
ULDBs: Databases with Uncertainty and Lineage∗

Omar Benjelloun
Stanford University

benjello@db.stanford.edu

Anish Das Sarma
Stanford University

anish@cs.stanford.edu

Alon Halevy
Google Inc.

halevy@google.com

Jennifer Widom
Stanford University

widom@cs.stanford.edu

ABSTRACT
This paper introduces ULDBs, an extension of relational databases
with simple yet expressive constructs for representing and ma-
nipulating bothlineageand uncertainty. Uncertain data and
data lineage are two important areas of data management that
have been considered extensively in isolation, however many
applications require the features in tandem. Fundamentally, lin-
eage enables simple and consistent representation of uncertain
data, it correlates uncertainty in query results with uncertainty
in the input data, and query processing with lineage and un-
certainty together presents computational benefits over treating
them separately.

We show that the ULDB representation iscomplete, and that it
permits straightforward implementation of many relational op-
erations. We define two notions of ULDB minimality—data-
minimalandlineage-minimal—and study minimization of ULDB
representations under both notions. With lineage, derived rela-
tions are no longer self-contained: their uncertainty depends on
uncertainty in the base data. We provide an algorithm for the
new operation of extracting a database subset in the presence of
interconnected uncertainty. Finally, we show how ULDBs en-
able a new approach to query processing in probabilistic databases.

ULDBs form the basis of theTrio system under development at
Stanford.

1. INTRODUCTION
The problems faced when managinguncertain data, and those
associated with trackingdata lineage, have been addressed in
isolation in the past (e.g., [2, 5, 20, 24, 28, 29, 32, 37, 40] for
uncertain data and [12, 16, 17, 18, 35, 36] for data lineage).
Motivated by a diverse set of applications including data inte-
gration, deduplication, scientific data management, information
extraction, and others, we became interested in the combination

∗ This work was supported by the National Science Foundation
under grants IIS-0324431, IIS-1098447, and IIS-9985114, by
DARPA Contract #03-000225, and by a grant from the Boeing
Corporation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

of uncertainty and lineage as the basis for a new type of data
management system [41].

Intuitively, an uncertain database is one that represents multiple
possible instances, each corresponding to a single possible state
of the database. Lineage identifies a data item’sderivation, in
terms of other data in the database, or outside data sources. One
relationship between uncertainty and lineage is that lineage can
be used for understanding and resolving uncertainty. To draw a
loose analogy with web search, answers returned by a search
engine are uncertain, reflected by their ranking. Search en-
gines typically provide lineage information including at least
a URL and text snippet, and users tend to consider both ranking
and lineage to determine which links to follow. More gener-
ally, any application that integrates information from multiple
sources may be uncertain about which data is correct, and the
original source and derivation of data may offer helpful addi-
tional information.

Lineage is also important for uncertainty within a single database.
When users pose queries against uncertain data, the results are
uncertain too. Lineage facilitates the correlation and coordina-
tion of uncertainty in query results with uncertainty in the input
data. For example, suppose we know that either one set of base
data is correct or another one is, but not both. Then we don’t
want to produce any query results that are derived by mixing
data from the two sets, directly or indirectly, now or later. Lin-
eage is a particularly convenient and intuitive mechanism for
encoding the complex uncertainty relationships that can arise
among base and derived data.

Beyond the conceptual relationships between uncertainty and
lineage, this paper presents several tangible representational and
computational benefits derived from their combination. We be-
gin by describing a representation for uncertainty and lineage
that extends the relational model withtuple alternatives(a set
of possible values for each tuple),maybe tuples(tuples that
may be present or absent), and alineage functionmapping tu-
ple alternatives to the data from which they were derived. We
call databases in this scheme ULDBs, forUncertainty-Lineage
Databases. We show that because we represent lineage along
with uncertainty, ULDBs arecomplete, i.e., they can represent
all finite sets of possible instances. In contrast, complete mod-
els for uncertainty without lineage are more complex, e.g., [22,
29].

Next, we study problems related to querying ULDBs. First, we
show that ULDBs permit straightforward and efficient imple-
mentation of many relational operations. We then consider the
problem of extracting one or more relations from a ULDB: cre-

953

ating a “projection” of a ULDB onto a subset of its relations,
without changing the possible instances of the relations. Ex-
tracting relations is tricky because when data in a relationR is
derived from data inR′, then the possible instances ofR may
correlate with the possible instances ofR′ (even whenR′ is not
be included in the projection), which may in turn correlate with
possible instances of other relations. Finally, for both querying
and extraction we are interested in operating on ULDBs that
satisfy some notions of minimality. We definedata minimality
and lineage minimalityof ULDBs, and we present results on
minimizing ULDBs.

ULDBs also open up an interesting alternative approach to query
processing inprobabilistic databases, which are captured by a
simple extension of basic ULDBs to includeconfidence values.
Previous work [20] suggests special techniques for construct-
ing query plans that ensure correctness for probabilistic data.
It turns out that when lineage is tracked, special considerations
are no longer needed: Query execution initially proceeds with-
out computing probabilities, so any query plan may be used.
Probabilities are then computed from lineage as needed in a
separate step.

In summary, this paper makes the following contributions:

• We define ULDBs—uncertain databases with lineage—
and show that they are complete (Sections 2 and 3).
• We give algorithms for relational operations in ULDBs

(Section 4.2).
• We define data-minimality and lineage-minimality for

ULDBs, and discuss both types of minimization (Sec-
tion 4.3).
• We define the new problem of extracting data from a

ULDB, and we present an algorithm for it (Section 4.4).
• We describe how ULDBs can be extended with confi-

dence values, and we show how they offer an alternative
solution to query processing in probabilistic databases
(Section 5).

We discuss related work in Section 6 and conclude with future
directions in Section 7. Note that ULDBs as presented in this
paper form the basis of theTrio system under development at
Stanford. An overview is given in [8].

2. PRELIMINARIES
We begin by describing databases with lineage, which we call
LDBs, and then we describe uncertain databases. In Section 3
we present ULDBs, which combine the two formalisms.

LDBs and ULDBs extend the relational model. A databaseD
is comprised of a set of relations̄R = R1, . . . , Rn, where each
Ri is a multiset of tuples. We attach a unique identifier to each
tuple in the database, andI(R̄) denotes all identifiers in rela-
tionsR1, . . . , Rn.

2.1 Databases with Lineage
In the terminology of [12], in LDBs we focus on “where lin-
eage”: the lineage of a tuple identifies the data from which it
was derived. Some tuples in an LDB are derived from other
LDB tuples, e.g., as a result of queries. The lineage of derived
tuples consists of references to other tuples in the LDB, via their
unique identifiers. Base tuples in some cases are derived from
entities outside the LDB, such as an external data set or a sensor
feed. For the latter case we introduceexternallineage, which

is formalized in this section along withinternal lineage, but not
discussed in any detail until Section 4. External lineage refers
to a set of external symbols we denote byE. Thus, the set of
symbols known by an LDB isS = I(R̄) ∪ E.

DEFINITION 2.1. (Database with lineage): An LDBD is
a triple (R̄, S, λ), whereR̄ is a set of relations,S is a set of
symbols containingI(R̄), andλ is a lineage functionfromS to
2S . 2

EXAMPLE 2.2. We introduce as a running example a highly
simplified “crime-solver” database. Consider LDB relations
Drives(person,car) andSaw(witness,car) repre-
senting driver information and crime-vehicle sightings respec-
tively. Consider also a relationAccuses(witness,person)
produced by the queryπwitness,person(Saw ⊲⊳ Drives). Here is
some sample data:

Saw
ID witness car
21 Amy Mazda
22 Amy Toyota
23 Betty Honda

Drives
ID person car
31 Jimmy Mazda
32 Jimmy Toyota
33 Billy Mazda
34 Billy Honda

Accuses
ID witness person
41 Amy Jimmy
42 Amy Jimmy
43 Amy Billy
44 Betty Billy

λ (41) = {21, 31}
λ (42) = {22, 32}
λ (43) = {21, 33}
λ (44) = {23, 34}

The ID column denotes the tuple identifiers, and empty lineage
is omitted. 2

Our basic formalism places no restrictions on the lineage func-
tion λ. However, when operations are performed there is of-
ten an obvious lineage function for the tuples in the result.
The above example demonstrates a natural lineage function for
joins: lineage of a tuplet in the result of a join is the set of
tuples, one from each of the joined relations, that were com-
bined to formt, e.g.,(Amy, Billy) is obtained from(Amy,
Mazda) and(Billy, Mazda). Some operations, such as nega-
tion, duplicate-elimination, and aggregation, have less obvious
lineage functions. For discussion of lineage functions see, e.g.,
[9, 12, 17, 18, 33]. The operations we consider in this paper all
have simple lineage functions, and furthermore they preserve
a notion ofwell-behavedlineage that we formalize later in the
paper.

In an LDB, query results include lineage that refers to other
tuples in the database. Hence, in our formalism the result of
applying a queryQ to databaseD includes the original rela-
tionsR̄ and a new relation forQ’s answer with the appropriate
lineage function. Thus, an important aspect of LDBs is that we
cannot consider each relation in the database in isolation. We
explore this point further in Section 4.4.

Note that while a relation may contain duplicates, each tuple
has its own lineage. For example, tuples 41 and 42 in Exam-
ple 2.2 have the same data, but each one has a different deriva-
tion, and therefore different lineage. Extending our model to

954

set semantics requires more complex lineage functions than we
consider in this paper, and is a subject of follow-on work.

2.2 Uncertain Databases
An uncertain database represents a set ofpossible instances,
each of which is one possible state of the database. A num-
ber of different formalisms have been proposed for represent-
ing sets of possible instances, e.g., [1, 5, 22, 27, 29, 32]. One
difference among these formalisms is in their expressive power:
which sets of possible instances can be represented in the for-
malism. In what follows we introducex-relations, a specific
formalism for uncertain databases. Conceivably, we could have
considered the combination of any uncertainty formalism with
lineage, but we found x-relations to be a good starting point and
a good fit for applications we are considering.

DEFINITION 2.3. An x-tuple is a multiset of one or more
tuples, calledalternatives. An x-tuple may be annotated with a
‘?’, in which case it is called amaybe x-tuple. Anx-relationis
a multiset of x-tuples. 2

Alternatives of an x-tuple represent mutually exclusive values
for the tuple, leading to the following definition of possible in-
stances.

DEFINITION 2.4. An x-relationR represents the set of pos-
sible instancesP that can be constructed as follows: choose ex-
actly one alternative from each x-tuple inR that is not a maybe
x-tuple, and choose zero or one alternative from each x-tuple in
R that is a maybe x-tuple. 2

EXAMPLE 2.5. The following x-relation represents an un-
certain version of relationSaw from Example 2.2:

ID Saw(witness, car)
21 (Amy,Mazda) || (Amy,Toyota)
23 (Betty,Honda)

?

Here, Amy may have seen a Mazda, a Toyota, or no car at all,
and the relation has three possible instances. 2

A formalism for representing uncertainty is said to becom-
plete if it can represent any finite set of possible instances.c-
tables [29] is the prototypical complete formalism for uncer-
tainty. x-relations are not a complete formalism. For example,
the joinAccuses of the x-relationSaw above withDrives
from Example 2.2 cannot be represented as an x-relation: x-
tuples are independent, so they cannot express the fact that if
Amy accuses Jimmy (due to the Mazda), then she must accuse
Billy as well.

Studies of completeness in various models for uncertainty can
be found in, e.g., [2, 22, 27, 29, 32]. We will soon see (Sec-
tion 3.1) that although x-relations alone are incomplete as shown
above, adding lineage makes them complete.

3. COMBINING LINEAGE AND UNCER-
TAINTY

We now present ULDBs, a representation that captures both lin-
eage and uncertainty. ULDBs extend the LDBs of Section 2.1
with the x-relations of Section 2.2.

DEFINITION 3.1. A ULDBD is a triple(R̄, S, λ), whereR̄
is a set of x-relations,S is a set of symbols containingI(R̄),
andλ is a lineage function fromS to 2S . 2

Identifiers inI(R̄) now correspond to tuple alternatives.I(R̄)
thus contains pairs(i, j), wherei identifies the x-tuple andj
is an index for one of its alternatives. When we refer to an
arbitrary symbol in the setS, we uses(i,j), denoting either
(i, j) ∈ I(R̄) or an external symbol. We will later see in Sec-
tion 4.4 why(i, j) subscripts on external symbols are useful.

EXAMPLE 3.2. We combine the uncertainSaw x-relation
from Example 2.5 with the earlierDrives relation to create
a new version ofAccuses that has both uncertainty and lin-
eage:

ID Saw(witness, car)
21 (Amy,Mazda) || (Amy,Toyota)
23 (Betty,Honda)

?

ID Drives(person, car)
31 (Jimmy,Mazda)
32 (Jimmy,Toyota)
33 (Billy,Mazda)
34 (Billy,Honda)

ID Accuses(witness, person)
41 (Amy,Jimmy)
42 (Amy,Jimmy)
43 (Amy,Billy)
44 (Betty,Billy)

? λ(41,1)={(21,1),(31,1)}
? λ(42,1)={(21,2),(32,1)}
? λ(43,1)={(21,1),(33,1)}
? λ(44,1)={(23,1),(34,1)}

We now define the semantics of a ULDB as a set of possible
instances, where each instance is an LDB. The main technical
challenge in the definition is to ensure that each possible LDB
is based on consistent lineage. Recall that alternatives of an x-
tuple are mutually exclusive in a given instance (0 or 1 of them
are chosen), so we need to ensure that a possible LDB does not
have two tuples whose lineages are from distinct alternatives of
the same x-tuple. Recalls(i,j) denotes both internal identifiers
(i, j) ∈ I(R̄) and external symbols.

DEFINITION 3.3. Let D = (R̄, S, λ) be a ULDB. A possi-
ble LDBDk of D is obtained as follows. Pick a set of symbols
Sk ⊆ S such that:

1. If s(i,j) ∈ Sk, then for everyj′ 6= j, s(i,j′) 6∈ Sk.

955

2. ∀s(i,j) ∈ Sk, λ(s(i,j)) ⊆ Sk.

3. If for some x-tupleti there does not exist as(i,j) ∈ Sk,
thenti is a maybe x-tuple, and∀s(i,j) ∈ ti, λ(s(i,j)) = ∅
or λ(s(i,j)) 6⊆ Sk.

The possible LDBDk is the triple(R̄k, Sk, λk) whereR̄k in-
cludes exactly the alternatives of x-tuples inR̄ such thats(i,j) ∈
Sk, andλk is the restriction ofλ to Sk. 2

Intuitively, the first condition in Definition 3.3 says that alter-
natives of the same x-tuple are mutually exclusive, i.e., at most
one of them may appear in each possible instance. The second
condition enforces the semantics of lineage: if an alternative is
present in a possible instance, so must be the alternatives it was
derived from. Observe that this implication is in one direction
only. The third condition says that an x-tuple must yield a tuple
in a possible instance unless: (i) it is a maybe x-tuple, and (ii)
none of its alternatives has a nonempty lineage that would have
been consistent with condition 2.

EXAMPLE 3.4. We explain the possible instances of the ULDB
in Example 3.2. Consider the choices for x-tuple 21 ofSaw,
which has two alternatives and is a maybe x-tuple. The possi-
ble instance that picks (21,1) must also have (41,1) and (43,1)
to satisfy condition 3 in Definition 3.3, and it cannot have (42,1)
or condition 2 would be violated. Similarly, the possible in-
stance that picks (21,2) must have (42,1) but not (41,1) or (43,1).
The possible instance that doesn’t pick any alternative for x-
tuple 21 has neither of (41,1) or (42,1), nor (43,1) by condition
2. Note that since (23,1) and (34,1) are always present, all
possible instances have tuple (44,1) to satisfy condition 3. This
gives us the three possible instances we expect. Note in particu-
lar that not all combinations of the maybe x-tuples inAccuses
are included in the possible instances. 2

3.1 Completeness
As discussed earlier,completenessis one of the important mea-
sures for the expressive power of a formalism for uncertainty.
In general, a formalism is complete if it is possible to represent
any set of possible instances within the formalism. Extending
the traditional notion of completeness for ULDBs, we consider
a stronger definition that includes both uncertainty and lineage.
The following theorem shows that ULDBs are indeed complete.

THEOREM 3.5. Given any set of possible LDBsP =
{P1, P2, . . . , Pm} over relationsR = {R1, R2, . . . , Rn},
there exists a ULDBD = (R, S, λ) whose possible LDBs are
P . 2

A formal proof for this theorem (and for all other theorems in
the paper) appears in an online full version of the paper [7].

3.2 Well-Behaved Lineage
Although the formal definition of a ULDB allows an arbitrary
lineage functionλ, in practice tuples are derived as results of
queries, data imports, and other activities. Therefore, we expect
λ to have a restricted structure and not be an arbitrary function.
As a simple example, we don’t expect to have a tuplet1 derived
from t2 and alsot2 derived fromt1.

We define an interesting restricted class of lineage that we call
well-behavedlineage. We will see that this class is closed un-
der many relational operations, and its properties yield efficient
algorithms for them. Letλ∗ denote the transitive closure of
lineage functionλ.

DEFINITION 3.6 (WELL-BEHAVED L INEAGE). The lin-
eage of an x-tupleti is well-behavedif it satisfies the following
three conditions:

1. Acyclic: ∀s(i,j), s(i,j) /∈ λ∗(s(i,j))

2. Deterministic: ∀s(i,j), s(i,j′), if j 6= j′ then either
λ(s(i,j)) 6= λ(s(i,j′)) or λ(s(i,j)) = ∅

3. Uniform: ∀s(i,j), s(i,j′), B(s(i,j)) = B(s(i,j′)), where
B(s(i,j)) = {tk|∃s(k,l), s(k,l) ∈ λ(s(i,j))}

We say that a ULDBD = (R, S, λ) is well-behaved if all its
x-tuples have well-behaved lineage. 2

Informally, Definition 3.6 says lineage is well-behaved when:
(1) there are no cycles; (2) all alternatives of an x-tuple have
distinct lineage; and (3) their lineage points to alternatives of
the exact same set of x-tuples.

Let base x-tuplesbe defined as all x-tuples with empty lineage.
An interesting and useful property of well-behaved lineage is
that the possible instances of a well-behaved ULDB are deter-
mined entirely by the base x-tuples. That is, selecting a set of
alternatives for base x-tuples determines which alternatives are
selected for all x-tuples derived from them.

THEOREM 3.7 (WELL-BEHAVED ULDB). For two pos-
sible instancesD1 and D2 of a well-behaved ULDBD =
(R̄, S, λ), D1 = D2 if and only ifD1 andD2 have the same
set of alternatives chosen for all base x-tuples. 2

Recall that proofs of all theorems appear in the online full ver-
sion of the paper [7].

Unless otherwise specified, we assume well-behaved ULDBs
for the rest of the paper. We will soon see that if we start
from a well-behaved ULDB and perform a standard set of rela-
tional operations creating the natural lineage for the results, the
ULDB remains well-behaved.

4. QUERYING ULDBS
In this section we consider queries and operations we can per-
form on ULDBs. We begin (Section 4.2) by considering the
case in which the result of a query also includes the original
database, and we describe standard relational operations under
this assumption. As noted earlier, because we are tracking lin-
eage, we cannot look at an x-relation in a ULDB in isolation
of others. Hence, we consider theextractionproblem (Sec-
tion 4.4), where the goal is to return only the relation that is
the answer to the query (or more generally, a set of x-relations),
without the original database. The challenge here is to extract
the appropriate lineage along with the result x-relation, so that
the correct set of possible instances is preserved.

956

Figure 1: ULDB States and Queries

The computation and representation of query answers (though
not the possible instances) can depend on whether the input and
the output are minimal. In Section 4.3 we define two notions of
minimality for ULDBs: (1) D-minimality, guaranteeing that a
ULDB does not contain extraneous data, and (2)L-minimality,
guaranteeing that a ULDB does not contain extraneous lineage.
We discuss both types of minimization, and we typically apply
our query operations on the minimal forms. We show how min-
imization enables efficient answering ofmembership queries,
where the goal is to determine whether a particular tuple (or set
of tuples) is guaranteed to be in some (or all) possible instances
of a ULDB.

Figure 1 summarizes the different operations (querying, extrac-
tion, and minimization) we consider for ULDBs, and the possi-
ble transitions between states of the ULDB. The remainder of
this section proceeds as follows. In Section 4.1 we introduce
the class of queries we consider, and in Section 4.2 we explain
how these queries are processed against a ULDB. Section 4.3
defines ULDB minimality and discusses algorithms for mini-
mization. Finally, Section 4.4 explains how to correctly extract
a set of x-relations from a ULDB.

4.1 DL-Monotonic Queries
We will restrict our discussion to queries that aremonotonic
with respect to data and lineage. To define monotonicity, we
must first define containment of LDBs. Intuitively, for an LDB
D to be contained inD′, every data element and its transitive
“lineage graph” inD should also be inD′.

DEFINITION 4.1. LetD = (R̄, S, λ) andD′ = (R̄′, S′, λ′)
be two LDBs, wherēR andR̄′ have the same schemas. We say
thatD is containedin D′, denotedD ⊆ D′, if:

1. S ⊆ S′

2. R̄ is contained inR̄′, i.e., if t ∈ Ri thent ∈ R′

i, with
the same tuple identifier

3. For every symbols1 ∈ S, if s2 ∈ λ(s1), thens2 ∈
λ′∗(s1). 2

Note that⊆ is not exactly a partial order on LDBs because it
is not antisymmetric. Specifically,D ⊆ D′ andD′ ⊆ D only
implies thatλ∗ = λ′∗, not necessarily thatλ = λ′.

Based on Definition 4.1, we define the class ofDL-monotonic
queries. In the definition, given a queryQ and an LDBD,
Q(D) is an LDB that extendsD with one x-relationRq and

Figure 2: Semantics of Queries on ULDBs.

with lineageλRq
from Rq to I(R̄). We writeQ(D) = D +

(Rq, I(Rq), λRq
).

DEFINITION 4.2. LetD be an LDB. LetD|I denote the re-
striction ofD to the tuples identified in setI, and the lineage
among them. A DL-monotonic query is a functionQ from LDBs
to LDBs that satisfies the following conditions:

1. ∀t ∈ Rq, Q(D|λ(t)) = D|λ(t) + (t, I(t), λ(t)), and
no strict subset ofD|λ(t) producest.

2. ∀D, D′ such thatD ⊆ D′, Q(D) ⊆ Q(D′). 2

The first condition constrains the lineage of a result tuple to be a
minimal subset of the database that produces exactly that tuple,
and the second condition enforces monotonicity on both data
and lineage.

EXAMPLE 4.3. In Example 2.2, the queryAccuses =
πwitness,person(Saw ⊲⊳ Drives) is DL-monotonic. In particu-
lar the reader may verify that the lineage associated with the
four x-tuples ofAccuses satisfies Definition 4.2 above. Note
that the lineage of each of the two(Amy,Jimmy) tuples must
have a distinct combination of base tuples so that condition 2
of Definition 4.2 is satisfied. 2

Intuitively, any operation that can produce its results in a “tuple-
by-tuple” fashion is DL-monotonic. Considering the standard
relational operations, multiset selection, projection, join, and
union are all DL-monotonic, and so are any queries composed
from them. Aggregation, duplicate-elimination, and some set
operators are not DL-monotonic. In the remainder of this sec-
tion, we assume all queriesQ to be DL-monotonic. In follow-
on work we are extending our approach to other operations, as
discussed briefly in Sections 5.3 and 7.

4.2 Applying a Query to a ULDB
We consider the problem of applying a queryQ to a ULDB
D, where the resultQ(D) is defined to include the original
database and the answer relation. Query semantics are defined
in terms of possible instances (see Figure 2):Q(D)’s possi-
ble LDBs are logically obtained by applyingQ to each of the
D1, . . . , Dn possible instances ofD. We now present an al-
gorithm for evaluatingQ directly on the ULDB representation,
shown as the broad arrow in Figure 2.

Algorithm 1 (see figure) proceeds in two phases. First (lines
4–5), it performs a “standard” evaluation of the queryQ on an
LDB D that contains all the alternatives of the base x-relations.
The resulting relationRq and its lineageλRq

are then used
to: (a) construct one x-tupletl in Rq for each combination

957

input: a ULDB D with x-relations{R1, . . . , Rn}, and a
queryQ onD
output: a ULDB D′ = Q(D)

1: Rq ← ∅ ; λRq
← undefined function

2: LetD = R1, . . . , Rn be the LDB such that∀i,
R̄i = {tupless(i,j)|s(i,j) is an alternative inRi}

3: ComputeQ(D̄) = D̄ + (R̄q, I(R̄q), λR̄q
)

4: Group the tuples inR̄q by the x-tuple identifiers corre-
sponding to the tuples in their lineage

5: for each group of x-tuple identifierst1, . . . , tn do
6: create a maybe x-tupletl in Rq with all the tuples

of the group as alternatives
7: ∀s(l,k) alternative oftl, setλRq

(s(l,k)) as inλR̄q

8: end for
9: return D′ = D + (Rq, I(Rq), λRq

)

Algorithm 1: Query Evaluation

t1, . . . , tn of x-tuples inD that produced tuples throughQ
(lines 6–8); and (b) generate lineage forti’s alternatives (line
9). Note that althoughtl is defined as a maybe x-tuple, it may
still contribute a tuple in every possible LDB ofQ(D). We
discuss elimination of extraneous ‘?’s in Section 4.3.1.

THEOREM 4.4. Given a ULDBD and a queryQ:

1. Algorithm 1 returnsQ(D).
2. If D is a well-behaved ULDB, then so isQ(D). 2

Observe that our algorithm is based on evaluatingQ over a con-
ventional databaseD. Since the size ofD is the same as the
size of x-relationsR1, . . . , Rn, complexity does not increase
due to uncertainty. More importantly, we can implement Al-
gorithm 1 readily using a standard relational DBMS, without
having to build a special-purpose query engine for ULDBs. In
fact, our initial implementation of theTrio prototype ULDB has
taken exactly this approach [3, 8]. Of course special-purpose
techniques also may be interesting in order to maximize perfor-
mance of query processing on ULDBs.

4.3 ULDB Minimality
We now define two notions of minimality for ULDBs:data
minimalityandlineage minimality.

4.3.1 Data Minimality
As the following example illustrates, a ULDB may contain ex-
traneous data, including “impossible” alternatives in an x-tuple,
or x-tuples unnecessarily marked with ‘?’. As a special case, an
entire x-tuple is extraneous if all its alternatives are extraneous.

EXAMPLE 4.5. In Example 3.2, the ‘?’ on x-tuple 44 is ex-
traneous because the alternative (24,1) is present in every pos-
sible LDB. As an example of an extraneous alternative (entire
x-tuple in this case), consider the following x-relations, where
Car1 andCar2 represent separate lists of possible crime ve-
hicles.

ID Saw(witness, car)
1 (Carol,Acura) || (Carol,Lexus)

ID Car1(car)
2 Acura

ID Car2(car)
3 Lexus

Suppose we performSaw1 = (Car1 1 Saw) and Saw2 =
(Car2 1 Saw) to get sightings related to the two car lists:

ID Saw1(witness,car)
4 (Carol,Acura)

ID Saw2(witness,car)
5 (Carol,Lexus)

λ(4,1)={(1,1),(2,1)} λ(5,1)={(1,2),(3,1)}

Finally, suppose we compute(Saw1 1witness Saw2) to find
pairs of car sightings inCar1 andCar2 by the same witness:

ID (witness,car1,car2)
6 (Carol,Acura,Lexus) ? λ(6,1)={(4,1),(5,1)}

There is no possible instance of the database with alterna-
tive (6,1). Intuitively, Carol saw either an Acura or a Lexus,
while both sightings would be necessary to derive x-tuple
(Carol,Acura,Lexus). Thus,(Carol,Acura,Lexus) is
extraneous. 2

We now define data minimality formally.

DEFINITION 4.6 (D-MINIMALITY). An alternative(i, j)
of an x-tupleti in a ULDBD is said to beextraneousif remov-
ing it from the x-relation does not change the possible instances
of D. Similarly, a ‘?’ on an x-tuple inD is said to be extrane-
ous if removing it does not change the possible instances ofD.
A ULDB D is D-minimal if it does not include any extraneous
alternatives or ‘?’s. 2

The following theorems, proved in the appendix, provide con-
ditions on ULDBs that enable us to detect extraneous data.

THEOREM 4.7 (EXTRANEOUS ALTERNATIVE). Let D
be a well-behaved ULDB. An alternative with identifier(k, l)
(in x-tuple tk) in D is extraneous if and only if there exist
s(i,j1), s(i,j2) ∈ λ∗(s(k,l)), with j1 6= j2. 2

In other words, an alternative is extraneous if and only if it has
contradictory lineage.

In the next theorem, letη(ti) denote the number of alterna-
tives in x-tupleti that are not extraneous. Leth(ti) denote the
set of base x-tuples from whichti is derived, i.e.,tj ∈ h(ti) if
∃s(i,k), s(j,l) such thats(j,l) ∈ λ∗(s(i,k)) and∀m, λ(s(j,m)) =
∅.

958

1: input: ULDB D
2: output: equivalent but D-minimized version ofD
3: for each x-relationR in D do
4: Skip if R has been D-minimized
5: Recursively perform Steps 3-8 to D-minimize all x-

relations{R1, R2, . . . , Rn} that contain lineage of data
in R.

6: Computeλ∗ for each alternative ofR using the already
computedλ∗ for eachRi

7: Delete all extraneous alternatives using the condition of
Theorem 4.7

8: Computeη(t) for all x-tuplest in R and for all x-tuples
in h(t)

9: Use the condition in Theorem 4.8 to delete any extrane-
ous ‘?’s

10: MarkR as D-minimized
11: end for
12: return D

Algorithm 2: Lazy Algorithm for D-minimization

THEOREM 4.8 (EXTRANEOUS ‘?’). Let D be a well-
behaved ULDB. A ‘?’ on an x-tuplet ∈ D is extraneous if
and only if:

1. No x-tuple inh(t) has a ‘?’

2. η(t) =
Q

t′∈h(t) η(t′) 2

We can now use Theorems 4.7 and 4.8 to D-minimize ULDB
representations. Minimization needs to work on the transitive
closureλ∗ of the lineage, which presents two approaches to
D-minimization: (1) alazyapproach in whichλ∗ is computed
during minimization, and (2) aneagerapproach in which the
algorithm for operations maintainsλ∗ and also the D-minimal
form. Algorithm 2 presents the lazy approach for D-minimizing
a ULDBD; the eager approach uses the same idea but performs
the computation incrementally with operations. It is easy to see
that the algorithm returns the D-minimal representation.

4.3.2 Lineage Minimality
A second notion of minimality has to do with lineage. For
ULDB D = (R̄, S, λ), let its internal lineagebe the restriction
of λ to only symbols inI(R̄). (Recall the domain of symbols
S = I(R̄) ∪ E also includes external symbolsE.)

DEFINITION 4.9 (L-MINIMAL ULDB). A ULDB D =
(R̄, S, λ) is L-minimal if for any D′ = (R̄, S′, λ′) over the
same x-relations̄R such that:

1. S′ ⊆ S, λ′∗ ⊆ λ∗

2. D andD′ have the same internal lineage

D′ has the same possible instances asD only if S′ = S and
λ′∗ = λ∗. 2

We have the following main theorem about L-minimality.

THEOREM 4.10 (L-MINIMALITY OF ALGORITHM 1).
Given a well-behaved L-minimal ULDBD and a queryQ, the
resultQ(D) of Algorithm 1 is an L-minimal ULDB. 2

The above theorem guarantees that query processing preserves
L-minimality. In general, “L-minimizing” a ULDBD, i.e.,
finding an L-minimalD′ that coincides withD on data and
internal lineage, is a tractable problem. However, the result
of L-minimization is not unique. It is still open whether we
can efficiently find a “global minimum” among all possible L-
minimizations, with respect to the size of their representation.
We plan to investigate this question in future work.

4.3.3 Membership Queries
One useful side-effect of minimization is that it helps us answer
membership queries[2, 22, 27, 28, 29]: determining whether a
particular tuple or relation is present in some (or every) possible
instance of an uncertain database. In the context of ULDBs,
these problems are defined as follows.

DEFINITION 4.11 (MEMBERSHIPQUERIES).

• Tuple Membership (resp. Certainty): Given a ULDBD
containing a relationR, and given a tuplet, determine
whethert ∈ R in some (resp. all) possible instance(s) of
D.
• Instance Membership (resp. Certainty): Given a ULDB
D containing a relationR, and a multisetT of tuples,
determine whetherR contains exactly the tuples ofT in
some (resp. all) possible instance(s) ofD. 2

The following theorem shows that it is tractable to answer both
of the tuple-membership problems. The algorithms to do so
(included in the proof) build directly on D-minimization. How-
ever, as is true of all complete uncertainty models [22] includ-
ing ULDBs, the instance-membership problems are intractable.

THEOREM 4.12. LetD be a well-behaved ULDB.

1. The tuple-membership and tuple-certainty problems are
solvable in polynomial time in the size ofD.

2. The instance-membership and instance-certainty prob-
lems are NP-hard. 2

4.4 Extraction
Typically, after issuing a query to a database, users are inter-
ested in seeing only the result relation, not the entire database.
More generally, given a ULDB, we may want to extract a subset
of its relations, but in a way that preserves the possible instances
of the extracted subset. In principle, whenever a database in-
cludes constraints across relations, extracting a subset of the
database is an interesting question; otherwise, the meaning of
every relation is independent of the others, and therefore ex-
traction is trivial.

DEFINITION 4.13 (EXTRACTION). Let D be a well-
behaved ULDB with x-relationsR and possible instancesP ,
and letX̄ be a subset ofR. The problem of extractinḡX from
R is to return a well-behaved ULDBD′ with R′ = X̄ and pos-
sible instancesP ′, such that the restriction ofP to X̄ equals
P ′ with respect to data and internal lineage.

Simply removing the relations inR−X̄ and their symbols does
not give a correct extracted result. For instance, if the x-relation

959

Accuses from Example 3.2 is extracted without any lineage,
x-tuple 43 may now occur without x-tuple 41, which is not al-
lowed by any of the possible instances of the original ULDB.

The following short but dense algorithm produces the correct
extraction.

1: input: ULDB D = (R̄, S, λ), andX̄ ⊆ R̄
2: output: a ULDB D′ = (X̄, S′, λ′)
3: S′ = I(X̄) ∪ (

S
x∈I(X̄) λ∗(x))

4: λ′ = λ|S′ , the restriction ofλ to S′

5: return D′

Effectively, the algorithm works by identifying all lineage that
is necessary to ensure that the possible instances of the ex-
tracted relations are preserved. Lineage that is not within the
extracted relations is converted from internal (identifiers(i, j)
in I(R̄)) to external (the corresponding symbolss(i,j)). Note
that by our definitions, the mutual exclusion of x-tuple alter-
natives carries over to what are now external symbols. One
subtlety is that we must associate a logical ‘?’ with each set
of external symbols that were created from an x-tuple having a
‘?’.

Consider again theAccuses example discussed above. If we
extractAccuses from the database shown in Example 3.2, we
retain the lineage on the x-tuples ofAccuses, except it now
refers to external symbols. By doing so, Definition 3.3 of possi-
ble instances correctly prohibits a possible instance containing
one but not the other of x-tuples 41 and 43.

We have the following theorem, proved in the appendix, about
our extraction algorithm.

THEOREM 4.14. Let D = (R̄, S, λ) be a well-behaved D-
minimal ULDB, and consider anȳX ⊆ R̄.

1. The extraction algorithm returns a correct extraction
D′.

2. The extraction algorithm runs in polynomial time in the
size ofD.

3. The resultD′ is D-minimal. 2

5. CONFIDENCES AND PROBABILISTIC
DATA

As a final contribution, we show how ULDBs can be extended
to includeconfidence valuesand probabilistic query process-
ing. With confidences, ULDBs subsume the typical notion of
probabilistic databases, which assign a confidence value to tu-
ples, without alternatives or lineage [5, 13, 20, 32]. A notewor-
thy feature of probabilistic query processing using ULDBs is
that we can decouple the computation of data in query results
from the computation of the data’s probability (confidence) val-
ues. This decoupling enables more freedom with query plan
selection than is typically available for probabilistic query pro-
cessing [21], and it allows confidence values to be computed
selectively as needed.

5.1 Confidence Values
In the remainder of this section we assume ULDBs to be well-
behaved and D-minimized. If we consider the semantics of

x-relations probabilistically, then without lineage different al-
ternatives of the same x-tuple representdisjoint events, while
different x-tuples representindependentevents. Recall from
Section 3.2 that in well-behaved ULDBs, the possible instances
are determined entirely by the choices for the base x-tuples; the
choices for derived x-tuples are determined by their lineage.

We preserve this intuition when extending ULDBs with confi-
dences. Now, each base alternativea has an associatedconfi-
dence valuec(a). For each base x-tuplet, the sumσ(t) of the
confidence values of its alternatives must be at most 1, and ex-
actly 1 if t has no ‘?’. The confidence of ‘?’ for any x-tuple is
(1− σ(t)). When we map to possible instances, each instance
has aprobabilityof being the “correct” instance, based on con-
fidences in the data comprising the instance: The probability of
a possible instance is the product of the confidences of the base
alternatives and ‘?’ chosen in it.

EXAMPLE 5.1. Suppose Amy sighted an Acura with confi-
dence0.8, while Betty is sure she saw either an Acura or a
Mazda with confidences0.4 and0.6 respectively. Furthermore,
Hank drives an Acura with confidence0.6. We have:

ID Saw(witness, car)
11 (Amy,Acura):0.8
12 (Betty,Acura):0.4 || (Betty,Mazda):0.6

?

ID Drives(person, car)
51 (Hank,Acura):0.6 ?

This database has eight possible instances, since each of the
three x-tuples has two possible choices. For example, the possi-
ble instance where Amy saw an Acura, Betty saw a Mazda, and
Hank did not drive an Acura, has confidence0.8 ∗ 0.6 ∗ (1 −
0.6) ≈ 0.20. 2

It can be shown that for any well-behaved D-minimal ULDB
with confidences, the following desirable properties hold.

1. The sum of probabilities of its possible instances is1.
2. The confidence of a base alternativea (resp. ‘?’ on an x-

tuplet) equals the sum of the confidences of the possible
instances wherea (resp. no alternative oft) is picked.

5.2 Query Processing
The presence of lineage allows us to decouple ULDB query
processing with confidences into two steps:

1. Data computation, in which we compute the data and lin-
eage in query results, just as in ULDBs without confi-
dences

2. Confidence computation, in which we compute confidence
values for query results based on their lineage (and con-
fidence values on base data)

We first motivate why this decoupling works. Then we briefly
discuss confidence computation in Section 5.3 and data com-
putation in Section 5.4. Overall, the topic of ULDB query pro-
cessing with confidences is a rich and interesting one, and the
subject of considerable ongoing work.

960

Suppose we have a derived x-tuplet, and consider one of its
alternativesa. With well-behaved lineage,a appears in a possi-
ble instance if and only if all of the base x-tuple alternatives in
the transitive closure ofa’s lineage appear in the instance. Fur-
thermore, these base x-tuple alternatives areindependent, since
they have no lineage of their own and cannot be alternatives of
the same x-tuple. Thus, the confidence ofa is computed as the
product of the confidences of the base-tuple alternatives in the
transitive closure of its lineage. For an x-tuplet with a ‘?’, con-
fidence for the ‘?’ is(1 − σ(t)), whereσ(t) is the sum of the
confidences oft’s alternatives.

Thus, the confidence value for every result alternativea is a
function of the confidence values for the base alternatives reach-
able bya’s transitive lineage. Hence we need not compute con-
fidence values during query processing—we can compute them
afterwards using the lineage on query results together with the
original base data confidences.

Next, we show how decoupling data and confidence compu-
tation overcomes a previously identified shortcoming of query
processing in probabilistic databases, and we briefly discuss ef-
ficient confidence computation in the decoupled scenario.

5.3 Confidence Computation
Dalvi and Suciu [20] show that naive propagation of confi-
dences during query processing—essentially assuming indepen-
dence of tuples in intermediate results—may lead to incorrect
confidences in the result. We illustrate the problem with an ex-
ample, and also show how our decoupled technique operates
(correctly) on the same example.

EXAMPLE 5.2. Let us simplify the data in Example 5.1 to:

ID Saw(witness,car)
11 (Amy,Acura):0.8
12 (Betty,Acura):0.4

?
?

ID Drives(person,car)
51 (Hank,Acura):0.6 ?

Suppose we want the list of accused persons with confidences:
Accused = Πperson (Saw ⊲⊳ Drives). Here we are using
a duplicate-eliminating projection. We consider three ways of
executing this query: two query plans that compute confidences
as part of operator execution, and a third method showing our
decoupled approach.

Query Plan 1 (correct): Evaluating the query using the fol-
lowing plan gives the correct confidences in the result:

Πperson(Πcar(Saw) ⊲⊳ Drives)

In Πcar(Saw), there is just one tuple(Acura) whose confi-
dence is given by:

Pr((11, 1) ∨ (12, 1))

= Pr((11, 1)) + Pr((12, 1)) − Pr((11, 1) ∧ (12, 1))

Since alternatives(11, 1) and (12, 1) are independent,
Pr((Acura)) evaluates to0.8 + 0.4 − (0.8 ∗ 0.4) = 0.88.
Now joining(Acura) with x-tuple 51, we get the confidence
of the result(Hank,Acura) to be0.88 ∗ 0.6 = 0.528. In
the final step, projecting ontoperson, the confidence remains
0.528.

Query Plan 2 (incorrect): Suppose instead we use plan:

Πperson (Saw ⊲⊳ Drives)

Now we get an incorrect result, because the intermediate x-
tuples(Amy,Acura,Hank) and(Betty,Acura,Hank) from
(Saw ⊲⊳ Drives) are not independent. Let these tuples
have IDs(61, 1) and (62, 1) respectively. The confidence of
(Amy,Acura,Hank) is:

Pr((61, 1)) = Pr((11, 1) ∧ (51, 1))

giving 0.8 ∗ 0.6 = 0.48. Similarly, the confidence of
(Betty,Acura,Hank) is0.6∗0.4 = 0.24. Now the x-tuple
Hank after projecting ontoperson has confidence given by

Pr((61, 1) ∨ (62, 1))

= Pr((61, 1)) + Pr((62, 1)) − Pr((61, 1) ∧ (62, 1))

Assuming independence of tuples(61, 1) and(62, 1), the con-
fidence evaluates to0.48 + 0.24− 0.48 ∗ 24 = 0.6048, which
is incorrect. See [20] for further discussion of these issues.2

Query Plan 3 (decoupled approach): In our approach, we
first compute the query result using any execution plan. We get
the one x-tuple(Hank); let its identifier be(71, 1). Because of
the duplicate-elimination operator, which is not DL-monotonic,
λ((71, 1)) is no longer a set of tuple alternatives (indicating
conjunction), but rather a boolean formula over alternatives.
(Disjunctive and negative lineage is required once we go be-
yond the DL-monotonic operations; details are the subject of
ongoing work.) Specifically,λ((71, 1)) = ((51, 1)∧ ((11, 1)∨
(12, 1))).

Now, we compute the confidence of the(Hank) tuple based on
its lineage formula and confidence values for the (independent)
base alternatives:

Pr((71, 1)) = Pr(((51, 1) ∧ ((11, 1) ∨ (12, 1)))

With Pr((51, 1)) = 0.6, Pr((11, 1)) = 0.8, and
Pr((12, 1)) = 0.4, we obtain the correct resultPr((71, 1)) =
0.528. 2

Our decoupled approach has two important advantages: First,
the data computation step has the flexibility to use the most effi-
cient execution plan, without worrying about plans that produce
incorrect confidences as illustrated above. Second, in the case
where confidence values may not be required for all data in all

961

query results, the values can be computed selectively and on-
demand. Further discussion of both of these points appears in
the next subsection.

Of course we do incur some overhead when confidences are
finally computed, particularly if we follow the most naive ap-
proach of tracing the entire lineage of each result x-tuple al-
ternative to obtain the base data confidences. We have several
ideas for optimizing the confidence computation:

• The confidence value for a derived alternative can be com-
puted from confidence values for a set of “closest inde-
pendent descendents” (CIDs) for the alternative, rather
than from confidence values on base data. Roughly, the
CID of an alternativea is a minimal setS of alternatives
in a’s transitive lineage such that the alternatives inS do
not share a common base alternative in their transitive
lineage. It can be shown that CIDs are unique, and for
more complex types of lineage, recursive computation of
confidence values based on CIDs can be much cheaper
than not using CIDs.
• CIDs also enablememoization, which avoids perform-

ing redundant confidence computations. Memoization
can be useful within the computation for a single alterna-
tive, as well as across confidence computations, as long
as intervening updates don’t alter the relevant lineage or
confidences.
• If transitive lineageλ∗ is already being maintained for

eager D-minimization (Section 4.3.1), it can then also
be applied to considerably speed up confidence compu-
tations.
• So far we have discussed computing the confidence value

for a single alternative. In the case where we wish to
compute confidences for an x-tuple or an entire x-relation,
batch techniques can be used based on the structure guar-
anteed by well-behaved lineage.

All of these topics are the subject of ongoing work.

5.4 Data Computation
To avoid the erroneous confidence calculations as exhibited in
Example 5.2, reference [20] characterizes logical query plans
that are guaranteed to propagate confidences correctly, and re-
stricts their evaluation strategies to such plans. In our decou-
pled approach, we have the luxury of a wider space of plans,
which can be shown to result in arbitrarily large performance
improvements (confidence computation included) in extreme
cases. Consider a queryQ that produces an empty result. Our
approach does not need to perform any confidence computa-
tion for Q since there are no result x-tuples. The alternative
approach computes confidences during query execution until
finally the result is discovered to be empty. Furthermore, an ex-
pensive plan may need to be used in order to correctly compute
confidence values that are eventually thrown away.

More concretely, suppose we have2n large relations,R1(X),
. . ., Rn(X) andS1(Z), . . ., Sn(Z), and two small relations
A(X, Y) andB(Y, Z). Consider a queryQ(Y) that computes
the natural join of all the relations and projects ontoY , and
supposeA 1 B is empty. With simple statistics any standard
optimizer will choose to performA 1 B first. However, in the
plans permitted by [20] (or any other plans that require inde-
pendence of tuples for confidence propagation),A 1 B must
be performed last. In these plans, we can make the cost of com-

putingR1 1 . . . 1 Rn andS1 1 . . . 1 Sn arbitrarily large.

Of course this example was contrived, and reference [20] shows
that for some queries, computing results with confidences has
#P-hard data complexity, regardless. In such situations, our de-
coupled approach offers a practical solution: Answers without
confidence values give an approximation of the result, and their
lineage can be used to selectively compute confidence values
for tuples of interest. If the latter is still too expensive, we can
use approximate techniques like the Monte-Carlo simulations
proposed in [31] to estimate the confidences.

6. RELATED WORK
In [41] we described the original motivation that led to the work
in this paper: development of a general-purpose database man-
agement system that incorporates data, lineage, and uncertainty.
In [22] we explored the space of incomplete and complete mod-
els for uncertainty, without considering lineage. In [23] we
posed and solved a number of new theoretical problems with
respect to representation schemes for uncertainty, again with-
out lineage.

We are not aware of any previously proposed formal data rep-
resentation that integrates both lineage and uncertainty. We
briefly overview some of the work that addresses uncertainty
and lineage independently.

Representation schemes and query answering for uncertain
databases have been studied extensively, e.g., [2, 5, 6, 11, 24,
27, 28, 29, 32, 40]. Much of this previous work is theoretical,
but there has been recent interest in building systems, e.g., [10,
14, 41] for uncertainty, and [30, 38] for integrating inconsistent
data sources. Query answering in probabilistic databases has
seen considerable progress and efficient solutions have been
proposed [19, 20, 21]. We build on that work in this paper,
showing how lineage can further improve query processing.

Approximate query answering has also received significant at-
tention over the last decade [4, 26, 25, 39], but we focus on ex-
act queries over uncertain data rather than inexact queries over
certain data. However, the simple representation of uncertainty
in ULDBs is likely to facilitate approximate querying, and we
plan to investigate this avenue of future work.

Integrating lineage (also known asprovenance) has been pro-
posed for relational databases, e.g., [12, 35, 36], and for data
warehouses, e.g., [16, 17, 18]. It has been observed that there
are various choices in defining lineage, and in this paper we
use a definition similar to thewhere lineageof [12]. Analy-
sis of possible lineage information was also used for optimiz-
ing query evaluation and determining independence of queries
from updates [34]. A recent system being developed around
data provenance is described in [9, 15].

7. CONCLUSIONS AND FUTURE
WORK

We introduce ULDBs as a representation for databases with
both lineage and uncertainty. With simple extensions to the
relational model (tuple alternatives, maybe tuples, and lineage
functions), ULDBs can represent any finite set of possible in-
stances containing data and lineage, and ULDBs are amenable
to efficient query processing using standard relational tech-
niques. ULDBs can be extended naturally to represent and
query probabilistic data; moreover, because lineage enables

962

query evaluation to be decoupled from the computation of con-
fidences, substantial performance gains may be achieved over
computing query operators and confidences in tandem.

In this paper we focused on a specific class of DL-monotonic
queries and their lineage. We are extending our techniques and
results to a larger set of operations, e.g., duplicate-elimination,
aggregation, and negation. Doing so primarily entails extend-
ing the types of lineage allowed, e.g., adding disjunctive and
negative lineage, as briefly shown in Section 5.3.

We are building a system calledTrio based on ULDBs, cur-
rently implemented on top of a standard relational DBMS [3,
8]. Through simple rewriting techniques, Trio evaluates DL-
monotonic queries on ULDBs without altering any system in-
ternals. However, new techniques are required if we are to han-
dle all aspects of ULDBs covered in this paper, e.g., keeping a
ULDB D-minimized as query results are added, and efficiently
L-minimizing the result of an extraction.

We are currently exploring a number of other challenges re-
lated to query processing in ULDBs with confidences. In par-
ticular, we are studying various algorithms and optimizations
when computing confidences, such as memoization and min-
imizing lineage traversal. We are also studying eager versus
on-demand confidence computation, incremental propagation
of confidence updates, and “top-K” and ordering queries based
on confidences.

There are a number of other current and future directions of
work in ULDBs:

• Updates: We are currently identifying a set of update
primitives for ULDBs, and considering the design of ef-
ficient update algorithms.
• Implementation: ULDBs introduce several new phys-

ical design issues, such as data layout, indexing, parti-
tioning, and materialized views, and their integration into
query optimization. Fully exploring these topics is likely
to entail modifying our prototype to operate inside (in-
stead of on top of) a DBMS.
• Theory: There are numerous interesting theoretical

problems to work on. We can reconsider nearly ev-
ery topic in relational database theory in the context of
ULDBs, e.g., dependency theory, query containment, and
sampling and statistics.
• Long-Term Goals: Our agenda for the overall Trio

project [41] includes several features not yet present in
ULDBs, such as uncertainty in the form of continu-
ous distributions, incomplete relations, and versioning of
data, uncertainty, and lineage.

Acknowledgments
We thank Parag Agrawal, Dan Suciu, Jeff Ullman, and the en-
tire Trio group for helpful discussions, and Chris Hayworth for
creating an initial prototype implementation of ULDBs.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of

Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the
Representation and Querying of Sets of Possible Worlds.
Theoretical Computer Science, 78(1), 1991.

[3] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth,
S. Nabar, T. Sugihara, and J. Widom. Trio: A system for
data, uncertainty, and lineage. InProc. of VLDB, 2006.
Demonstration description.

[4] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.
Automated Ranking of Database Query Results. InProc.
of CIDR, 2003.

[5] D. Barbaŕa, H. Garcia-Molina, and D. Porter. The
Management of Probabilistic Data.IEEE Trans. Knowl.
Data Eng., 1992.

[6] R. S. Barga and C. Pu. Accessing Imprecise Data: An
Approach Based on Intervals.IEEE Data Engineering
Bulletin, 16(2), 1993.

[7] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage.
Technical report, Stanford InfoLab, 2005. Available at
http://dbpubs.stanford.edu/pub/2005-39.

[8] O. Benjelloun, A. Das Sarma, C. Hayworth, and
J. Widom. An Introduction to ULDBs and the Trio
System.IEEE Data Engineering Bulletin, 29(1), 2006.

[9] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya.
An annotation management system for relational
databases. InProc. of VLDB, 2004.

[10] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and
D. Suciu. MYSTIQ: a system for finding more answers
by using probabilities. InProc. of ACM SIGMOD, 2005.

[11] B. P. Buckles and F. E. Petry. A Fuzzy Model for
Relational Databases.International Journal of Fuzzy Sets
and Systems, 7, 1982.

[12] P. Buneman, S. Khanna, and W. Tan. Why and where: A
charaterization of data provenance. InProc. of ICDT,
2001.

[13] R. Cavallo and M. Pittarelli. The theory of probabilistic
databases. InProc. of VLDB, 1987.

[14] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A
database system for managing constantly-evolving data.
In Proc. of VLDB, 2005.

[15] L. Chiticariu, W. Tan, and G. Vijayvargiya. DBNotes: a
post-it system for relational databases based on
provenance. InProc. of ACM SIGMOD, 2005.

[16] Y. Cui and J. Widom. Practical lineage tracing in data
warehouses. InProc. of ICDE, 2000.

[17] Y. Cui and J. Widom. Lineage tracing for general data
warehouse transformations.VLDB Journal, 12(1), 2003.

[18] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage
of view data in a warehousing environment.ACM TODS,
25(2), 2000.

[19] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic
Conditional Probabilities for Conjunctive Queries. In
Proc. of ICDT, 2005.

[20] N. Dalvi and D. Suciu. Efficient Query Evaluation on
Probabilistic Databases. InProc. of VLDB, 2004.

963

[21] N. Dalvi and D. Suciu. Answering Queries from
Statistics and Probabilistic Views. InProc. of VLDB,
2005.

[22] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working Models for Uncertain Data. InProc. of ICDE,
2006.

[23] A. Das Sarma, S. Nabar, and J. Widom. Representing
uncertain data: Uniqueness, equivalence, minimization,
and approximation. Technical report, Stanford InfoLab,
2005. Available at
http://dbpubs.stanford.edu/pub/2005-38.

[24] N. Fuhr and T. R̈olleke. A Probabilistic NF2 Relational
Algebra for Imprecision in Databases.Unpublished
Manuscript, 1997.

[25] N. Fuhr and T. R̈olleke. A probabilistic relational algebra
for the integration of information retrieval and database
systems.ACM TOIS, 14(1), 1997.

[26] Norbert Fuhr. A Probabilistic Framework for Vague
Queries and Imprecise Information in Databases. In
Proc. of VLDB, 1990.

[27] G. Grahne. Dependency Satisfaction in Databases with
Incomplete Information. InProc. of VLDB, 1984.

[28] G. Grahne. Horn Tables - An Efficient Tool for Handling
Incomplete Information in Databases. InProc. of ACM
PODS, 1989.

[29] T. Imielinski and W. Lipski Jr. Incomplete Information in
Relational Databases.Journal of the ACM, 31(4), 1984.

[30] Z. G. Ives, N. Khandelwal, A. Kapur, and M. Cakir.
Orchestra: Rapid, collaborative sharing of dynamic data.
In Proc. of CIDR, 2005.

[31] R. M. Karp and M. Luby. Monte-carlo algorithms for
enumeration and reliability problems. InProc. of FOCS,
1983.

[32] L. V. S. Lakshmanan, N. Leone, R. Ross, and V.S.
Subrahmanian. ProbView: A Flexible Probabilistic
Database System.ACM TODS, 22(3), 1997.

[33] A. Y. Levy, R. E. Fikes, and S. Sagiv. Speeding up
inferences using relevance reasoning: A formalism and
algorithms.Artificial Intelligence, 97(1-2), 1997.

[34] Alon Y. Levy and Yehoshua Sagiv. Queries independent
of updates. InProc. of VLDB, 1993.

[35] W. Tan P. Buneman, S. Khanna. Data provenance: Some
basic issues. InProc. of FSTTCS, 2000.

[36] W. Tan P. Buneman, S. Khanna. On propagation of
deletions and annotations through views. InProc. of
ACM PODS, 2002.

[37] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain data
with arbitrary probability density functions. InProc. of
VLDB, 2005.

[38] Nicholas E. Taylor and Zachary G. Ives. Reconciling
while tolerating disagreement in collaborative data
sharing. InProc. of ACM SIGMOD, 2006.

[39] A. Theobald and G. Weikum. The XXL Search Engine:
Ranked Retrieval of XML Data Using Indexes and
Ontologies. InProc. of ACM SIGMOD, 2002.

[40] M. Y. Vardi. Querying logical databases. InProc. of ACM
PODS, 1985.

[41] J. Widom. Trio: A System for Integrated Management of
Data, Accuracy, and Lineage. InProc. of CIDR, 2005.

964

