ULDBs: Databases with Uncertainty and Lineage:

Omar Benjelloun Anish Das Sarma Alon Halevy
Stanford University Stanford University Google Inc.
benjello@db.stanford.edu anish@cs.stanford.edu halevy@google.com

Jennifer Widom
Stanford University

widom@cs.stanford.edu

ABSTRACT of uncertainty and lineage as the basis for a new type of data
This paper introduces ULDBSs, an extension of relational databasggnagement system [41].

with simple yet expressive constructs for representing and ma-

nipulating bothlineage and uncertainty Uncertain data and Intuitively, an uncertain database is one that represents multiple
data lineage are two important areas of data management thatpossible instancegach corresponding to a single possible state
have been considered extensively in isolation, however many of the database. Lineage identifies a data itesesvation in
applications require the features in tandem. Fundamentally, lin- terms of other data in the database, or outside data sources. One
eage enables simple and consistent representation of uncertaimelationship between uncertainty and lineage is that lineage can
data, it correlates uncertainty in query results with uncertainty be used for understanding and resolving uncertainty. To draw a
in the input data, and query processing with lineage and un- loose analogy with web search, answers returned by a search
certainty together presents computational benefits over treatingengine are uncertain, reflected by their ranking. Search en-

them separately. gines typically provide lineage information including at least
a URL and text snippet, and users tend to consider both ranking
We show that the ULDB representationcismplete and that it and lineage to determine which links to follow. More gener-
permits straightforward implementation of many relational op- ally, any application that integrates information from multiple
erations. We define two notions of ULDB minimalitydata- sources may be uncertain about which data is correct, and the

minimalandlineage-minimaland study minimization of ULDB original source and derivation of data may offer helpful addi-

representations under both notions. With lineage, derived rela- tional information.

tions are no longer self-contained: their uncertainty depends on

uncertainty in the base data. We provide an algorithm for the Lineage is also important for uncertainty within a single database.

new operation of extracting a database subset in the presence ofNhen users pose queries against uncertain data, the results are

interconnected uncertainty. Finally, we show how ULDBs en- uncertain too. Lineage facilitates the correlation and coordina-

able a new approach to query processing in probabilistic databastsn of uncertainty in query results with uncertainty in the input
data. For example, suppose we know that either one set of base

ULDBs form the basis of th&rio system under developmentat data is correct or another one is, but not both. Then we don'’t

Stanford. want to produce any query results that are derived by mixing
data from the two sets, directly or indirectly, now or later. Lin-
1 INTRODUCTION eage is a particularly convenient and intuitive mechanism for

encoding the complex uncertainty relationships that can arise

The problems faced when managimgcertain dataand those among base and derived data.

associated with trackindata lineage have been addressed in

isolation in the past (e.g., [2, 5, 20, 24, 28, 29, 32, 37, 40] for
uncertain data and [12, 16, 17, 18, 35, 36] for data lineage).
Motivated by a diverse set of applications including data inte-

Beyond the conceptual relationships between uncertainty and
lineage, this paper presents several tangible representational and
computational benefits derived from their combination. We be-

gr?tlor:_, dedu%hc?htlon, Sc'ebm'f'c dat'atmanfiggr_netﬂt, |nf0r{)r_1at|tc?n gin by describing a representation for uncertainty and lineage
extraction, and others, we became Interested in the combinalionyh ot extends the relational model witlple alternativega set

* This work was supported by the National Science Foundation ©f Possible values for each tuplapaybe tuplegtuples that
under grants 11S-0324431, 1iS-1098447, and 11S-9985114, by may be present or absent), antireage functiormapping tu-
DARPA Contract #03-000225, and by a grant from the Boeing ple alternatives to the data from which they were derived. We
Corporation. call databases in this scheme ULDBSs, finmcertainty-Lineage
Databases We show that because we represent lineage along
with uncertainty, ULDBs areompletei.e., they can represent

Permission to copy without fee all or part of this material srded provided all finite sets Of poss_'ble 'nstances' In contrast, complete mod-
that the copies are not made or distributed for direct comnierdiaantage, €IS for uncertainty without lineage are more complex, e.g., [22,
the VLDB copyright notice and the title of the publicatiortats date appear,

and notice is given that copying is by permission of the VerygeaData

Base Endowment. To copy otherwise, or to republish, to postesvers Next, we study problems related to querying ULDBs. First, we
or to redistribute to lists, requires a fee and/or speciahssion from the show that ULDBs permit straightforward and efficient imple-
publisher, ACM. mentation of many relational operations. We then consider the

VLDB ‘06, September 12-15, 2006, Seoul, Korea. roblem of extracting one or more relations from a ULDB: cre-
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09 P 9 '

953

ating a “projection” of a ULDB onto a subset of its relations,
without changing the possible instances of the relations. Ex-
tracting relations is tricky because when data in a relaftas
derived from data in?’, then the possible instances Bfmay
correlate with the possible instancesiff(even whenR’ is not

be included in the projection), which may in turn correlate with
possible instances of other relations. Finally, for both querying
and extraction we are interested in operating on ULDBs that
satisfy some notions of minimality. We defidata minimality
andlineage minimalityof ULDBs, and we present results on
minimizing ULDBs.

ULDBs also open up an interesting alternative approach to queryg;

processing irprobabilistic databaseswvhich are captured by a
simple extension of basic ULDBs to includenfidence values
Previous work [20] suggests special techniques for construct-
ing query plans that ensure correctness for probabilistic data.
It turns out that when lineage is tracked, special considerations
are no longer needed: Query execution initially proceeds with-
out computing probabilities, so any query plan may be used.
Probabilities are then computed from lineage as needed in a
separate step.

In summary, this paper makes the following contributions:

e \We define ULDBs—uncertain databases with lineage—
and show that they are complete (Sections 2 and 3).

e \We give algorithms for relational operations in ULDBs
(Section 4.2).

e We define data-minimality and lineage-minimality for
ULDBSs, and discuss both types of minimization (Sec-
tion 4.3).

e We define the new problem of extracting data from a
ULDB, and we present an algorithm for it (Section 4.4).

e \We describe how ULDBs can be extended with confi-
dence values, and we show how they offer an alternative
solution to query processing in probabilistic databases
(Section 5).

We discuss related work in Section 6 and conclude with future
directions in Section 7. Note that ULDBs as presented in this
paper form the basis of thEio system under development at
Stanford. An overview is given in [8].

2. PRELIMINARIES

is formalized in this section along withternallineage, but not
discussed in any detail until Section 4. External lineage refers
to a set of external symbols we denote By Thus, the set of
symbols known by an LDB i§ = I(R) U E.

DEFINITION 2.1. (Database with lineage): An LDB is
atriple (R, S, \), whereR is a set of relationsS is a set of
symbols containing(R), and\ is alineage functiorfrom S to
25,]

EXAMPLE 2.2. We introduce as a running example a highly
mplified “crime-solver” database. Consider LDB relations
Drives(person, car) andSawm wi t ness, car) repre-
senting driver information and crime-vehicle sightings respec-
tively. Consider also arelatioAccuses(wi t ness, per son)
produced by the queryy;iness,person (Saw < Drives). Here is
some sample data:

Drives
Saw
[TD [witness| _car | [ID [person]| car |
2L A 3T [Jimmy [Mazda
ny Mazda
32 Jinmmy | Toyota
22 Any [Toyota
23 Bett Honda 33 BilTy [Mazda
y 34 BilTy | Honda
Accuses
[1D | witness | person
4T Any | Jimy |2 (41)={21,3%
427 Any Jimmy | A (42)={22,32
43 Amy | BilTy |A(43)={21,33
44 [Betty | BilTy | A(44)={23,34

The ID column denotes the tuple identifiers, and empty lineage
is omitted. O

Our basic formalism places no restrictions on the lineage func-
tion A. However, when operations are performed there is of-
ten an obvious lineage function for the tuples in the result.
The above example demonstrates a natural lineage function for
joins: lineage of a tuple in the result of a join is the set of
tuples, one from each of the joined relations, that were com-
bined to form¢, e.g.,(Any, Billy) is obtained from(Any,
Mazda) and(Billy, Mazda). Some operations, such as nega-

We begin by describing databases with lineage, which we call tjon, duplicate-elimination, and aggregation, have less obvious
LDBs, and then we describe uncertain databases. In Section 3Iineage functions. For discussion of lineage functions see, e.g.,

we present ULDBs, which combine the two formalisms.

LDBs and ULDBs extend the relational model. A datab&se

is comprised of a set of relatiod® = Ry, ..., R,, where each

R; is a multiset of tuples. We attach a unique identifier to each
tuple in the database, addR) denotes all identifiers in rela-
tionsRy,..., Ry.

2.1 Databases with Lineage

In the terminology of [12], in LDBs we focus on “where lin-
eage”: the lineage of a tuple identifies the data from which it
was derived. Some tuples in an LDB are derived from other
LDB tuples, e.g., as a result of queries. The lineage of derived
tuples consists of references to other tuples in the LDB, via their
unique identifiers. Base tuples in some cases are derived from

[9, 12,17, 18, 33]. The operations we consider in this paper all
have simple lineage functions, and furthermore they preserve
a notion ofwell-behavedineage that we formalize later in the
paper.

In an LDB, query results include lineage that refers to other
tuples in the database. Hence, in our formalism the result of
applying a queryQ to databaseD includes the original rela-
tions R and a new relation fof)’s answer with the appropriate
lineage function. Thus, an important aspect of LDBs is that we
cannot consider each relation in the database in isolation. We
explore this point further in Section 4.4.

Note that while a relation may contain duplicates, each tuple
has its own lineage. For example, tuples 41 and 42 in Exam-

entities outside the LDB, such as an external data set or a sensoiple 2.2 have the same data, but each one has a different deriva-

feed. For the latter case we introduegernallineage, which

954

tion, and therefore different lineage. Extending our model to

set semantics requires more complex lineage functions thanwe3. COMBINING LINEAGE AND UNCER-

consider in this paper, and is a subject of follow-on work.

2.2 Uncertain Databases

An uncertain database represents a sgbassible instances
each of which is one possible state of the database. A num-
ber of different formalisms have been proposed for represent-
ing sets of possible instances, e.g., [1, 5, 22, 27, 29, 32]. One
difference among these formalisms is in their expressive power:

which sets of possible instances can be represented in the for-

malism. In what follows we introduce-relations a specific
formalism for uncertain databases. Conceivably, we could have
considered the combination of any uncertainty formalism with
lineage, but we found x-relations to be a good starting point and
a good fit for applications we are considering.

DEFINITION 2.3. An x-tuple is a multiset of one or more
tuples, calledalternatives An x-tuple may be annotated with a
?’, in which case it is called anaybe x-tuple An x-relationis
a multiset of x-tuples. m|

Alternatives of an x-tuple represent mutually exclusive values
for the tuple, leading to the following definition of possible in-
stances.

DEFINITION 2.4. An x-relationR represents the set of pos-
sible instance$’ that can be constructed as follows: choose ex-
actly one alternative from each x-tuple iithat is not a maybe
x-tuple, and choose zero or one alternative from each x-tuple in
R that is a maybe x-tuple. |

ExampLE 2.5. The following x-relation represents an un-
certain version of relatiorsaw from Example 2.2:

[1D] Saw(witness, car) |
21| (Any, Mazda) |[(Any, Toyota) |?
23 (Betty, Honda)

Here, Amy may have seen a Mazda, a Toyota, or no car at all,
and the relation has three possible instances. m|

A formalism for representing uncertainty is said to d@m-
pleteif it can represent any finite set of possible instanaes.
tables[29] is the prototypical complete formalism for uncer-
tainty. x-relations are not a complete formalism. For example,
the join Accuses of the x-relationSaw above withDr i ves

TAINTY
We now present ULDBS, a representation that captures both lin-
eage and uncertainty. ULDBs extend the LDBs of Section 2.1
with the x-relations of Section 2.2.

DEFINITION 3.1. AULDB D is atriple (R, S, \), whereR
is a set of x-relations$ is a set of symbols containing(R),
and \ is a lineage function frons to 2°. |

Identifiers inI(R) now correspond to tuple alternative&.R)
thus contains pairéi, j), wheres identifies the x-tuple ang

is an index for one of its alternatives. When we refer to an
arbitrary symbol in the sef, we uses; ;), denoting either

(i,7) € I(R) or an external symbol. We will later see in Sec-
tion 4.4 why(i, 7) subscripts on external symbols are useful.

ExAamMPLE 3.2. We combine the uncertaiBaw x-relation
from Example 2.5 with the earliddr i ves relation to create
a new version oAccuses that has both uncertainty and lin-
eage:

[1D] Saw(witness, car) |
21] (Any, Mazda) |[(Any, Toyota) |?
23 (Bet ty, Honda)

[1D | Drives(person, car) |

31T (Ji mry, Mazda)
32 [(Jimmy, Toyot a)
33 (Billy, Mazda)
34 (Billy, Honda)

[1D T Accuses(witness, person)

a1 =J 2 A\41,1)={(21,1),(31,1)
a7 Em T m; 2 A(42,1)={(21,2),(32,1}
13 (Any, BiTTy) 2 A(43,1)={(21,1),(33,1}
a7 (Betty, BiTly) 2 A(44,1)={(23,1),(34,1}

We now define the semantics of a ULDB as a set of possible
instances, where each instance is an LDB. The main technical
challenge in the definition is to ensure that each possible LDB
is based on consistent lineage. Recall that alternatives of an x-
tuple are mutually exclusive in a given instance (0 or 1 of them
are chosen), so we need to ensure that a possible LDB does not
have two tuples whose lineages are from distinct alternatives of
the same x-tuple. Recall; ;) denotes both internal identifiers

from Example 2.2 cannot be represented as an x-relation: X- (5, j) € I(R) and external symbols.
tuples are independent, so they cannot express the fact that if
Amy accuses Jimmy (due to the Mazda), then she must accuse

Billy as well.

Studies of completeness in various models for uncertainty can
be found in, e.g., [2, 22, 27, 29, 32]. We will soon see (Sec-
tion 3.1) that although x-relations alone are incomplete as shown
above, adding lineage makes them complete.

955

DEFINITION 3.3. LetD = (R, S,) be a ULDB. A possi-
ble LDB Dy, of D is obtained as follows. Pick a set of symbols
Sk C S such that:

1. If s¢;,5) € Sk, then for every” # 7, (i j1y & Sk.

2. Vs(i,5) € Sky A((i,5)) € Sk. We define an interesting restricted class of lineage that we call
well-behavedineage. We will see that this class is closed un-

3. If for some X-tuple; there does not exist &; ;) € Sk, der many relational operations, and its properties yield efficient
thent; is a maybe x-tuple, ands; ;) € ti, A(s(i,j)) = 0 algorithms for them. Let* denote the transitive closure of
or A(sij)) Sk- lineage function\.

The possible LDBD is the triple Ry, Sk, \x) where Ry in- DEFINITION 3.6 (WELL-BEHAVED LINEAGE). The lin-
cludes exactly the alternatives of x-tuplegiisuch thats; ; E eage of an x-tuplé; is well-behavedf it satisfies the following
Sk, and Ay, is the restriction of\ to Sy. three conditions:

Intuitively, the first condition in Definition 3.3 says that alter- 1. Acyclic: Vs sy, $¢.j) & N (8¢i.5)

natives of the same x-tuple are mutually exclusive, i.e., at most

one of them may appear in each possible instance. The second 2. Deterministic: Vs jy,sq,;1), if 7 # j' then either

condition enforces the semantics of lineage: if an alternative is A(8¢i,5)) 7 A(s(i,51) OF AM(8¢i,5)) =

present in a possible instance, so must be the alternatives it was .

derived from. Observe that this implication is in one direction ~ 3- Uniform: Vs), s 1), B(s¢i,5) = B(s(,;1)), where

only. The third condition says that an x-tuple must yield a tuple B(sij) = {tr[Fswn, s,y € Alsig)}

in a possible instance unless: (i) it is a maybe x-tuple, and (ii)

none of its alternatives has a nonempty lineage that would have -

been consistent with condition 2. We say that a ULDBD = (R, S,) is well-behaved if all its
x-tuples have well-behaved lineage. o

ExamMPLE 3.4. We explain the possible instances of the ULDB
in Example 3.2. Consider the choices for x-tuple 255afv, Informally, Definition 3.6 says lineage is well-behaved when:
which has two alternatives and is a maybe x-tuple. The possi- (1) there are no cycles; (2) all alternatives of an x-tuple have
ble instance that picks (21,1) must also have (41,1) and (43,1) distinct lineage; and (3) their lineage points to alternatives of
to satisfy condition 3 in Definition 3.3, and it cannot have (42,1) the exact same set of x-tuples.
or condition 2 would be violated. Similarly, the possible in-
stance that picks (21,2) must have (42,1) but not (41,1) or }43,1 Letbase x-tuplebe defined as all x-tuples with empty lineage.
The possible instance that doesn't pick any alternative for x- An interesting and useful property of well-behaved lineage is
tuple 21 has neither of (41,1) or (42,1), nor (43,1) by condition that the possible instances of a well-behaved ULDB are deter-
2. Note that since (23,1) and (34,1) are always present, all mined entirely by the base x-tuples. That is, selecting a set of
possible instances have tuple (44,1) to satisfy condition 3. This alternatives for base x-tuples determines which alternatives are
gives us the three possible instances we expect. Note in particu-selected for all x-tuples derived from them.
lar that not all combinations of the maybe x-tuple®\acuses
are included in the possible instances. m|

THEOREM3.7 (WELL-BEHAVED ULDB). For two pos-
sible instancesD; and D» of a well-behaved ULDBD =
(R,S,\), D1 = D- if and only if D; and D, have the same
set of alternatives chosen for all base x-tuples.]

3.1 Completeness

As discussed earliecompletenesis one of the important mea-
sures for the expressive power of a formalism for uncertainty.
In general, a formalism is complete if it is possible to represent
any set of possible instances within the formalism. Extending recall that proofs of all theorems appear in the online full ver-
the traditional notion of completeness for ULDBs, we consider gjgn of the paper [7].

a stronger definition that includes both uncertainty and lineage.

The following theorem shows that ULDBs are indeed complete. Unless otherwise specified, we assume well-behaved ULDBs

for the rest of the paper. We will soon see that if we start
from a well-behaved ULDB and perform a standard set of rela-

THEOREM 3.5. Given any set of possible LDBE = tional operations creating the natural lineage for the results, the

{P1,P»,..., P} over relationsR = {Ri,Ro,...,Rn}, ULDB remains well-behaved.
there exists a ULDBD = (R, S, \) whose possible LDBs are
P Y 4. QUERYING ULDBS

In this section we consider queries and operations we can per-
form on ULDBs. We begin (Section 4.2) by considering the
case in which the result of a query also includes the original
database, and we describe standard relational operations under
. this assumption. As noted earlier, because we are tracking lin-
3.2 Well-Behaved Lineage eage, we cannot look at an x-relation in a ULDB in isolation
Although the formal definition of a ULDB allows an arbitrary of others. Hence, we consider tlegtraction problem (Sec-
lineage function\, in practice tuples are derived as results of tion 4.4), where the goal is to return only the relation that is
queries, data imports, and other activities. Therefore, we expectthe answer to the query (or more generally, a set of x-relations),
A to have arestricted structure and not be an arbitrary function. without the original database. The challenge here is to extract
As a simple example, we don’t expect to have a tupleerived the appropriate lineage along with the result x-relation, so that
from t2 and alsa» derived fromt; . the correct set of possible instances is preserved.

A formal proof for this theorem (and for all other theorems in
the paper) appears in an online full version of the paper [7].

956

D-minimize
(Section 4.3.1)

Well-behaved

D-minimal Queries Well-behaved
-minimal L
L-minimal (Section 4.2) L-minimal
oo Extraction
X\ .
o’ N (Section 4.4) Well-behaved
e‘e\i\Q R D-minimal
& o L-minimize
W e (Section 4.3.2)

Figure 1: ULDB States and Queries

The computation and representation of query answers (though
not the possible instances) can depend on whether the input an

the output are minimal. In Section 4.3 we define two notions of
minimality for ULDBs: (1) D-minimality, guaranteeing that a
ULDB does not contain extraneous data, andL(2yinimality,

guaranteeing that a ULDB does not contain extraneous lineage.

We discuss both types of minimization, and we typically apply
our query operations on the minimal forms. We show how min-
imization enables efficient answering wfembership queries

LDBs

(o)
Possible

——
algorithm T
QD). QD). -, QDY

Figure 2: Semantics of Queries on ULDBs.

with lineageAr, from R, to I(R). We writeQ(D) = D +
(RLU I(Rll)v >\Rq)'

DEFINITION 4.2. LetD be an LDB. LetD|; denote the re-

d:\triction of D to the tuples identified in st and the lineage

mong them. A DL-monotonic query is a functigfrom LDBs
to LDBs that satisfies the following conditions:

1. vt € Ry, Q(D‘/\(t)) = D|A(t) + (¢, I(t), A(t)), and
no strict subset oD () produces.

2. VD, D’ suchthatD C D', Q(D) C Q(D"). O

where the goal is to determine whether a particular tuple (or set

of tuples) is guaranteed to be in some (or all) possible instances The first condition constrains the lineage of a result tuple to be a

of a ULDB. minimal subset of the database that produces exactly that tuple,
and the second condition enforces monotonicity on both data

Figure 1 summarizes the different operations (querying, extrac- and lineage.

tion, and minimization) we consider for ULDBs, and the possi-

ble transitions between states of the ULDB. The remainder of

this section proceeds as follows. In Section 4.1 we introduce ~ EXAMPLE 4.3. In Example 2.2, the quemyccuses =

the class of queries we consider, and in Section 4.2 we explain Titness person(Saw > Drives) is DL-monotonic. In particu-

how these queries are processed against a ULDB. Section 4.3ar the reader may verify that the lineage associated with the

defines ULDB minimality and discusses algorithms for mini- four x-tuples ofAccuses satisfies Definition 4.2 above. Note

mization. Finally, Section 4.4 explains how to correctly extract that the lineage of each of the twa\ny, Ji my) tuples must
a set of x-relations from a ULDB. have a distinct combination of base tuples so that condition 2
of Definition 4.2 is satisfied. |

4.1 DL-Monotonic Queries

We will restrict our discussion to queries that an@notonic
with respect to data and lineage. To define monotonicity, we
must first define containment of LDBs. Intuitively, for an LDB
D to be contained irD’, every data element and its transitive
“lineage graph” inD should also be iD’.

Intuitively, any operation that can produce its results in a “tuple-
by-tuple” fashion is DL-monotonic. Considering the standard
relational operations, multiset selection, projection, join, and
union are all DL-monotonic, and so are any queries composed
from them. Aggregation, duplicate-elimination, and some set
operators are not DL-monotonic. In the remainder of this sec-
tion, we assume all queri€3 to be DL-monotonic. In follow-

on work we are extending our approach to other operations, as
discussed briefly in Sections 5.3 and 7.

DEFINITION 4.1. LetD = (R, S,\)andD’ = (R',S",\)
be two LDBs, wherdé? and R’ have the same schemas. We say
that D is containedn D’, denotedD C D', if:

4.2 Applying a Query to a ULDB

We consider the problem of applying a quepyto a ULDB

D, where the resul)(D) is defined to include the original
database and the answer relation. Query semantics are defined
in terms of possible instances (see Figure Q).D)’s possi-

ble LDBs are logically obtained by applying to each of the
Ds,..., D, possible instances dD. We now present an al-
gorithm for evaluating? directly on the ULDB representation,
shown as the broad arrow in Figure 2.

1.SCs

2. Ris contained inR’, i.e., ift € R; thent € R}, with
the same tuple identifier

3. For every symbaob; € S, if s2 € A(s1), thenss €
N*(s1). 0O

Note thatC is not exactly a partial order on LDBs because it
is not antisymmetric. Specifically) C D’ andD’ C D only
implies that* = \"*, not necessarily that = \’. Algorithm 1 (see figure) proceeds in two phases. First (lines
4-5), it performs a “standard” evaluation of the quénpn an
LDB D that contains all the alternatives of the base x-relations.
The resulting relation?, and its lineage\r, are then used

to: (a) construct one x-tuplg in R, for each combination

Based on Definition 4.1, we define the clasDaf-monotonic
queries In the definition, given a querg) and an LDBD,
Q(D) is an LDB that extend® with one x-relationR, and

957

input: a ULDB D with x-relations{ Ry, ..
query@ on D
output: aULDB D’ = Q(D)

1: Ry« 0; AR, « undefined function

2: LetD = Ry, ..., R, be the LDB such that,
R; = {tupless, j)|s,j) is an alternative in; }

3: ComputeR (D) = D + (Rq, I(Rq), Ag,)

4: Group the tuples iR, by the x-tuple identifiers corre
sponding to the tuples in their lineage

5: for each group of x-tuple identifiers, . . ., ¢,, do

6: create a maybe x-tuptein R, with all the tuples

of the group as alternatives

7. Vsq,k alternative oft;, setAr, (sq,x)) as inARq

. end for

s return D' = D + (Rq, I(Rq), Ar,)

.,R,}, and g

O 0

Algorithm 1: Query Evaluation

t1,...,t, Of x-tuples in D that produced tuples through
(lines 6-8); and (b) generate lineage tgs alternatives (line
9). Note that althouglh; is defined as a maybe x-tuple, it may
still contribute a tuple in every possible LDB ¢J(D). We
discuss elimination of extraneous ‘?’s in Section 4.3.1.

THEOREM 4.4. Given a ULDBD and a quen:

1. Algorithm 1 returng(D).
2. If D is a well-behaved ULDB, then sodg(D). O

Observe that our algorithm is based on evaluafjyver a con-
ventional databas®. Since the size oD is the same as the
size of x-relationsR;, ..., R,, complexity does not increase
due to uncertainty. More importantly, we can implement Al-
gorithm 1 readily using a standard relational DBMS, without

[1D] Saw(witness, car) |
[I [(Carol,Acura) [[(Carol, Lexus) |
D] CarI(car) ID T Car2(car)

[2] Acura | [3] Lexus |

Suppose we perforrsawl = (Carl X Saw) and Saw2 =
(Car2 X Saw) to get sightings related to the two car lists:

[SawI(witness,car)|
[(Carol, Acura) |

[Saw2(witness,car)|
[(Carol, Lexus) |

) (D
L4)

A4, 1D)={(1,1),(2D} M5 1D={(1,2).(3, 1)}

Finally, suppose we computSawl Xy t ness Saw?) to find
pairs of car sightings irCar 1 andCar 2 by the same witness:

ID] (witness,carl,car2)
6 [(Carol, Acura, Lexus) |? A(6,1)={(4,1),(5,1}

l
l

There is no possible instance of the database with alterna-
tive (6,1). Intuitively, Carol saw either an Acura or a Lexus,
while both sightings would be necessary to derive x-tuple
(Carol, Acura, Lexus). Thus,(Carol, Acura, Lexus) is
extraneous. m]

We now define data minimality formally.

DEFINITION 4.6 (D-MINIMALITY). An alternative(s, j)

having to build a special-purpose query engine for ULDBs. In of an x-tuplet; in a ULDB D is said to beextraneousf remov-

fact, our initial implementation of thério prototype ULDB has

ing it from the x-relation does not change the possible instances

taken exactly this approach [3, 8]. Of course special-purpose of D. Similarly, a ‘?" on an x-tuple inD is said to be extrane-
techniques also may be interesting in order to maximize perfor- ous if removing it does not change the possible instancés of

mance of query processing on ULDBSs.

4.3 ULDB Minimality
We now define two notions of minimality for ULDBsdata
minimalityandlineage minimality

4.3.1 Data Minimality
As the following example illustrates, a ULDB may contain ex-

traneous data, including “impossible” alternatives in an x-tuple,
or x-tuples unnecessarily marked with *?’. As a special case, an
entire x-tuple is extraneous if all its alternatives are extraneous.

ExamPLE 4.5. In Example 3.2, the ‘?’ on x-tuple 44 is ex-

A ULDB D is D-minimal if it does not include any extraneous
alternatives or ‘?’s. O

The following theorems, proved in the appendix, provide con-
ditions on ULDBSs that enable us to detect extraneous data.

THEOREM4.7 (EXTRANEOUSALTERNATIVE). Let D
be a well-behaved ULDB. An alternative with identifiér, 1)
(in x-tuple t;) in D is extraneous if and only if there exist
S(irj1)s S(irga) € N (S(k,1)), With j1 # ja.]

In other words, an alternative is extraneous if and only if it has
contradictory lineage.

traneous because the alternative (24,1) is present in every pos-In the next theorem, lef(¢;) denote the number of alterna-
sible LDB. As an example of an extraneous alternative (entire tives in x-tuplet; that are not extraneous. Left;) denote the
x-tuple in this case), consider the following x-relations, where set of base x-tuples from whidh is derived, i.e.t; € h(t;) if
Car 1 andCar 2 represent separate lists of possible crime ve- SS“”“” 55,0 suchthask; ;) € A" (s(;,x)) andvm, A(s¢m)) =

hicles.

958

1: input: ULDB D
2: output: equivalent but D-minimized version @)
3: for each x-relation? in D do
4: Skip if R has been D-minimized
5: Recursively perform Steps 3-8 to D-minimize all |x-
relations{R1, R», ..., R, } that contain lineage of data
in R.
6: Computex* for each alternative oR using the already
computed* for eachR;
7. Delete all extraneous alternatives using the condition of
Theorem 4.7
8: Computey(t) for all x-tuplest in R and for all x-tuples
in h(t)
9: Use the condition in Theorem 4.8 to delete any extrane-
ous ‘?'s
10: Mark R as D-minimized
11: end for
12: return D

Algorithm 2: Lazy Algorithm for D-minimization

THEOREM4.8 (EXTRANEOUS'?’). Let D be a well-
behaved ULDB. A ‘?’ on an x-tuple € D is extraneous if
and only if:

1. No x-tuple inh(t) has a *?’
2. ’7(15) = Ht/eh(t) 77(15/)

We can now use Theorems 4.7 and 4.8 to D-minimize ULDB
representations. Minimization needs to work on the transitive
closure * of the lineage, which presents two approaches to
D-minimization: (1) alazy approach in which* is computed
during minimization, and (2) aragerapproach in which the
algorithm for operations maintains’ and also the D-minimal
form. Algorithm 2 presents the lazy approach for D-minimizing

The above theorem guarantees that query processing preserves
L-minimality. In general, “L-minimizing” a ULDBD, i.e.,
finding an L-minimal D’ that coincides withD on data and
internal lineage, is a tractable problem. However, the result
of L-minimization is not unique. It is still open whether we
can efficiently find a “global minimum” among all possible L-
minimizations, with respect to the size of their representation.
We plan to investigate this question in future work.

4.3.3 Membership Queries

One useful side-effect of minimization is that it helps us answer
membership querig®, 22, 27, 28, 29]: determining whether a
particular tuple or relation is present in some (or every) possible
instance of an uncertain database. In the context of ULDBS,
these problems are defined as follows.

DEFINITION 4.11 (MEMBERSHIPQUERIES).

e Tuple Membership (resp. Certainty): Given a ULDB
containing a relationR, and given a tuple, determine
whethert € R in some (resp. all) possible instance(s) of
D

e Instance Membership (resp. Certainty): Given a ULDB
D containing a relationR, and a multisefl” of tuples,
determine whetheR contains exactly the tuples @fin
some (resp. all) possible instance(s)of m|

The following theorem shows that it is tractable to answer both
of the tuple-membership problems. The algorithms to do so
(included in the proof) build directly on D-minimization. How-

ever, as is true of all complete uncertainty models [22] includ-
ing ULDBSs, the instance-membership problems are intractable.

THEOREM 4.12. Let D be a well-behaved ULDB.

a ULDB D; the eager approach uses the same idea but performs

the computation incrementally with operations. It is easy to see
that the algorithm returns the D-minimal representation.

4.3.2 Lineage Minimality
A second notion of minimality has to do with lineage. For
ULDB D = (R, S, \), letitsinternal lineagebe the restriction

of \ to only symbols in/(R). (Recall the domain of symbols

S = I(R) U E also includes external symbals.)

_DEFINITION 4.9 (L-mINIMAL ULDB). A ULDB D =
(R, S,) is L-minimal if for any D" = (R,S’,\") over the
same x-relations? such that:

1. 8C S AN CN

2. D and D’ have the same internal lineage

D’ has the same possible instancesiasnly if S’ = S and
A= \" O

We have the following main theorem about L-minimality.

THEOREM4.10 (L-MINIMALITY OF ALGORITHM 1).
Given a well-behaved L-minimal ULDB and a queryQ, the
result@ (D) of Algorithm 1 is an L-minimal ULDB. O

959

1. The tuple-membership and tuple-certainty problems are
solvable in polynomial time in the size bf

2. The instance-membership and instance-certainty prob-
lems are NP-hard. [m]

4.4 Extraction

Typically, after issuing a query to a database, users are inter-
ested in seeing only the result relation, not the entire database.
More generally, given a ULDB, we may want to extract a subset
of its relations, but in a way that preserves the possible instances
of the extracted subset. In principle, whenever a database in-
cludes constraints across relations, extracting a subset of the
database is an interesting question; otherwise, the meaning of
every relation is independent of the others, and therefore ex-
traction is trivial.

DEFINITION 4.13 (EXTRACTION). Let D be a well-
behaved ULDB with x-relation® and possible instanceB,
and letX be a subset oRz. The problem of extracting’ from
Ris to return a well-behaved ULDB’ with R’ = X and pos-
sible instances”’, such that the restriction of to X equals
P’ with respect to data and internal lineage.

Simply removing the relations iR — X and their symbols does
not give a correct extracted result. For instance, if the x-relation

Accuses from Example 3.2 is extracted without any lineage,
x-tuple 43 may now occur without x-tuple 41, which is not al-
lowed by any of the possible instances of the original ULDB.

The following short but dense algorithm produces the correct
extraction.

:input: ULDB D = (R, S,\),andX C R
:output: aULDB D' = (X, 5", \)

08" =I(X)U (U,erx) A (2)

: M =)\|g, the restriction of\ to S

: return D’

aOh W R

Effectively, the algorithm works by identifying all lineage that
is necessary to ensure that the possible instances of the ex
tracted relations are preserved. Lineage that is not within the
extracted relations is converted from internal (identifigrg)

in I(R)) to external (the corresponding symbeals ;y). Note

that by our definitions, the mutual exclusion of x-tuple alter-
natives carries over to what are now external symbols. One
subtlety is that we must associate a logical ‘?* with each set

of external symbols that were created from an x-tuple having a
o

Consider again thAccuses example discussed above. If we
extractAccuses from the database shown in Example 3.2, we
retain the lineage on the x-tuples A€cuses, except it now
refers to external symbols. By doing so, Definition 3.3 of possi-
ble instances correctly prohibits a possible instance containing
one but not the other of x-tuples 41 and 43.

We have the following theorem, proved in the appendix, about
our extraction algorithm.

THEOREM 4.14. Let D = (R, S, \) be a well-behaved D-
minimal ULDB, and consider an¥ C R.

1. The extraction algorithm returns a correct extraction
D'

2. The extraction algorithm runs in polynomial time in the
size ofD.

3. The resultD’ is D-minimal. O

5. CONFIDENCES AND PROBABILISTIC
DATA

As a final contribution, we show how ULDBs can be extended
to includeconfidence valueand probabilistic query process-
ing. With confidences, ULDBs subsume the typical notion of
probabilistic databaseswvhich assign a confidence value to tu-
ples, without alternatives or lineage [5, 13, 20, 32]. A notewor-
thy feature of probabilistic query processing using ULDBs is
that we can decouple the computation of data in query results
from the computation of the data’s probability (confidence) val-
ues. This decoupling enables more freedom with query plan
selection than is typically available for probabilistic query pro-
cessing [21], and it allows confidence values to be computed
selectively as needed.

5.1 Confidence Values
In the remainder of this section we assume ULDBs to be well-
behaved and D-minimized. If we consider the semantics of

960

x-relations probabilistically, then without lineage different al-
ternatives of the same x-tuple represdisjoint events, while
different x-tuples represenmndependenevents. Recall from
Section 3.2 that in well-behaved ULDBSs, the possible instances
are determined entirely by the choices for the base x-tuples; the
choices for derived x-tuples are determined by their lineage.

We preserve this intuition when extending ULDBs with confi-
dences. Now, each base alternativhas an associatambnfi-
dence value(a). For each base x-tuple the sumo(t) of the
confidence values of its alternatives must be at most 1, and ex-
actly 1 if¢ has no ‘?’. The confidence of ‘?’ for any x-tuple is

(1 —o(t)). When we map to possible instances, each instance
has gprobability of being the “correct” instance, based on con-
fidences in the data comprising the instance: The probability of
apossible instance is the product of the confidences of the base
alternatives and ‘?’ chosen in it.

ExaMPLE 5.1. Suppose Amy sighted an Acura with confi-
dence0.8, while Betty is sure she saw either an Acura or a
Mazda with confidences4 and0.6 respectively. Furthermore,
Hank drives an Acura with confidenoes. We have:

[1D] Saw(witness, car) |
11 (Any, Acura): 0.8 ?
12 | (Betty, Acura): 0.4][(Betty, Mazda): 0.6

[1D [Drives(person, car) |

51| (Hank, Acura):0.6 |?

This database has eight possible instances, since each of the
three x-tuples has two possible choices. For example, the possi-
ble instance where Amy saw an Acura, Betty saw a Mazda, and
Hank did not drive an Acura, has confiden@8 « 0.6 * (1 —
0.6) = 0.20.]

It can be shown that for any well-behaved D-minimal ULDB
with confidences, the following desirable properties hold.

1. The sum of probabilities of its possible instances.is

2. The confidence of a base alternativ@esp. ‘?’ on an x-
tuplet) equals the sum of the confidences of the possible
instances where (resp. no alternative @ is picked.

5.2 Query Processing
The presence of lineage allows us to decouple ULDB query
processing with confidences into two steps:

1. Data computationin which we compute the data and lin-
eage in query results, just as in ULDBs without confi-
dences

2. Confidence computatioim which we compute confidence
values for query results based on their lineage (and con-
fidence values on base data)

We first motivate why this decoupling works. Then we briefly
discuss confidence computation in Section 5.3 and data com-
putation in Section 5.4. Overall, the topic of ULDB query pro-
cessing with confidences is a rich and interesting one, and the
subject of considerable ongoing work.

Suppose we have a derived x-tupleand consider one of its ~ Since alternatives(11,1) and (12,1) are independent,
alternatives:. With well-behaved lineage, appears in apossi- Pr((Acur a)) evaluates td).8 + 0.4 — (0.8 * 0.4) = 0.88.
ble instance if and only if all of the base x-tuple alternatives in Now joining(Acur a) with x-tuple 51, we get the confidence
the transitive closure af’s lineage appear in the instance. Fur- of the result(Hank, Acur a) to be0.88 « 0.6 = 0.528. In
thermore, these base x-tuple alternativesradependentsince the final step, projecting ontoer son, the confidence remains
they have no lineage of their own and cannot be alternatives of 0.528.
the same x-tuple. Thus, the confidencer@$ computed as the
product of the confidences of the base-tuple alternatives in the
transitive closure of its lineage. For an x-tupheith a *?’, con- Query Plan 2 (incorrect): Suppose instead we use plan:
fidence for the ‘?” is(1 — o(¢)), whereo(t) is the sum of the
confidences of’s alternatives.
IIper son (Saw > Drives)

Thus, the confidence value for every result alternativis a
function of the confidence values for the base alternatives reach-
able bya’s transitive lineage. Hence we need not compute con- Now we get an incorrect result, because the intermediate x-
fidence values during query processing—we can compute themtuples(Any, Acur a, Hank) and(Betty, Acur a, Hank) from
afterwards using the lineage on query results together with the (Saw > Dri ves) are not independent. Let these tuples
original base data confidences. have IDs(61,1) and (62, 1) respectively. The confidence of

(Ay, Acur a, Hank) is:
Next, we show how decoupling data and confidence compu-
tation overcomes a previously identified shortcoming of query
processing in probabilistic databases, and we briefly discuss ef- Pr((61,1)) = Pr((11,1) A (51,1))
ficient confidence computation in the decoupled scenario.

. . giving 0.8 * 0.6 = 0.48. Similarly, the confidence of
5.3 Confidence Computation (Betty, Acur a, Hank) is0.6x0.4 = 0.24. Now the x-tuple
Dalvi and Suciu [20] show that naive propagation of confi- Hank after projecting ontger son has confidence given by
dences during query processing—essentially assuming indepen-
dence of tuples in intermediate results—may lead to incorrect
confidences in the result. We illustrate the problem with an ex-
ample, and also show how our decoupled technique operates
(correctly) on the same example.

Pr((61,1) v (62,1))
= Pr((61,1)) + Pr((62,1)) — Pr((61,1) A (62,1))

Assuming independence of tup(és, 1) and (62, 1), the con-
fidence evaluates @48 + 0.24 — 0.48 * 24 = 0.6048, which
ExamMPLE 5.2. Let us simplify the data in Example 5.1 to: s incorrect. See [20] for further discussion of these issués.

(D] Saw(witness,car)] Query Plan 3 (decoupled approach): In our approach, we

[11 | (Aw,Acura):0.8 |7 first compute the query result using any execution plan. We get

[12 [(Befty,Acura): 0.4 |? the one x-tupl€ Hank) ; letits identifier be(71, 1). Because of
the duplicate-elimination operator, which is not DL-monotonic,

[1D [Drives(person,car)] M((71,1)) is no longer a set of tuple alternatives (indicating

(51 [(Hank, Acura): 0.6]? conjunction), but rather a boolean formula over alternatives.

(Disjunctive and negative lineage is required once we go be-
yond the DL-monotonic operations; details are the subject of
Suppose we want the list of accused persons with confidences:0ngoing work.) Specifically((71,1)) = ((51,1) A ((11,1) vV
Accused = Ilperson (Saw 1 Drives). Here we are using (12,1))).
a duplicate-eliminating projection. We consider three ways of
executing this query: two query plans that compute confidences Now, we compute the confidence of tfidank) tuple based on
as part of operator execution, and a third method showing our its lineage formula and confidence values for the (independent)

decoupled approach. base alternatives:
Query Plan 1 (correct): Evaluating the query using the fol- Pr((71,1)) = Pr(((51,1) A ((11,1) v (12,1)))
lowing plan gives the correct confidences in the result:
With Pr((51,1)) = 0.6, Pr((11,1)) = 0.8, and
Iper son(Ilcar (Saw) =1 Dri ves) Pr((12,1)) = 0.4, we obtain the correct resuRr((71,1)) =
0.528. O

In IIcar (Saw), there is just one tupléAcur a) whose confi-
dence is given by: Our decoupled approach has two important advantages: First,
the data computation step has the flexibility to use the most effi-
cient execution plan, without worrying about plans that produce
Pr((11,1) v (12,1)) incorrect confidences as illustrated above. Second, in the case
= Pr((11,1)) + Pr((12,1)) — Pr((11,1) A (12,1)) where confidence values may not be required for all data in all

961

query results, the values can be computed selectively and on-puting R, X ... X R,, andS; X ... X S, arbitrarily large.
demand. Further discussion of both of these points appears in
the next subsection. Of course this example was contrived, and reference [20] shows
that for some queries, computing results with confidences has
Of course we do incur some overhead when confidences are#P-hard data complexity, regardless. In such situations, our de-
finally computed, particularly if we follow the most naive ap- coupled approach offers a practical solution: Answers without
proach of tracing the entire lineage of each result x-tuple al- confidence values give an approximation of the result, and their
ternative to obtain the base data confidences. We have severalineage can be used to selectively compute confidence values
ideas for optimizing the confidence computation: for tuples of interest. If the latter is still too expensive, we can
use approximate techniques like the Monte-Carlo simulations

e The confidence value for a derived alternative can be com- Proposed in [31] to estimate the confidences.
puted from confidence values for a set of “closest inde-
pendent descendents” (CIDs) for the alternative, rather 5 RELATED WORK
than from confidence values on base data. Roughly, the |
CID of an alternative: is a minimal sefS of alternatives
in a's transitive lineage such that the alternativesido
not share a common base alternative in their transitive
lineage. It can be shown that CIDs are unique, and for
more complex types of lineage, recursive computation of
confidence values based on CIDs can be much cheaper
than not using CIDs.

e CIDs also enablenemoizationwhich avoids perform-

ing redundant confidence computations. Memoization \we are not aware of any previously proposed formal data rep-
can be useful within the computation for a single alterna- esentation that integrates both lineage and uncertainty. We

tive, as well as across confidence computations, as 10ng pyiefly overview some of the work that addresses uncertainty
as intervening updates don't alter the relevant lineage or 5nq lineage independently.

confidences.

e If transitive lineage\” is already being maintained for Representation schemes and query answering for uncertain
eager D-minimization (Section 4.3.1), it can then also databases have been studied extensively, e.g., [2, 5, 6, 11, 24,
be applied to considerably speed up confidence compu- 27, 28, 29, 32, 40]. Much of this previous work is theoretical,
tations. but there has been recent interest in building systems, e.g., [10,

e So far we have discussed computing the confidence value 14, 41] for uncertainty, and [30, 38] for integrating inconsistent
for a single alternative. In the case where we wish to data sources. Query answering in probabilistic databases has
compute confidences for an x-tuple or an entire x-relation, seen considerable progress and efficient solutions have been
batch techniques can be used based on the structure guarproposed [19, 20, 21]. We build on that work in this paper,
anteed by well-behaved lineage. showing how lineage can further improve query processing.

In [41] we described the original motivation that led to the work

in this paper: development of a general-purpose database man-
agement system that incorporates data, lineage, and uncertainty.
In [22] we explored the space of incomplete and complete mod-
els for uncertainty, without considering lineage. In [23] we
posed and solved a number of new theoretical problems with
respect to representation schemes for uncertainty, again with-
out lineage.

All of these topics are the subject of ongoing work. App_rOX|mate guery answering has also received significant at-
tention over the last decade [4, 26, 25, 39], but we focus on ex-
act queries over uncertain data rather than inexact queries over

5.4 Data Computation certain data. However, the simple representation of uncertainty

To avoid the erroneous confidence calculations as exhibited in in ULDBs is likely to facilitate approximate querying, and we

Example 5.2, reference [20] characterizes logical query plans plan to investigate this avenue of future work.

that are guaranteed to propagate confidences correctly, and re-

stricts their evaluation strategies to such plans. In our decou- Integrating lineage (also known @sovenancghas been pro-

pled approach, we have the luxury of a wider space of plans, posed for relational databases, e.g., [12, 35, 36], and for data

which can be shown to result in arbitrarily large performance warehouses, e.g., [16, 17, 18]. It has been observed that there
improvements (confidence computation included) in extreme are various choices in defining lineage, and in this paper we
cases. Consider a quefythat produces an empty result. Our use a definition similar to thevhere lineageof [12]. Analy-
approach does not need to perform any confidence computa-sis of possible lineage information was also used for optimiz-
tion for Q since there are no result x-tuples. The alternative ing query evaluation and determining independence of queries
approach computes confidences during query execution until from updates [34]. A recent system being developed around

finally the result is discovered to be empty. Furthermore, an ex- data provenance is described in [9, 15].

pensive plan may need to be used in order to correctly compute

confidence values that are eventually thrown away. 7. CONCLUSIONS AND FUTURE
More concretely, suppose we ha¥e large relationsR; (X), WORK

cow Rp(X) andSi(2), ..., Sn(Z), and two small relations ~ We introduce ULDBs as a representation for databases with
A(X,Y) andB(Y, Z). Consider a quer)(Y") that computes both lineage and uncertainty. With simple extensions to the
the natural join of all the relations and projects onfo and relational model (tuple alternatives, maybe tuples, and lineage

supposed X B is empty. With simple statistics any standard functions), ULDBs can represent any finite set of possible in-
optimizer will choose to performd X B first. However, in the stances containing data and lineage, and ULDBs are amenable
plans permitted by [20] (or any other plans that require inde- to efficient query processing using standard relational tech-
pendence of tuples for confidence propagatieh)d B must nigues. ULDBs can be extended naturally to represent and
be performed last. In these plans, we can make the cost of com-query probabilistic data; moreover, because lineage enables

962

query evaluation to be decoupled from the computation of con-
fidences, substantial performance gains may be achieved over
computing query operators and confidences in tandem.

In this paper we focused on a specific class of DL-monotonic
queries and their lineage. We are extending our techniques and
results to a larger set of operations, e.g., duplicate-elimination,
aggregation, and negation. Doing so primarily entails extend-
ing the types of lineage allowed, e.g., adding disjunctive and
negative lineage, as briefly shown in Section 5.3.

We are building a system calleftio based on ULDBs, cur-
rently implemented on top of a standard relational DBMS [3,
8]. Through simple rewriting techniques, Trio evaluates DL-
monotonic queries on ULDBs without altering any system in-
ternals. However, new techniques are required if we are to han-
dle all aspects of ULDBs covered in this paper, e.g., keeping a
ULDB D-minimized as query results are added, and efficiently
L-minimizing the result of an extraction.

We are currently exploring a number of other challenges re-
lated to query processing in ULDBs with confidences. In par-

ticular, we are studying various algorithms and optimizations

when computing confidences, such as memoization and min-
imizing lineage traversal. We are also studying eager versus
on-demand confidence computation, incremental propagation
of confidence updates, and “top-K” and ordering queries based
on confidences.

(3]

(4]

(5]

(6]

(7]

(8]

&

There are a number of other current and future directions of [10]

work in ULDBs:

e Updates: We are currently identifying a set of update
primitives for ULDBs, and considering the design of ef-
ficient update algorithms.

e Implementation: ULDBs introduce several new phys-

(11]

ical design issues, such as data layout, indexing, parti- [12]

tioning, and materialized views, and their integration into
query optimization. Fully exploring these topics is likely
to entail modifying our prototype to operate inside (in-
stead of on top of) a DBMS.

e Theory: There are numerous interesting theoretical
problems to work on. We can reconsider nearly ev-
ery topic in relational database theory in the context of
ULDBs, e.g., dependency theory, query containment, and
sampling and statistics.

e Long-Term Goals: Our agenda for the overall Trio
project [41] includes several features not yet present in
ULDBSs, such as uncertainty in the form of continu-
ous distributions, incomplete relations, and versioning of
data, uncertainty, and lineage.

Acknowledgments

We thank Parag Agrawal, Dan Suciu, Jeff Ullman, and the en-
tire Trio group for helpful discussions, and Chris Hayworth for
creating an initial prototype implementation of ULDBs.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianuroundations of
DatabasesAddison-Wesley, 1995.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the
Representation and Querying of Sets of Possible Worlds.
Theoretical Computer Sciencg8(1), 1991.

963

P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth,
S. Nabar, T. Sugihara, and J. Widom. Trio: A system for
data, uncertainty, and lineage.Pmoc. of VLDB 2006.
Demonstration description.

S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.
Automated Ranking of Database Query Result$oc.
of CIDR, 2003.

D. Barbaa, H. Garcia-Molina, and D. Porter. The
Management of Probabilistic Dat&EE Trans. Knowl.
Data Eng, 1992.

R. S. Barga and C. Pu. Accessing Imprecise Data: An
Approach Based on IntervalkeEE Data Engineering
Bulletin, 16(2), 1993.

O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage.
Technical report, Stanford InfoLab, 2005. Available at
http://dbpubs.stanford.edu/pub/2005-39.

O. Benjelloun, A. Das Sarma, C. Hayworth, and
J. Widom. An Introduction to ULDBs and the Trio
SystemlEEE Data Engineering Bulletir29(1), 2006.

D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya.
An annotation management system for relational
databases. IRroc. of VLDB 2004.

J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and
D. Suciu. MYSTIQ: a system for finding more answers
by using probabilities. IfProc. of ACM SIGMOD2005.

B. P. Buckles and F. E. Petry. A Fuzzy Model for
Relational Databasekternational Journal of Fuzzy Sets
and System¢, 1982.

P. Buneman, S. Khanna, and W. Tan. Why and where: A
charaterization of data provenanceRroc. of ICDT,
2001.

[13] R. Cavallo and M. Pittarelli. The theory of probabilistic

databases. IRroc. of VLDB 1987.

[14] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A

database system for managing constantly-evolving data.
In Proc. of VLDB 2005.

[15] L. Chiticariu, W. Tan, and G. Vijayvargiya. DBNotes: a

post-it system for relational databases based on
provenance. IfProc. of ACM SIGMOD2005.

[16] Y. Cui and J. Widom. Practical lineage tracing in data

warehouses. IRroc. of ICDE 2000.

[17] Y. Cui and J. Widom. Lineage tracing for general data

warehouse transformationgLDB Journal 12(1), 2003.

[18] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage

of view data in a warehousing environmeACM TODS
25(2), 2000.

[19] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic

Conditional Probabilities for Conjunctive Queries. In
Proc. of ICDT, 2005.

[20] N. Dalvi and D. Suciu. Efficient Query Evaluation on

Probabilistic Databases. Proc. of VLDB 2004.

[21] N. Dalvi and D. Suciu. Answering Queries from
Statistics and Probabilistic Views. Proc. of VLDB
2005.

[22] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.

Working Models for Uncertain Data. IRroc. of ICDE

2006.

[23] A. Das Sarma, S. Nabar, and J. Widom. Representing

uncertain data: Uniqueness, equivalence, minimization,

and approximation. Technical report, Stanford InfoLab,

2005. Available at

http://dbpubs.stanford.edu/pub/2005-38.

N. Fuhr and T. Rlleke. A Probabilistic NF2 Relational
Algebra for Imprecision in Databasédnpublished
Manuscript 1997.

[24]

[25] N. Fuhr and T. Rlleke. A probabilistic relational algebra
for the integration of information retrieval and database

systemsACM TOIS 14(1), 1997.

[26] Norbert Fuhr. A Probabilistic Framework for Vague
Queries and Imprecise Information in Databases. In
Proc. of VLDB 1990.

[27] G. Grahne. Dependency Satisfaction in Databases with
Incomplete Information. IfProc. of VLDB 1984.

[28] G. Grahne. Horn Tables - An Efficient Tool for Handling
Incomplete Information in Databases.Pnoc. of ACM
PODS 1989.

[29] T. Imielinski and W. Lipski Jr. Incomplete Information in
Relational Databasedournal of the ACM31(4), 1984.

[30] z. G. Ives, N. Khandelwal, A. Kapur, and M. Cakir.
Orchestra: Rapid, collaborative sharing of dynamic data.
In Proc. of CIDR 2005.

[31] R. M. Karp and M. Luby. Monte-carlo algorithms for

enumeration and reliability problems. Rroc. of FOC$S

1983.

[32] L. V. S. Lakshmanan, N. Leone, R. Ross, and V.S.

Subrahmanian. ProbView: A Flexible Probabilistic

Database SysterACM TODS 22(3), 1997.

[33] A.Y. Levy, R. E. Fikes, and S. Sagiv. Speeding up
inferences using relevance reasoning: A formalism and
algorithms Artificial Intelligence 97(1-2), 1997.

[34] Alon Y. Levy and Yehoshua Sagiv. Queries independent
of updates. IrProc. of VLDB 1993.

[35] W. Tan P. Buneman, S. Khanna. Data provenance: Some
basic issues. IRroc. of FSTTCS2000.

[36] W. Tan P. Buneman, S. Khanna. On propagation of
deletions and annotations through viewsPhoc. of
ACM PODS 2002.

[37] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain data
with arbitrary probability density functions. Broc. of
VLDB, 2005.

[38] Nicholas E. Taylor and Zachary G. lves. Reconciling
while tolerating disagreement in collaborative data
sharing. InProc. of ACM SIGMOD2006.

964

[39] A. Theobald and G. Weikum. The XXL Search Engine:
Ranked Retrieval of XML Data Using Indexes and
Ontologies. InProc. of ACM SIGMOD2002.

[40] M. Y. Vardi. Querying logical databases.Rioc. of ACM
PODS 1985.

[41] J. Widom. Trio: A System for Integrated Management of
Data, Accuracy, and Lineage. Rroc. of CIDR 2005.

