
Reference-Based Indexing of Sequence Databases∗

Jayendra Venkateswaran Deepak Lachwani Tamer Kahveci Christopher Jermaine
CISE Department,University of Florida,Gainesville,FL 32611

{jgvenkat, da1, tamer, cjermain}@cise.ufl.edu

ABSTRACT
We consider the problem of similarity search in a very large
sequence database with edit distance as the similarity mea-
sure. Given limited main memory, our goal is to develop
a reference-based index that reduces the number of costly
edit distance computations in order to answer a query. The
idea in reference-based indexing is to select a small set of
reference sequences that serve as a surrogate for the other
sequences in the database. We consider two novel strategies
for selecting references as well as a new strategy for assigning
references to database sequences. Our experimental results
show that our selection and assignment methods far outper-
form competitive methods. For example, our methods prune
up to 20 times as many sequences as the Omni method, and
as many as 30 times as many sequences as frequency vec-
tors. Our methods also scale nicely for databases containing
many and/or very long sequences.

1. INTRODUCTION
Many applications require searching a sequence database

to find similarities to a given query sequence. Genomics,
proteomics and dictionary search are just a few examples.
Given a database of sequences S, a query sequence q, and
a threshold ε, similarity search finds the set of all sequences
whose distance to q is less than ε. Often, edit distance is used
to measure the similarity. The edit distance between two se-
quences is the minimum cost transformation of one to the
other by a series of edit operations (insert, delete, modify)
on individual characters. The dynamic programming solu-
tion to find the edit distance between two sequences runs in
O(n2) time and space [26], where n is the average length of
a sequence. The space and time complexity for the bounded
version of this problem is O(nε) [2, 3, 24, 31]. In many
applications, ε = O(n), thus making the complexity of the
bounded version O(n2) [15, 19]. For very large databases or
those with long sequences, applying dynamic programming

∗This work is partially supported by the National Science
Foundation under Grant No. 0347408.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

1

r

1

1

2

2

2

2

bound

qdist

bound

rdist

qdist

ref

p

q

ref

rdist1

Figure 1: Reference-based indexing: ref1 and ref2
are references. The query region is given by its cen-
ter q and radius r. qdist1 and qdist2 are query-to-
reference distances. rdist1 and rdist2 are distances
from the reference to the data p. bound1 and bound2

are the bounds obtained using references.

for all (query,sequence) pairs is infeasible in terms of the
computation time.

In this paper, we consider the problem of reducing the
number of sequence comparisons needed to obtain the re-
sults of similarity searches using the method generally re-
ferred to as reference-based indexing [11, 17, 36]. This is
done by selecting a small fraction of sequences referred to
as the set of reference sequences. The distances between ref-
erences and database sequences are pre-computed. Given a
query, the search algorithm finds the distance from each of
the reference sequences to the query sequence. Without any
further sequence comparisons, sequences that are too close
to or too far away from a reference are removed from the
candidate set based upon those distances with the help of
the triangle inequality.

Figure 1 illustrates reference-based indexing in a hypo-
thetical two-dimensional space. Here, the sequences are
represented by points. The distance between two points
in this space corresponds to the edit distances between the
two sequences (e.g., rdist1 between the points ref1 and p
corresponds to the edit distance between the sequences rep-
resented by them). The edit distance between the data se-
quence p and reference sequences ref1 and ref2 are pre-
computed. Let rdist1 and rdist2 be these distances, respec-
tively. Given a query q with range r, reference-to-query
distances qdist1 and qdist2 are computed. A lower bound
for the edit distance between sequences q and p with refer-
ence ref1 is computed as bound1 = |qdist1 − rdist1| using
the triangle inequality. Note that edit distance for global
alignment is a metric [19]. Similarly, bound2 gives a lower
bound for the edit distance between q and p with reference
ref2. Since bound1 > r with ref1 as the reference, sequence
p can be pruned from the candidate set of q.

 906

q

rand

d 2
1

1

ref

qdist

bound

rdist
1

1

3

2

2

2

rdist

bound

bound

qdist

ref

r

Figure 2: The Omni method: ref1 and ref2 are Omni
references. The query region is given by its center q
and radius r. qdist1 and qdist2 are query-to-reference
distances. rdist1 and rdist2 are distances from the
reference to data p. bound1 and bound2 are the bounds
obtained using the Omni references. bound3 is the
bound obtained using a random point rand inside
the hull.

Recently, several approaches have been developed for se-
lecting references for reference-based indexing [11, 17]. But
these methods perform poorly under certain conditions. For
example, the Omni method proposed by Filho et al. [11] se-
lects references near the convex hull of the database, far
away from each other. However, this strategy may achieve
poor pruning rates. Multiple, redundant references are avail-
able to prune the sequences near the hull but no references
are available to prune sequences that are far from the hull.
Figures 1 and 2 illustrate this problem. In Figure 1, ref1 and
ref2 are the references from the Omni method. Sequence p
is close to ref1 and far away from ref2. For query q, p can
be pruned by both ref1 and ref2, representing a wasted se-
quence. On the other hand, sequences inside the hull will
not be pruned at all, as illustrated in Figure 2. Here, the
bounds obtained for the query q and sequence d with two
Omni references do not remove d from the candidate set. On
the other hand, the reference rand in this figure can prune
d. As we will argue in this paper, rather than selecting ref-
erences near the hull, it is better to choose references so that
each prunes a different subset of the database.

Our Contributions: In this paper, we tackle the two pri-
mary problems that must be addressed in reference-based in-
dexing. The first one is the selection of references. We select
references so that they represent all parts of the database.
We propose two novel strategies for the selection of refer-
ences. They are:

Maximum Variance: This approach follows from two obser-
vations related to the triangle inequality property of the edit
distance: i) If a query q is close to reference v, we can prune
sequences far away from v and add sequences close to q to
result set, and ii) If q is far from v, we can prune sequences
close to v. These observations imply that the spread of the
database sequences around a reference sequence is a good
measure for a reference. Thus, our method selects references
among sequences with higher variance of distances.

Maximum Pruning: Our second approach is based upon a
combinatorial calculation that specifically selects references
to maximize the pruning of sequences. It is based on the
following two rules: i) Select references based on the number
of sequences it can prune, and ii) Sequences not pruned by
one reference should be pruned by at least one of the other
references. Since the complexity of the method increases
with database size, we use sampling techniques to speed the

process.

The second problem we consider in the paper is the map-
ping of references to database sequences. In our method,
the number of references in the reference set is larger than
in other methods. In order to keep the number of references
assigned to each sequence manageable, only the best refer-
ences for each given database sequence are used to index
that sequence. Thus, each database sequence may have a
different set of reference sequences assigned to it.

Paper Organization: The rest of this paper is organized
as follows. Section 2 describes our similarity measure, how
to obtain bounds, and gives a cost analysis. Background
on the current index structures for database search is pre-
sented in Section 3. Section 4 describes our first method for
selecting references, Maximum Variance. Section 5 presents
our second method for selecting references, Maximum Prun-
ing. Our strategy of assigning references to the database se-
quences is given in Section 6. Given the references and their
assignments to sequences, Section 7 describes our search al-
gorithm which computes the set of candidate sequences from
the database without requiring actual distance computa-
tions. Section 8 presents experiments showing the perfor-
mance of our methods and a comparison with several of the
existing access methods under different parameter settings.
Section 9 gives the conclusion of the paper.

2. BACKGROUND
Edit Distance: The edit distance between two sequences
P and Q is the number of edit operations (insert, delete,
transform) required to transform P into Q. We will use
ED(P,Q) to denote the function returning the edit dis-
tance between P and Q. ED is a metric distance, i.e. given
two sequences P and Q, it has three properties: a) symme-
try (ED(P,Q) = ED(Q,P)), b) it is always non-negative
(ED(P,Q) ≥ 0), and c) it satisfies the triangle inequality
(ED(P,X) ≤ ED(P,Q) + ED(Q,X) for any sequence X).

Reference-Based Indexing: Given a sequence database
S, a query sequence q and a range ε, the goal is to find all
database sequences within distance ε from q. Let V = {v1,
· · · , vm} denote the set of reference sequences, where vi ∈ S
and |V | = m. In reference-based indexing, we pre-compute
distances to database sequences from the references given
by the set {ED(si, vj)|(∀si ∈ S) ∧ (∀vj ∈ V)}. This is a
one-time cost for the database.

To use the references, a search algorithm first computes
the distances to the query sequence q from the reference se-
quences. For each sequence si, a lower bound (LB) and an
upper bound (UB) for ED(q, si) are given by:

LB = max(
W

vj∈V |ED(q, vj) − ED(vj , s)|
UB = min(

W
vj∈V |ED(q, vj) + ED(vj , s)|

LB and UB are used in reference-based indexing as follows.
For each (q, si) pair:

• If r < LB, add si to the pruned set.

• If r > UB, add si to the result set.

• If LB ≤ r ≤ UB, add si to the candidate set.

After this pruning, sequences in the candidate set are com-
pared with q using dynamic programming to complete the
query.

 907

Cost Analysis: The factors that determine the cost of
strategies used for selection and assignment of references
to database sequences are memory and computation time.

Memory: Let the available main memory be B bytes, the
number of references assigned be k, and let V be the refer-
ence set. We assume four bytes are used to store an integer
and a sequence uses on average z bytes of storage. Thus,
zk bytes are needed to store a reference. For each sequence
s ∈ S and its reference vi ∈ V , the sequence-reference map-
ping is of the from [i, ED(s, vi)] using two integers. Thus,
8kN bytes are used to store the pre-computed edit distances
for N sequences. The number of references k can be ob-
tained by comparing the available memory with the memory
needed for storage: B = 8kN + zk.

Computational Complexity: Let Q be the given query set,
t be the time taken for one sequence comparison and cavg

be the average number of sequences in the candidate set for
each query. First, each query sequence is compared with
each of the k references. This takes tk|Q| time. Then for
each query, the cavg sequences have to be compared to filter
out the false positives. This takes tcavg|Q| time. The total
time taken is given by t(k + cavg)|Q|.

3. RELATED WORK
Searching sequence databases involves retrieving database

sequences that are similar to a given query. A number of
index structures have been developed to reduce the cost of
such searches. They can be classified under three categories:
k-gram indexing, suffix trees, and vector space indexing.

A k-gram is a sequence of length k, where k is a positive
integer [13]. k-gram based methods look for the shortest
subsequences that match exactly; these sequences are then
extended to find longer alignments with mismatches and in-
serts/deletes. k-grams are usually indexed using hash tables.
Two of the most well known genome search tools that use
hash tables are FASTA [27] and BLAST [1]. The perfor-
mance of these tools deteriorates quickly as the size of the
database increases.

Suffix trees were first proposed by Weiner [35] under the
name position tree. Later, efficient suffix tree construction
methods [22, 32] and variations [10, 16, 20, 21] were de-
veloped. However, there are two significant problems with
the suffix-tree approach: (1) suffix trees manage mismatches
inefficiently, and (2) suffix trees are notorious for their ex-
cessive memory usage [25]. The size of the suffix tree varies
between 10 to 37 bytes per letter [9, 16, 20, 23].

A number of index structures have been developed to func-
tion in vector space, such as SST [12] and the frequency
vectors [19, 18]. The frequency vector of a sequence stores
the number of letters of each type in that sequence. This
method computes a lower bound to the distance between
two sequences using the frequency vectors corresponding to
the two sequences. It uses this lower bound to eliminate un-
promising sequences. However, as the query range increases
frequency vectors perform poorly.

Reference-based indexing [7, 11, 17, 36] can be consid-
ered as a variation of vector space indexing. One method,
the VP-tree [36], partitions the data space into spherical
cuts by selecting random reference points from the data.
A second method, the MVP-Tree [6] (a variation of VP-
Tree) uses more than one vantage point at each level. [28]
uses the VP-Tree to index measures that are almost met-

ric. iDistance [17] proposes two principal approaches for se-
lecting reference points. For normally distributed data, the
d-dimensional space is partitioned into 2d pyramids. Each
partition is allocated a reference point, which can be the
centroid of the pyramid base or an external point. For cor-
related data, the most frequently occurring values in each
dimension are used to select reference points. Filho et al. [11]
proposed one of the recent reference-based indexing meth-
ods, called Omni. In Omni, reference sequences are selected
from the convex hull of the dataset. This is done by select-
ing sequences that are far away from each other. A similar
approach for selecting references in content-based image re-
trieval has been proposed in [34].

The M-Tree [8] is a height-balanced tree with the data
objects in its leaf nodes. A variation of the M-Tree, the Slim-
Tree [30], reduces the amount of overlap between the tree
nodes, referred as Slim Down. These tree-based structures
are height balanced and attempt to reduce the height of
the tree at the expense of flexibility in reducing the overlap
between the nodes. This constraint was relaxed in the DBM-
Tree [33] by reducing the overlap between nodes in high-
density regions, resulting in an unbalanced tree. The DF-
Tree [29] selects a global set of representatives in a manner
similar to Omni in order to prune candidate sequences when
answering queries.

4. MAXIMUM VARIANCE
In this section, we describe the first of our two heuris-

tic strategies for selecting the reference sequences from the
database. As given in Section 1, an important issue over-
looked in previous work is that the performance of reference-
based indexing can be improved by selecting references that
have a significant number of sequences close to and far from
them. The variance of the distribution of distances of a ref-
erence to other sequences is a good indicator of the spread
of sequences in the database around that reference, and we
make use of it in our first heuristic.

Our Maximum Variance heuristic assumes that queries
follow the same distribution as the database sequences. It
selects a reference set that represents the sequence distribu-
tion of the database. Each new reference prunes some part
of the database not pruned by the current sequences in the
reference set.

This suggests an algorithm for choosing reference points.
For example, in Figure 3, points in two-dimensional space
represent the database sequences. The edit distance be-
tween two sequences corresponds to the distance between
the points representing them. Sequence e has the highest
variance of distances. So we choose e as the first reference.
Sequences close to e (sequences f and g) and far from it
(sequence b) can be pruned using e as the reference. The
sequences not pruned by e (sequences a, c and d) remain
in the candidate set. A sequence from the candidate set
having the next highest variance, c, is selected as the next
reference. Reference c can remove the sequence d close to
it and a far from it from the candidate set. This process is
repeated until all of the references have been assigned.

Let L denote the length of the longest sequence in S. For a
sequence si ∈ S, μi and σi are the the mean and variance of
its distances to other sequences in S. We compute a cut-off
distance, w, to measure the closeness of two sequences. We
say that sj (sj ∈ S) is close to si if ED(si, sj) < (μi − w)
and sj is far away from si if ED(si, sj) > (μi + w). We

 908

a

f

d

b

e g

c

Figure 3: Maximum Variance example: The dataset
is given by the sequences {a, b, c, d, e, f, g}. Sequences
are represented by shaded points. e and c are the ref-
erences selected by Maximum Variance. Sequences
f, g are close to e and b is far from e. Sequence d is
close to c and sequence a is far from c.

compute w as a fraction of L, given by w = L.perc, where
0 < perc < 1. We do not consider sj as a potential reference
if ED(si, sj) < (μi − w) or (μi + w) < ED(si, sj), ∃si ∈ V .
A large value for perc will include sequences that are close
to or far away from the existing references. This results
in sequences being pruned by multiple references. A small
value for perc can remove promising references, resulting in
a small number of references. Experimental results show
that perc = 0.15 is a good choice.

Figure 4 presents the algorithm in detail. For each se-
quence si ∈ S, in Step 2.a we first select a sample database
S′, S′ ⊂ S and compute the set of distancesDi = {ED(si, sj)
| ∀sj ∈ S′} (Step 2.b). In Step 2.c, we compute the mean
μi and variance σi of the distances in Di. The distances
are then sorted in descending order of their σi values (Step
4). Then, we repeatedly do the following until the required
number of references is obtained. We select the sequence s1
with maximum variance as the next reference and add it to
V (Step 5.a) and remove the sequences from S that are close
to or far away from the new reference s1 (Step 5.b). Steps
5.a and 5.b are repeated until we have enough references, i.e.
|V | = m. At each iteration we select a new reference that is
neither close to nor far away from the existing references.

Computational Complexity: Step 2 compares each can-
didate reference with all sequences in the sample, S′. This
requires O(N |S′|) distance computations. Each distance
comparison takes O(L2). Sorting the variances of N se-
quences in Step 3 takes O(N logN). Steps 5.a-5.c take
O(mN) time in the worst case. Thus the overall time of
the algorithm is O(NL2|S′| +N logN +mN).

5. MAXIMUM PRUNING
In this section, we consider a second approach for choos-

ing the reference set, which combinatorially tries to compute
the best reference set for a given query distribution. Obvi-
ously, a purely combinatorial approach would be very ex-
pensive. Let S denote the set of database sequences where
|S| = N . Let Q denote the sample query set. Exhaus-
tively testing all possible combinations of m references from
S takes O(CN

m × N × |Q|), where CN
m is N choose m. To

speed up this computation, we propose a greedy solution to
this problem which reduces its complexity. We refer to our
method as Maximum Pruning. In order to speed the greedy
solution even further, we also consider sampling-based opti-
mizations for this algorithm in Section 5.2.

/*Input:Sequence database S, with |S| = N.
Number of references m.
Cutoff percentage perc.
Length of a sequence L.

Output:Set of references V = {v1, v2, . . . , vm}*/
1. V = {}. /* Initialize */

2. For each si ∈ S do

(a) Select sample set of sequences, S′ ⊂ S.

(b) Compute Di = {ED(si, sj) | ∀sj ∈ S′ }.
(c) Compute mean μi and variance σi of the distances

in Di.

3. w = L.perc.

4. Sort the N sequences in descending order of their vari-
ances.

5. While |V | < m do

(a) V = V ∪ s1.
(b) S = S−{sj} , ∀sj ∈ S with ED(s1, sj) < (μ1−w)

or ED(s1, sj) > (μ1 + w). /* Remove sequences
close to or far away from the new reference */

6. Return of set of reference sequences, V .

Figure 4: Maximum Variance method.

5.1 Algorithm
Our method considers each sequence in the database as

a candidate reference. The method starts with an initial
reference set. It then iteratively refines the reference set. At
each iteration, it replaces an existing reference with a new
reference if this modification improves pruning with respect
to Q. The method stops the process if the reference set
cannot be improved.

Figure 5 presents our Maximum Pruning algorithm. The
algorithm takes a database of sequences S, a query set Q,
and the number of references m as input. It first initializes
the reference set V as the top m references obtained using
Maximum Variance method (though this is not a require-
ment, since one can start with a random initial reference
set). Every execution of the Do-While loop replaces one ex-
isting reference with a better reference. Each iteration of
this loop starts by initializing the array G to zero. Each
entry G[i] of G shows the amount of pruning gained by in-
cluding the ith candidate reference in the reference set. We
use the term gain to denote the amount of improvement in
pruning. Steps 2.a - 2.d iterate over all candidate references
vi and compute the gain obtained by replacing an existing
reference with vi. This is done as follows: Step 2.a computes
the total number of sequences pruned using existing refer-
ence set for Q. Step 2.b initializes the array P . Each entry
P [a] of P denotes the number of sequences pruned after re-
placing the ath existing reference with vi. Step 2.c iterates
over all existing references. At each iteration, it replaces an
existing reference with vi and computes the total number of
sequences pruned for all queries in Q. Step 2.d then com-
putes the largest possible gain obtained by subtracting the
number of sequences pruned using the original reference set
from that of the best possible new reference set. If there is no
gain, then the algorithm terminates and returns the current
reference set (Step 3). Otherwise, it updates the reference
set using the new reference that gives the best possible gain
(Steps 4 to 6).

 909

/*Input:Sequence database S,
Number of references m,
Sample query set Q,

Output:Set of references V = {v1, v2, . . . , vm}*/
• Initialize V with top m references obtained using the

Maximum Variance method.

• S = S - V .

• Do

1. G[i] =0, 1 ≤ i ≤ |S|. /* Sum of gains for each
vi ∈ S */

2. For each [vi, sj], ∀vi ∈ S, ∀sj ∈ S do

(a) Let go be the number of queries for which sj

is pruned using reference in V .
(b) P [a] = 0, 1 ≤ a ≤ m. /* Initialize gain for

ith reference V */
(c) For each [e, q] pair, ∀e ∈ V and ∀q ∈ Q do

i. V ′ = V - {e} ∪ {vi}.
ii. If(PRUNE(V ′, q, sj) = 1) P [e]++.

(d) If (MAX(P) > go) do
– G[i]+ = MAX(P) - go.

3. If (MAX(G) ≤ 0) Return V .

4. Let v = argmaxi(G[i]).

5. Update V with v.

6. S = S − {v}.
While (true).

Figure 5: Maximum Pruning algorithm:
PRUNE(V ′, q, s) returns true if one of the ref-
erences in V ′ can prune s. MAX(P) (MAX(G))
returns the maximum of the values in P (G).

Computational Complexity: The algorithm needs ac-
cess to distances between all pairs of sequences in S (Step
2). This requires O(N2) sequence comparisons. Note that
this a one time cost, and is not incurred at each iteration
of the Do-While loop. The PRUNE function requires the
distances between all (query sequence, database sequence)
pairs. We pre-compute these distances once. This requires
N |Q| sequence comparisons. So, the total number of se-
quence comparisons is O(N2 + N |Q|). Step 2 has to con-
sider O(N2) pairs of sequences. For each pair it computes
the gain for all queries in Q after replacing sequences in the
reference set one by one. This takes O(m|Q|) time since a
new reference can replace any of the m references (Step 2.c).
Thus overall time taken by this algorithm is O(N2m|Q|) for
each iteration of the Do-While loop. There can be at mostN
iterations, leading to the worst case complexity O(N3m|Q|).

5.2 Sampling-Based Optimization
Although the Maximum Pruning algorithm in Section 5.1

is faster than a purely combinatorial approach, it is still
impractical for large databases. To address this problem,
we propose two sampling-based optimizations to improve
the complexity of the algorithm by reducing the number of
(sequence, reference) pairs processed. The first one reduces
the number of sequences and the second one reduces the
number of references.

Estimation of gain: Our first optimization reduces the
number of sequences that must be considered when com-

/*Input:Sequence database S,|S| = N.
Sample queries Q,|Q| = q.

Output:G[i] ∀vi ∈ S.
*/

For each vi ∈ S do

1. ĝ1 = ĝ2 = 0. /* Initialize total and estimate for 2nd
moment */

2. α = 0. /* Initialize sampling fraction */

3. Do

(a) Select a random sj ∈ S, where sj
= vi.

(b) newGain = GAIN(vi, sj , Q).

(c) ĝ1 += newGain; ĝ2 += newGain2.

(d) α = α+ 1/|S|.
(e) σ̂2 = ĝ2/α

2 − ĝ1
2/(|S|α3).

While 2ασ̂/ĝ1 > ε.

4. G[i] = ĝ1/α.

Figure 6: Optimization 1: Estimation of gain.

puting the gain associated with a new reference point. This
algorithm replaces Step 2 of the Maximum Pruning algo-
rithm in Figure 5. We estimate gain based on a small sam-
ple of the database rather than the entire database. One of
the most important technical considerations in the design of
this algorithm is how to decide whether the gain estimate is
accurate enough based upon the sample.

Figure 6 presents our sampling algorithm in detail. The
algorithm takes a database of sequences S, query set Q and
an error rate ε as input. It returns the total gain obtained
by replacing an existing reference with a new reference for
all possible new references. For each candidate reference vi,
Step 3.a iteratively selects a random sequence sj ∈ S. Step
3.b then computes the gain by using vi as a reference for
sj for Q. The gain is computed as follows. Steps 2.a to
2.c of the Maximum Pruning algorithm in Figure 5 are ex-
ecuted to compute the total pruning achieved with respect
to sj by replacing each existing reference with vi. Then the
gain is given by the best pruning over all possible replace-
ments. Step 3.c updates the total gain seen as well as the
total squared gain seen (which can be used to estimate the
second moment of the gains that have been sampled). Step
3.d updates the sampling fraction, and Step 3.e then com-
putes an estimate for the variance of our gain estimate. The
algorithm terminates when the desired accuracy is reached.
The accuracy of the gain estimate is guessed at by mak-
ing use of the Central Limit Theorem (CLT), which implies
that errors over estimated sums and averages of this type
are normally distributed. Since 95% of the standard normal
distribution’s mass is within two standard deviations of zero,
if we treat the current gain estimate ĝ1/α as the true gain
and terminate when twice the relative standard deviation is
less than ε, we can be assured that the relative error is less
than ε with 95% probability.

For an average sample size of f with f � N , this approach
reduces the complexity to O(N2fm|Q|). This is because we
iterate over f sequences rather than all N sequences while
computing gain.

Estimation of largest gain: The Maximum Pruning al-
gorithm in Figure 5 uses all database sequences as candidate

 910

references to select the reference set. Our second optimiza-
tion reduces the number candidate references processed in
each iteration with the help of sampling. The goal is to use
a small subset of the database as candidate references, and
yet achieve pruning rates close to Maximum Pruning.

Formally, we define the problem as follows. Let G[i] be the
gain that can be achieved by indexing with the ith reference.
Assume that e = argmaxi(G[i]) (i.e., G[e] has the largest
gain). Given two parameters τ and ψ, where 0 ≤ τ , ψ ≤
1, we want to sample the candidate reference set ensuring
that the largest gain from this sample is at least τG[e] with
probability ψ.

Since G[e] is not known in advance, we can use the Type-I
Extreme Value Distribution (also known as the Gumbel dis-
tribution [14]) to estimate its value. This is done as follows.
We assume that each G[i] is produced by sampling repeat-
edly from a normally distributed random variance. The first
step is to determine the mean and standard deviation of this
variable. To do this, we sample a set of candidate references
and compute the mean μ and the standard deviation σ of
the gains for the sample. These are taken as the mean and
standard deviation of the underlying distribution.

Since the values in G are assumed to be samples from a
normal distribution, the largest gain G[e] is known to have
a Gumbel distribution whose parameters can be computed
using μ and σ. Let N and t be the number of candidate
references and the sample size, respectively. The two pa-
rameters of the Gumbel distribution, referred to as location
parameter a and a scale parameter b, are computed as fol-
lows:

a =
p

2 logN

b =
p

2 logN − log logN + log 4π

2
√

2 logN

The mean of the corresponding Gumbel distribution is
then calculated as:

μ̂ = σ[
− loge(− loge(0.5))

a
+ b] + μ

This tells us exactly what the expected value of the gain
associated with the best reference sequence is.

Thus, we can stop sampling once the best gain (with high
probability) is almost good enough; that is, we stop when it
is at least τ μ̂. To compute how many samples are needed,
let P (x < τμ̂) be the probability that the gain of a random
reference x is less than τ μ̂. This probability can be calcu-
lated from the distribution of G[i]. The probability that the
gain of all the t randomly selected references are less than
τ μ̂ is P (x < τμ̂)t. Solving the inequality:

1 − P (x < τμ̂)t ≥ ψ

gives the number of samples needed (denoted by t) as:

t ≤ loge(1 − ψ)

loge(P (x < τμ̂))
.

In our experiments we have used τ = ψ = 0.99. Each iter-
ation of the Do-While loop of the Maximum Pruning algo-
rithm in Figure 5 computes the gain from random candidate
references until the required accuracy is reached. Each iter-
ation uses a different sample of candidate references. If the
average sample size of the m iterations is h, h � N , then
this optimization along with the first optimization reduces
the overall complexity to O(Nfhm|Q|).

6. ASSIGNMENT OF REFERENCES
So far, we have discussed how to select reference sequences.

In this section, we discuss how to use them. Traditional
reference-based indexing methods such as Omni, use the
same references to index all the database sequences. That
is, given k references, Omni tries to prune all the database
sequences using the same k references.

We develop a new strategy to assign references to database
sequences. We increase the total number of references but
use only a subset of them to index each database sequence.
Formally, given a set of m references (m > k), our goal is to
assign a set of k references to each database sequence such
that at least one of these k references will remove s from the
candidate set for as many queries as possible. As we will
discuss later in more detail, when m is much smaller than
the database size, this strategy improves the performance
with little increase in the storage cost.

The set of m initial references (V) can be chosen in many
different ways. We use one of our two selection strategies
given in Sections 4 and 5. Let Q be a sample query set.
For each database sequence s, we greedily assign the k ref-
erences in V that provide the best pruning according to Q.
This approach is similar to reference selection strategy of
Maximum Pruning in Section 5. There are two main differ-
ences. First, the k references are selected for each database
sequence independently. Second, the total number of refer-
ences can be greater than k. This potentially increases the
cost of query-reference comparisons. Thus, a new reference
is assigned to a sequence only if the benefit of including this
reference is more than the additional cost it brings.

Figure 7 shows the algorithm for assigning references to
each database sequence. The algorithm takes a query set
Q, database S, potential reference set V , and the number
of references per sequence k as input. It returns a mapping
from each database sequence to k references in V . For each
database sequence s, the algorithm iteratively maps one ref-
erence until k references are mapped as follows. It main-
tains an array V count, where V count[i] gives the number of
queries for which a sequence is pruned using the reference
vi ∈ V . The algorithm selects the reference e ∈ V for which
s is pruned for maximum number of queries (Steps 3.b-3.c).
Steps 3.e and 3.f removes e from V and map it to s. Step
3.g removes the from the query set those queries for which s
was pruned using e. This is done to ensure that the new ref-
erences are selected only to improve the queries for which s
can not be pruned using the existing references. Each refer-
ence costs |Q| extra sequence comparisons. This is because
each query needs to be compared with all the references.
Thus, a reference is useful only if it prunes a total of more
than |Q| sequences for all the queries in Q. If the total gain
from a reference is not greater than |Q|, it is removed from
the reference set (Step 4). The reference sets of sequences
which have less than k references are then updated with new
references from V (Step 5).

Computational Complexity: The algorithm needs ac-
cess to distances between all (query sequence, reference se-
quence) pairs. This takes O(tm|Q|), where t is the time
taken for one sequence comparison. If the selection strat-
egy is Maximum Pruning, then the pre-computed query-
reference distances are used. In each of the k iterations,
Step 3.b of the algorithm can process up to O(m|Q|) query-
reference pairs. Thus the overall time taken by the algorithm

 911

/*Input:Sequence database S,|S| = N.
Reference set V ,|V | = m.
Sample queries Q,|Q| = q.
References per sequence k.

Output:E = {E1, E2, . . . , EN},
Es is assigned to sequence s ∈ S.

*/

1. G[i] = 0, 1 ≤ i ≤ m. /* Total gain from each reference
vi ∈ V */

2. Ei = {}, 1 ≤ i ≤ N . /*Initialize reference set of each
sequence*/

3. For each s ∈ S do

• Repeat

(a) V count[i] = 0, 1 ≤ i ≤ m. /* Initialize gain
for [vi, s] pair */

(b) For all [v,Qj] , ∀v ∈ V and ∀Qj ∈ Q do
– If(PRUNE(s,Qj , v)) do V count[v]++.

(c) Let e = argmaxx(V count[x]).
(d) G[e]+= V count[e].
(e) V = V − {e}.
(f) Es = Es ∪ {e}.
(g) Remove from Q queries for which s is pruned

with reference e.

Until |Es| = k.

• Re-insert all deleted entries from sets V and Q.

4. For all v ∈ V do

• If(G[v] ≤ |Q|) V = V − {v}.
5. Update the reference sets Es ∀s ∈ S.

Figure 7: Algorithm to assign references to se-
quences: The PRUNE(s, q, v) function returns true
if the reference v can prune s for the query q.

is O(Nmk|Q|).

7. SEARCH ALGORITHM
We have discussed how to find references (Sections 4 and 5)

and how to map them to database sequences (Section 6). In
this section, we will discuss how we use the mapped refer-
ences to answer range queries.

Let S be the database of N sequences and V be the ref-
erence set. The set of k references mapped to si is given
by Ei, ∀si ∈ S. Here, Ei ⊆ V . We pre-compute the edit
distances ED(v, si), ∀si ∈ S and ∀v ∈ Ei. This is a one
time cost for the database. For a query q ∈ Q and range ε,
we first compute the edit distances from q to the reference
sequences, i.e. ED(q, vi) ∀vi ∈ V . For each (q, si) we com-
pute the lower and upper bounds LB and UB as given in
Section 2. Depending on LB, UB, and ε, we insert si into
one of the two sets Result set and Candidate set as follows.
If UB ≤ ε, we insert si into Result set. If LB ≤ ε ≤ UB,
we insert si into Candidate set. Otherwise, we prune si.
Once the Candidate set is determined, we do the actual se-
quence comparison between q and all the sequences in the
Candidate set to filter out false positives.

Computational Complexity: Given a sequence database
S with N sequences, the selection strategy selects m refer-
ences. The assignment strategy maps each sequence with
k, k ≤ m, references. For each sequence s and its reference

Table 1: A list of our methods: Each of the two
selection methods has two types of assignments.

Assignment Selection Strategies
Strategy Max. Variance Max. Pruning

Same References MV-S MP-S
Diff. References MV-D MP-D

vi ∈ V , its mapping is of the form [i, ED(s, vi)]. The Nk
edit distances between the sequences and references mapped
to the sequences are stored in a file. The selection strategy,
mapping database sequences s ∈ S to references, and com-
puting the [s, vi] edit distances, are all one-time costs for a
sequence database.

During database search, reference-to-sequence edit dis-
tances and references are loaded into the memory. With
an average sequence size of z bytes and four bytes for an
integer, this requires (8Nk + mz) bytes of memory (Sec-
tion 2). Here eight bytes are used to store each of the Nk
mappings. With an increase in m, the sequences can be
assigned better references. However, this will increase the
number of query-to-reference computations. Hence, in our
experiments we restrict m to a fraction of the database size.

Given a query set Q, the edit distances of all (query, ref-
erence) pairs are computed. This involves m|Q| sequence
comparisons. For every (query, sequence) pair, all k refer-
ences for the sequence are compared to compute the lower
and upper bounds. This takes O(Nk|Q|) time. If Cm is the
average candidate set size for Q using the m references, it
takes Cm|Q| sequence comparisons to get the final result.
For an average sequence length of L, the sequence compar-
ison takes O(L2) time. Thus, the overall time taken by the
search algorithm is O((m+ Cm)|Q|L2 +Nk|Q|).

8. EXPERIMENTAL EVALUATION
In this section, we compare the performance of different

methods for sequence indexing based on the number of se-
quence comparisons performed.

Table 1 lists the methods proposed in this paper that we
compare. For MV-D and MP-D, we have selected 200 refer-
ences from our two selection strategies (i.e. m = 200) unless
otherwise stated. For MV-S and MP-S, we have selected the
top k (k = m) references. We compare our methods with
several other existing methods: 1) Omni [11] 2) frequency
vectors [19] (FV), 3) the M-Tree [8], 4) the DBM-Tree [33],
5) the Slim-Tree [30] and 6) the DF-Tree [29]. The C++ im-
plementations of the M-Tree, the DBM-Tree, the Slim-Tree
and the DF-Tree were obtained from the Arboretum MAM
library (http://gbdi.icmc.usp.br/arboretum/). We have
used the following three types of databases in our experi-
ments:

Text database: We created text database from 33 ran-
domly selected books from the Gutenberg project (http:
//www.gutenberg.org/). The alphabet consists of 36 al-
phanumeric characters. The database contains 8,000 se-
quences of length 100.

DNA Database: We use the Escherichia Coli or E.Coli
(K-12 MG1655) genome from GenBank [5] (ftp://ftp.ncbi.
nih.gov/genbank/). The alphabet size of a DNA sequence is
4 (A,C,G,T). We created four databases of non-overlapping
sequences of lengths 25, 50, 100 and 200. Each database

 912

is obtained by chopping the E.Coli database into 20,000
non-overlapping sequences. Databases of different sizes con-
taining 5,000, 10,000 and 15,000 non-overlapping sequences,
each of length 100, are also created.

Protein database: Protein sequences in the Eukaryota
kingdom of organisms are used for this database. They are
obtained from SwissProt [4] (ftp://ftp.ebi.ac.uk/pub/
databases/swissprot/). The alphabet size is 20. A set
of 4,000 sequences having up to 500 amino acids is selected
randomly.

For each database, 200 sequences from different parts of
the same species/database are selected. 100 sequences are
used as sample queries for Maximum Pruning and another
100 sequences are used as query sequences. Note that the
query and database sequences for the DNA databases are
taken from different parts of the same species and they do
not overlap. Similarly for the protein data, the query se-
quences are taken from proteins from a different part of
the database without any overlap. For the genome data,
the mean distance between the query and the database se-
quences is 56 and for the protein data, the mean distance is
192. We have also created three additional query sets that
we test in Section 8.2.3: one from each of the organisms
Danio Rerio (Zebrafish), Mus Musculus (Mouse) and Heli-
conius Melpomene (Butterfly). Each query set contains 100
sequences of length 100 and each is selected randomly from
its organism.

We ran our experiments on an Intel Pentium 4 processor
running Linux with 2.8 GHz clock speed and 1GB of main
memory.

8.1 Comparison of our methods
In this section, we present experimental results comparing

our methods under different parameter settings.

8.1.1 Impact of Query Range (ε)
The goal of this experiment set is to understand the be-

havior of our methods for different query ranges. Here, we
compare the performance of MV-S, MP-S, MV-D and MP-
D with ε = 2 to 32 for the DNA sequences and ε = 60 to
420 for the protein database. The number of references used
for the DNA and protein database is 4 and 32, respectively.
The plots are given in log-scale.

Figure 8(a) presents the number of sequence comparisons
for the DNA database. This increases with the query range
for all four methods. For different ranges, MP-D and MV-D
have a smaller number of sequence comparisons compared to
MV-S and MP-S. MP-D is gives the best results. For ranges
up to 8, assigning different reference sets to each sequence
results in a significant reduction of sequence comparisons for
both selection strategies. This shows that assigning different
reference sets to each sequence gives better pruning results
than the traditional approach of assigning the same refer-
ences to all sequences. Using either a uniform or varying
assignment of sequences to references, MP performs slightly
better than MV. This is due to the fact that MP is us-
ing knowledge of the input query distribution. Figure 8(b)
presents the results for the protein database. MP-D outper-
forms the other methods for all query ranges. For most of
the query ranges, the MP methods perform better than the
MV methods. We have observed similar results for the text
database.

8.1.2 Impact of Number of References (k)
The goal of this experiment is to understand the behavior

of our methods for different numbers of references. Here,
we compare MV-S, MP-S, MV-D and MP-D by fixing the
query range and varying the number of references assigned,
k = 2, 4, 8, 16 and 32. We use both the protein and DNA
databases. The plots are in log-scale for the DNA database.

Figure 9(a) shows the number of sequence comparisons for
the DNA database. For all four methods, the number of se-
quence comparisons decreases dramatically with an increase
in k. As the number of references increases from 2 to 32,
the number of sequences compared drops by factors of 5 to
20 for the methods MP-D and MP-S. Figure 9(b) presents
the results for the protein database. With an increase in
the number of references, there is a gradual decrease in the
number of sequence comparisons. The MV-S strategy out-
performs the MP-S strategy at k = 8, 16 and 32 for the pro-
tein database and MP-S outperforms MV-S for all values of
k in the DNA sequence database. The experiments using
the text database gave similar results to the DNA sequence
database, with MP-D giving the best results. This shows
that with an increase in the number of references, memory
can be better utilized by assigning a subset of references to
each database sequence.

8.1.3 Impact of m
The goal of this experiment set is to understand the be-

havior of MP-D for different cardinalities of the reference set,
|V | = m. The number of references is 8 and the query range
is 8. We use the DNA sequence database. The plots are
given in log-scale. Figure 10 gives the number of sequence
comparisons for different reference set cardinalities. Up to
m = 200, the number of sequence comparisons reduces at
a fast rate. From m = 200 to 500, there is very little im-
provement in performance. For m > 500, the number of
sequence comparisons increases. Hence, in our subsequent
experiments we use m = 200.

8.2 Comparison with existing Methods
In this section we compare MV-D and MP-D with Omni,

FV, the M-Tree [8], the DBM-Tree [33], the Slim-Tree [30]
and the DF-Tree [29].

8.2.1 Index Construction Time
The time taken to construct each index is given as the first

line in Table 2. IC denotes the index construction time. For
the tree-based methods, IC refers to the time taken to con-
struct the tree structure. For Omni, IC is the time taken
to generate 16 references. IC for MP-D is the time taken to
generate 200 references using the maximum pruning method
with sampling-based optimization. This includes the time
taken for selecting the references and the index construc-
tion time, where the reference-to-data sequence distances
are recorded.

8.2.2 Impact of Query Range (ε)
The goal of this experiment set is to compare the behavior

of our methods with several existing methods for different
query ranges. For the protein database, the query range
varied from ε = 60 to 420 with 32 references. We test values
of ε from 2 to 32 for the DNA database and from ε = 15 to
75 for the text database. The plots are given in log-scale.

Table 2 presents results for the six existing methods along

 913

1

10

100

1000

10000

100000

2 4 8 16 32
Query Range

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s
MV-S
MP-S
MV-D
MP-D

(a) DNA Sequence dataset

1

10

100

1000

10000

60 120 180 240 300 360 420
Query Range

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s

MV-S
MP-S
MV-D
MP-D

(b) Protein dataset

Figure 8: Number of sequence comparisons for MV-S, MP-S, MV-D and MP-D for the DNA and protein
databases for queries with varying ranges. The number of references is 4 for DNA and 32 for the protein
database.

1

10

100

1000

10000

100000

2 4 8 16 32
Number of References

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s

MV-S
MP-S
MV-D
MP-D

(a) DNA sequence dataset

0

500

1000

1500

2000

2500

2 4 8 16 32
Number of References

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s

MV-S
MP-S
MV-D
MP-D

(b) Protein dataset

Figure 9: Number of sequence comparisons for MV-S, MP-S, MV-D and MP-D with the DNA sequence and
protein databases for a varying number of references. Here query range = 8 for DNA database and 300 for
protein database.

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800

Cardinality of Reference Set, m

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s

Figure 10: Impact of m: Number of comparisons of
MP-D for DNA sequence database for values of m.
The number of references is 8 and query range is 8.

with MV-D and MP-D for the DNA sequence database.
With increasing in query range, the number of sequence
comparisons increases for all the methods. The tree-based
methods compare more sequences than a simple sequential
scan with a large query range. This is due to the comparison
of the query sequence with the sequences in the intermedi-
ate tree nodes. For ranges 8 to 32, Omni performs more

sequence comparisons than FV, MV-D and MP-D. As we
increase the range from 2 to 8, MP-D reduces the number of
comparisons by a factor of up to 6 to 100. For larger ranges,
MP-D reduces the number of sequence comparisons up to
a factor of 2. Thus, MP-D generally outperforms all other
methods.

In the remaining experiments, we only use Omni and FV
for comparison to our methods as they perform the best
among all competitors. Figure 11(a) presents the results for
the text database. MP-D outperforms the other methods for
all query ranges. For example, at ε = 15 to 75, MP-D com-
pares up to 3 times fewer sequences than Omni, and up to
50% fewer sequences than FV. Figure 11(b) gives the results
for range queries on the protein database. FV outperforms
its competitors at ranges of 60 and 120. As the query range
increases, MP-D outperforms FV.

8.2.3 Impact of Number of References (k)
The goal of this experiment set is to compare the behavior

of our methods with existing methods using different num-
bers of references. Here, we compare the performance of
Omni, FV and MP-D by fixing the query range for a vary-
ing number of references k = 2, 4, 8, 16 and 32. We use the

 914

Table 2: Number of sequence comparisons of existing methods for the DNA sequence database with varying
query ranges. IC denotes the index construction Time. QR denotes the query range. ss and ms denote the
running time in seconds and minutes respectively. Number of references for Omni, DF-Tree, MV-D and
MP-D is 16.

M-Tree Slim-Tree DBM-Tree DF-Tree Omni FV MV-D MP-D
QR IC=50 ms IC=15 ms IC=14 ms IC=480 ms IC=14 ms IC=6 ss IC=74 ms IC=180 ms
2 9946 10228 7313 8041 228 247 205 200
4 13426 14390 10963 10773 1202 1264 273 208
8 20147 19691 17507 19301 12677 6208 2648 1126
16 22865 21176 19977 24861 19927 16088 18541 18296
32 22892 21192 19997 25021 20000 19811 19840 19836

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

15 30 45 60 75

Query Range

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s

Omni
FV
MP-D

(a) Text dataset

1

10

100

1000

10000

60 120 180 240 300 360 420
Query Range

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s

Omni
FV
MP-D

(b) Protein dataset

Figure 11: Number of sequence comparisons for Omni, FV and MP-D on text and protein databases for
queries with varying ranges. Here the number of references is 8 for text database and 32 for protein database.

DNA and protein databases. The query range is 8 for the
DNA database and 300 for the protein database. Since FV
does not use references, we have compared the results of
the other methods with different numbers of references to a
single frequency vector. The plots are given in log-scale.

Figure 12(a) shows the number of sequence comparisons
for all three methods for the DNA database. The results
show that even with two references per sequence, MP-D out-
performs the other methods. As the number of references
increases, the number of sequence comparisons used by MP-
D is smaller by up to a factor of 25 compared to Omni and
up to a factor of 43 compared to FV. Figure 12(b) gives the
results for the protein database. For a varying number of
references, the reference-based methods perform better than
FV. MP-D reduces the number of comparisons by a factor
of 2.7 compared to FV and a factor of 2 compared to Omni.

8.2.4 Impact of Input Queries
In this experiment, we evaluate our methods when the

distribution of queries differs from that of the sample query
sequences used in reference selection. We used three query
sets from three different species (Mouse, Zebrafish and But-
terfly) which are taxonomically distant from the species we
used in our database (E.coli). We used 8 references for Omni
and MP-D.

Table 3 gives the results. In comparison to Table 2, for
most of the query ranges, MP-D reduces the number of se-
quence comparisons by up to a factor of 10 compared to FV
and by up to a factor of 20 compared to Omni. With an in-
crease in query range, the number of sequence comparisons
for all query sets increases. The performance of MP-D is

not affected by a change in query distribution. At a query
range of 16, FV performs slightly better than MP-D for all
query distributions. Omni requires more sequence compar-
isons than FV and MP-D for all query ranges.

8.2.5 Scalability in Database Size
Next, we test the Omni, FV and MP-D methods for scal-

ability in database size. We have used four DNA sequence
databases with 5,000, 10,000, 15,000 and 20,000 sequences
each. The number of references used by Omni and MP-D
is 32 and the query range is 8. Figure 13 gives the results.
With an increase in the size of the database, MP-D outper-
forms all other methods, and FV uses more sequence com-
parisons than Omni. The rate of increase in comparisons is
slowest for MP-D.

8.2.6 Scalability in Sequence Length
The goal of this experiment set is to compare the behavior

of our method with existing methods for increasing lengths
of sequences. Here, we compare the Omni, FV and MP-D
methods. We have used four DNA sequence database hav-
ing 10,000 sequences and with sequence lengths of 25, 50, 100
and 200. The number of references used in the methods
Omni and MP-D is 32, and the query range is 8. Figure 14
gives the results. All of the methods show reduction in the
number of sequence comparisons with an increase in the se-
quence lengths. For shorter sequences, a range of 8 is large
relative to the sequence length. In these cases MP-D outper-
forms Omni and FV by a factor of 2. For longer sequences,
a range of 8 is relatively small. For these sequences, MP-
D reduces the number of sequence comparisons by a factor

 915

1

10

100

1000

10000

100000

2 4 8 16 32
Number of References

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s
Omni
FV
MP-D

(a) DNA sequence dataset

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 8 16 32
Number of References

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s

Omni
FV
MP-D

(b) Protein dataset

Figure 12: Number of sequence comparisons Omni, FV and MP-D over the DNA sequence and protein
databases for a varying number of references. Here query range = 8 for DNA database and 300 for protein
database.

Table 3: Number of sequence comparisons over the DNA sequence database for different query sets with vary-
ing query ranges. QR gives the query range. HM, MM and DR are the three query sets from DNA sequences
of three different organisms Heliconius Melpomene, Mus Musculus and Danio Rerio sequence respectively.
The number of references for Omni and MP-D is 8.

HM MM DR
QR Omni FV MP-D Omni FV MP-D Omni FV MP-D
2 428 321 249 716 457 222 592 424 244
4 1217 1360 401 1225 1385 408 1224 1381 419
8 6489 1847 1656 9514 2718 1259 7433 2279 1444
16 18807 8296 14526 19631 11644 16550 19236 9300 15408
32 20000 19045 18558 20000 19418 19146 20000 19043 18945

1

10

100

1000

10000

5000 10000 15000 20000

Database Size

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s

Omni
FV
MP-D

Figure 13: Scalability in database size: Number of
sequence comparisons for Omni, FV and MP-D for
the DNA sequence database for varying database
sizes. The number of references is 32 and query
range is 8.

of 20 compared to FV and Omni. As the sequence length
increases, Omni outperforms FV.

9. DISCUSSION
In this paper, we considered the problem of similarity

search in a large sequence databases with edit distance as
the similarity measure. We developed a family of reference-
based indexing techniques. We developed two novel methods
for selecting reference sequences. Unlike existing methods,
our methods select references that represent all parts of the

1

10

100

1000

10000

25 50 100 200

Sequence Length

N
um

be
r o

f S
eq

ue
nc

e
C

om
pa

ris
on

s

Omni
FV
MP-D

Figure 14: Scalability in sequence length: The num-
ber of sequence comparisons for Omni, FV and MP-
D for DNA database for varying sequence lengths.
The number of references is 32 and the query range
is 8.

database. Our first method, Maximum Variance, maximizes
the spread of database around the references. Our second
method, Maximum Pruning, optimizes pruning based on a
set of sample queries. We also developed sampling methods
to improve the running time of the index construction. We
propose mapping different references to each database se-
quence dynamically rather than using the same references.
We developed a sampling strategy which finds a mapping
of references to sequences that maximizes the pruning rate

 916

with a given probability.
According to our experiments, our methods perform much

better than existing strategies including Omni and frequency
vectors. Among our methods, Maximum Pruning with dy-
namic assignment of reference sequences performs the best.
The total cost (number of sequence comparisons) of our
methods are up to 20 and 30 times less than that of Omni
and frequency vectors, respectively.

10. REFERENCES
[1] S. Altschul, W. Gish, W. Miller, E. W. Meyers, and

D. J. Lipman. Basic Local Alignment Search Tool.
Journal of Molecular Biology, 215(3):403–410, 1990.

[2] R.A. Baeza-Yates and C.H. Perleberg. Fast and
practical approximate string matching. In CPM, pages
185–192, 1992.

[3] Ricardo A. Baeza-Yates and Gonzalo Navarro. Faster
Approximate String Matching. Algorithmica,
23(2):127–158, 1999.

[4] A. Bairoch, B. Boeckmann, S. Ferro, and E. Gasteiger.
Swiss-Prot: juggling between evolution and stability.
Briefings in Bioinformatics, 1:39–55, 2004.

[5] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman,
J. Ostell, B.A. Rapp, and D.L. Wheeler. GenBank.
Nucleic Acids Research, 28(1):15–18, January 2000.

[6] Tolga Bozkaya and Meral Ozsoyoglu. Distance-based
indexing for high-dimensional metric spaces. In ACM
SIGMOD, pages 357–368, 1997.

[7] Xia Cao, Beng Chin Ooi, HweeHwa Pang, Kian-Lee
Tan, and Anthony K. H. Tung. Dsim: A
distance-based indexing method for genomic
sequences. In BIBE, pages 97–104, 2005.

[8] Paolo Ciaccia, Marco Patella, and Pavel Zezula.
M-Tree: An Efficient Access Method for Similarity
Search in Metric Spaces. In The VLDB Journal, pages
426–435, 1997.

[9] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson,
O. Whited, and D.L. Salzberg. Alignment of Whole
Genomes. Nucleic Acids Research, 27(11):2369–2376,
1999.

[10] P. Ferragina and R. Grossi. The String B-tree: A New
Data Structure for String Search in External Memory
and Its Applications. JACM, 46(2):236–280, 1999.

[11] Roberto F. Santos Filho, Agma J. M. Traina, Caetano
Traina, and Christos Faloutsos. Similarity Search
without Tears: The OMNI Family of All-purpose
Access Methods. In ICDE, pages 623–630, 2001.

[12] E. Giladi, M.G. Walker, J.Z. Wang, and W. Volkmuth.
SST: An Algorithm for Finding Near-Exact Sequence
Matches in Time Proportional to the Logarithm of the
Database Size. Bioinformatics, 18(6):873–877, 2002.

[13] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate
string joins in a database (almost) for free. In VLDB,
pages 491–500, 2001.

[14] Emil Julius Gumbel. Statistics of Extremes. Columbia
University Press, New York, NY, USA, 1958.

[15] D. Gusfield. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1 edition,
January 1997.

[16] E. Hunt, M. P. Atkinson, and R. W. Irving. A
Database Index to Large Biological Sequences. In
VLDB, pages 139–148, Rome, Italy, September 2001.

[17] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui
Yu, and Rui Zhang. iDistance: An adaptive B+-tree
based indexing method for nearest neighbor search.
ACM Trans. Database Syst., 30(2):364–397, 2005.

[18] T. Kahveci, V. Ljosa, and A.K. Singh. Speeding up
whole-genome alignment by indexing frequency

vectors. Bioinformatics, 2004. to appear.
[19] T. Kahveci and A. Singh. An Efficient Index Structure

for String Databases. In VLDB, pages 351–360,
Rome,Italy, September 2001.

[20] J. Kärkkäinen. Suffix Cactus: A Cross between Suffix
Tree and Suffix Array. In CPM, 1995.

[21] U. Manber and E. Myers. Suffix Arrays: A New
Method for On-Line String Searches. SIAM Journal
on Computing, 22(5):935–948, 1993.

[22] E.M. McCreight. A Space-Economical Suffix Tree
Construction Algorithm. JACM, 23(2):262–272, 1976.

[23] C. Meek, J. M. Patel, and S. Kasetty. OASIS: An
Online and Accurate Technique for Local-alignment
Searches on Biological Sequences. In VLDB, 2003.

[24] Eugene W. Myers. An o(ND) difference algorithm and
its variations. Algorithmica, 1(2):251–266, 1986.

[25] G. Navarro and R. Baeza-Yates. A Hybrid Indexing
Method for Approximate String Matching. J. Discret.
Algorithms, 1(1):205–239, 2000.

[26] S. B. Needleman and C. D. Wunsch. A General
Method Applicable to the Search for Similarities in
the Amino Acid Sequence of Two Proteins. JMB,
48:443–53, 1970.

[27] W.R. Pearson and D.J. Lipman. Improved Tools for
Biological Sequence Comparison. PNAS,
85:2444–2448, April 1988.

[28] S.C. Sahinalp, M. Taşan, J. Macker, and Z.M.

Özsoyoğlu. Distance Based Indexing for String
Proximity Search. In ICDE, 2003.

[29] Caetano Traina, Agma J. M. Traina, Roberto
F. Santos Filho, and Christos Faloutsos. How to
improve the pruning ability of dynamic metric access
methods. In CIKM, pages 219–226, 2002.

[30] Caetano Traina, Agma J. M. Traina, Bernhard Seeger,
and Christos Faloutsos. Slim-Trees: High Performance
Metric Trees Minimizing Overlap Between Nodes. In
EDBT, pages 51–65, 2000.

[31] E. Ukkonen. Algorithms for Approximate String
Matching. Information and Control, 64:100–118, 1985.

[32] E. Ukkonen. On-line Construction of Suffix-trees.
Algorithmica, 14:249–260, 1995.

[33] Marcos R. Vieira, Caetano Traina, Fabio Jun Takada
Chino, and Agma J. M. Traina. DBM-Tree: A
Dynamic Metric Access Method Sensitive to Local
Density Data. In SBBD, pages 163–177, 2004.

[34] Jules Vleugels and Remco Veltkamp. Efficient image
retrieval through vantage objects. In VISUAL, pages
575–584. Springer, 1999.

[35] P. Weiner. Linear Pattern Matching Algorithms. In
IEEE Symposium on Switching and Automata Theory,
pages 1–11, 1973.

[36] P.N. Yianilos. Data Structures and Algorithms for
Nearest Neighbor Search in General Metric Spaces. In
SODA, pages 311–321, 1993.

 917

