
Analysis of Two Existing and One New Dynamic
Programming Algorithm for the Generation of Optimal

Bushy Join Trees without Cross Products

Guido Moerkotte
University of Mannheim

68131 Mannheim
Germany

moerkotte@informatik.uni-mannheim.de

Thomas Neumann
Max Planck Institute for Informatics

66123 Saarbrücken
Germany

neumann@mpi-inf.mpg.de

ABSTRACT
Two approaches to derive dynamic programming algorithms
for constructing join trees are described in the literature. We
show analytically and experimentally that these two vari-
ants exhibit vastly diverging runtime behaviors for different
query graphs. More specifically, each variant is superior to
the other for one kind of query graph (chain or clique), but
fails for the other. Moreover, neither of them handles star
queries well. This motivates us to derive an algorithm that
is superior to the two existing algorithms because it adapts
to the search space implied by the query graph.

1. INTRODUCTION
For the overall performance of a database management sys-
tem, the cost-based query optimizer is an essential piece of
software. One important and complex problem any cost-
based query optimizer has to solve is that of finding the
optimal join order. In their seminal paper, Selinger et al.
not only introduced cost-based query optimization but also
proposed a dynamic programming algorithm to find the op-
timal join order for a given conjunctive query [7]. More
precisely, they proposed to generate plans in the order of
increasing size. Although they restricted the search space
to left-deep trees, the general idea of their algorithm can be
used to derive an algorithm to explore the space of bushy
trees. Its pseudocode is shown in Fig. 1. The algorithm
still forms the core of state of the art commercial query op-
timizers like the one of DB2 [2] and still is the foundation
for further research on join ordering, e.g. in the context of
distributed database management systems [3].

Given the widespread and prominent use of dynamic pro-
gramming algorithms for finding a good join order, it came
to us as a surprise that only two publications analyze the
complexity of these algorithms. The first publication is the
seminal paper by Ono and Lohman [5]. In order to under-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

stand their results, it is important to note that the algorithm
(see Fig. 1) follows a generate-and-test approach. Ono and
Lohman analyse the number of times the tests succeed (see
Fig. 1). Obviously, this number is highly dependent on the
query graph. Therefore, Ono and Lohman consider chain,
star, and clique queries. As pointed out by Vance, this only
gives a lower bound for all dynamic programming algorithms
[9]. The real complexity is the number of times the code
within the inner loop (the test of the first if-statement in
the innermost loop) is executed. Moreover, Vance gives an
analytical result for clique queries for an unoptimized ver-
sion of the size-based variant described above [9].

Vance and Maier proposed an algorithm which generates
subsets extremely fast [9, 10]. They use this routine to gen-
erate optimal bushy join trees containing cross products.
The core idea is to generate partial plans in a different or-
der than the algorithm mentioned above. If cross prod-
ucts are to be considered, their algorithm can hardly be
improved. However, as generating cross products vastly in-
creases the search space [5], it is a very interesting exercise to
modify their algorithm such that it excludes cross products.
Modifying it such that it also follows the generate-and-test
paradigm results in the algorithm given in Fig. 2. For this
algorithm, no complexity bounds are known.

Our first contribution is that we analytically analyze the
time complexity of both algorithms for chain, cycle, star,
and clique queries (Sec. 2). This allows us to analytically
compare their performance on these query graph instances.
Let us call the first algorithm DPsize and the second DPsub.
Then the comparison of these algorithms reveals (see also
Sec. 2):

1. For chain and cycle queries, DPsize is highly superior
to DPsub.

2. For star and clique queries, DPsub is highly superior to
DPsize.

3. Both algorithms are far worse than the lower bound
given by Ono and Lohman.

These findings immediately spawn the following question:
Is it possible to derive a dynamic programming algorithm
whose complexity meets the lower bound derived by Ono

930

DPsize

Input: a connected query graph with relations R =
{R0, . . . , Rn−1}
Output: an optimal bushy join tree without cross products

for all Ri ∈ R {
BestPlan({Ri}) = Ri;

}
for all 1 < s ≤ n ascending // size of plan
for all 1 ≤ s1 < s { // size of left subplan

s2 = s− s1; // size of right subplan
for all S1 ⊂ R : |S1| = s1

S2 ⊂ R : |S2| = s2 {
++InnerCounter;
if (∅ 6= S1 ∩ S2) continue;
if not (S1 connected to S2) continue;
++CsgCmpPairCounter;
p1=BestPlan(S1);
p2=BestPlan(S2);
CurrPlan = CreateJoinTree(p1, p2);
if (cost(BestPlan(S1 ∪ S2)) > cost(CurrPlan)) {

BestPlan(S1 ∪ S2) = CurrPlan;
}

}
}
OnoLohmanCounter = CsgCmpPairCounter / 2;
return BestPlan({R0, . . . , Rn−1});

Figure 1: Algorithm DPsize

and Lohman? If so, this variant would clearly outperform
the other variants. The positive answer to this question is
presented in Section 3.

Next, we were interested in the practical implication of our
theoretical analysis. Hence, we implemented all three algo-
rithms in a plan generator and ran experiments. Some typ-
ical results are presented in Section 4. Section 5 concludes
the paper.

2. ALGORITHMS AND ANALYSIS
In this section, we present two dynamic programming algo-
rithms to generate optimal bushy trees without cross prod-
ucts. The first two subsections discuss the pseudocode of
these algorithms. We start by discussing the common in-
frastructure used by all our algorithms (including our new
one). Section 2.1 sketches the most prominent size-chained
variant. Section 2.2 presents two variants based on fast sub-
set generation [9, 10]. Both subsections give analytical re-
sults on the time complexity of the algorithm they present.
The analytical results independent of any algorithm are pre-
sented in Section 2.3.2 after introducing some definitions in
Subsection 2.3.1. Section 2.4 applies the formulas presented
so far and draws important conclusions.

2.1 Size-Driven Enumeration
In general, dynamic programming generates solutions for a
larger problem in a bottom-up fashion by combining solu-
tions for smaller problems [1]. Taking this description lit-
erally, we can construct optimal plans of size n by joining
plans P1 and P2 of size k and n − k. We just have to take
care that (1) the sets of relations contained in P1 and P2

do not overlap, and (2) there is a join predicate connecting
a relation P1 with a relation in P2. After this remark, we
are prepared to understand the pseudocode for algorithm
DPsize (see Fig. 1). A table BestPlan associates with each
set of relations the best plan found so far. The algorithm
starts by initializing this table with plans of size one, i.e.
single relations. After that, it constructs plans of increasing
size (loop over s). Thereby, the first size considered is two,
since plans of size one have already been constructed. Every
plan joining n relations can be constructed by joining a plan
containing s1 relations with a plan containing s2 relations.
Thereby, si > 0 and s1 + s2 = n must hold. Thus, the
pseudocode loops over s1 and sets s2 accordingly. Since for
every possible size there exist many plans, two more loops
are necessary in order to loop over the plans of sizes s1 and
s2. Then, conditions (1) and (2) from above are tested.
Only if their outcome is positive, we consider joining the
plans p1 and p2. The result is a plan CurrPlan. Let S be
the relations contained in CurrPlan. If BestPlan does not
contain a plan for the relations in S or the one it contains is
more expensive than CurrPlan, we register CurrPlan with
BestPlan.

The algorithm DPsize can be made more efficient in case of
s1 = s2. The algorithm as stated cycles through all plans
p1 joining s1 relations. For each such plan, all plans p2

of size s2 are tested. Assume that plans of equal size are
represented as a linked list. If s1 = s2, then it is possible
to iterate through the list for retrieving all plans p1. For p2

we consider the plans succeeding p1 in the list. Thus, the
complexity can be decreased from s1 ∗ s2 to s1 ∗ s2/2 The
following formulas are valid only for the variant of DPsize

where this optimization has been incorporated (see [4] for
details).

We now come to the first important contribution of our pa-
per. If the counter InnerCounter is initialized with zero at
the beginning of the algorithm DPsize, then we are able to
derive analytically its value after DPsize terminates. Since
this value of the inner counter depends on the query graph,
we have to distinguish several cases. For chain, cycle, star,
and clique queries, we denote by Ichain

DPsize, Icycle
DPsize, Istar

DPsize,

and Iclique
DPsize the value of InnerCounter after termination of

algorithm DPsize.

For chain queries, we then have: Ichain
DPsize(n) =

1/48(5n4 + 6n3 − 14n2 − 12n) n even
1/48(5n4 + 6n3 − 14n2 − 6n + 11) n odd

For cycle queries, we have: Icycle
DPsize(n) =

1
4
(n4 − n3 − n2) n even

1
4
(n4 − n3 − n2 + n) n odd

For star queries, we have: Istar
DPsize(n) =(

22n−4 − 1/4
`
2(n−1)

n−1

´
+ q(n) n even

22n−4 − 1/4
`
2(n−1)

n−1

´
+ 1/4

`
n−1

(n−1)/2

´
+ q(n) n odd

with q(n) = n2n−1− 5 ∗ 2n−3 + 1/2(n2− 5n + 4). For clique

queries, we have: Iclique
DPsize(n) =

22n−2 − 5 ∗ 2n−2 + 1/4
`
2n
n

´
− 1/4

`
n

n/2

´
+ 1 n even

22n−2 − 5 ∗ 2n−2 + 1/4
`
2n
n

´
+ 1 n odd

931

DPsub

Input: a connected query graph with relations R =
{R0, . . . , Rn−1}
Output: an optimal bushy join tree
for all Ri ∈ R {

BestPlan({Ri}) = Ri;
}
for 1 ≤ i < 2n − 1 ascending {

S = {Rj ∈ R|(bi/2jcmod 2) = 1}
if not (connected S) continue; // ∗
for all S1 ⊂ S, S1 6= ∅ do {

++InnerCounter;
S2 = S \ S1;
if (S2 = ∅) continue;
if not (connected S1) continue;
if not (connected S2) continue;
if not (S1 connected to S2) continue;
++CsgCmpPairCounter;
p1 = BestPlan(S1);
p2 = BestPlan(S2);
CurrPlan = CreateJoinTree(p1, p2);
if (cost(BestPlan(S)) > cost(CurrPlan)) {

BestPlan(S) = CurrPlan;
}

}
}
OnoLohmanCounter = CsgCmpPairCounter / 2;
return BestPlan({R0, . . . , Rn−1});

Figure 2: Algorithm DPsub

Note that
`
2n
n

´
is in the order of Θ(4n/

√
n).

Proofs of the above formulas as well as implementation de-
tails for the algorithm DPsize can be found in [4].

2.2 Subset-Driven Enumeration
Fig. 2 presents the pseudocode for the algorithm DPsub. The
algorithm first initializes the table BestPlan with all possi-
ble plans containing a single relation. Then, the main loop
starts. It iterates over all possible non-empty subsets of
{R0, . . . , Rn−1} and constructs the best possible plan for
each of them. The enumeration makes use of a bitvector rep-
resentation of sets: The integer i induces the current subset
S with its binary representation. Taken as bitvectors, the
integers in the range from 1 to 2n − 1 exactly represent the
set of all non-empty subsets of {R0, . . . , Rn−1}, including
the set itself. Further, by starting with 1 and incrementing
by 1, the enumeration order is valid for dynamic program-
ming: for every subset, all its subsets are generated before
the subset itself.

This enumeration is very fast, since increment by one is a
very fast operation. However, the relations contained in S
may not induce a connected subgraph of the query graph.
Therefore, we must test for connectedness. The goal of the
next loop over all subsets of S is to find the best plan joining
all the relations in S. Therefore, S1 ranges over all non-
empty, strict subsets of S. This can be done very efficiently
by applying the code snippet of Vance and Maier [9, 10].
Then, the subset of relations contained in S but not in S1 is
assigned to S2. Clearly, S1 and S2 are disjoint. Hence, only

connectedness tests have to be performed. Since we want to
avoid cross products, S1 and S2 both must induce connected
subgraphs of the query graph, and there must be a join
predicate between a relation in S1 and one in S2. If these
conditions are fulfilled, we can construct a plan CurrPlan

by joining the plans associated with S1 and S2. If BestPlan
does not contain a plan for the relations in S or the one
it contains is more expensive than CurrPlan, we register
CurrPlan with BestPlan.

For chain, cycle, star, and clique queries, we denote by
Ichain
DPsub, Icycle

DPsub, Istar
DPsub, and Iclique

DPsub the value of InnerCounter
after termination of algorithm DPsub.

For chains, we have

Ichain
DPsub(n) = 2n+2 − nn − 3n− 4 (1)

For cycles, we have

Icycle
DPsub(n) = n2n + 2n − 2n2 − 2 (2)

For stars, we have

Istar
DPsub(n) = 2 ∗ 3n−1 − 2n (3)

For cliques, we have

Iclique
DPsub(n) = 3n − 2n+1 + 1 (4)

The number of failures for the additional check can easily
be calculated as 2n −#csg(n)− 1, where #csg(n) denotes
the number of non-empty connected subgraphs contained in
the query graph.

2.3 Algorithm-Independent Results
2.3.1 Definition of #csg and #ccp

Consider a join ordering problem with n relations R0,. . .,
Rn−1. We assume the query graph to be connected. Any
subset S of {R0, . . . , Rn−1} induces a subgraph of the query
graph. If the subgraph induced by S is connected, we call S
a connected subset or simply connected . For a given query
graph G in n relations, we denote by #csgG the number of
non-empty connected subgraphs/subsets. For a given kind
of query graph, every n uniquely determines a query graph.
Since the kind of query graph will always be clear from the
context, we write #csg(n).

Let S1 and S2 be two subsets of {R0, . . . , Rn−1}. If there
is a join predicate between a relation in S1 and another
relation in S2, we call S1 and S2 connected . Since we want
to enumerate only bushy trees without cross products, we
are only interested in connected sets S1 and S2 which are
connected. Moreover, in order to form a valid join tree for
relations in S := S1 ∪ S2, S1 and S2 may not overlap, i.e.
S1 ∩ S2 = ∅.

Summarizing, during plan generation we are interested in
pairs (S1, S2) where

• S1 is a non-empty subset of {R0, . . . , Rn−1}, and

932

• S2 is a non-empty subset of {R0, . . . , Rn−1}

such that

1. S1 is connected,

2. S2 is connected,

3. S1 ∩ S2 = ∅,

4. there exist nodes v1 ∈ S1 and v2 ∈ S2 such that there
is an edge between v1 and v2 in the query graph.

These conditions imply that both S1 and S2 are strict sub-
sets of {R0, . . . , Rn−1}. Let us call a pair (S1, S2) fulfilling
these conditions a csg-cmp-pair . Here, csg is the abbrevia-
tion of connected subgraph and cmp is the abbreviation of
complement. The latter was chosen to emphasize the aspect
of disjointness.

In the following, we are interested in (1) the number of
connected, non-empty subsets and (2) the number of csg-
cmp-pairs. Obviously, these numbers depend on the query
graph. For csg-cmp-pairs, it is also important to note that
if (S1, S2) is a csg-cmp-pair, then (S2, S1) is one as well. We
denote the total number of csg-cmp-pairs including symmet-
ric pairs by #ccp. Given this, we immediately understand
the CsgCmpPairCounter in the algorithms. After termina-
tion it gives us #ccp. Ono and Lohman counted the num-
ber of csg-cmp-pairs by excluding symmetric pairs. Hence,
their formulas return #ccp divided by two. It is impor-
tant to note that #ccp only depends on the query graph.
That is, the value of CsgCmpPairCounter (and, hence, for
OnoLohmanCounter) after termination is the same for DPsize,
DPsub, and the new algorithm DPccp. It is very important
to note that for any correct dynamic programming algo-
rithm #ccp provides a lower bound on the number of calls
to CreateJoinTree.

2.3.2 Formulas for #csg and #ccp

We analyse the join ordering problem for chain, cycle, and
clique queries. For each kind of query graph, we calculate
the number of connected subgraphs (#csg) and the number
of csg-cmp-pairs (#ccp).

For a chain query in n relations, we have

#csg(n) =
n(n + 1)

2
(5)

#ccp(n) =
(n + 1)3 − (n + 1)2 + 2(n + 1)

3
(6)

This result is due to Ono and Lohman [5].

For a cycle query in n relations, we have

#csg(n) = n2 − n + 1 (7)

#ccp(n) = n3 − 2n2 + n (8)

For star queries in n relations, we have

#csg(n) = 2n−1 + n− 1 (9)

#ccp(n) = (n− 1)2n−2 (10)

This result is due to Ono and Lohman [5].

For clique queries in n relations, we have

#csg(n) = 2n − 1 (11)

#ccp(n) = 3n − 2n+1 + 1 (12)

This result is due to Ono and Lohman [5].

2.4 Sample Numbers
Fig. 3 contains tables with values produced by our formulas
for input query graph sizes between 2 and 20. For different
kinds of query graphs, it shows the number of csg-cmp-pairs
(#ccp). and the values for the inner counter after termi-
nation of DPsize and DPsub applied to the different query
graphs.

Looking at these numbers, we observe the following:

• For chain and cycle queries, the DPsize soon becomes
much faster than DPsub.

• For star and clique queries, the DPsub soon becomes
much faster than DPsize.

• Except for clique queries, the number of csg-cmp-pairs
is orders of magnitude less than the value of Inner-
Counter for all DP-variants.

From the latter observation we can conclude that in almost
all cases the tests performed by both algorithms in their
innermost loop fail. Both algorithms are far away from the
theoretical lower bound given by #ccp. This conclusion
motivates us to derive a new algorithm whose InnerCounter
value is equal to the number of csg-cmp-pairs.

3. THE NEW ALGORITHM DPCCP
3.1 Problem Statement
The algorithm DPsub solves the join ordering problem for a
given subset S of relations by considering all pairs of disjoint
subproblems which were already solved. Since the enumera-
tion of subsets is very fast, this is a very efficient strategy if
the search space is dense, e.g. for clique queries. However, if
the search space is sparse, e.g. for chain queries, the DPsub

algorithm considers many subproblems which are not con-
nected and, therefore, are not relevant for the solution, i.e.
the tests in the innermost loop fail for the majority of cases.
The main idea of our algorithm DPccp is that it only con-
siders pairs of connected subproblems. More precisely, the
algorithm considers exactly the csg-cmp-pairs of a graph.
Note that this is also the lower bound for any dynamic pro-
gramming algorithm [9].

Thus, our goal is to efficiently enumerate all csg-cmp-pairs
(S1, S2). Clearly, we want to enumerate every pair once and
only once. Further, the enumeration must be performed in
an order valid for dynamic programming. That is, whenever
a pair (S1, S2) is generated, all non-empty subsets of S1

and S2 must have been generated before as a component
of a pair. The last requirement is that the overhead for
generating a single csg-cmp-pair must be constant or at most
linear. This condition is necessary in order to beat DPsize

and DPsub.

933

Chain Cycle
n #ccp DPsub DPsize #ccp DPsub DPsize

2 1 2 1 1 2 1
5 20 84 73 40 140 120

10 165 3962 1135 405 11062 2225
15 560 130798 5628 1470 523836 11760
20 1330 4193840 17545 3610 22019294 37900

Star Clique
n #ccp DPsub DPsize #ccp DPsub DPsize

2 1 2 1 1 2 1
5 32 130 110 90 180 280

10 2304 38342 57888 28501 57002 306991
15 114688 9533170 57305929 7141686 14283372 307173877
20 4980736 2323474358 59892991338 1742343625 3484687250 309338182241

Figure 3: Size of the search space for different graph structures

DPccp

Input: a connected query graph with relations R =
{R0, . . . , Rn−1}
Output: an optimal bushy join tree
for all Ri ∈ R) {

BestPlan({Ri}) = Ri;
}
for all csg-cmp-pairs (S1, S2), S = S1 ∪ S2 {

++InnerCounter;
++OnoLohmanCounter;
p1 = BestPlan(S1);
p2 = BestPlan(S2);
CurrPlan = CreateJoinTree(p1, p2);
if (cost(BestPlan(S)) > cost(CurrPlan)) {

BestPlan(S) = CurrPlan;
}
CurrPlan = CreateJoinTree(p2, p1);
if (cost(BestPlan(S)) > cost(CurrPlan)) {

BestPlan(S) = CurrPlan;
}

}
CsgCmpPairCounter = 2 * OnoLohmanCounter;
return BestPlan({R0, . . . , Rn−1});

Figure 4: Algorithm DPccp

If we meet all these requirements, the algorithm DPccp is
easily specified: iterate over all csg-cmp-pairs (S1, S2) and
consider joining the best plans associated with them. Fig-
ure 4 shows the pseudocode. The first steps of an example
enumeration are shown in Figure 5. Thick lines mark the
connected subsets while thin lines mark possible join edges.
Note that the algorithm explicitly exploits join commuta-
tivity. This is due to our enumeration algorithm developed
below. If (S1, S2) is a csg-cmp-pair, then either (S1, S2) or
(S2, S1) will be generated, but never both of them. An al-
ternative is to modify CreateJoinTree to take care of com-
mutativity.

The rest of this section is organized as follows. The next
subsection discusses an algorithm enumerating non-empty
connected subsets S1 of {R0, . . . , Rn−1}. Subsection 3.3
then shows how to enumerate the complements S2 such that

(S1, S2) is a csg-cmp-pair. Finally, Subsection 3.4 contains
the correctness proofs for the algorithms.

3.2 Enumerating Connected Subsets
Scanning the literature for algorithms enumerating all con-
nected subgraphs, we found only two algorithms. The first
one turned out to be highly inefficient [6]. From the second
one, we took the basic idea of using a breadth-first num-
bering of the nodes in the query graph [8]. For a number
of reasons, we could not use the algorithm directly: the
algorithm was flawed; it maintained a set of all generated
connected subgraphs and had to test every generated one
against those already generated in order to avoid duplicates;
it did not generate the subgraphs in an order expedient for
dynamic programming.

Let us start the exposition by fixing some notations. Let
G = (V, E) be an undirected graph. For a node v ∈ V define
the neighborhood N (v) of v as N (v) := {v′|(v, v′) ∈ E}. For
a subset S ⊆ V of V we define the neighborhood of S as
N (S) := ∪v∈SN (v) \S. The neighborhood of a set of nodes
thus consists of all nodes reachable by a single edge. Note
that for all S, S′ ⊂ V we have N (S∪S′) = (N (S)∪N (S′))\
(S ∪ S′). This allows for an efficient bottom-up calculation
of neighborhoods.

The following statement gives a hint on how to construct an
enumeration procedure for connected subsets. Let S be a
connected subset of an undirected graph G and S′ be any
subset ofN (S). Then S∪S′ is connected. As a consequence,
a connected subset can be enlarged by adding any subset of
its neighborhood.

We could generate all connected subsets as follows. For ev-
ery node vi ∈ V we perform the following enumeration steps:
First, we emit {vi} as a connected subset. Then, we expand
{vi} by calling a routine that extends a given connected set
to bigger connected sets. Let the routine be called with
some connected set S. It then calculates the neighborhood
N (S). For every non-empty subset N ⊆ N (S), it emits
S′ = S ∪ N as a further connected subset and recursively
calls itself with S′. The problem with this routine is that it
produces duplicates.

934

22

10

1.Graph

32 32

...

...

7.6.5.4.3.2.

000111 1

3 32 32 3

Figure 5: Enumeration Example for DPccp

This is the point where the breadth-first numbering comes
into play. Let V = {v0, . . . , vn−1}, where the indices are
consistent with a breadth-first numbering produced by a
breadth-first search starting at node v0 [1] (see Section 3.4.1
for a formal definition). The idea is to use the number-
ing to define an enumeration order: In order to avoid du-
plicates, the algorithm enumerates connected subgraphs for
every node vi, but restricts them to contain no vj with j < i.
Using the definition Bi = {vj |j ≤ i}, the pseudocode looks
as follows:

EnumerateCsg

Input: a connected query graph G = (V, E)
Precondition: nodes in V are numbered according to a
breadth-first search
Output: emits all subsets of V inducing a connected sub-
graph of G
for all i ∈ [n− 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G, {vi}, Bi);

}

EnumerateCsgRec(G, S, X)
N = N (S) \X;
for all S′ ⊆ N , S′ 6= ∅, enumerate subsets first {

emit (S ∪ S′);
}
for all S′ ⊆ N , S′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S′), (X ∪N));
}

Let us consider an example. Figure 6 contains a query
graph whose nodes are numbered in a breadth-first fashion.
The calls to EnumerateCsgRec are contained in the table
in Figure 7. In this table, S and X are the arguments of
EnumerateCsgRec. N is the local variable after its initial-
ization. The column emit/S contains the connected subset
emitted, which then becomes the argument of the recursive
call to EnumerateCsgRec (labelled by →). Since listing all
calls is too lengthy, only a subset of the calls is listed.

3.3 Enumerating Complements of Connected
Subgraphs

Generating the connected subsets is an important first step
but clearly not sufficient: we have to generate all csg-cmp-
pairs. The basic idea to do so is as follows. Algorithm
EnumerateCsg is used to create the first component S1 of
every csg-cmp-pair. Then, for each such S1, we generate all
its complement components S2. This can be done by calling

R0

R1 R2 R3

R4

Figure 6: Sample graph to illustrate EnumerateCsgRec

EnumerateCsgRec
S X N emit/S

{4} {0, 1, 2, 3, 4} ∅
{3} {0, 1, 2, 3} {4}

{3, 4}
{2} {0, 1, 2} {3, 4}

{2, 3}
{2, 4}
{2, 3, 4}

{1} {0, 1} {4}
{1, 4}

→ {1, 4} {0, 1, 4} {2, 3}
{1, 2, 4}
{1, 3, 4}
{1, 2, 3, 4}

{0} {0} {1, 2, 3}
{0, 1}
{0, 2}
{0, 3}
{0, 1, 2}
{0, 1, 3}
{0, 2, 3}
{0, 1, 2, 3}

→ {0, 1} {0, 1, 2, 3} {4}
{0, 1, 4}

→ {0, 2} {0, 1, 2, 3} {4}
{0, 2, 4}

Figure 7: Call sequence for Figure 6

935

EnumerateCsgRec with the correct parameters. Remember
that we have to generate every csg-cmp-pair once and only
once.

To achieve this, we use a similar technique as for connected
subsets, using the breadth-first numbering to define an enu-
meration order: we consider only sets S2 in the complement
of S1 (with (S1, S2) being a csg-cmp-pair) such that S2 con-
tains only vj with j larger than any i with vi ∈ S1. This
avoids the generation of duplicates.

We need some definitions to state the actual algorithm. Let
S1 ⊆ V be a non-empty subset of V . Then, we define
min(S1) := min({i|vi ∈ S1}). This is used to extract the
starting node from which S1 was constructed (see Lemma 9).
Let W ⊂ V be a non-empty subset of V . Then, we define
Bi(W) := {vj |vj ∈ W, j ≤ i}. Using this notation, the algo-
rithm to construct all S2 for a given S1 such that (S1, S2) is
a csg-cmp-pair looks as follows:

EnumerateCmp

Input: a connected query graph G = (V, E), a connected
subset S1

Precondition: nodes in V are numbered according to a
breadth-first search
Output: emits all complements S2 for S1 such that (S1, S2)
is a csg-cmp-pair
X = Bmin(S1) ∪ S1;
N = N (S1) \X;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G, {vi}, X ∪N);

}

Algorithm EnumerateCmp considers all neighbors of S1. First,
they are used to determine those S2 that contain only a sin-
gle node. Then, for each neighbor of S1, it recursively calls
EnumerateCsgRec to create those S2 that contain more than
a single node. Note that here both nodes concerning the
enumeration of S1 (Bmin(S1) ∪S1) and nodes concerning the
enumeration of S2 (N) have to be considered in order to
guarantee a correct enumeration. Otherwise the combined
algorithm would emit (commutative) duplicates.

Let us consider an example for algorithm EnumerateCmp.
The underlying graph is again the one shown in Fig. 6. As-
sume EnumerateCmp is called with S1 = {R1}. In the first
statement, the set {R0, R1} is assigned to X. Then, the
neighborhood is calculated. This results in

N = {R0, R4} \ {R0, R1} = {R4}.

Hence, {R4} is emitted and together with {R1}, it forms
the csg-cmp-pair ({R1}, {R4}). Then, the recursive call
to EnumerateCsgRec follows with arguments G, {R4}, and
{R0, R1, R4}. Subsequent EnumerateCsgRec generates the
connected sets {R2, R4}, {R3, R4}, and {R2, R3, R4}, giv-
ing three more csg-cmp-pairs.

3.4 Correctness Proof
3.4.1 Preliminaries

The correctness of DPccp follows if the csg-cmp-pairs are
enumerated correctly, as it simply enumerates all possible
pairs and fills the DP table accordingly. Therefore, we only
have to prove the correctness of the functions EnumerateCsg,
EnumerateCsgRec and EnumerateCmp. The rest of this sec-
tion is independent of the join ordering problem. Thus, we
concentrate on undirected graphs.

Given a connected undirected graph G = (V, E), we want
to enumerate all vertices V ′ ⊆ V , such that G′ = (V ′, E|V ′)
is a connected subgraph of G. Thereby, E|V ′ = {(v, v′) ∈
E|v, v′ ∈ V ′}. We denote the direct neighbors of a node v
by N(v) defined as

N (v) = {v′ ∈ V |(v, v′) ∈ E}.

Indirect neighbors are collected into sets Ni(v), which con-
tain the i-th generation of neighbors:

N0(v) = {v}
N1(v) = N (v)

Ni+1(v) = (∪v′∈Ni(v)N (v′)) \ (∪j=0...iNj(v))

If a vertex v ∈ V has a label, the label is determined by
L(v). The labels will be unique, therefore we can identify a
vertex by its label: v = vL(v).

We assume that the graph G contains no self-cycles, i.e.
@v ∈ V : (v, v) ∈ E. If such edges exist, they can be
safely removed as they do not affect the connected subsets.
Further we assume that the vertices in the graph are labeled
in a breadth-first manner. That is, we demand that

• there exists one vertex v0 ∈ V that has the label 0,

• the vertices in N1(v0) have labels in [1, |N1(v0)|],

• the vertices in Nk(v0) have labels in

[
Pk−1

i=0 |Ni(v0)| ,
Pk

i=0 |Ni(v0)|].

3.4.2 Correctness of EnumerateCsg

Lemma 1. Algorithm EnumerateCsg terminates if G is a
finite graph.

Proof. EnumerateCsg performs a finite number of loop
iterations (|V |). In each iteration, it constructs a finite set
and passes it as an argument to EnumerateCsgRec. Thus,
EnumerateCsg terminates if EnumerateCsgRec terminates for
all inputs.

EnumerateCsgRec is called with three arguments, G, S and
X. As G = (V, E) is a finite graph and S ⊆ V ∧X ⊆ V (line
3 in EnumerateCsg, lines 1 and 6 in EnumerateCsgRec), S
and X are also finite. In each recursion, EnumerateCsgRec
considers the neighbors N ⊆ V of S, ignoring vertices in
X. It then evaluates each non-empty subset of N , calling
EnumerateCsgRec recursively, enlarging X by N . As X ⊆
V and X is enlarged by each call, the recursion depth of
EnumerateCsgRec is limited by |V |.

Lemma 2. Algorithm EnumerateCsg enumerates only
connected components.

936

Proof. By induction over the recursion depth n.

Base Case: n = 0
EnumerateCsg starts the enumeration with single vertices,
which are connected components (lines 2-3).

Induction hypothesis: recursion depth n enumerates only
connected components and passes them as parameter S to
recursion depth n + 1

Induction step:
EnumerateCsgRec at recursion level n+1 is called with a con-
nected component S (IH) and considers only vertices that
are connected to vertices in S (N , line 1). As any vertex in
N is directly connected to at least one vertex in S, any sub-
set of N can be added to S to form a connected component
(lines 2-3, 5-6). The claim follows.

Lemma 3. Given a connected, undirected graph
G = (V, E), a vertex v ∈ V , a natural number n ≥ 0, and
V ′

n = ∪0≤i≤nNi(v). Then (V ′
n, E|V ′

n
) is a connected compo-

nent.

Proof. By induction over n.

Base Case: n = 0
V ′

0 = N0(v) = {v}. Thus, (V ′
0 , E|V ′

0
) is a connected compo-

nent.

Induction hypothesis: (V ′
n, E|V ′

n
) is a connected compo-

nent for a given, fixed n.

Induction step: n → n + 1
Per definition, V ′

n+1 = V ′
n ∪ Nn+1(v). (V ′

n, E|V ′
n
) is a con-

nected component (IH), Nn(v) ⊆ V ′
n (def.), all vertices in

Nn+1(v) are connected to at least one vertex in Nn(v) (def.)
It follows that (V ′

n+1, E|V ′
n+1

) is a connected component.

Lemma 4. Given a connected, undirected graph
G = (V, E) and a vertex v ∈ V . Then ∃n ≥ 0 such that
∀0≤i≤nNi(v) 6= ∅ and ∀i>nNi(v) = ∅.

Proof. From the definition of Ni+1(v) follows that if
(Ni(v) = ∅) =⇒ (Ni+1(v) = ∅). Further it follows from
the definition of Ni that N0(v) 6= ∅, ∀iNi(v) ⊆ V , and
∀j<iNi(v) ∩Nj(v) = ∅ =⇒ N|V |(v) = ∅. ⇒ n ∈ [0, |V |[.

Lemma 5. Given a connected, undirected graph
G = (V, E), |V | > 1 and a set of vertices V ′ ⊆ V such that
(V ′, E|V ′) is a connected component. Then ∃v ∈ V ′ such
that (V ′ \ {v}, E|V ′\{v}) is a connected component.

Proof. In the following, we consider G′ = (V ′, E|V ′) as
the base to computeN (v) andNi(v) (G′ is a connected undi-
rected graph). Choose an arbitrary v0 ∈ V ′ and a natural
number n such that Nn(v0) 6= ∅∧Nn+1(v0) = ∅ (Lemma 4).
Note that n > 0 as |V ′| > 1 and that ∪0≤i≤nNi(v0) = V ′.
Now any v ∈ Nn(v0) can be removed: ∪0≤i<nNi(v0) forms a
connected component (Lemma 3) and all vertices in Nn(v0)

are connected to at least one vertex in Nn−1(v0). Since n >
0 andNn(v0) 6= ∅ if follows that ∀v∈Nn(v0)(V

′\{v}, E|V ′\{v})
is a connected component.

Lemma 6. When EnumerateCsgRec is called with addi-
tional vertices, it enumerates at least the same components
as without the vertices. More formally:
{V ∪A|(V, E) enumerated by EnumerateCsgRec(G, S, X)} ⊆
{V |(V, E) enumerated by EnumerateCsgRec(G, S ∪A, X)}

Proof. In line 1: N ⊆ N (S ∪A). Therefore, at least the
same combinations are enumerated in the first step. The
same in further recursions, the increase of X does not affect
the search space as all additional vertices in X are already
examined in the first step.

Lemma 7. Algorithm EnumerateCsg enumerates all con-
nected components consisting of a single vertex.

Proof. Line 1 iterates over all vertices, line 2 emits a
graph consisting of the vertex.

Lemma 8. Algorithm EnumerateCsg enumerates all con-
nected components.

Proof. By contradiction. We assume that not all con-
nected components are enumerated. Thus ∃V ′ ⊆ V ∧V 6= ∅
such that (V ′, E|V ′) is a connected component and V ′ is
not enumerated. If several such V ′ exist, we choose V ′

such that |V ′| is minimal. Lemma 7 implies that |V ′| > 1.
Lemma 5 implies that ∃v′ ∈ V ′ : (V ′ \ {v′}, E|V ′\{v′}) is
a connected component. As V ′ was chosen to be minimal,
(V ′ \ {v′}, E|V ′\{v′}) was enumerated.

Case 1: v′ appeared in N during the enumeration of V ′ \
{v′}. This is a contradiction to the assumption that V ′ was
not enumerated (Line 2, Line 5, Lemma 6).

Case 2: v′ did not appear in N during the enumeration
of V ′ \ {v′}. Since v′ is connected to V ′ \ {v′}, it must
have been excluded, i.e. L(v′) < min({L(v)|v ∈ V ′ \ {v′}}).
Then EnumerateCsg will enumerate V ′ when selecting v′ as
the start vertex (the constructive proof of this claim is triv-
ial).

Lemma 9. If V ′ and V ′′ are both enumerated and
min({L(v)|v ∈ V ′}) = min({L(v)|v ∈ V ′′}), V ′ and V ′′ are
enumerated using the same start vertex.

Proof. EnumerateCsg iterates over all vertices (line 1)
and starts the enumeration with a connected component
consisting of just this vertex (lines 2-3). All vertices with
a label smaller than the start vertex are excluded (line 3).
Thus, the smallest label determines the start vertex.

Lemma 10. Algorithm EnumerateCsg enumerates all con-
nected components only once.

937

Proof. By contradiction. We assume that ∃V ′ ⊆ V that
is enumerated at least twice. If multiple such V ′ exist, we
choose V ′ such that |V ′| is minimal.

Case 1: |V ′| = 1. As discussed in Lemma 7, EnumerateCsg
enumerates all connected components consisting of a sin-
gle vertex. As EnumerateCsgRec increases components by a
non-empty, disjoint set, V ′ must have been enumerated by
EnumerateCsg. But EnumerateCsg performs a single loop
over all vertices, thus V ′ cannot have been produced twice.

Case 2: |V ′| > 1. V ′ is enumerated by EnumerateCsgRec.
Lemma 9 implies that both enumerations of V ′ started with
the same vertex. Hence, the first call to EnumerateCsgRec

is identical. Especially X is the same.

A single invocation of EnumerateCsgRec (without the re-
cursive call) does not produce duplicates (lines 2-3 iterate
only once). Hence, V ′ cannot be enumerated twice by a
single call. V ′ cannot be enumerated by two different calls
to EnumerateCsgRec with the same parameters, as |V ′| is
minimal (otherwise S would be smaller and also be enumer-
ated twice). Thus, ∃S1, S2, X1, X2 ⊆ V such that S1 6= S2,
S1, S2, X1, X2 are constructed by EnumerateCsgRec start-
ing from the same start vertex and both EnumerateCsgRec

(G, S1, X1) and EnumerateCsgRec(G, C2, X2) enumerate V ′.
Hence, (V ′ \ S1) ∪X1 = ∅ ∧ (V ′ \ S2) ∪X2 = ∅.

As both enumerations started with the same vertex, they
have a common invocation path. As S1 6= S2, there ex-
ists a invocation of EnumerateCsgRec, that recursively calls
EnumerateCsgRec with S′1 and S′2 (S′1 6= S′2), which finally
lead to S1 and S2 respectively.

Note that the exclusion filter X constructed in line 6 is the
same for S′1 and S′2, but S′1 6= S′2. This implies ∃v ∈ (S′1 ∪
S′2) : v 6∈ (S′1 ∩ S2) ∧ v ∈ X. From this, we can conclude
that ((v ∈ S1 ∧ v 6∈ S2) ∨ (v 6∈ S1 ∧ v ∈ S2)) ∧ (v ∈ X) and,
hence, v ∈ V ′ ∧ v 6∈ V ′.

Lemma 11. If V ′ ⊂ V ′′, n = |V ′′| − |V ′| − 1 and both
(V ′, E|V ′) and (V ′′, E|V ′′) are connected components, then
∃V1 . . . Vn such that V ′ ⊂ V1, Vi ⊂ Vi+1, Vn ⊂ V ′′ and
(Vi, E|Vi

) is a connected component ∀1 ≤ i ≤ n.

Proof. By induction over n.

Base case: n=0. The sequence V1 . . . Vn is empty, i.e. it
exists.

Induction hypothesis: A suitable sequence V1 . . . Vn ex-
ists for a given fixed n.

Induction step: n → n + 1
Choose an arbitrary v ∈ V ′′ \V ′ that is connected to V ′. As
V ′ ⊂ V ′′ and V ′′ is a connected component, such a v exists.
Choose V1 = V ′ ∪ {v} as the first entry in the sequence.
Now n = |V ′′| − |V1| − 1 ⇒ (IH) a sequence between V1 and
V ′′ exists, which can be used as V2 . . . Vn.

Lemma 12. If V ′ ⊂ V ′′ and both (V ′, E|V ′) and

(V ′′, E|V ′′) are connected components, EnumerateCsg enu-
merates (V ′, E|V ′) before (V ′′, E|V ′′).

Proof. By contradiction. We assume that V ′′ is enumer-
ated before V ′. Using Lemma 11 we know that if such V ′

and V ′′ exist, at least one occurrence must have the prop-
erty |V ′| + 1 = |V ′′|. Therefore we can limit ourselves to
this case.

Case 1: min({L(v)|v ∈ V ′′}) < min({L(v)|v ∈ V ′})
V ′ and V ′′ are enumerated during different loop passes in
EnumerateCsg, as EnumerateCsg determines the vertex with
the lowest label in each connected component. This is a con-
tradiction to the assumption that V ′′ is enumerated before
V ′′, as the vertices are selected with the greatest label first
(line 1).

Case 2: min({L(v)|v ∈ V ′′}) > min({L(v)|v ∈ V ′})
This is a contradiction to V ′ ⊂ V ′′

Case 3: min({L(v)|v ∈ V ′′}) = min({L(v)|v ∈ V ′})
As V ′ and V ′′ have the same minimal vertex id, they are
enumerated during the same loop pass in EnumerateCsg. We
now name the single vertex difference between V ′ and V ′′ v
and consider how V ′ is enumerated.

Case 3.1: v 6∈ X when enumerating V ′

When enumerating V ′, v is not suppressed. This means
that either a further loop iteration (line 2) or a recursive
call (line 5) will enumerate V ′′. This is a contradiction,
as we assumed that V ′′ was already enumerated and the
algorithm produces no duplicates (Lemma 10). Note that
V ′′ cannot be enumerated first in the same loop, as the loops
enumerate subsets first (line 2).

Case 3.2: v ∈ X when enumerating V ′

v ∈ X ⇒ v ∈ N in one recursion step (v is not the start
vertex). This recursion step will also enumerate V ′′ later on
(v ∈ N , X is unchanged), this is a contradiction to the as-
sumption that V ′′ is enumerated first and to Lemma 10.

Theorem 1. Algorithm EnumerateCsg is correct.

Proof. The theorem follows immediately from Lemma 1,
Lemma 2, Lemma 8, Lemma 10, and Lemma 12.

3.4.3 Correctness of EnumerateCmp

Besides enumerating the connected components themselves,
the DPccp algorithm requires enumerating all connected com-
ponents in the adjacent complement of the graph. More
formally, given a connected graph G = (V, E) and V ′ ⊆ V
such that (V ′, E|V ′) is a connected component, enumerate
all V ′′ ⊆ V \V ′ such that (V ′′, E|V ′′) and (V ′∪V ′′, E|V ′∪V ′′)
are connected components.

The algorithms presented suppress duplicates. This means
that if V ′′ is enumerated for a given V ′, V ′ will not be
enumerated if V ′′ is given as a primary connected component
(i.e. as a first component in a csg-cmp-pair). Furthermore,
a V ′′ is only enumerated if it was already enumerated as a
primary connected component. This allows us to define a

938

total ordering between disjoint connected components that
matches the enumeration order used in EnumerateCsg:

V ′′ < V ′ ⇔ min({L(v)|v ∈ V ′}) < min({L(v)|v ∈ V ′′}).

Using this ordering, we only enumerate V ′′ for V ′ if V ′ <
V ′′. Note that the following condition holds:

V1 ⊂ V2 ∧ V1 < V3 ⇒ V2 < V3.

This allows terminating the construction of connected com-
ponents early if any sub-component is already less than the
primary connected component.

Enumeration of the connected components of the comple-
ment is similar to the normal enumeration algorithm. The
algorithm performs a recursive construction by starting with
the neighbours of the primary connected component. Each
neighbor is selected, the ordering condition is checked, and
the recursive construction starts with the single vertex. Note
that the total ordering is enforced implicitly: The exclusion
set X contains all vertices that would result in a violation.

3.4.4 Proofs
Lemma 13. Algorithm EnumerateCmp terminates if G is

a finite graph.

Proof. EnumerateCmp performs a finite number of loop
iterations (|Np| < |V |). In each iteration it constructs a
finite set and passes it as argument to EnumerateCsgRec.
Thus EnumerateCmp terminates if EnumerateCsgRec termi-
nates for all inputs. EnumerateCsgRec terminates as shown
in Lemma 1.

Lemma 14. Algorithm EnumerateCmp enumerates all con-
nected components consisting of a single vertex (that satisfy
the ordering and are connected to p).

Proof. The exclusion list in line 1 consists only of ver-
tices that are either ∈ S or would be rejected anyway, due
to the ordering. Thus, the neighbourhood constructed in
line 2 consists of all vertices adjacent to S that satisfy the
ordering. They are used to construct connected components
with a single vertex in lines 3-4.

Lemma 15. Algorithm EnumerateCmp enumerates only ad-
jacent connected components in the complement.

Proof. All connected components are constructed start-
ing with a single vertex, which is adjacent (see proof of
Lemma 14). The further construction is done by calling
EnumerateCsgRec, which only constructs connected compo-
nents (proof of Lemma 2). The exclusion list X constructed
in line 1 allows only connected components from the com-
plement.

Lemma 16. Algorithm EnumerateCmp enumerates all ad-
jacent connected components in the complement (that satisfy
the ordering).

 1

 10

 2 4 6 8 10 12 14 16 18 20

op
tim

iz
at

io
n

tim
e

/ o
pt

im
iz

at
io

n
tim

e
D

P
cc

p

no of relations

chain queries

DPccp
DPsub
DPsize

Figure 8: Relative performance for chain queries

Proof. As shown in Lemma 14, all connected compo-
nents consisting of a single vertex are enumerated. The proof
for larger connected components is analogous to the proof
of Lemma 8 as EnumerateCsgRec is reused.

Note that Lemma 5, which is used in the proof, can be
lifted to adjacent connected components: The constructive
proof shows that actually two vertices could be removed,
either v0 or a vertex in Nn(v0). Therefore, it is possible to a
remove a vertex such that the connected component is still
adjacent.

Lemma 17. Algorithm EnumerateCmpl enumerates con-
nected components only once.

Proof. See the proof of Lemma 10. EnumerateCmp de-
termines the start vertex (vertices in N are only selected
by EnumerateCmp), the recursive phase EnumerateCsgRec in-
creases the connected component. As the recursive steps are
identical, the proof can be reused.

Theorem 2. Algorithm EnumerateCmp is correct.

Proof. The theorem follows immediately from
Lemma 13, Lemma 15, Lemma 16, and Lemma 17.

4. EVALUATION
While the analytical results of Section 2 already imply the
performance characteristics of the different algorithms, we
performed experiments to measure the costs of an actual
implementation. We compared the execution time of the
different algorithms for varying query graphs.

Figures 8 to 11 show the relative performance of the differ-
ent algorithms for chain, cycle, star, and clique graphs. As
the optimization time varies greatly with the query size, all
performance numbers are given relative to DPccp, e.g. the
optimization time of DPccp is always 1. Sample absolute
running times are given in Figure 12 (for more see [4]).

939

 1

 10

 2 4 6 8 10 12 14 16 18 20

op
tim

iz
at

io
n

tim
e

/ o
pt

im
iz

at
io

n
tim

e
D

P
cc

p

no of relations

cycle queries

DPccp
DPsub
DPsize

Figure 9: Relative performance for cycle queries

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

op
tim

iz
at

io
n

tim
e

/ o
pt

im
iz

at
io

n
tim

e
D

P
cc

p

no of relations

star queries

DPccp
DPsub
DPsize

Figure 10: Relative performance for star queries

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

op
tim

iz
at

io
n

tim
e

/ o
pt

im
iz

at
io

n
tim

e
D

P
cc

p

no of relations

clique queries

DPccp
DPsub
DPsize

Figure 11: Relative performance for clique queries

n DPsize DPsub DPccp

chain queries
5 7.7e-6 9.7e-6 9.2e-6

10 5.8e-5 0.00018 6.4e-5
15 0.0013 0.0056 0.0013
20 0.048 0.22 0.048

cycle queries
5 1.1e-5 1.5e-5 1.4e-5

10 0.0001 0.00031 0.00012
15 0.001 0.01 0.0015
20 0.049 0.47 0.048

star queries
5 9.8e-6 1.2e-5 1.0e-5

10 0.00069 0.0008 0.00044
15 0.71 0.1 0.022
20 4791 42.7 1.00

clique queries
5 2.1e-5 2.4e-5 2.4e-5

10 0.0058 0.0048 0.005
15 4.6 1.2 1.3
20 21294 439 529

Figure 12: Sample absolute running time (s)

As indicated by the theoretical investigations of Section 2,
DPsize and DPccp are superior to DPsub for chain and cycle
queries. For star and clique queries, DPsub, and DPccp are
superior to DPsize.

The experiments show that overall, DPccp is the best al-
gorithm. Independently of the query graph, it is either the
fastest or nearly the fastest algorithm. While the other algo-
rithms only perform well for certain graph structures, DPccp
always adapts to the query graph. There is some overhead
caused for the more complex enumeration, but this over-
head is usually small. Only for clique queries the overhead
shows somewhat, as the enumeration of DPsub is extremely
efficient in a dense search space. Nonetheless, the overhead
is always below 30%.

For star queries, DPccp is highly superior to both DPsize and
DPsub. As the query size increases, the other algorithms
become slower by multiple orders of magnitude. Further-
more, since star queries are of high practical importance in
data warehouses and clique queries do not have any practical
value, DPccp is the algorithm of choice.

5. CONCLUSION
The main contributions of this paper are the following: we
analyzed the complexity of DPsize and DPsub both analyt-
ically and experimentally. The conclusions drawn in both
cases are that

1. DPsize is superior to DPsub for chain and cycle queries,
and

2. DPsub is superior to DPsize for star and clique queries.

We then designed an algorithm that efficiently enumerates
csg-cmp-pairs in an order valid for dynamic programming.

940

This can be used to derive the join ordering algorithm DPccp,
which is highly superior to DPsize and DPsub. DPccp should
thus be the algorithm of choice when implementing a plan
generator.

Acknowledgment. We thank Simone Seeger for her help
preparing this manuscript.

6. REFERENCES
[1] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, 2001. 2nd
Edition.

[2] P. Gassner, G. Lohman, and K. Schiefer. Query
optimization in the IBM DB2 family. IEEE Data
Engineering Bulletin, 16:4–18, Dec. 1993.

[3] D. Kossmann and K. Stocker. Iterative dynamic
programming: a new class of query optimization
algorithms. ACM Trans. on Database Systems,
25(1):43–82, 2000.

[4] G. Moerkotte. Dp-counter analytics. Technical
Report 2, University of Mannheim, 2006.

[5] K. Ono and G. Lohman. Measuring the complexity of
join enumeration in query optimization. In Proc. Int.

Conf. on Very Large Data Bases (VLDB), pages
314–325, 1990.

[6] G. Rücker and C. Rücker. Automatic enumeration of
all connected subgraphs. Commun. Math. Comput.
Chem., 41:145–149, 2000.

[7] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie,
and T. Price. Access path selection in a relational
database management system. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 23–34,
1979.

[8] A. R. Sharafat and O. R. Ma’rouzi. A novel and
efficient algorithm for scanning all minimal cutsets of
a graph. ArXiv Mathematics e-prints, 2002.

[9] B. Vance. Join-order Optimization with Cartesian
Products. PhD thesis, Oregon Graduate Institute of
Science and Technology, 1998.

[10] B. Vance and D. Maier. Rapid bushy join-order
optimization with cartesian products. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages
35–46, 1996.

941

