through simple class extension notation. For example, we write emp
extends dept to specify that emp is a direct sub-concept of dept.

A set of integrated concepts is obtained by merging source con-
cepts along the matching edges in a given configuration. A config-
uration simply means selecting a subset of the matching edges. Our
system considers all possible schemas that can result by selecting
different such subsets. The third column in Figure 3B shows the
integrated concepts obtained given a configuration consisting of all
the matching edges in our example, except the one between dept
and address (notice that the edge is not highlighted in the figure).
According to this configuration, we merge dept with org, grant with
fund and project, and also the two emp concepts. For example, the
integrated concept denoted as dept-org in the figure is obtained by
merging dept with org. (The names of integrated concepts are com-
puted by concatenating the names of “contributing” source concepts,
and they can be further customized by a user.)

As another example, consider the configuration consisting of all
the matching edges in the graph. This will result in a different set of
integrated concepts, where address is merged with dept and org.

In [3] we detail a two-step procedure that given a merging con-
figuration, constructs a hierarchy of integrated concepts while pre-
serving the hierarchies of source concepts. The first step is to create
an integrated concept for every group of input concepts that are to
be merged. The attributes of the integrated concept are obtained by
unioning together the attributes of contributing concepts and elimi-

1328

nating duplicates. Intuitively, two attributes a and b are equivalent
(thus duplicates) if they are the same attribute in a source schema
or they are connected by a correspondence, or there is an attribute ¢
that is equivalent to both a and b. For example, the attributes dno
and oid are equivalent. Hence, only one of them appears in dept-org
(e.g., dno). In the second step, we construct a hierarchy on top of the
set of integrated concepts, based on the source concept hierarchies.
For example, we set address to be a sub-concept of dept-org, since
address is a sub-concept of org in the second source schema and
org contributes to dept-org.

The hierarchy on the integrated concepts is used to construct an
actual schema. Figure 3C shows the nested schema that we generate
from the hierarchy of integrated concepts shown in Figure 3B. Intu-
itively, each integrated concept corresponds to a set-valued element
in the integrated schema. Moreover, sub-concepts are nested inside
one of their direct super-concepts (without repeating the inherited
attributes). We use foreign keys (keyref in XML Schema) to encode
the rest of the super-concepts (when there is more than one). When
computing the attributes in the integrated concepts, we also remem-
ber where each attribute is created from, in order to create corre-
spondences between attributes of the source schemas and attributes
of the integrated schema. For example, two correspondences are
created for the attribute dept-org/dno in the nested schema of Fig-
ure 3C, corresponding to DeptDB/dept/dno and OrgDB/org/oid.

An important property of our integration procedure is that the
integrated schemas that we generate preserve the structures of the
source schemas (modulo merging of the matching concepts). It is
easy to observe vestiges of the two source schemas in Figure 3C.
For example, employees are still nested under organizations, as in
OrgDB. Similarly, fund elements are still nested under organiza-
tions, except that their structure is now enriched with information
about projects coming from DeptDB.

A naive enumeration algorithm would consider enumerating all
subsets of matching edges (i.e., all configurations) and computing a
set of integrated concepts (and corresponding schema) in each case.
However, distinct configurations may result in identical sets of in-
tegrated concepts (and identical schemas). We have implemented a
more efficient strategy that avoids a large percentage of the config-
urations that are guaranteed to result in duplicate schemas. The re-
sulting algorithm has significant performance benefits over the naive
enumeration and makes use of a polynomial-delay algorithm for
generating all satisfying assignments for a set of Horn clauses [4].
We refer the interested reader to [3] for the details.

2.4 User Constraints

The third step of our integration technique is to interactively assist
the user in deciding the final integrated schema. Our enumeration
procedure outputs integrated schemas one by one and the user is
allowed to browse the schemas generated so far, as well as request
the generation of a new schema. The user may also add constraints
at any point in the enumeration procedure. Once a new constraint F
is specified, the generated schemas that do not satisfy F are filtered
out. Furthermore, if the enumeration is not finished, we continue
enumerating only the schemas that satisfy 7, in addition to the rest
of the constraints.

User constraints are given using our visual interface in terms of
the concepts and of the matchings between them. For example, the
user can enforce a pair of matching concepts to be always merged or
never merged (e.g., “merge dept with org”, or “do not merge dept
with address”). Additionally, the user can give constraints that
enforce the preservation of certain structural patterns in the source
schemas. For example, a constraint that specifies to not merge org,
address, emp, phone, fund requires the structure of the second

schema OrgDB to be preserved. However, the concepts of the first
schema can be freely merged into the concepts of the second schema,
based on the matching edges.

2.5 Visual Interface

The visual interface plays an essential role in facilitating the user’s
understanding of the integration scenario. The interface displays
multiple, correlated views of the integration scenario:

1. The source schemas and correspondences (Figure 2).
2. The source concept hierarchies (Figure 3A).

3. A side-by-side view of the graph of matchings and the integrated
concepts currently being analyzed (Figure 3B).

4. The corresponding integrated schema (Figure 3C).

5. The correspondences between the source and integrated schemas
(not shown in the figure).

All views are synchronized in such a way that related entities
across multiple views are highlighted when selected on any one
view. For example, selecting the dept-org integrated concept in
Figure 3B has several effects. First, the contributing source con-
cepts, together with the corresponding matching edges are high-
lighted (Figures 3A-B). Sets in the source schemas that “contribute”
attributes to these concepts (not shown in the figure), and the set in
the integrated schema that corresponds to dept-org (Figure 3C) are
also highlighted. Similarly, selecting an attribute allows a user to
visualize all “related” attributes in the schemas and concept hierar-
chies (e.g., see number in Figures 3A-C).

To facilitate the visualization of matching concepts, matching con-
cepts and their corresponding integrated concept are aligned to ap-
pear closer to each other (as depicted in Figure 3B). Furthermore,
the appearance of various elements is customizable. The user can re-
size, minimize or maximize concepts, hide inherited attributes (see
phone in Figure 3B) or collapse entire groups of concepts in order
to eliminate clutter and be able to concentrate on specific parts of
the integration problem.

3 REFERENCES

] C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis
of Methodologies for Database Schema Integration. ACM Computing
Surveys, 18(4):323-364, 1986.

[2] P. Buneman, S. B. Davidson, and A. Kosky. Theoretical Aspects of
Schema Merging. In EDBT, pages 152-167, 1992.

[3] L. Chiticariu, P. Kolaitis, and L. Popa. Semi-Automatic Generation
and Exploration of Schema Integration Alternatives. Manuscript under
submission, 2007.

[4] N. Creignou and J. Hébrard. On generating all solutions of generalized
satisfiability problems. ITA, 31(6):499-511, 1997.

[5] D.S. Johnson and C. H. Papadimitriou. On generating all maximal
independent sets. Information Processing Letters, 27(3):119-123,
1988.

[6] R.J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The Use of
Information Capacity in Schema Integration and Translation. In
VLDB, pages 120-133, 1993.

[7]1 L. Popa, Y. Velegrakis, R. J. Miller, M. A. Herndndez, and R. Fagin.
Translating Web Data. In VLDB, pages 598-609, 2002.

[8] R. Pottinger and P. A. Bernstein. Merging Models Based on Given
Correspondences. In VLDB, pages 826-873, 2003.

[9] E.Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334-350, 2001.

[10] S. Spaccapietra and C. Parent. View Integration: A Step Forward in
Solving Structural Conflicts. IEEE Trans. Knowl. Data Eng.,
6(2):258-274, 1994.

1329

