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ABSTRACT
We consider the problem of query containment over an ob-
ject data model derived from F-logic. F-logic has gener-
ated considerable interest commercially, in the academia,
and within various standardization efforts as a means for
building ontologies and for reasoning on the Semantic Web.
Solution to the containment problem for F-logic queries can
help with query optimization as well as the classification
problem in information integration systems. An important
property of F-logic queries, which sets them apart from
database queries, is that they can mix the data-level and
the meta-level in simple and useful ways. This means that
such queries may refer not only to data but also schema
information. To the best of our knowledge, the contain-
ment problem for such queries has not been considered in
the literature. We show that, even for queries over meta-
information together with data, this problem is decidable
for non-recursive conjunctive queries. We also provide rele-
vant complexity results.

1. INTRODUCTION
The query containment problem is a question of whether
the result of one query is always contained in the result of
another. This problem has attracted considerable interest
in the database and knowledge representation communities.
In databases, query containment is key to query optimiza-
tion and schema integration [2, 16, 25], and in knowledge
representation it has been widely used in Description Logic
[4] for object classification, schema integration, service dis-
covery, and more [8, 23].

The most interesting and practically significant instance of
the problem arises when queries are posed against databases
that satisfy constraints. In this case, query results that are
otherwise not contained within each other might become
contained if we restrict the attention to databases that sat-
isfy a given set of constraints. A study of this problem was
pioneered by Johnson and Klug in [16] for functional and
inclusion dependencies, and then further studied in other

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

works [7, 6].

In dealing with this problem, an important issue is the form
of the constraints and where they are coming from. If no
restriction on the form of the constraints is placed, the con-
tainment problem may be computationally hard or even un-
decidable. However, in practice, constraints typically come
from design tools that follow certain methodology, such as
the Entity-Relationship Model [10]. For instance, in a pre-
vious work by one of the authors [6], it was shown that
the containment problem under the constraints that arise
from the E-R design methodology has better computational
complexity than in the general case that was previously in-
vestigated in [7].

The present paper takes the same approach and considers
the constraints that typically arise from object-oriented de-
sign. The specific data model that we use comes from F-
logic [19]—a knowledge representation formalism that has
generated considerable interest in the academia, within var-
ious standardization efforts, and commercially as a means
for building ontologies and for reasoning on the Semantic
Web. Query containment over object databases has been
studied before [22]. However, F-logic queries have one prop-
erty that is not present in the query classes considered so
far: it has meta-querying capability, i.e., it can query data
and schema in a uniform way. This property is considered
important in knowledge integration and service discovery on
the Semantic Web. The need to access schema information
has been recognized in other languages as well, albeit the
facilities that are made available to the user are often rather
awkward. For instance, SQL databases provide access to
the system catalog and Java has reflection API for the same
purpose.

In this paper, we show that query containment is decidable
for a subset of conjunctive F-logic meta-queries, and is in
NP. This subset, which we call F-logic lite, excludes negation
and default inheritance, and allows only a limited form of
cardinality constraints. This result complements the earlier
works on the subject, such as [7, 6], because F-logic queries
and the associated constraints are different. For instance,
decidability does not follow from [7] because conjunctive F-
logic queries involve certain recursion, unions, and joins of
ternary predicates, which are not allowed in [7].

The practical upshot of these results is that they open the
door to the use of query containment for F-logic based appli-
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cations in query processing, ontology integration, and Web
service modeling and discovery [3, 17, 21, 11, 5]. Our re-
sults are also relevant to the Semantic Web language RDF
[20] and the recently proposed query language for it, called
SPARQL [27]. RDF has many of the meta-data features
of F-logic and SPARQL can query them. Thus, our results
apply to SPARQL as well.

This paper is organized as follows. Section 2 introduces the
background material on F-logic queries. Section 3 provides
introductory results and definitions, and Section 4 contains
the main results of the paper. Section 5 concludes the paper.

2. PRELIMINARIES
F-logic was introduced in [18, 19] as a formalism for object-
oriented deductive databases. Since then it received further
development and was implemented in the FLORA-2 and
FLORID knowledge representation systems [29, 13, 15, 14]
as well as commercially [26]. Fortunately, for this paper
we need only a very limited amount of background on F-
logic, which will be introduced in this section. However, we
assume familiarity with Datalog and Logic Programming.

Basic F-logic notation. Unlike classical predicate cal-
culus, F-logic has special atomic formulas to represent
the various object-oriented concepts that are common to
object-oriented and frame-based systems. For instance,
john:student states that object john is a member of class
student; freshman::student and student::person state
that class freshman is a subclass of the class student and
student is a subclass of person. These statements im-
ply, for instance, that john:person (john is a student) and
freshman::person (class freshman is a subclass of person)
are true statements.

A statement of the form john[age->33] means that object
john has an attribute, age, whose value is 33. Actually, this
really means that 33 is just one of the values of the attribute
age — to say that 33 is the only value, one would need a
cardinality constraint, as explained later.

Common constraints such as type constraints and cardinality
constraints are specified via so called signature statements.
A typical signature has the form person[age*=>number]. It
says that the attribute age of class student has the type
number and that this type is inherited by subclasses and
class instances of person. This acts as a constrain on the
statements of the form john[age->33]. That is, for every
object in class person the value of the attribute age must
be an object of class number.

Cardinality constraints can also be specified using signature
statements. For instance, to say that the attribute age has
at most one value, one would write person[age {0:1} *=>

number]. Another frequently used cardinality constraint
states that a certain attribute in a class is mandatory, i.e.,
it must have at least one value on any object in the class.
For instance, to say that the name attribute is mandatory in
class person, we write person[name {1:*} *=> string].

As mentioned in the introduction, F-logic treats object data
and meta-data in a uniform way. This is primarily mani-

fested in the following two ways:

• Classes are also objects, so, for example, state-
ments like student:class are correct. Here student,
which was previously seen in a context of a class
(john:student), now occurs in a context of an
object—a member of the class class. (Note
that it does not follow from this and the previ-
ous statements that john:class, freshman:class, or
student::class.)

• Variables can occur anywhere an object, an at-
tribute, or a class is allowed. In this paper, we
will be using capitalized words as variable names.
For instance, john:X, Y::person, john[Att->33], and
person[Att*=>Val] are all allowed statements where
X, Y , Att, and V al are variables.

The above properties enable simple and natural formulation
for a wide variety of meta-queries—queries that return in-
formation about the schema of the database instead of the
data stored in it. For instance, the answer to the meta-query

?- X::person.

could be X = employee and X = student, and the answer
to the meta-query

?- student[Att*=>string].

could be Attr = name and Attr = major. Queries can also
mix the meta and the object levels. For instance, the mixed
query (where “,” denotes “and”)

?- student[Att*=>string], john[Att->Val].

will return a set of attribute-value pairs for the attributes of
type string in class student. Only the attributes that have
defined values for object john are returned. Incidentally,
john does not need to be a member of class student for
such a query to return a result.

Examples of meta-queries. Meta-querying is a com-
monly acknowledged need in knowledge representation —
especially on the Semantic Web. To show that it is not
such an esoteric idea, we give some examples of meaning-
ful meta-queries and the corresponding query containments.
Consider the following rule:

q(A,B) :- T1[A*=>T2], T2::T3, T3[B*=>_].

As usual, :- here denotes Datalog implication. The part
to the left of :- is the head of the rule and the part to the
right is the rule body. The comma separating the statements
in the rule body is an abbreviation for conjunction, and the
symbol is a common notation for a completely new variable
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that does not appear anywhere else in the rule. (Different
occurrences of denote different variables.)

The above rule defines a set of pairs (A,B) of attributes that
are joinable in a path expression of the form A.B (that is,
the range of A is contained in the domain of B). If we now
examine the following rule

qq(A,B) :- T1[A*=>T2], T2[B*=>_].

we will see that the query containment q ⊆ qq holds.

For another example, consider the following rule:

q(Att,Class,Type) :-

Class[Att {1,*} *=> _],

Class[Att*=>Type],

_:Class.

Recall that {1,*} is a cardinality constraint that says that
Att must have at least one value, i.e., it is a mandatory at-
tribute. This rule defines a set of triples (Att,Class,Type)
such that Att is a mandatory attribute in Class of type Type
and, furthermore, Class is nonempty. Note that here we are
querying meta-data that is subject to certain constraints:
only the mandatory attributes are of interest and only the
classes that have at least one member in the database. Con-
sider now the following rule:

qq(Att,Class,Type) :-

O:Class, O[Att->V], V:Type.

It is easy to see that the containment q ⊆ qq holds.

Low-level encoding of F-logic primitives. The above
notation was used to motivate the problem and to define the
target class of queries. The actual theoretical development
will use an encoding of the semantics of a subset of F-logic
using the standard logic programing notation. The encoding
relies on the equivalence result of [19].

The subset of F-logic, which we will consider in this paper
will be referred to as F-logic Lite. This subset is character-
ized by the absence of negation and nonmonotonic features
of F-logic (such as default inheritance) and by allowing only
the cardinality constraints of the form {1:*} — a constraint
that says that the corresponding attribute in mandatory —
and of the form {0:1} — a constraint that marks functional
(single-valued) attributes. Some other features, such as de-
fault values and non-inheritable types, are also ignored.

The encoding, uses the following predicates, whose set we
will denote by PFL:

• member(O, C): object O is a member of class C.
This is the encoding for O : C.

• sub(C1, C2): class C1 is a subclass of class C1.
This encodes the statement C1 :: C2.

• data(O, A, V ): attribute A has value V on object O.
This is the encoding for O[A->V ].

• type(O, A, T ): attribute A has type T for object O

(recall that in F-logic classes are also objects). This
encodes the statements of the form O[A*=>T ].

• mandatory(A, O): attribute A is mandatory for ob-
ject (class) O, i.e., it must have at least one value
for O. This is an encoding of statements of the form
O[A {1:*}*=> ].

• funct(A, O): A is a functional attribute for the object
(class) O, i.e., it can have at most one value for O.
This statement encodes O[A {0:1}*=> ].

Note that this encoding places meta-data (classes and at-
tributes) and object data at the same level, which is needed
for supporting F-logic meta-queries. This encoding is also
related to, but is slightly different from, the usual encoding
of RDF in first-order logic.

We can now formulate the axioms that represent the low-
level encoding of the F-logic primitives discussed above in
standard predicate notation. We annotate each rule in the
encoding to make it easier to follow.

(1) Type correctness:
member(V, T ) :- type(O, A, T ), data(O, A, V ).
This encodes the semantics of the constraint that an F-
logic signature like O[A *=> T] imposes on a statement
like O[A -> V]; that is, that V must be of type T.

(2) Subclass transitivity:
sub(C1, C2) :- sub(C1, C3), sub(C3, C2).
This rule encodes the fact that the subclass relation-
ship is transitive.

(3) Membership property:
member(O, C1) :- member(O, C), sub(C, C1).
This is the usual property that relates class member-
ship and subclass relationship: O:C and C::C1 imply
O:C1.

(4) Functional attribute property:
V = W :-

data(O, A, V ), data(O, A, W ), funct(A, O).
This rule states that if we have O[A->V], O[A->W], and
the attribute A is single-valued then X must equal W .

(5) Mandatory attributes definition:
∀O, A ∃V data(O, A, V ) :- mandatory(A, O). This
states that mandatory attributes must have at least
one value. Note that this is not a Datalog rule (not
even a Horn rule) because it has an existentially quan-
tified variable in the head.

(6) Inheritance of types from classes to members:
type(O, A, T ) :- member(O, C), type(C, A, T ).
This rule expresses the usual property of type inher-
itance: the type of an attribute is inherited from su-
perclasses to class members.
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(7) Inheritance of types from classes to subclasses:
type(C, A, T ) :- sub(C, C1), type(C1, A, T ).
This states that subclasses inherit types from super-
classes.

(8) Supertyping:
type(C, A, T ) :- type(C, A, T1), sub(T1, T ).
This states that T1::T and C[A *=> T1] entails C[A

*=> T]. This is also one of the usual properties of typ-
ing: if an attribute has certain type then any supertype
of that type will also do.

(9) Inheritance of mandatory attributes to subclasses:
mandatory(A, C) :- sub(C, C1), mandatory(A, C1).
This states that a mandatory attribute of a class is
also a mandatory attribute of its subclasses.

(10) Inheritance of mandatory attributes from classes to
their members:
mandatory(A, O) :-

member(O, C), mandatory(A, C).
Like in (9), but this time inheritance of the mandatory
property is to class members rather than subclasses.

(11) Inheritance of functional property to subclasses:
funct(A, C) :- sub(C, C1), funct(A, C1).
If A is a single-valued attribute in a class then it must
be single-valued in the subclasses of that class.

(12) Inheritance of functional property to members:
funct(A, O) :- member(O, C), funct(A, C).
Like (11), but this time inheritance of the single-valued
property is to class members.

In the following, we will denote the above set of rules by
ΣFL. We will also refer to the i-th rule as ρi. The above
statements are all Datalog rules except ρ4 and ρ5. Rule ρ4

uses equality in the head and ρ5 has an existential quantifier
in the rule head and thus invents new (fresh) values. Also,
most of the rules are recursive. Additional properties of this
encoding are studied in the next section.

Thanks to the above encoding, we can express any F-logic
Lite database and its schema as a relational database aug-
mented with a set of rules for deriving new information
and for expressing constraints. We shall consider only the
databases that satisfy the above set of rules.

Query containment. The query containment problem
for F-logic Lite can be now stated as follows. Given a pair
of meta-queries, q1 and q2, over the predicates PFL of the
above encoding of F-logic Lite, we say that q1 is contained
in q2 with respect to ΣFL, denoted q1 ⊆ΣFL

q2, if for every
database B that satisfies ΣFL we have q1(B) ⊆ q2(B), where
q(B) denotes the result of query q on B.

In this paper we will focus on positive conjunctive queries
[1], i.e., the queries that are conjunctions of the predicates
in PFL and no negation is allowed.

3. CHASE AND CONTAINMENT
In this section we study the problem of query containment
for queries expressed over the schema PFL derived from the

low-level encoding of F-logic Lite. We recall that the encod-
ing is entirely relational plus the rules ΣFL shown in Sec-
tion 2. First, we introduce the notion of homomorphism,
which is of fundamental importance in conjunctive query
containment [9]. We remind that for conjunctive queries
over generic relational schemata without constraints, a ho-
momorphism from the body of a query q2 to the body of
another query, q1, which also maps the head of q2 to the
head of q1, implies q1 ⊆ q2. Indeed, if the body of q1 is
mapped by a homomorphism to facts of a database, B, so
that the head of q1 is mapped to tuple t, then by compos-
ing the homomorphisms q2 −→ q1 and q1 −→ B we get a
homomorphism that maps the body of q2 to the facts of B

and the head of q2 to t. Thus, every tuple produced by q1

is also produced by q2.

Definition 1 Given a database B and a query q, a homo-
morphism from q to B is a function from the symbols of q

to the values of B that maps every constant occurring in q

to itself and variables of q to constants in B. This induces
a well defined map from the conjuncts of q to the tuples of
the corresponding relations in B. In particular, a conjunct
r(c1, . . . , cn) in q is mapped by a homomorphism µ to a fact
r(µ(c1), . . . , µ(cn)) in B. We also extend the definition to
sets of conjuncts: given a set of conjuncts C = {c1, . . . , cn},
we define µ(C) = {µ(c1), . . . , µ(cn)}.

Now we come to the notion of chase of a query with respect
to our set of rules ΣFL. The chase [24, 16] is a tool for repre-
senting databases that satisfy certain dependencies, and it is
used to check implication of dependencies and containment
of queries under dependencies. Given a database, the chase
is constructed by a sort of repair of the database w.r.t. the
rules that are not satisfied. In particular, in our case, viola-
tions of all rules except ρ4 are repaired with the addition of
suitable tuples, while violations of ρ4 are repaired by equat-
ing constants that are not equal. The rules in ΣFL−{ρ4} are
called tuple-generating dependencies, while ρ4 is an equal-
ity generating dependency. The query q to be “chased” is
treated as a database, and new tuples (or conjuncts) are
added according to the rules. The chase of a query q, de-
noted chaseΣFL

(q), is a database constructed starting from
body(q).

Henceforth, we will use the terms tuple and conjunct in-
terchangeably when talking about chasing queries. Homo-
morphisms will map tuples in a chase to other tuples of the
same chase. We will use R(c) to denote the relation symbol
associated with a conjunct c in the chase; for example, if
c = r(a1, . . . , am) then R(c) = r.

Definition 2 Given a conjunctive query q over PFL and the
set ΣFL of F-logic Lite rules, we define the chase of q w.r.t.
ΣFL, denoted chaseΣFL

(q), as follows. Initially, chase∗

ΣFL
(q)

is the set of all conjuncts in the body of q. Then we modify
chase∗

ΣFL
(q) according to the following rules:

(1) If there is a homomorphism µ that sends the atoms
in the body(ρ4) to conjuncts of chase∗

ΣFL
(q), then we

say that the rule ρ4 is applicable and we proceed as
follows: (a) If µ(V ) and µ(W ) are distinct constants
(recall that V and W are the two variables appearing
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in the head of ρ4), stop the chase—the construction
fails; (b) If µ(V ) precedes µ(W ) in lexicographic or-
der (we assume that all constants precede all variables
in this order), change µ(W ) into µ(V ) everywhere in
chase∗

ΣFL
(q) (and in head(q) if µ(W ) appears there); if

instead µ(W ) precedes µ(V ), change µ(V ) into µ(W )
(if they are equal then nothing needs to be done).

(2) For every rule ρ ∈ ΣFL − {ρ4}: if there is a ho-
momorphism µ that maps the atoms in the body(ρ)
to tuples of chase∗

ΣFL
(q), then (i) If ρ 6= ρ5, and

µ(head(ρ)) 6∈ chase∗

ΣFL
(q), we say that the rule ρ is

applicable and we add µ(head(ρ)) to chase∗

ΣFL
(q); (ii)

If ρ = ρ5, let us say that µ′ extends µ if it is like
µ everywhere except the existential variable V in the
head of ρ5. If there is no extension of µ that sends
head(ρ) to some conjunct in chase∗

ΣFL
(q), we say that

the rule ρ5 is applicable. In this case, let µ′ extend µ

by mapping V to a fresh constant that lexicographi-
cally follows all other constants in the segment of the
chase constructed so far (but still precedes all vari-
ables). Add µ′(head(ρ5)) to the chase as a conjunct.

The construction of the chase proceeds by iteratively execut-
ing the following two steps: (a) while rule 1 is applicable,
apply it repeatedly; (b) if rule 2 is applicable for some ρ,
apply it once.

Notice that it may happen that, in the application of rule 1,
the head of the query q may be modified. This is because
rule ρ4 and the chase rule (1) may cause a change of a vari-
able that appears in the head.

Example 1 Consider the following meta-query:

q(V1, V2) :- data(O, A, V1), data(O, A, V2),

funct(A, C), member(O, C)

In the construction of chaseΣFL
(q), rule ρ12 will add the

conjunct funct(A, O) and then, by rule ρ4, we will replace
V2 with V1 and obtain

q(V1, V1) :- data(O, A, V1), data(O, A, V1),

funct(A, O),

funct(A, C), member(O, C)

2

Therefore, the chase procedure may have side effects
on the head of the query. Henceforth we shall use
head(chaseΣFL

(q)) to denote the head of the query q as it
is transformed by the construction of chaseΣFL

(q) according
to ΣFL.

We now give the definition of the chase graph. In this graph,
the notion of level roughly indicates how far we need to go
in the chase starting from the initial query. This is crucial
for our purposes, since we will show that in order to test
containment we will need to examine the chase only up to a
certain level. The chase graph is defined as follows.

Definition 3 Given a conjunctive query q on PFL, we define
the chase graph G(q) as follows.

(1) The nodes of the graph are the conjuncts in
chaseΣFL

(q).

(2) If a conjunct, c, is generated in the chase by the
application of a rule ρ ∈ ΣFL, then there is an arc
in G(q) from each of the tuples that are involved in
generation of c by the application of ρ (i.e., tuples on
which the body of ρ is mapped) to c. Such arcs are
labelled with ρ.

(3) The level of a a conjunct c, written as level(c), is
defined as follows; (i) if c ∈ body(q), then level(c) =
0; (ii) if c is generated by the application of rule ρ

on conjuncts cp1 , ..., cpn (for our rules N ≤ 3) then
level(c) = max{level(cp1 ), ..., level(cpn)} + 1.

(4) If in the construction of the chase, for some rule
ρ ∈ ΣFL−{ρ4}, there is a homomorphism µ that sends
the atoms in body(ρ) to tuples of chase∗

ΣFL
(q), where

chase∗

ΣFL
(q) is the fragment of the chase constructed so

far, then (i) if ρ 6= ρ5, and µ(head(ρ)) ∈ chase∗

ΣFL
(q),

there will be special arcs in G(q) from each of the tu-
ples in µ(body(ρ)) (the tuples on which the body of ρ

is mapped) to c; such arcs are called cross-arcs, and
they are labelled as the ordinary arcs; (ii) if ρ = ρ5

and there is an extension µ′ of µ that maps head(ρ)
to a conjunct in chase∗

ΣFL
(q), there will be a cross-

arc in G(q) from each of the tuples in µ′(body(ρ)) to
µ′(head(ρ)).

(5) Arcs (cross-arcs or non-cross-arcs) from a node at
a level k to a node at level k + 1 are called primary
arcs, while the others are called secondary.

The following theorem provides the basic tool for checking
containment of queries over PFL. Intuitively, in the contain-
ment check between two queries q1 and q2, body(q1) repre-
sents the set of tuples in a generic database B that lead to an
answer tuple in q(B). Since we need to check containment
under ΣFL, we need to take into account not only body(q1),
but also further tuples that the rules guarantee to be in B;
therefore, we need to consider chaseΣFL

(q1). This is stated
as follows.

Theorem 4 Let q1 and q2 be two conjunctive queries over
PFL with the same arity. Then q1 ⊆ΣFL

q2 if and only
if there exists a homomorphism that sends the conjuncts
of body(q2) to conjuncts in chaseΣFL

(q1) and head(q2) to
head(chaseΣFL

(q1)).

Proof (sketch). The proof of this theorem can be derived
from [12]. In that paper, tuple-generating dependencies
(TGDs) and equality-generating dependencies (EGDs) are
considered together, and it is shown that any successful
chase of a database B constructed according to a set Σ of
TGDs and EGDs is a universal solution, i.e., a database
that is a representative of all databases that include B and
satisfy σ. Our rules in ΣFL have the same form as TGDs
and EGDs; therefore, we obtain the claim from [12] by con-
sidering q1 as a database. Although [12] deals with finite
universal solutions and we are dealing with infinite chases,
the same techniques apply in our setting. 2
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The previous theorem establishes a criterion for checking
containment, but it is not directly applicable, since it does
not suggest an algorithm for deciding containment. In fact,
the iterative construction of the chase by application of the
chase rules may not terminate. In the following section we
will first show some properties of the chase, and then we will
show that, in order to test containment of meta-queries, only
a finite portion of the chase is necessary.

4. DECIDABILITY OF CONTAINMENT
In this section we prove that containment of object meta-
queries is decidable, and we give a nondeterministic polyno-
mial time algorithm for checking containment between two
object meta-queries. We show that only a finite portion
of the possibly infinite chase is necessary to check contain-
ment with the technique suggested by Theorem 4, and then
we present an algorithm for query containment, showing an
upper bound for the complexity of the problem.

For technical reasons, we will do the chase in a special
way. This will isolate some of the peculiarities of the chase
and allow us to concentrate on more important properties.
Namely, we shall first proceed with the chase with respect to
all the rules except for ρ5; such a preliminary chase always
terminates, since no new constant is generated. To simplify
matters, we will view all tuples in chase

Σ
−

FL

(q) as being at

level 0, where Σ−

FL = ΣFL − {ρ5}. This will allow us to iso-
late the initial part of the chase from the cyclic phase (if the
latter takes place).

We now illustrate some properties of the chase that will
be useful in the proof of the main result. First of all it is
not difficult to notice that, in the construction of the chase
for a query q with respect to the set ΣFL, the only way to
have an infinite chase is the iterative application of rules ρ5-
ρ1-ρ6-ρ10. This happens when q contains at least a set of
atoms specifying a cycle of mandatory attributes A1, . . . , Ak

belonging to classes T1, . . . , Tk, respectively, where Ai is of
type Ti+1 for all i ∈ {1, . . . , k − 1} and Ak is of type T1.
More precisely, we need q to have conjuncts of the following
form:

mandatory(A1, T1)
type(T1, A1, T2)
. . .

mandatory(Ak−1, Tk−1)
type(Tk−1, Ak−1, Tk)
mandatory(Ak, Tk)
type(Tk, Ak, T1)

In such a case, if there is no atom in q of the form
data(T1, A1, v), where v is a constant or variable, the chase
process yields the following series of conjuncts:

cycle 1 : data(T1, A1, v1)
member(v1, T2)
type(v1, A2, T3)
mandatory(A2, v1)

cycle 2 : data(v1, A2, v2)
member(v2, T3)
type(v2, A3, T4)
mandatory(A3, v2)
. . .

. . .

cycle k − 1 : data(vk−2, Ak−1, vk−1)
member(vk−1, Tk)
type(vk−1, Ak, T1)
mandatory(Ak, vk−1)

cycle k : data(vk−1, Ak, vk)
member(vk, T1)
type(vk, A1, T2)
mandatory(A1, vk)

In the rest of the chase, at levels greater than 0, the only
other applications of a rule in ΣFL occur due to the applica-
tion of ρ3, ρ7 or ρ8. In this case, depending on the conjuncts
al level 0, new cycles may start. All other rules are applied
in chase

Σ
−

FL

(q) (i.e., in the initial construction of level 0 of

the chase graph), and they are never applied again at higher
levels.

Example 2 Consider the query q defined as
q() :- mandatory(A, T ), type(T, A, T ), sub(T, U). Part
of the chase graph G(q) is shown in Figure 1. Notice that
an infinite chain is created by the conjuncts

mandatory(A, T )
type(T, A, T )
data(T, A, v1)
member(v1, T )
type(v1, A, T )
mandatory(A, v1)
data(v1, A, v2)
member(v2, T )
type(v2, A, T )
. . .

This chain is formed by conjuncts that never interact with
other ones except for those at level 0. Because of rules ρ3, ρ8

and ρ8, it is possible that branches depart from this chain; in
our case, for example, we obtain the conjunct member(v1, U)
from ρ3. It may be possible, depending on the conjuncts at
level 0, that the new conjuncts generated by rules ρ3, ρ8

and ρ8 start new cycles; however, it is easy to see that such
cycles (again due to the iterative application of rules ρ5-ρ1-
ρ6-ρ10) do not interfere with each other, and they do not
interact with the existing cycles in the chase. 2

The previous considerations easily lead to the following re-
sult, stating that the above described cycles do not interfere
with each other.

Lemma 5 (Locality) Consider a meta-query q, and its
chase, chaseΣFL

(q). Consider a conjunct c at level(c) ≥ 1.
Then every secondary arc going into c starts at a conjunct
d such that either: (i) level(d) = 0, or (ii) level(d) =
level(c) − 2. Moreover, the parent e of d (i.e., the node
e such that (e, d) is a primary arc) is such that there is a
path from e to c that traverses 3 arcs.
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data(T, A, v1)
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. . .

ρ6
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ρ1
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. . .

ρ3

ρ3

Figure 1: Chase graph for Example 2

The above locality property in the lemma is crucial for prov-
ing the decidability of containment. Intuitively, the con-
juncts at level 0 in chaseΣFL

(q) establish the way the chase
develops, while the new conjuncts are added depending only
on the conjuncts at level 0 in chaseΣFL

(q) and on predeces-
sors conjuncts that are one or two levels back in the chase.
Notice that case (ii) in Lemma 5 refers to the application
of rule ρ1. Consider the conjunct c = member(v2, T ) in
Example 2. It is generated by the application of ρ1 on
d1 = data(v1, A, v2) and d2 = type(v1, A, T ), where (d1, c)
is a primary arc and level(c) = level(d2) + 2. Also, consider
the conjunct e = member(v1, T ), which is a parent of d2,
i.e., such that (e, d2) is a primary arc. Then there is a path
from e to c, which traverses 3 primary arcs. Intuitively, this
makes d2 stay “local” with respect to c, and the chain of
conjuncts remains “isolated” from the rest of the chase.

Now we come to the notion of equivalence between conjuncts
in the chase. The idea is that, when the chase is infinite, its
structure is cyclic, and after a certain number of levels, the
structure of the chase becomes similar to that in the earlier
levels. In our case, this means that if we are looking for
a homomorphism from q2 to chaseΣFL

(q1) in order to check
whether q1 ⊆ΣFL

q2, we can limit our attention to an a priori
bounded prefix of the chase, and later conjuncts add no new
information.

Definition 6 (Equivalent conjuncts) Consider two con-
juncts c1, c2 of the same arity k, in the chase chaseΣFL

(q)
of a query q. We say that c1 and c2 are equivalent, denoted

c1 ∼ c2, if for every i s.t. 1 ≤ i ≤ k it holds that if c1[i] or
c2[i] are constants, then c1[i] = c2[i], where c[i] denotes the
i-th component of a conjunct c. In other words, c1 and c2

must agree on the components that are (non-fresh) constant
symbols in order to be equivalent.

We now define the notion of primary path—a path in the
chase graph that consists of “almost” primary arcs only.

Definition 7 (Primary path) Consider a chase graph
G(q) for a conjunctive meta-query q. A primary path is
a path in G(q) from a conjunct c1 to a conjunct c2, where
each arc is either (i) a primary arc or (ii) an arc from c1 to
a conjunct c s.t. R(c1) = type and level(c) = level(c1) + 2.

The notion of primary path is needed as a sort of thread on
which the chains of the chase develop, from level 0 to higher
levels. Unlike the case of inclusion dependencies in rela-
tional databases [16], here the chains in the chase graph are
not chains of conjuncts; instead, they have a more compli-
cated structure. However, as stated by the locality principle,
there are chains that are independent from each other in the
construction of the chase, and that occasionally branch out.
Primary paths identify such pseudo-chains. The case (ii)
in Definition 7 is necessary because, if we allow only pri-
mary arcs in primary paths, such paths would not be able
to start from a conjunct c where R(c) = type. This should
be clear from Example 2, where one can see that, in infinite
cycles due to the iterative application of rules ρ5-ρ1-ρ6-ρ10,
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π1
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′
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Figure 2: Figure for Lemma 9.

the arcs going from every conjunct c with R(c) = type lead
to a conjunct d such that level(d) = level(c) + 2.

In order to characterize primary paths that develop in sim-
ilar ways, we use the notion of parallel primary paths.

Definition 8 Consider two paths, π1 and π2, of the same
length with c1 and c′1 as initial conjuncts. We say that π1

and π2 are parallel, denoted π1 ‖ π2, if the following property
holds. Let c1, . . . , cn be the conjuncts in π1, in this order,
and let c′1, . . . , c

′

n be the conjuncts in π2. Then for all i, ≤
i ≤ n, the arcs (ci, ci+1) and (c′i, c

′

i+1) must be labeled with
the same rule symbol ρi (and therefore R(ci+1) = R(c′i+1)).

We now show that if a conjunct is at a level of the chase
chaseΣFL

(q) of a query q that is greater than a certain bound
(which depends on q), it can be mapped by a homomorphism
to a conjunct that has level lower than that bound. This
result will allow us to prove an analogous result for sets of
conjuncts.

Lemma 9 Consider a conjunct c ∈ chaseΣFL
(q); there ex-

ists a homomorphism µ from {c} to chaseΣFL
(q) such that

level(µ(c)) ≤ 2 · |q|.

Proof (sketch). To prove this result, we use the property of
the chains of conjuncts, which was established by Lemma 5.
After some number of steps δ following primary path arcs,
we will have completed a cycle of mandatory attributes, and
at least two equivalent conjuncts will be generated on the
path. The value of δ is bounded by 2 · |q| because in order to
have a cycle of k mandatory attributes, we need 2k conjuncts
in q and also 4k levels to complete the cycle in the chase. We
consider a primary path from a conjunct at level 0 to c (see
Figure 2). It is not difficult to see, from Definition 7, that
this path must be unique; if the path is shorter than δ, we
are done; otherwise, there must be at least two equivalent
conjuncts in it, c1, c2, such that level(c1) < level(c2). Now
consider the primary path π2 from c2 to c, and the path
π1 from c1 to c′ s.t. π1 ‖ π2; it is easy to see that the

final conjunct c′ on π2 is equivalent to c. Moreover, we have
level(c′) ≤ level(c) − (level(c2) − level(c1)). If level(c′) ≤
δ we are done, otherwise we proceed again with the same
operation until we get a conjunct c̄ such that level(c̄) ≤ δ

and c̄ ∼ c. The equivalence between c̄ and c ensures the
existence of a homomorphism with the desired properties.

2

Next, we show a result analogous to that of Lemma 9 for
pairs of conjuncts.

Lemma 10 Consider two conjuncts c1, c2 in chaseΣFL
(q),

such that there is a primary path from c1 to c2, in the chase
graph G(q), and assume there is a homomorphism µ that
sends c1 to a conjunct c′1 in chaseΣFL

(q), where c′1 ∼ c1.
Then there exists a homomorphism µ′ s.t. µ′(c1) = c′1 and
µ′(c2) = c′2, with level(c′2) ≤ level(c′1) + δ, where δ = 2 · |q|.

Proof (sketch). Consider the primary path π1, from c1 to
c2 (see Figure 3); now consider a path π2 from c′1 to some
conjunct c′2 such that π1 ‖ π2; it is easy to see that c′1 ∼ c′2.
Now, if level(c′2) − level(c′1) ≤ δ we are done; otherwise, π2

has two equivalent conjuncts, c̄1 and c̄2, and we can per-
form excisions of the path between these two conjuncts as
in the previous lemma, until the “clipped” path runs across
a number of levels that is less or equal than δ. The new
“clipped” path will terminate in a conjunct c3, as shown
in Figure 3 where the path from c̄1 to c̄2 has been clipped.
Moreover, the homomorphism µ′ sending c1 to c′1 and c2 to
c3 will exist due to the equivalence between c′2 and c3, and
due to the fact that the only symbols shared by c1 and c2

are those that also appear in q. 2

We now present the key result, mentioned earlier, that a set
of n conjuncts in the chase of a query can be mapped by a
homomorphism to another set of conjuncts at levels lower
than a certain limit, which depends on n and q.

Lemma 11 Given a query q over PFL, consider a set of con-
juncts C = {c1, . . . , cn} in chaseΣFL

(q). Then there exists a
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c̄2

c′2

c1

π1

c2

Figure 3: Figure for Lemma 10.

conjuncts in C̄

conjuncts in F − C̄

Figure 4: Figure for Lemma 11.

homomorphism h from C to chaseΣFL
(q) such that for every

i, 1 ≤ i ≤ n, we have level(h(ci)) ≤ n · δ, where δ = 2 · |q|.

Proof (sketch). Consider all conjuncts in C, and the union
of all arcs belonging to primary paths from some conjunct
at level 0 to every c ∈ C in the chase graph of q. It is easy to
see that, due to the fact that paths do not interact with each
other, the primary paths here are unique. The conjuncts in
all such paths in general constitute, together with the arcs
among them, a forest F (see Figure 4). Let C̄ be the union
of C with the conjuncts in F that have at least two outgoing
edges in F . Figure 4 shows such a forest, where conjuncts
in C̄ are drawn as solid circles. Now we proceed by iteration
on the structure of the forest F ; if |C̄| = 1 the claim is
true by Lemma 9. Now, consider a tree in F . The conjunct
c in F that reside at the lowest level > 0 can be mapped
with a homomorphism to another conjunct, c′, at level ≤ δ;
consider a descendant d of c in F ∩ C̄; it can be mapped
(by another homomorphism) to a conjunct that is at most
δ levels deeper than c′, i.e. at a level ≤ 2δ; the same holds
for successors of d and so on. It is not difficult to see that
all homomorphisms determined in this way are compatible

with each other, therefore they can be combined in a single
homomorphism h. Since the maximum number of nodes in
C̄ that belong to a single primary path in F is |C| = n, it
is not difficult to see that h maps C to conjuncts that have
depth at most δ · n. 2

As a consequence of the previous lemma, to check q1 ⊆ΣFL
q2

we only need to find a homomorphism from q2 to an initial,
a priori bounded finite segment of chaseΣFL

(q1).

Theorem 12 Let q1 and q2 be two conjunctive queries over
PFL with the same arity. Then q1 ⊆ΣFL

q2 if and only if there
exists a homomorphism that sends the conjuncts of body(q2)
to conjuncts in the first |q2| · δ levels of chaseΣFL

(q1), and
head(q2) to head(chaseΣFL

(q1)), where δ = 2 · |q1|.

Proof (sketch). This theorem is a direct consequence of
Lemma 11 and Theorem 4. We use Theorem 4 to check
the containment q1 ⊆ΣFL

q2. Suppose we find a homomor-
phism µ from body(q2) to chaseΣFL

(q1) that has the desired
properties, and such that it maps the conjuncts in body(q2)
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to a set C = {c1, . . . , cn} of conjuncts in chaseΣFL
(q1). If

all conjuncts in C have level less or equal than |q2| · δ, we
are done; otherwise, we apply Lemma 11 and obtain a new
homomorphism, λ, that maps the conjuncts of C to another
set of conjuncts C′ such that all its conjuncts have levels
less or equal than |q2| · δ. By Theorem 4, the composition
λ ◦ µ of the two homomorphisms establishes the contain-
ment. Clearly, this homomorphism only considers the levels
of chaseΣFL

(q1) that are ≤ |q2| · δ. 2

Finally, we characterize the computational complexity of the
problem of checking containment of queries by giving an up-
per bound for the problem. We do this by exhibiting an al-
gorithm for checking containment, which obeys the bounds.

Theorem 13 Consider two conjunctive queries q1, q2 on
PFL. Containment q1 ⊆ΣFL

q2 of q1 in q2 can be decided by
a nondeterministic algorithm running in time polynomial in
|q1| and |q2|.

Proof (sketch). We prove the result by providing a non-
deterministic algorithm that checks whether q1 ⊆ΣFL

q2

and runs in time polynomial in the input. First, we cal-
culate level 0 of chaseΣFL

(q1), i.e. chase
Σ
−

FL

(q1); this is

done in time polynomial in |q1| and independently of q2.
What we need to do now it to check the existence of a ho-
momorphism µ from body(q2) to chaseΣFL

(q1) that sends
head(q2) to head(chaseΣFL

(q1)); if such homomorphism ex-
ists, we can apply Lemma 11 and combine our homomor-
phism µ with the homomorphism λ from µ(body(q2)) to
chase

Σ
−

FL

(q1); thus we deduce the existence of a homomor-

phism µ◦λ from body(q2) to the first δ·|q2| levels of the chase,
where δ = 2 · |q1|. In order to check the existence of such a
homomorphism, the algorithm nondeterministically guesses
|q2| conjuncts in the first segment of the chase, i.e. up to
level |q2| ·δ. This is done again in polynomial time since, for
each conjunct to be guessed, the algorithm needs to guess
a primary path from level 0 to some conjunct at depth less
or equal than |q2| · δ. Due to the locality of the application
of the rules ΣFL (Lemma 5), this can be done by retain-
ing only level 0 and two levels of the path that have been
guessed at a certain point. This needs to be done in parallel
for all |q2| conjuncts to be guessed, because the guessed con-
juncts may have symbols in common, and therefore it is not
sufficient to guess each one of them separately. We do not
detail the technique used for such a guess. Finally, we guess
a homomorphism from body(q2) to the guessed conjuncts,
that sends head(q2) to head(chaseΣFL

(q1)). If it exists, then
q1 ⊆ΣFL

q2; otherwise the containment does not hold. 2

5. CONCLUSION
In recent years, F-logic [19] has become a popular tool for
building ontologies, information integration, and semantic
Web services and a number of systems—both academic and
commercial—have become available [14, 13, 28, 26]. In this
paper, we considered the problem of query containment for
conjunctive meta-queries over F-logic knowledge bases and
have shown that the problem is decidable and is in NP. This
important class of queries has not been covered by the known
results on query containment and, we believe, a solution
to this problem will open the door to new F-logic based

applications in the areas of ontology modeling, information
integration, and semantic Web services.

For future work, we plan to obtain a tight lower bound for
the complexity results. We will also investigate extending
the decidability results to more expressive query languages.
These possible extensions include inheritance, negation, and
aggregates. Another area where further research might be
fruitful is finding a general class of queries, including the F-
logic queries discussed here, for which our proof techniques
still apply. Finding such a class would broaden the practical
impact of our work.
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