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ABSTRACT
Given two input collections of sets, a set-similarity join (SSJoin)
identifies all pairs of sets, one from each collection, that have high
similarity. Recent work has identified SSJoin as a useful primitive
operator in data cleaning. In this paper, we propose new algorithms
for SSJoin. Our algorithms have two important features: They are
exact, i.e., they always produce the correct answer, and they carry
precise performance guarantees. We believe our algorithms are the
first to have both features; previous algorithms with performance
guarantees are only probabilistically approximate. We demonstrate
the effectiveness of our algorithms using a thorough experimental
evaluation over real-life and synthetic data sets.

1. INTRODUCTION
A data collection often has various inconsistencies which have to

be fixed before the data can be used for accurate data analysis. The
process of detecting and correcting such inconsistencies is known
as data cleaning. A common form of inconsistency arises when
a real-world entity has more than one representation in the data
collection; for example, the same address could be encoded using
different strings in different records in the collection. Multiple rep-
resentations arise due to a variety of reasons such as misspellings
caused by typographic errors and different formatting conventions
used by data sources.

A similarity join is an important operation for reconciling dif-
ferent representations of an entity [9, 11, 16, 21]. Informally, a
similarity join takes as input two relations, and identifies all pairs
of records from the two relations that are syntactically similar. The
notion of similarity is captured numerically using a string-based
similarity function, and two records are considered similar if the
value returned by the similarity function for these two records is
greater than a threshold. For example, we can perform a similarity
join on the address column of two customer tables to identify
potential misspellings of the same physical address in the two ta-
bles.

A large number of different similarity functions such as edit dis-
tance, cosine similarity, jaccard similarity, and generalized edit dis-
tance [5] have been traditionally used in similarity joins. It is well-
known that no single similarity function is universally applicable
across all domains and scenarios [21]. For example, the character-
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Figure 1: SSJoins in data cleaning

istics of an effective similarity function for joining products based
on their part names, where the errors are usually spelling errors,
would be different from those joining street addresses because even
small differences in the street numbers such as “148th Ave” and
“147th Ave” are crucial, which would be different from similarity
functions for joining person names based on their sounds.

A general-purpose data cleaning system is therefore faced with
the daunting task of supporting a large number of similarity joins
with different similarity functions. Recent work [6] has identified
set-similarity join (SSJoin) as a powerful primitive for supporting
(string-)similarity joins involving many common similarity func-
tions. In other words, we can express these similarity joins using
SSJoin as an sub-operator, and thereby avoid separate implementa-
tions for them from scratch.

Informally, SSJoin is defined as follows: Given two input collec-
tions of sets, identify all pairs of sets, one from each collection, that
are highly similar. The similarity between two sets is captured us-
ing a general class of predicates involving the sizes of the sets and
the size of their intersection. (We introduce the class of predicates
formally in Section 2.) As a simple example, two sets can be con-
sidered similar if their intersection size is greater than a specified
threshold.

Apart from string-based similarity, semantic relationships be-
tween entities can be exploited to identify different representations
of the same entity [2, 10]. For example, in Figure 1, we can infer
CA and California refer to the same state using the fact that
there is a high similarity in their associated sets of cities. This ap-
proach is applicable even when there is no obvious syntactic sim-
ilarity between different representations, as in this example. The
SSJoin operator is naturally applicable here: By performing a set-
similarity join over the sets of cities associated with the same state
name in the two tables of Figure 1, we can join abbreviated and
expanded representations of state names.

1.1 Our Contributions
In this paper, we present new algorithms—PARTENUM and

WTENUM—for evaluating SSJoins. Our algorithms handle a large
subclass of set-similarity predicates allowed by the definition of
the SSJoin operator. In particular, this subclass includes threshold-

918



based predicates involving standard set-similarity measures such as
jaccard and hamming (e.g., jaccard similarity greater than 0.9).

Our algorithms can be broadly characterized as signature-based
algorithms that first generate signatures for input sets, then find all
pairs of sets whose signatures overlap, and finally output the sub-
set of these candidate pairs that satisfy the set-similarity predicate.
Indeed, we observe in Section 3 that all previous algorithms for
SSJoins are also signature-based, so we use the high-level structure
of signature-based algorithms as a framework for comparing our
algorithms with the previous ones.

One important feature of our algorithms is that for SSJoins in-
volving jaccard and hamming, they provide a guarantee that two
highly dissimilar sets will not appear as a candidate pair with a
high probability. Consequently, they produce few false positive
candidate pairs (candidate pairs that do not satisfy the set-similarity
predicate), and are therefore efficient. In contrast, previous algo-
rithms [6, 22] do not provide any such guarantee. Previous work
[8, 15] has proposed probabilistic algorithms based on the idea of
locality-sensitive hashing (LSH) [13] that have similar guarantees.
However, these algorithms are approximate since they can miss
some output set pairs; in contrast, all of our algorithms are exact,
and never produce a wrong output. We believe our algorithms are
the first exact ones with such performance guarantees.

Exact answers are important for data cleaning applications (the
LSH-based algorithms have all been proposed in non-data-cleaning
settings such as web informatics [15] and data mining [8]): In these
applications, an SSJoin operator is typically used, not as a stand-
alone operator, but as part of a larger query [6]. It is well-known [7]
that it is hard to assign clean semantics to a query containing ap-
proximate operators. Recent work [12] has also explored an al-
ternate setting, where data cleaning is performed on-the-fly during
query evaluation, and not as a one-time offline process. Even here
SSJoins appear as part of a larger query, so exact answers are im-
portant.

One drawback of the LSH-based algorithms is that they can be
used only when the SSJoin predicate admits a locality-sensitive
hash function; currently, locality-sensitive hash functions are known
only for standard similarity measures such as jaccard. As we will
show in Section 6, our algorithms handle a larger class of SSJoin
predicates.

In addition to having better theoretical guarantees, our algorithms
also empirically outperform previous exact algorithms [6, 22], of-
ten by more than an order-of-magnitude. More importantly, they
exhibit superior scaling with input size compared to previous exact
algorithms: Our algorithms scale almost linearly, while the previ-
ous ones achieve only quadratic scaling.

Our experiments also suggest that our exact algorithms are com-
petitive with LSH-based algorithms. In many of the data cleaning
scenarios that we consider, our algorithms perform better than the
LSH-based ones, and in all other cases their performance is only
marginally worse. This happens even though the LSH-based al-
gorithms are set up to return only 95% of all results. Thus, the
marginal performance advantage of the LSH-based algorithms is
obtained at the cost of losing a substantial portion of the results.

Finally, our algorithms have the desirable property that they can
be implemented over a regular DBMS using a small amount of
application-level code, as we will describe in Section 8.

2. PRELIMINARIES
Formally, a set-similarity join (SSJoin) is specified using a bi-

nary predicate pred over sets. It takes as input two set collections,
R and S, and produces as output all pairs (r, s), r ∈ R, s ∈ S ,
such that pred(r, s) evaluates to true. Chaudhuri et al [6] identi-

fied the following general class of predicates for supporting various
types of similarity joins in data cleaning:

pred(r, s) = ∧i(|r ∩ s | ≥ ei)

Here, ei is a numeric expression involving constants and sizes of r
and s, i.e., |r | and |s |. For example, an SSJoin with pred(r, s) =
|r∩s | ≥ 20, computes all pairs (r, s) whose intersection is greater
than or equal to 20.

For presentation simplicity, we assume that the domain of ele-
ments of all sets is {1, . . . , n} for some finite, but possibly large
n. In other words, r ⊆ {1, . . . , n} and s ⊆ {1, . . . , n} for each
r ∈ R and each s ∈ S . None of our algorithms require the domain
of elements be finite and integral, and can be generalized to handle
infinite and non-integer domains.

In addition, while our algorithms apply to weighted sets when el-
ements have associated weights, we restrict most of our discussion
to unweighted sets. We revisit the weighted case in Section 7.

2.1 Threshold-based SSJoin
For most of this paper, we deal with simpler SSJoins whose

predicates involve a set-similarity function and a threshold parame-
ter. Specifically, the predicate pred(r, s) of these threshold-based
SSJoins is of the form Sim(r, s) ≥ γ, where Sim denotes a simi-
larity function and γ denotes a threshold parameter, or of the form
Dist(r, s) ≤ k, where Dist denotes a distance function and k a
threshold parameter. In particular, we focus on jaccard similarity
and hamming distance (defined below), two common functions for
defining similarity between sets. Threshold predicates involving
each of these similarity functions can be expressed in the more gen-
eral form introduced above, as we illustrate when we define these
functions.

We proceed in this manner for ease of exposition: Our algo-
rithms can be extended to handle a more general subclass of SSJoin
predicates, as we describe in Section 6.

2.2 Hamming SSJoin
We can view a set s ⊆ {1, . . . , n} as an n-dimensional binary

vector v, such that v[i] = 1 if i ∈ s, and v[i] = 0, otherwise (v[i]
denotes the value of vector v on the ith dimension). The hamming
distance between two vectors v1 and v2, denoted Hd(v1, v2), is the
number of dimensions on which the two differ. We often blur the
distinction between sets and binary vectors: For example, we refer
to the hamming distance between two sets to mean the hamming
distance of their vector representations. Note that the hamming
distance between two sets s1 and s2 is the size of their symmetric
difference: Hd(s1, s2) = |(s1 − s2) ∪ (s2 − s1) |.

Example 1. Consider the 3-gram sets of the strings
washington and woshington shown below:

s1 = {was, ash, shi , hin, ing ,ngt , gto, ton}

s2 = {wos, osh, shi , hin, ing ,ngt , gto, ton}

The hamming distance between s1 and s2 is 4. �

An SSJoin involving hamming distance (hereafter hamming
SSJoin) takes as input R and S and produces as output all pairs
(r, s) ∈ R×S such that Hd(r, s) ≤ k, for some integral threshold
k. We note that hamming SSJoins belong to the general class of
SSJoins since Hd(r, s) ≤ k is equivalent to:

|r ∩ s |≥
|r | + |s | −k

2
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INPUT: Set collections R and S and threshold γ
1. For each r ∈ R, generate signature-set Sign(r)
2. For each s ∈ S , generate signature-set Sign(s)
3. Generate all candidate pairs (r, s), r ∈ R, s ∈ S  satisfying

Sign(r) ∩ Sign(s) �= φ
4. Output any candidate pair (r, s) satisfying Sim(r, s) ≥ γ.

Figure 2: A signature-based algorithm for SSJoin

2.3 Jaccard SSJoin
The jaccard similarity of two sets r and s, denoted Js(r, s), is

defined as:

Js(r, s) =
| r ∩ s |

| r ∪ s |

Js(r, s) is a value between 0 and 1.

Example 2. Consider the sets shown in Example 1. The sets
share 6 elements in common, and therefore their jaccard similarity
is 6/10 = 0.6. �

An SSJoin involving jaccard similarity (hereafter jaccard SSJoin)
takes as input two set collections, R and S, and produces as output
all pairs (r, s) ∈ R×S such that Js(r, s) ≥ γ, where γ denotes a
threshold parameter. Again, jaccard SSJoin belongs to the general
class of SSJoin introduced above since the predicate Js(r, s) ≥ γ
is equivalent to the predicate:

|r ∩ s |≥
γ

1 + γ
(|r | + |s |)

3. A FRAMEWORK FOR SSJOIN ALGO-
RITHMS

As mentioned earlier, several algorithms have been proposed for
SSJoin in previous work [6, 8, 15, 19, 22]. These algorithms of-
ten involve complicated implementation and engineering details,
which raises the natural issue of how different algorithms can be
compared. Interestingly, most of the previous algorithms have a
common high-level structure that also happens to be shared by our
algorithms, which can be used for comparison. In this section, we
develop a framework based on this common structure, and we use
this framework throughout the paper.

Based on their high-level structure, most of the previous algo-
rithms and all of our algorithms can be viewed as belonging to a
general class called signature-based algorithms. Figure 2 formal-
izes the steps in a general signature-based algorithm. A signature-
based algorithm for SSJoin between R and S involving similarity
function Sim and threshold γ operates as follows: It first generates
a set of signatures for each input set in R∪S. The signatures have
the property that if Sim(r, s) ≥ γ, then r and s share a common
signature. Based on this property, the signature-based algorithm
generates candidate pairs by identifying all (r, s) ∈ R × S such
that the set of signatures of r and s overlap. Finally, in a post-
filtering step, it checks the similarity join condition Sim(r, s) ≥ γ
for each candidate pair (r, s), and outputs those that satisfy the
condition. We emphasize that our view of previous algorithms as
signature-based algorithms is purely conceptual. In particular, their
original presentation was not along the lines suggested by Figure 2.

Note that Figure 2 provides only a high-level outline of a
signature-based algorithm. Several engineering details are left un-
specified. For example, a variety of indexing and join techniques
can help speed up the generation of candidate pairs [22], and can-
didate pair generation and postfiltering can often be performed in

a pipelined fashion [6]. However, the engineering details are rela-
tively less important for comparing different signature-based algo-
rithms, for two reasons. First, the engineering details are mostly
orthogonal to the high-level outline: They do not benefit one high-
level approach over another, so they are not very relevant for deter-
mining relative performance of signature-based algorithms. Sec-
ond, the overall performance and the scalability of a signature-
based algorithm is primarily determined by parameters such as num-
ber of signatures and number of candidate pairs that depend only
on the high-level outline of Figure 2, as we will show using our
experiments.

The primary difference between various signature-based algo-
rithms lies in their signature schemes: the details of how they gen-
erate signatures for an input set. Therefore, we focus hereafter
mostly on signature schemes. For example, we often refer sim-
ply to a signature scheme, while implicitly meaning the signature-
based algorithm using the signature scheme. Also when we refer
to a signature-based algorithm, we mean at the level of detail of
Figure 2. We next introduce some terminology related to signature-
based algorithms, present measures for evaluating signature-based
algorithms, and briefly review the signature schemes of previous
algorithms.

3.1 Signature Scheme
As in Figure 2, we use the notation Sign(s) to denote the sig-

natures generated by a signature scheme for an input set s. Note
that this notation does not explicitly identify the signature scheme,
which should be clear from the context. Any signature scheme
has a basic correctness requirement: For any two sets r and s,
Sign(r)∩Sign(s) 	= φ, whenever Sim(r, s) ≥ γ; here Sim is the
SSJoin similarity function and γ is the similarity threshold. This
correctness requirement may be satisfied probabilistically, which
is the case for LSH-based algorithms; an algorithm with such a sig-
nature scheme is approximate, i.e., it may miss some output pairs.

The notation Sign(s) is slightly misleading, since the set of sig-
natures for s is not a function of s alone. There are usually sev-
eral “hidden parameters” which influence the set of signatures for
s. These may include the SSJoin threshold γ, statistics collected
from R and S such as frequency of elements, and random bits
used for randomization. When we use Sign(s), the hidden para-
meters should be clear from the context. Note that the same setting
of hidden parameters is used for generating signatures of all input
sets.

3.2 Evaluation
We now introduce measures for evaluating signature-based algo-

rithms that depend only on the high-level outline of signature-based
algorithms of Figure 2. (Our experiments are based on a complete
implementation, and we will report total computation time for our
experiments.)

1. Intermediate result size (F2): One good indicator of the overall
performance of a signature-based algorithm is given by the follow-
ing expression:

r∈R

|Sign(r)| +
s∈S

|Sign(s)| +
(r,s)

|Sign(r) ∩ Sign(s)|

If we implement Step 3 of a signature-based algorithm (Figure 2)
as a “join” between signatures, the above expression represents the
total size of intermediate results produced by the algorithm, which
is a well accepted basis for comparison. The first two terms capture
the amount of work done for signature generation (steps 1 and 2 of
Figure 2), and the third term captures the work done for candidate
pair generation (step 3). We will show in Section 8 that the above
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expression closely tracks the actual execution time of signature-
based algorithms.

Most of the signature schemes that we propose in this paper in-
volve setting various tuning parameters. We can identify the op-
timal parameters by estimating the value of the above expression
for different settings of parameters. Note that for self-SSJoins, the
above expression is within a factor 2 of F2 measure of signatures of
all input sets, and there exist well-known techniques for estimating
F2 measure using limited memory [1].

2. Filtering Effectiveness: All practical signature schemes pro-
duce false positive candidate pairs, i.e., (r, s) such that Sign(r) ∩
Sign(s) 	= φ and Sim(r, s) < γ. The number of false posi-
tive candidate pairs linearly affects the costs of steps 3 and 4 of
a signature-based algorithm, therefore it is desirable to minimize
it. We use the term filtering effectiveness to indicate how good
a signature scheme is in minimizing false positives. For most of
our signature schemes and for those based on LSH, the filtering
effectiveness can be quantified precisely: For any sets r and s,
Sign(r) ∩ Sign(s) 	= φ is a random event whose probability is
a decreasing function of Sim(r, s). No such quantification of fil-
tering effectiveness exists for the signature schemes of [6, 22].

3.3 Signature schemes of previous algorithms
Probe-Count and Pair-Count Algorithms [22]: The signatures of a
set is simply the elements in the set, i.e., Sign(s) = s. We call this
the identity signature scheme.

Prefix-Filter Algorithm [6]: Sign(s) contains the h elements of s
with the smallest frequencies1 in (R∪S). The exact value of h de-
pends on the similarity function and threshold. We call this signa-
ture scheme prefix filter. For illustration, consider a jaccard SSJoin
between R and S with similarity threshold 0.8. Further, assume
that the size of each set is 20, i.e., |r |=|s|= 20 for each r ∈ R
and s ∈ S. For this case, Sign(s) contains the three elements of s
with the smallest frequencies. We can show that if the jaccard sim-
ilarity of r and s is at least 0.8, then | r ∩ s |≥ 18, which in turn
implies that r and s have at least one signature in common (recall
|r |= |s |= 20).

LSH-based algorithm [8, 15, 19]: For jaccard SSJoins, each signa-
ture is a concatenation of a fixed number g of minhashes of the set,
and there are l such signatures. The exact definition of minhashes
is beyond the scope of this paper. The values g and l control the
performance of the algorithm: Informally, the parameter g controls
the filtering effectiveness, and for a fixed value of g, the parame-
ter l controls the approximation factor: In order to achieve a false
negative rate of δ, we require about l = 1

γg log( 1
δ
) signatures.

4. HAMMING DISTANCE
We now present a signature scheme called PARTENUM (for Par-

titioning and Enumeration) for hamming SSJoins. In Section 5, we
use PARTENUM as a building block to derive a signature scheme
for jaccard SSJoins. Throughout this section, we represent sets as
binary vectors, as indicated in Section 2. Therefore, we will focus
on the following vector-based join problem in the remainder of this
section: Given two vector collections U and V , identify all pairs
(u, v) ∈ U × V such that Hd(u, v) ≤ k. Recall that we have
assumed {1, . . . , n} to be the domain of elements, so all vectors
u ∈ U and v ∈ V are n-dimensional.

4.1 PartEnum: Overview

1Ties are broken arbitrarily but consistently for all sets.

As the name suggests, PARTENUM is based on two ideas for sig-
nature generation called partitioning and enumeration. In this sec-
tion, we informally introduce these ideas and PARTENUM; detailed
specification of PARTENUM is provided in Section 4.2.

Partitioning: Consider a partitioning of the dimensions {1, . . . , n}
into k + 1 equi-sized partitions. Any two vectors that have a ham-
ming distance ≤ k must agree on at least one of these partitions,
since the dimensions on which they disagree can fall into at most
k partitions. Based on this observation, we can construct a simple
signature scheme as follows: For each vector v, generate k + 1
signatures by projecting v along each of the k + 1 partitions. Un-
fortunately, this scheme has poor filtering effectiveness since two
vectors often end up “accidentally” agreeing on a partition even if
they are very dissimilar, and therefore end up sharing a signature.

Enumeration: More generally, consider a partitioning of the di-
mensions into n2 > k equi-sized partitions. Any two vectors with
hamming distance ≤ k must agree on at least (n2 − k) partitions.
Using this observation, we can construct the following signature
scheme: For each vector v, pick (n2 − k) partitions in every possi-
ble way, and for each selection, generate a signature by projecting
v along these (n2 − k) partitions. (There are n2

k
signatures for

each vector v.) This scheme has very good filtering effectiveness
if we set n2 ≈ 2k, but the drawback is that it generates around
2k

k
≈ 22k signatures per vector for this setting.

Hybrid(PARTENUM): Now consider a partitioning of the domain
into n1 = (k + 1)/2 partitions. Consider two vectors u and v
with Hd(u, v) ≤ k. Using a simple counting argument, we can
show that the projections of u and v along at least one of these
partitions have hamming distance ≤ 1. Using this observation,
we generate a signature scheme as follows: We project a given
vector v along each of the n1 partitions. For each projection, we
generate a set of signatures using the enumeration scheme with a
new threshold k2 = 1. The signature set for v is the union of
signatures corresponding to all projections. Informally, partitioning
reduces the problem of generating signatures for a vector to that of
generating signatures for vectors of smaller dimensions and for a
smaller threshold; for a smaller threshold the number of signatures
generated by enumerations becomes more tractable.

4.2 PartEnum: Details
Figure 3 contains the formal specification of PARTENUM. We

first generate a random permutation π of the dimensions {1, . . . , n}.
We use π to define a two-level partitioning of the dimensions: There
are n1 first-level partitions, and within each first-level partition,
there are n2 second-level partitions. Therefore, there are n1 × n2

second-level partitions overall. The values n1 and n2 are parame-
ters that can be varied to control signature generation by
PARTENUM. Each (first- or second-level) partition contains a set of
dimensions contiguous under permutation π, i.e., it is of the form
{π(i) : b ≤ i < e}. We use pij to denote the jth second-level
partition within the ith first level partition; see Figure 3 for the for-
mal definition of pij . The random permutation π, and therefore the
partitioning, is generated only once. The signatures of all vectors
in (U ∪ V) are generated using the same partitioning of the dimen-
sions.

We now describe how the signatures for a vector v are generated.
Fix k2 = k+1

n1

− 1; recall that k is the hamming distance thresh-
old. For each first-level partition, we generate all possible subsets
of second-level partitions of size (n2−k2)—there are exactly n2

k2

such subsets. We generate one signature corresponding to each sub-
set. Fix a subset S, and let P denote the set of all dimensions be-
longing to partitions in S. The signature for S is the pair 〈v[P ], P 〉,
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PARAMETERS:
SSJoin threshold: k
Number of first-level partitions: n1, n1 ≤ k + 1
Number of second-level partitions: n2, n1n2 > k + 1

ONETIME:
1. Generate a random permutation π of {1, . . . , n}

2. Define bij =
n(n2i−1+j−1)

n1n2

; eij =
n(n2i−1+j)

n1n2

3. Define pij = {π(bij), π(bij + 1), . . . , π(eij − 1)}

4. Define k2 = k+1
n1

− 1

SIGNATURE FOR v:
1. Sign(v) = φ
2. For each i in {1, . . . , n1}
3. For each subset S of {1, . . . , n2} of size n2 − k2

4. Let P = ∪j∈Spij

5. Sign(v) = Sign(v) + 〈v[P ], P 〉

Figure 3: PARTENUM: Formal Specification

1 2 3
1 32 4 1 2 3 4 1 2 3 4

Figure 4: PARTENUM with n1 = 3 and n2 = 4 and k = 5

where v[P ] denotes the projection of vector v along dimensions in
P . (For example, if v = 01010101, v[{1, 2, 8}] = 011.) Note that
two signatures 〈v1[P1], P1〉 and 〈v2[P2], P2〉 are equal only if both
the projections (v1[P1] = v2[P2]) and the subsets (P1 = P2) are
equal. The total number of signatures for v is therefore n1 · n2

k2

.
We will address practical issues concerning signature generation
shortly.

Example 3. Figure 4 illustrates signature generation for n1 = 3,
n2 = 4, and k = 5. By definition, k2 = 1. For each first-level par-
tition, we generate one signature corresponding to every second-
level partition subset of size 3. Therefore there are 3 × 4 = 12
signatures for every vector. These signatures are represented as
horizontal rectangles in Figure 4. The darkened portion of a rec-
tangle indicates the dimensions along which a vector is projected
for generating the corresponding signature. Note that the dimen-
sions are ordered according to the permutation π. �

Example 4. Let n1 = 2, n2 = 3, and k = 3, implying k2 =
1. Assume for simplicity that π is the identity permutation, i.e.,
π(i) = i, for all i. Figure 5 shows the six signatures for the vector
010110. �

The following theorem states the correctness of PARTENUM with-
out proof.

THEOREM 1. If Hd(u, v) ≤ k, then Sign(u) ∩ Sign(v) 	= φ,
where Sign(u) and Sign(v) are generated using the same random
permutation π, and same parameters n1, n2, and k.

Practical Issues: Since our vectors are representations of sets, they
are typically sparse with a large dimensionality n. Therefore, gen-
erating signatures directly as suggested by Figure 3 is not efficient.
Consider a signature 〈v[P ], P 〉 corresponding to a set S, gener-
ated in line 5 of Figure 3. In order to compute v[P ], we need to
project v along the dimensions in P , which could be potentially

〈10, {2, 3}〉 〈00, {1, 3}〉 〈01, {1, 2}〉

〈10, {5, 6}〉 〈10, {4, 6}〉 〈11, {4, 5}〉

Figure 5: Signatures for 010110; n1 = 2, n2 = 3, k = 3

large in number. Instead, we could encode the signature using
〈P1(v), i, S〉, where P1(v) denotes the set of dimensions in P for
which v has a value 1, i.e., {d ∈ P : v[d] = 1}. Note that P1(v)
uniquely encodes v[P ] and i and S uniquely identify P , and we
can compute P1(v) more efficiently than v[P ] when v is sparse.
Further, since the only operation that we perform on signatures
is checking equality, we can simply hash these signatures into 4
byte values. Note that hash collisions do not affect the correct-
ness of PARTENUM—Theorem 1 continues to be valid for hashed
signatures—but the collisions could introduce additional false pos-
itive candidate pairs. In practice, the number of such false positives
in negligible.

4.3 PartEnum: Performance
In this section, we cover various aspects of PARTENUM’s perfor-

mance. We begin by proving that PARTENUM has good asymptotic
performance: For a particular setting of n1 and n2, we can prove
that it provides good filtering effectiveness (i.e., generates only a
few false positive candidate pairs) with few signatures per input
set.

THEOREM 2. Consider PARTENUM with n1 = k/ ln k and
n2 = 2 ln k. If Hd(u, v) > 7.5k, then Sign(u) ∩ Sign(v) = φ
with probability 1 − o(1). For this setting of parameters, the num-
ber of signatures per vector is O(k2.39).

The constants in the statement of Theorem 2 are merely represen-
tative. We can get slightly different performance characteristics by
suitably changing n1 and n2 values. Theorem 2 shows that we can
achieve good filtering using O(k2.39) signatures, which is inde-
pendent of n. This property is crucial in order to be able to handle
sparse vectors—which is the case when the vectors are representa-
tions of sets—where n could be very large.

Note that we do not recommend using the parameters of Theo-
rem 2 for actual SSJoins. In fact, we will show in Section 8 that
no single setting of the parameters is good for all SSJoin instances.
For a fixed setting of parameters, we can show that increasing the
number of input sets results in a quadratic increase in the number of
signature collisions; therefore PARTENUM for a fixed setting of pa-
rameter scales only quadratically. The fact that we can control the
behavior of PARTENUM using the parameters is actually crucial to
ensure near-linear scalability of PARTENUM with increasing input
size. Specifically, PARTENUM offers a tradeoff between the num-
ber of signatures per set and the filtering effectiveness: We can in-
crease the number of signatures and improve filtering effectiveness,
and vice-versa. The number of signatures can be increased either
by decreasing the value of n1 or increasing the value of (n2 − k2).
When the input size increases, we can avoid the quadratic increase
in computation time by using a larger number of signatures per set.
We cover this aspect in detail in Section 8. An important issue is
determining the optimal setting of (n1, n2): Informally, we can de-
termine optimal settings using some properties of the input data.
This is covered again in Section 8.

5. JACCARD SIMILARITY
We now describe how we can use PARTENUM for jaccard

SSJoins. An easy special case occurs when all input sets are equi-
sized: Two sets can have jaccard similarity ≥ γ iff their hamming
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OFFLINE:
(a) Define I1 = [l0, r0] = [1, 1]

(b) Define Ii = [li, ri], where li = ri−1 + 1, ri = li
γ

(c) Define ki = 2 1−γ
1+γ

ri

(d) For each i = 1, 2, . . ., construct an instance of PARTENUM,
denoted PE[i], with threshold ki.

SIGNATURE FOR s:
1. Initialize Sign(s) = φ
2. Let Ii denote the interval to which |s| belongs.
3. For each signature sg ∈ PE[i].Sign(s)
4. Sign(s) = Sign(s) + 〈i, sg〉
5. For each signature sg ∈ PE[i + 1].Sign(s)
6. Sign(s) = Sign(s) + 〈i + 1, sg〉
7. Return Sign(s).

Figure 6: Signature Scheme for Jaccard Similarity

distance is ≤ 2�(1−γ)
1+γ

, where � denotes the common set size. We
can use this observation to convert a jaccard SSJoin with threshold
γ to an equivalent hamming SSJoin with threshold 2�(1−γ)

1+γ
, and

use PARTENUM for the latter.
For the general case, we observe that if two sets have high jac-

card similarity, then they should have roughly similar sizes, as for-
malized in Lemma 1 below.

LEMMA 1. If Js(r, s) ≥ γ, then γ ≤ |r|
|s|

≤ 1
γ

.

We use this observation to (conceptually) divide a general jaccard
SSJoin instance into smaller instances, each of which computes an
SSJoin on sets of roughly equal size. We use the technique de-
scribed above to convert the smaller jaccard SSJoin instances to
hamming SSJoin instances, and use PARTENUM for signature gen-
eration.

Formally, consider a jaccard SSJoin with threshold γ between
R and S. We define intervals Ii (i = 1, 2, . . .) that partition the
set of positive integers (steps (a) and (b) of Figure 6). For each
interval Ii = [li, ri], the right end of the interval ri = li

γ
. Us-

ing Lemma 1, we can show that if | s | ∈ Ii and Js(r, s) ≥ γ,
then |r| ∈ Ii−1 ∪ Ii ∪ Ii+1. Based on this observation, we (con-
ceptually) construct subsets R1,R2, . . . of R as follows: For each
r ∈ R, if |r |∈ Ii, we add the set r to both Ri and Ri+1. We
construct subsets S1,S2, . . . of S, symmetrically. Then we per-
form a hamming SSJoin between each Ri and Si with threshold
ki = 2 1−γ

1+γ
ri, and take the duplicate-free union of all the SSJoin

outputs. The correctness of this approach follows from the obser-
vation that if Js(r, s) ≥ γ, and r ∈ Ri, s ∈ Si, then we can show
that Hd(r, s) ≤ 1−γ

1+γ
(|r| + |s|) ≤ 2 1−γ

1+γ
ri = ki.

Example 5. Let γ = 0.9. Then we can verify that I1 = [1, 1],
I8 = [8, 8], I9 = [9, 10], I13 = [17, 18], and I14 = [19, 21]. As-
sume R = {r9, r10, . . . , r21}, where the subscripts encode the size
of a set, i.e., |ri |= i. Similarly, assume that S = {s9, . . . , s21}.
Figure 7 shows the composition of the subsets R10–R14; the squares
from left-to-right represent the inputs r9, . . . , r21, and the shaded
rectangles represent the subsets Ri. For example, R14 = {r17, . . . ,
r21}. Note that under our approach many input pairs in R× S are
never considered for a join: For example, r10 which belongs to R9

and R10 is never considered for a join with s13 which belongs to
S11 and S12, and correctly so, since we can infer using Lemma 1
that Js(r10, s13) ≤

10
13

≈ 0.76. �

Instead of explicitly constructing the subsets Ri and Si and then
computing the SSJoin between Ri and Si, we can get the same
effect by computing the SSJoin directly between R and S using

r9 r21

R

R
R10

11

14

I I I I I I9 10 11 12 13 14

Figure 7: Size-based filtering (Example 5)

the signature scheme shown in Figure 6. Essentially, the signature
scheme attaches the number i to the signatures of Ri and Si, which
ensures that signatures of Ri and Sj (i 	= j) do not collide. We call
the signature scheme of Figure 6 also as PARTENUM, and it should
be clear from the context whether we are referring to PARTENUM

for hamming (Figure 3) or PARTENUM for jaccard (Figure 6).
We call this approach of using size information to reduce the

number of set pairs that need to be considered as size-based fil-
tering. Size-based filtering is not specific to PARTENUM: It can
be combined with any other signature scheme to improve the per-
formance of the scheme. (However, for the case of PARTENUM,
it is essential in order to be make PARTENUM work for jaccard
SSJoins.)

6. GENERAL SSJOINS
Recall from Section 2 that we defined SSJoins for a general class

of predicates involving the sizes of sets and the size of their inter-
section. The main ideas behind our signature scheme for jaccard
SSJoins can be generalized to derive a signature scheme for a large
subclass of the general class of predicates. Informally, our tech-
niques can be used to handle an SSJoin with predicate pred if:

1. For any set r, we can derive an upper- and lower-bound on
the size |s | of sets s that join with r, i.e., pred(r , s) evaluates
to true , and

2. For any set r, we can derive an upper-bound on the hamming
distance between r and s for any s that joins with r.

The first condition helps us conceptually partition the given SSJoin
instance into smaller instances as we did for jaccard SSJoins, and
the second condition enables us to use a hamming PARTENUM for
each of the smaller instances. For example, an SSJoin with predi-
cate | r ∩ s |≥ 0.9 max{| r |, | s |} satisfies both conditions: Given
a set r with size 100, we can show that only sets s with sizes be-
tween 90 and 111 can possibly join with r, and further, for any s
that joins with r, Hd(r, s) ≤ 20. On the other hand, an SSJoin
with predicate |r∩ s |≥ 20 satisfies neither condition. Formalizing
the exact class of predicates that satisfy the above requirements is
beyond the scope of this paper.

7. WEIGHTED SSJOIN
We now consider the weighted version of SSJoin, where there is

a weight w(e) associated with each element e. For many applica-
tions using set-similarity, some elements are more important than
others for the purpose of defining similarity, and these differences
in the importance are naturally captured using element weights. A
well-known example is the use of weights based on inverse doc-
ument frequency (IDF) in Information Retrieval [3], which essen-
tially captures the intuition that less frequent words are more sig-
nificant than frequent words for determining document similarities.

We can use PARTENUM for the weighted case by converting
a weighted SSJoin instance to an unweighted one: We convert a
weighted set into an unweighted bag by making w(e) copies of
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PARAMETERS:
SSJoin threshold: T
Pruning threshold: TH

SIGNATURE FOR s:
1. Sign(v) = φ
2. For each minimal subset s′ of s with weighted size ≥ T
3. Order elements of s′ in decreasing order of IDF weights.
4. Define PREF(s′): smallest prefix of s′, such that the sum

element weights in the prefix >= TH
5. Sign(v) = Sign(v) ∪ {PREF(s′)}.
6. Remove duplicates from Sign(v) and return.

Figure 8: WTENUM: Formal Specification

each element e, using standard rounding techniques if weights are
nonintegral. All of our guarantees from Section 4 continue to hold
for this approach. However, this approach is unsatisfactory for
the following reason: Consider an unweighted hamming SSJoin
with threshold k. Theorem 2 states that using O(k2.39) signatures
we can achieve good filtering. Next, consider a weighted ham-
ming SSJoin with threshold αk, where all element weights are α.
Clearly, the weighted SSJoin is identical to the unweighted one
above. However, if we use the approach above, PARTENUM re-
quires O(α2.39k2.39) signatures for (almost) the same filtering ef-
fectiveness, which is undesirable since α can be made arbitrarily
large. This example suggests that the theoretical guarantees of The-
orem 2 are not very meaningful for the weighted case. We do not
know what a good theoretical guarantee for weighted case should
look like for exact SSJoin computation.

We now present a heuristic signature scheme called WTENUM

(for Weighted Enumeration) that works well in practice. It is con-
venient to present WTENUM for intersection SSJoins: Given R
and S, identify all pairs (r, s) ∈ R × S such that | r ∩ s |≥ T ,
for a threshold T . We can adapt WTENUM for jaccard SSJoins
using ideas from Section 5. We initially assume that weights are
IDF-based; we later describe how WTENUM can be extended for
general weights.

Figure 8 contains the formal specification of WTENUM.
WTENUM generates signatures for a set s as follows: It concep-
tually enumerates all minimal subsets s′ of s with weighted size
at least T . A subset s′ is minimal if no proper subset of s′ has
weighted size ≥ T . For each subset s′, it orders the elements in
descending order of weights, and picks the smallest prefix of this
ordering such that the weights of the elements in the prefix add upto
at least TH; TH is a parameter that can be used to control WTENUM.
The signature set for s′ is the set of all such distinct prefixes. (As
before, we can hash the prefixes into integer values.) The correct-
ness of WTENUM is straightforward: if |r∩ s |≥ T for some r and
s, then r and s share some minimal subset; the prefix of this subset
is a common signature for both r and s.

Example 6. Consider the weighted set s = {a8, b4, c3, d2, e1,
f1, g1}, where the subscripts indicate the IDF weights of elements.
Let the intersection SSJoin threshold be 17, and let the TH parame-
ter be 14. Figure 9 shows the minimal subsets of s considered in
Step 2 and the prefixes for each minimal subset. The final signature
set for s is {〈a, b, d〉, 〈a, b, c〉}. Any set that has a weighted inter-
section of 17 with s has to contain both a and b and at least one of
c or d, and therefore shares a signature with s. �

The intuition behind WTENUM is simple: Recall that the IDF
weight of an element is defined as log(1/fe), where fe denotes
the fraction of input sets in which e occurs. Therefore, if TH =
log max{|R |, | S |}, any subset of elements whose weights add
up to TH occurs in only one input set in expectation, if we assume

Minimal Subset Prefix
{a, b, d, e, f, g} 〈a, b, d〉

{a, b, c, d} 〈a, b, c〉
{a, b, c, e, f} 〈a, b, c〉
{a, b, c, e, g} 〈a, b, c〉
{a, b, c, g, f} 〈a, b, c〉

Figure 9: Example signature generation using WTENUM

elements occur independently in the input sets. Therefore, using TH

= log max{|R|, |S|} produces very few signature collisions. The
number of signatures per set could possibly be undesirably high,
but it is usually very small in practice. Finally, when the weights
are non-IDF, we explicitly generate IDF weights for elements; we
use the non-IDF weights in Step 2 and the IDF weights in Step 3 of
Figure 8.

8. EXPERIMENTS
We now present our experimental results. The main goal of our

experiments is to measure the performance of our algorithms and to
compare the performance against those of previous algorithms. Our
experiments covered jaccard SSJoins, weighted jaccard SSJoins,
and string similarity joins involving edit distance. Edit-distance
based string similarity joins use hamming SSJoins as an underlying
primitive, and therefore indirectly measure the performance of the
algorithms for this type of SSJoin. All of our experiments involved
only self-joins; we expect the relative performances to be similar
for binary SSJoins as well.

The details of the various algorithms used in our experiments are
as follows:

1. LSH: We used the classic LSH based on minhashes for our ex-
periments involving jaccard and weighted jaccard SSJoins. LSH
does not map naturally to the edit distance measure, so we did
not include LSH in our experiments involving edit-distance based
string similarity joins. In most of the experiments, we used LSH
with accuracy (false-negative rate) 0.95. Note that this means LSH
produces only about 95% of the correct output. When we refer
to LSH instances with a different false-negative rate, we explic-
itly quantify the rate within paranthesis; for example, LSH(0.90)
refers to an instance of LSH with false-negative rate 0.90. In all
of our experiments involving LSH, we used the optimal settings of
parameters g and l (recall Section 3) for the given accuracy. The
observed accuracy of LSH in all our experiments was very close to
the predicted accuracy, so we do not report these numbers explic-
itly.

2. Prefix Filter: Prefix filter represents the best previous exact
algorithm. The performance of the original prefix filter as proposed
in [6] was very poor relative to LSH and our algorithms. Therefore,
we augmented it with size-based filtering of Section 5. We report
experimental results only for this augmented version of prefix filter.
In our experimental charts, we abbreviate prefix filter to PF to save
space.

3. PARTENUM, WTENUM: Like in LSH, we used the optimal
settings of parameters for PARTENUM and WTENUM in our exper-
iments. In our experimental charts, we abbreviate PARTENUM to
PEN and WTENUM to WEN to save space.

Our discussion so far has focused mostly on a high-level view
of signature-based algorithms, comprising of Steps 1–4 shown in
Figure 2. In particular, we did not deal with the implementation
of these steps. For our experiments, we use an implementation
that uses a general purpose DBMS for the most part, with a small
amount of application-level code. (We will describe the details,
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Set (id, elem)

Signature (id, sign)

CandPair (id1, id2)

CandPairIntersect (id1, id2, isize)

Output (id1, id2)

Figure 10: Jaccard SSJoin implementation

which are specific to the type of SSJoin, later.) Other implementa-
tions are possible: However, we measured various implementation
independent performance measures such as F2 (recall from Sec-
tion 3) size of signatures, number of candidate pairs, and so on,
and these strongly suggest that the relative performance of various
algorithms will not change with a different implementation.

All of our experiments were performed on a 3.2 GHz Pentium 4
machine with 2GB RAM running Windows Server 2003. We used
Microsoft SQL Server 2005 for database support.

8.1 Jaccard Similarity
We first describe our implementation of jaccard SSJoins, and

then present experiment results for real and synthetic datasets.

Implementation
Figure 10 shows the implementation that we use for computing
jaccard SSJoins. The input is provided as a relation Set(id,
elem) in first normal form; id denotes the identifier for a set
and elem denotes an element belonging to the set. In the first step,
we scan the relation Set, generate signatures for each input set us-
ing an appropriate signature scheme, and generate a new relation
Signature(id, sign) containing the signatures. We per-
form this step using application-level code, so data crosses DBMS
boundaries during both the reading and the writing. The remaining
steps are all performed within the DBMS using SQL queries. We
next generate the candidate pairs by performing a self-join over the
signature relation, and these are stored in a relation
CandPair(id1,id2); here id1 and id2 denote the identi-
fiers of a candidate pair. The postfiltering step, where we check
the SSJoin predicate, is performed using two queries. The first
query computes the intersection size of each candidate pair by per-
forming a join with the input relation Set, and stores the result
in the table CandPairIntersect(id1,id2,isize). The
second query joins CandPairIntersect with another relation
SetLen(id,len) containing the size of each input set, and
checks the SSJoin predicate. For the purpose of our experiments,
we materialize this relation in advance, so the time required to com-
pute it is not factored in our results. The actual DBMS queries used
in the implementation are shown in Figure 11. We built a clustered
index over the input relation Set since it significantly improved
the time to computer CandPairIntersect. We construct the
index in advance, so the index construction time is not factored
in our experimental results. No other index was used in our im-
plementation. We used 32 bit integers for all the columns, with
appropriate hashing wherever necessary.

Experiments on real data sets
We performed experiments on two real data sets: the first is a pro-
prietary address data set and the second is the publicly available
DBLP data set. The address data set contains 1 million strings,
each a concatenation of an organization name and address (street,
city, zip, state). The DBLP data set contains around 0.5 million
strings, each a concatenation of authors and title of a publication.
To generate sets, we tokenized the strings based on white space

CandPair (id1, id2):
Select Distinct S1.id as id1, S2.id as id2
From Signature as S1, Signature as S2
Where S1.Sign = S2.Sign and S1.id < S2.id

CandPairIntersect (id1, id2, isize):
Select C.id1, C.id2, Count(*) as isize
From CandPair as C, Set as S1, Set as S2
Where C.id1 = S1.id and C.id2 = S2.id and S1.elem = S2.elem
Group By C.id1, C.id2

Output (id1, id2):
Select C.id1, C.id2
From CandPairIntersect as C, SetLen as S1, SetLen as S2
Where C.id1 = S1.id and C.id2 = S2.id and

C.isize ≥ (S1.len + S2.len − C.isize) ∗γ

Figure 11: Jaccard SSJoin Implementation: Queries

separators, and hashed the resulting words into 32 bit integers. The
average size of a set in the address data is 11, while that in the
DBLP data is 14. Since the results for both datasets were similar
qualitatively, we only report results for the address data. Note that
both data sets are highly relevant for the data cleaning applications
that we are interested in. We used different sized (100K, 500K, and
1M) subsets of the address data as input to the SSJoin to understand
the scalability properties of different algorithms. (Input size refers
to the number of input sets to SSJoin—recall we are dealing only
with self-joins here.)

Figure 12 shows the total SSJoin computation time for the three
algorithms for different input sizes and similarity thresholds. The
results indicate that the performance of PARTENUM and LSH are
roughly similar for all input sizes and similarity thresholds that we
considered. The performance of PARTENUM is actually slightly
better for 0.9 and 0.85 similarity thresholds. This happens because
PARTENUM uses size information to ensure that two sets with very
different sizes do not share a signature, while LSH does not. As we
indicated in Section 4, the performance of PARTENUM falls steeply
with decreasing similarity, and this is reflected in Figure 12: the
LSH has slightly better performance than PARTENUM at similarity
threshold 0.8.

The results also indicate that the gap between prefix filter and the
other two increases sharply with increasing input size. Since the
scales used for subfigures (a), (b), and (c) are different, the scala-
bility aspects of different algorithms are not immediately obvious
from Figure 12. In fact, the scalability of prefix filter is almost
quadratically, while that PARTENUM and LSH is almost linear. For
example, at 0.85 similarity, when we move from 100K input size
to 1M input size, the computation time for PARTENUM increases
from 23 seconds to 240 seconds (a tenfold increase), while that for
prefix filter increases from 36 seconds to about 2500 seconds (a 70
fold increase).

Figure 13 shows the F2 size of signatures for the three algo-
rithms. The F2 values closely track the actual running times, indi-
cating that the observed relative performance is not specific to our
implementation. In all our experiments, the setting of parameters
for PARTENUM and LSH for optimizing F2 was identical to the
setting of parameters for optimizing the actual running time. This
suggests that we can use well-known techniques for F2 estimation
for automatically determining the optimal setting of parameters for
PARTENUM and LSH.

Experiments on synthetic data sets
We performed a variety of experiments using synthetic data, and
we report a representative one here. As part of this experiment, we
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Figure 12: Total jaccard SSJoin computation time for address data
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Figure 13: Jaccard SSJoin F2 size for address data

generated synthetic data comprising of sets with the same size. This
means that we no longer require the size-based filtering of Section 5
for PARTENUM, and therefore this experiment serves to better il-
lustrate the scalability of different algorithms without the effects
of partitioning. Further, note that PARTENUM cannot get any fil-
tering effectiveness from the varying set sizes, and so does not get
any “unfair” advantage over LSH. We generated input sets with 50
elements each; the elements of each set were drawn uniformly at
random from a domain of size 10000 elements. We added a few
additional sets highly similar to existing ones to generate valid out-
put. Our data generation is similar to the one used in [8]. Again,
we measured the performance of PARTENUM, LSH, and prefix fil-
ter for varying input sizes (50K, 100K, 500K, 1M), and for varying
similarity.

Overall the results for this data were qualitatively similar to the
results for real data presented above. LSH is now slightly faster
than PARTENUM (1.5x for 0.9 similarity and 5x for 0.8 similarity).
We present some results from this experiment in a slightly different
format to highlight aspects not illustrated in the earlier experiment.
Figures 14(a) and (b) present the F2 measure (y-axis) for the three
algorithms for SSJoins with 0.9 and 0.8 similarity, respectively, for
varying input sizes (x-axis). Both axes are in logarithmic scale,
meaning that the F2 vs. input size plot for a perfectly scaling al-
gorithm would be a straightline with slope 1 (parallel to the dotted
line in the figures). Figures 14(a) and (b) show that this is indeed
the case for PARTENUM and LSH. The F2 vs. input size slope for
prefix filter is almost 2, illustrating that it scales nearly quadrati-
cally with input size. Finally, Figure 14(c) plots the F2 measure
(y-axis) of PARTENUM and LSH for varying similarity thresholds.
We use LSH with two different accuracy settings: 0.95 and 0.99.

Input Size Optimal (n1, n2) Num. of signatures/set
10K (9,3) 13
50K (6,3) 16
100K (4,4) 22
500K (4,4) 22
1M (3,5) 30

Table 1: Optimal PARTENUM parameters vs. input size. Simi-
larity threshold: 0.8

We do not plot the performance of prefix filter, in order to more
accurately bring out the contrast between LSH and PARTENUM.

The main reason for the near-linear scalability of PARTENUM is
the availability of control parameter n1 and n2. For a fixed set-
ting of parameters, PARTENUM has quadratic scaling: increasing
input size causes a quadratic increase in the number of signature
collisions. However, we are able to avoid the quadratic increase
by moving to a different setting of parameters that generates more
signatures per input set, and therefore has better filtering effective-
ness. Table 1 illustrates this argument: It shows the optimal setting
of (n1, n2) for varying input sizes of our synthetic data (for 0.80
similarity threshold). In general, we can increase the number of
signatures and improve filtering effectiveness by reducing n1 or
increasing (n2 − k2) or both. Figure 15 illustrates the tradeoff
between the number of signatures and filtering effectiveness: for
varying values of n1, keeping (n2 − k2) constant, we plot the total
number of signatures corresponding to all input sets and total num-
ber of signature collisions, which is essentially F2 minus the total
number of signatures.
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Figure 14: Jaccard SSJoin: Synthetic data
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effectiveness
8.2 Edit Distance

As we mentioned in Section 1, one of the main uses of SSJoin is
as a primitive for string similarity joins. In this section, we report
on our experiments on string similarity joins using edit distance,
which is one of the most common distance functions for strings.
We provide brief background on string similarity joins, and then
describe our implementation, before presenting our experimental
results.

Background
The basic idea behind using SSJoins for string similarity joins is the
observation that if two strings have small edit distance, then their
n-gram sets are similar. Specifically, if the edit distance between
strings s1 and s2 is ≤ k, then we can show that the hamming dis-
tance of their n-gram sets ≤ nk. Therefore, in order to compute
a string similarity join with edit threshold k, we first generate n-
gram sets (bags) for each string, and then compute an SSJoin with
hamming threshold nk. The output of the SSJoin can contain false
positives, since the n-gram sets of two strings can have a hamming
distance ≤ nk, even if the edit distance of the strings is > k. These
false positives are removed using a postprocessing step.

One interesting issue is the choice of n, the n-gram value. In-
creasing the value of n, results in a weaker SSJoin threshold, nk,
making the SSJoin harder. On the other hand, a smaller value of n,
means that the elements of the SSJoin input sets are drawn from

a smaller domain; as we indicated earlier, previous exact algo-
rithms [6, 14] perform poorly with smaller element domains, since
their signatures are drawn from the domain of elements. Interest-
ingly, small element domains is not a problem for PARTENUM, so
setting n = 1 gives the best performance, especially for relatively
small strings.

Implementation
Figure 16 shows our implementation for string similarity joins. We
start off with an input relation String(id,str) containing in-
put strings and their identifiers. In the first step, we scan this rela-
tion, and for each input string, we generate their n-grams on-the-
fly, generate signatures for the n-gram bags using an appropriate
signature scheme, and finally write the signatures into a new rela-
tion Signature (id,sign). All these steps are performed in
application-level code; note in particular that we do not explicitly
materialize the n-gram bags. Next, we generate the candidate pairs
in a relation CandPair(id1,id2) exactly as we did for jac-
card SSJoins. Finally, we retrieve the strings corresponding to the
identifiers in each candidate pair by joining with the input relation
String(id,str), and for each such pair of strings we check if
their edit distance is smaller than the join threshold. We perform the
edit distance checking in application code. Note that we do not per-
form the SSJoin postfiltering step (Step 4 of Figure 2), i.e., check if
the hamming distance of n-gram sets of two candidate pairs is less
than nk, since, as mentioned earlier, this step does not remove all
false positives from the string similarity join point of view. This
step would have reduced the number string pairs for which we have
to compute edit distance, but our experiments indicated that it did
not improve overall performance.

Experiments
We use the same address data we used for jaccard SSJoins, but now
we do not tokenize the strings into sets. The average length of a
string is 58. We compared the performance of PARTENUM and
prefix filter for small edit distance (1–3) thresholds. LSH does not
map naturally for edit distances, so we do not include it in our ex-
periments. For PARTENUM, we use n = 1, and for prefix filter we
manually picked the optimal value of n (which was 4–6 depend-
ing on the edit threshold). Figure 18 shows the total computation
time (y-axis) for string similarity joins with the two approaches for
varying input sizes and varying edit thresholds. Again, the overall
nature of the results is qualitatively similar to the results of jaccard
SSJoins. Note that the y-axis for Figure 18 is “cut” at two points.
The F2 measures also closely mirrored the total computation time;
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String (id, str)

Signature (id, sign)

CandPair (id1, id2)

Output (id1, id2)

Figure 16: String similarity join implementation

CandPair (id1, id2):
Select Distinct S1.id as id1, S2.id as id2
From Signature as S1, Signature as S2
Where S1.Sign = S2.Sign

Output (id1, id2):
Select C.id1, C.id2
From CandPair as C, Strings as S1, Strings as S2
Where C.id1 = S1.id and C.id2 = S2.id and

EDIT(S1.Str, S2.Str) < k

Figure 17: String similarity join: Queries

we do not show them due to space constraints.

8.3 Weighted Jaccard Similarity
Our final set of experiments is on weighted jaccard SSJoins with

IDF-based weights. We use the same address data as previous ex-
periments, tokenized as in the case of jaccard SSJoins. The im-
plementation details are almost identical to those for unweighted
jaccard, with minor variations for handle weights. We measured
the performance of WTENUM, prefix filter, and LSH (0.95). Fig-
ure 19 shows the total computation time (y-axis) for these algo-
rithms for varying input sizes and SSJoin thresholds. We highlight
only the important qualitative differences from unweighted experi-
ments. The performance of WTENUM is actually significantly bet-
ter than LSH for this data set. This is primarily because WTENUM

exploits the frequency information in the IDFs, while LSH does
not. Also, the performance of WTENUM does not fall steeply when
SSJoin thresholds are lowered, as in the case of PARTENUM. The
overall scalability characteristics and relative performance of the
algorithms is similar to the unweighted case (with PARTENUM re-
placed by WTENUM).

9. RELATED WORK
Previous work on set-similarity joins broadly fall into two cat-

egories. In the first category, set-similarity joins occur as an im-
plicit operation as part of some application [4, 8, 15, 19]. The
focus of this category of work is not in solving general purpose
set-similarity joins, and they often involve implementation tricks
and details that are highly specific to the application. For example,
reference [19] only considers fixed size sets, since these sets corre-
spond to n-grams of fixed length genome subsequences. For most
of these applications, SSJoin occurs as a standalone operator, so
approximate answers often suffice. Not surprisingly, all the above
work uses the idea of locality sensitive hashing [13] in some form
or the other.

The second category of work, which is more closely related to
this paper, considers the problem of supporting SSJoins within a
regular DBMS [22, 6]. Exact answers to SSJoins are important in
this setting. Reference [22] proposes a variety of algorithms. The
signature schemes used by these algorithms are all fairly simple,
and the focus is on detailed implementation issues. An important
feature of these algorithms is that they represent monolithic im-
plementations of the SSJoin operator from scratch. Many of the
algorithms also assume the availability of a large amount of main

memory, comparable to the input data size. The other work [6] in
this category is more closely related to this paper. This paper pro-
poses prefix filtering (some ideas of prefix filtering are also present
in the algorithms of [22]), and also studies the alternate implemen-
tation strategy that uses the processing capabilities of a DBMS for
most of SSJoin computation.

SSJoins are closely related to set-containment joins, which has
been the subject of several previous work [17, 18, 20]. Partial set-
containment joins, a generalization, is covered by [6]. Support-
ing general string similarity joins within a DBMS has been studied
in [14]. Interestingly, their implementation also uses existing oper-
ators within a DBMS for most of the join computation, just like the
implementation that we studied in this paper.

General similarity joins are closely related to proximity search,
where the goal is to retrieve, given a lookup object (set or vector),
the closest object from a given collection; the challenge is to index
the collection so that the lookup can be efficient. In fact, LSH was
proposed originally for proximity search [13]. We have not yet
explored if our signature schemes would be applicable to proximity
search.

10. CONCLUSIONS
In this paper, we presented new algorithms for computing exact

set-similarity joins. Some of our algorithms have precise theoret-
ical guarantees and they are the first algorithms for set-similarity
joins with this property. Our experiments indicate that our algo-
rithms outperform previous exact algorithms by more than an or-
der of magnitude in many cases. Also, they have excellent scaling
properties with respect input size, which previous exact algorithms
lack. The performance of our algorithm is comparable to that of
LSH-based approximate algorithms for many scenarios, especially
the data cleaning ones we are most interested in, and in many cases
they even outperform LSH-based algorithms. Finally, our algo-
rithms can be implemented on top of a regular DBMS with very
little coding effort.
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Figure 18: String similarity join computation time
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