
LB_Keogh Supports Exact Indexing of Shapes under Rotation
Invariance with Arbitrary Representations and Distance Measures

Eamonn Keogh Li Wei Xiaopeng Xi Sang-Hee Lee1 Michail Vlachos
Department of Computer Science & Engineering

1Department of Anthropology
University of California - Riverside

Riverside, CA 92521
{eamonn, wli, xxi}@cs.ucr.edu, shlee@ucr.edu , vlachos@us.ibm.com

 ABSTRACT

The matching of two-dimensional shapes is an important problem
with applications in domains as diverse as biometrics, industry,
medicine and anthropology. The distance measure used must be
invariant to many distortions, including scale, offset, noise, partial
occlusion, etc. Most of these distortions are relatively easy to
handle, either in the representation of the data or in the similarity
measure used. However rotation invariance seems to be uniquely
difficult. Current approaches typically try to achieve rotation
invariance in the representation of the data, at the expense of
discrimination ability, or in the distance measure, at the expense of
efficiency. In this work we show that we can take the slow but
accurate approaches and dramatically speed them up. On real
world problems our technique can take current approaches and
make them four orders of magnitude faster, without false
dismissals. Moreover, our technique can be used with any of the
dozens of existing shape representations and with all the most
popular distance measures including Euclidean distance, Dynamic
Time Warping and Longest Common Subsequence.

1. INTRODUCTION
The matching of two-dimensional shapes is an important problem
with applications in domains as diverse as biometrics, industry,
medicine and anthropology. The distance measure used must be
invariant to many distortions, including scale, offset, noise, partial
occlusion, etc. Most of these distortions are relatively easy to
handle, particularly if we use the well-known technique of
converting the shapes into time series as in Figure 1. However, no
matter what representation is used, rotation invariance seems to
be uniquely difficult to handle. For example [14] notes “rotation
is always something hard to handle compared with translation
and scaling”, and the literature abounds with similar statements.
Many current approaches try to achieve rotation invariance in the
representation of the data, at the expense of discrimination ability
[19], or in the distance measure, at the expense of efficiency
[1][2][3][7].
As an example of the former, the very efficient rotation invariant

technique of [19] cannot differentiate between the shapes of the
lowercase letters “d” and “b”. As an example of the latter, the
work of Adamek and Connor [1], which is state of the art in terms
of accuracy or precision/recall takes an untenable O(n3) for each
shape comparison.

0 200 400 600 800 1000 1200 1400

A B C

0 200 400 600 800 1000 1200 14000 200 400 600 800 1000 1200 1400

A B C

Figure 1: Shapes can be converted to time series. A) A bitmap of a human
skull. B) The distance from every point on the profile to the center is
measured and treated as the Y-axis of a time series of length n (C)

In this work we show that we can take the slow but accurate
approaches and dramatically speed them up. This dramatic
improvement in efficiency does not come at the expense of
accuracy; we can prove that we will always return the same
answer set as the slower methods.
We achieve speedup over the existing methods in two ways,
dramatically decreasing the CPU requirements, and allowing
indexing. Our technique works by grouping together similar
rotations, and defining an admissible lower bound to that group.
Given such a lower bound, we can utilize the many search and
indexing techniques known in the database community.
Our technique has the following advantages:
• There are dozens of techniques in the literature for

converting shapes to time series [1][3][6][24][25][28],
including some that are domain specific [4][21]. Our
approach works for any of these representations.

• While there are many distance measures for shapes in the
literature, Euclidean distance, Dynamic Time Warping [2][4]
[20][21] and Longest Common Subsequence [23] accounts
for the majority of the literature. Our approach works for any
of these distance measures.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

• Our approach uses the idea of LB_Keogh lower bounding as
its cornerstone. Since the introduction of this idea a few
years ago [11], dozens of researchers world wide have
adopted and extended this framework for applications as
diverse as motion capture indexing [13], P2P searching [9],
handwriting retrieval [21], dance indexing, and query by
humming and monitoring streams [26]. This widespread

882

adoption of LB_Keogh lower bounding has insured that it
has become a mature and widely supported technology, and
suggests that any contributions made here can be rapidly
adopted and expanded.

• In some domains it may be useful to express rotation-limited
queries. For example, in order to robustly retrieve examples
of the number “8”, without retrieving infinity symbols “∞”,
we can issue a query such as: “Find the best match to this
shape allowing a maximum rotation of ± 15 degrees”. Our
framework supports such rotation-limited queries.

The rest of this paper is organized as follows. In Section 2 we
discuss background material and related work. In Section 3 we
formally introduce the problem and in Section 4 we offer our
solution. Section 5 offers a comprehensive empirical evaluation of
our technique. Finally Section 6 offers some conclusions and
directions for future work.

2. BACKGROUND AND RELATED WORK
The literature on shape matching is vast; we refer the interested
reader to [6][22] and [28] for excellent surveys. While not all
work on shape matching uses a 1D representation of the 2D
shapes, an increasingly large majority of the literature does. We
therefore only consider such approaches here. Note that we lose
little by this omission. The two most popular measures that
operate directly in the image space, the Chamfer [5] and
Hausdorff [18] distance measures, require O(n2logn) time1 and
recent experiments (including some in this work) suggest that 1D
representations can achieve comparable or superior accuracy.
In essence there are three major techniques for dealing with
rotation invariance, landmarking, rotation invariant features and
brute force rotation alignment. We consider each below.
2.1 Landmarking
The idea of “landmarking” is to find the one “true” rotation and
only use that particular alignment as the input to the distance
measure. The idea comes in two flavors, domain dependent and
domain independent.
In domain dependent landmarking, we attempt to find a single (or
very few) fixed feature to use as a starting point for conversion of
the shape to a time series. For example, in face profile recognition
the most commonly used landmarks (fiducial points) are the chin
or nose [4]. In limited domains this may be useful, but it requires
building special purpose feature extractors. For example, even in
a domain as intuitively well understood as human profiles,
accurately locating the nose is a non-trivial problem, even if we
discount the possibility of mustaches and glasses. Probably the
only reason any progress has been made in this area is that most
work reasonably assumes that faces presented in an image are
likely to be upright. For shape matching in skulls, the canonical
landmark is called the Frankfurt Horizontal [27], which is defined
by the right and left porion (the highest point on the margin of the
external auditory meatus) and the left orbitale (the lowest point on
the orbital margin). However, a skull can be missing the relevant
bones to determine this orientation and still have enough global

1 More precisely the time complexity is O(Rplogp), where p is the number

of pixels in the perimeter and R is the number of rotations that need to
be executed. Here p = n, and while R is a user defined parameter, it
should be approximately equal n to guarantee all rotations (up to the
limit of rasterization) are considered.

information to match its shape to similar examples. Indeed the
famous Skhul V skull shown in Figure 12 is such an example.
In domain independent landmarking, we align all the shapes to
some cardinal orientation, typically the major axis. This approach
may be useful for the limited domains in which there is a well-
defined major axis, perhaps the indexing of hand tools. However
there is increasing recognition that the “…major axis is sensitive
to noise and unreliable” [28]. For example a recent paper shows
that under some circumstances, a single extra pixel can change the
rotation by ± 90 degrees [29].
To show how brittle landmarking can be we performed a simple
clustering experiment where we clustered three primate skulls
using Euclidean distance with both the major axis technique, and
the minimum distance of all possible rotations (as found by brute
force). Figure 2 shows the result.

OrangutanOwl Monkey
Northern Gray-Necked

Owl Monkey
(species unknown)

Landmark Alignment

A B C

A

B

Figure 2: Top) Three primate skulls, two of them from the same
genus, are clustered using both the landmark rotation beginning at the
major axis, and the best rotation. Bottom) The landmark-based
alignment of A and B explains why the landmark-based clustering is
incorrect: a small amount of rotation error results in a large difference
in the distance measure

The most important lesson we learned from this experiment (and
dozens of other similar experiments on diverse domains [10]) is
that rotation (mis)alignment is the most important invariance for
shape matching, unless we have the best rotation then nothing else
matters.
2.2 Rotation Invariant Features
A large number of papers achieve fast rotation invariant matching
by extracting only rotation invariant features and indexing them
with a feature vector [6]. This feature vector is often called the
shapes “signature”. There are literally dozens of rotation invariant
features including ratio of perimeter to area, fractal measures,
elongatedness, circularity, min/max/mean curvature, entropy,
perimeter of convex hull etc. In addition many researchers have
attempted to frame the shape-matching problem as a more
familiar histogram-matching problem. For example in [19] the
authors build a histogram containing the distances between two
randomly chosen points on the perimeter of the shapes in
question. The approach seems to be attractive, for example it can
trivially also handle 3D shapes, however it suffers from extremely
poor precision. For example, it cannot differentiate between the
shapes of the lowercase letters “d” and “b”, or “p” and “q”, since
these pairs of shapes have identical histograms. In general, all

A

B

Best Rotation Alignment

Landmark Alignment

Best Rotation Alignment

OrangutanOwl Monkey
Northern Gray-Necked

Owl Monkey
(species unknown)

Landmark Alignment

A B C

A

B B

Best Rotation Alignment

Landmark Alignment

Best Rotation Alignment

A

883

these methods suffer from very poor discrimination ability [6]. In
retrospect this is hardly surprising. In order to achieve rotation
invariance, all information that contains rotation information must
be discarded; inevitably, some useful information will also be
discarded in this process. Our experience with these methods
suggests that they can be useful for making quick coarse
discriminations, for example differentiating between skulls and
vertebrae. However we could not get these methods to distinguish
between the skulls of humans and orangutan, a trivial problem for
human or the brute force algorithm discussed in the next section.
2.3 Brute Force Rotation Alignment
There are a handful of papers that recognize that the above
attempts at approximating rotation invariance are unsatisfactory
for most domains, and they achieve true rotation invariance by
exhaustive brute force search over all possible rotations, but only
at the expense of computational efficiency and indexability
[1][2][3][7][25]. For example, paper [1] uses DTW to handle
nonrigid shapes in the time series domain, while they note that
most invariances are trivial to handle in this representation, they
state “rotation invariance can (only) be obtained by checking all
possible circular shifts for the optimal diagonal path.” This step
makes the comparison of two shapes O(n3) and forces them to
abandon hope of indexing. Similarly paper [25] notes “In order to
find the best matching result, we have to shift one curve n times,
where n is the number of possible start points.” All the techniques
introduced thus far to mitigate this untenable computational
complexity do so at the expense of introducing false dismissals.
Typically they offer some implicit or explicit trick to find a one
(or a small number of) of starting point(s) [2][3][7]. For example
paper [2] suggests “In order to avoid evaluation of the
dissimilarity measure for every possible pair of starting contour
points …we propose to extract a small set of the most likely
starting points for each shape.” Furthermore, both the heuristic
used and the number of starting points must “be adjusted to a
given application”, and it is not obvious how to best achieve this.
In forceful experiments on publicly available datasets it has been
demonstrated that brute force rotation alignment produces the best
precision/recall and accuracy in diverse domains [1][2]. In
retrospect this is not too surprising. The rival techniques with
rotation invariant features are all using some lossy transformation
of the data. In contrast the brute force rotation alignment
techniques are using a (potentially) lossless transformation of the
data. With more high quality information to use, any distance
measures will have an easer time reflecting the true similarity of
the original images.
The contribution of this work is to speed up these accurate but
slow methods by many orders of magnitude while producing
identical results.

3. ROTATION INVARIANT MATCHING
We begin by formally defining the rotation invariant matching
problem. We begin by assuming the Euclidean distance, and
generalize to other distance measures later. For clarity of
presentation we will generally refer to “time series”, which the
reader will note can be mapped back to the original shapes.
Suppose we have two time series, Q and C of length n, which
were extracted from shapes by an arbitrary method.
 Q = q1,q2,…,qi,…,qn
 C = c1,c2,…,cj,…,cn

As we are interested in large data collections we denote a
database of m such time series as Q .
 Q = {Q1, Q2, ...Qm}
If we wish to compare two time series, and therefore shapes, we
can use the ubiquitous Euclidean distance:

 () ()∑ −≡
=

n

i
ii cqCQED

1

2,

When using Euclidean distance as a subroutine in a classification
or indexing algorithm, we may be interested in knowing the exact
distance only when it is eventually going to be less than some
threshold r. For example, this threshold can be the “range” in
range search or the “best-so-far” in nearest neighbor search. If this
is the case, we can potentially speed up the calculation by doing
early abandoning [12].

Definition 1. Early Abandon: During the computation of the
Euclidean distance, if we note that the current sum of the
squared differences between each pair of corresponding data
points exceeds r2, then we can stop the calculation, secure in
the knowledge that the exact Euclidean distance had we
calculated it, would exceed r.

While the idea of early abandoning is fairly obvious and intuitive,
it is so important to our work we illustrate it in Figure 3 and
provide pseudocode in Table 1.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0

c a lc ula tio n
a ba ndo ne d
a t th is po int

Q

C

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0

c a lc ula tio n
a ba ndo ne d
a t th is po int

Q

C

QQ

CC

Figure 3: A visual intuition of early abandoning. Once the squared
sum of the accumulated gray hatch lines exceeds r2, we can be sure
the full Euclidean distance exceeds r

Note that the “num_steps” value returned by the optimized
Euclidean distance in Table 1 is used only to tell us how useful
the optimization was. If its value is significantly less than n this
suggests dramatic speedup.

Table 1: Euclidean distance optimized with early
abandonment

algorithm [dist, num_steps] = EA_Euclidean_Dist(Q, C, r)

accumulator = 0

for i = 1 to length(Q) // Loop over time series

 accumulator += (qi - ci)
2 // Accumulate error contribution

 If accumulator > r 2 // Can we abandon?

 disp(‘doing an early abandon’)

 num_steps = i

 return [infinity, num_steps] // Terminate and return an

 end // infinite error to signal the

end // early abandonment.
return [sqrt(accumulator), length(Q)] // Terminate with true dist

While the Euclidean distance is a simple distance measure it
produces surprisingly good results for clustering, classification
and query by content of shapes, if the time series in question
happen to be rotation aligned. For example, in an experiment in
[20] we manually performed rotation alignment of the time series
extracted from face profiles by explicitly showing the algorithm
the beginning and endpoint of a face (the nape and Adams apple
respectively).

884

However if the shapes are not rotation aligned, this method can
produce extremely poor results. To overcome this problem we
need to hold one shape fixed, rotate the other, and record the
minimum distance of all possible rotations.
For reasons that will become apparent later, we achieve this by
expanding one time series into a matrix C of size n by n.

C

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

−

−

−

121

112

121

,,,,

,,,,
,,,,

nn

nn

nn

cccc

cccc

cccc

K

M

K

K

Note that each row of the matrix is simply a time series, shifted
(rotated) by one from its neighbors. It will be useful below to
address the time series in each row individually, so we will denote
the ith row as Ci, which allows us to denote the matrix above in
the more compact form of C = {C1, C2,…, Cn}.
We can now define the Rotation invariant Euclidean Distance
(RED) as:

RED(Q, C) = () ()
⎩
⎨
⎧

∑ −≡
=≤≤

n

i
iij

nj

cqCQED
1

2

1
,min

Table 2 shows the pseudocode to calculate this.
Table 2: An algorithm to find the rotated match between two
time series

algorithm: [bestSoFar] = Test_All_Rotations(Q,C,r)
bestSoFar = r
for j = 1 to n

 distance = EA_Euclidean_Dist(Q, Cj, bestSoFar) // As in Table 1

 if distance < bestSoFar

 bestSoFar = distance;

 end;

end;

return[bestSoFar]
Note that the algorithm tries to take advantage of early
abandoning by passing EA_Euclidean_Dist the value of r, the best
rotation alignment discovered thus far.
If we are simply measuring the distance between two time series
then the algorithm is invoked with r set to infinity, however, as
we shall see below, if the algorithm is being used as a subroutine
in a linear scan of a large dataset Q , the calling routine can set
the value of r to achieve speedup. In particular the calling
function sets r to the value of the best match (under any rotation)
discovered thus far. Table 3 shows the pseudocode. Note that the
time complexity for this algorithm is O(mn2). This is simply
untenable for large datasets.

Table 3: An algorithm to find the best rotated match to query
from a database of possible matches

algorithm: [best_match_loc, bestSoFar]= Search_Database_for_Rotated_Match(C, Q)

 best_match_loc = null

 bestSoFar = inf
 for i = 1 to number_of_time_series_in_database(Q)

 distance = Test_All_Rotations(
iQ ,C, bestSoFar); // As in Table 2

 if distance < bestSoFar

 best_match_loc = i
 bestSoFar = distance

 end;

 end;

return[best_match_loc, bestSoFar]

Before continuing we will review the notation introduced thus far
in Table 4.

Table 4: Notation Table

C A time series c1,c2,…,cj,…,cn
C A n by n matrix containing every rotation of C
Ci The ith row of the above
Q Another time series q1,q2,…,qi,…,qn
Q A database containing many time series Q = {Q1,..,Qm}

Note that our notation seems somewhat space inefficient in that it
expands time series C, of length n, to a matrix of size n by n.
However the rest of the database uses the original (arbitrary
rotation) time series, and since the size of the database is assumed
to be large, this overhead is asymptotically irrelevant.
There are two simple and useful generalizations of definitions
thus far.
Mirror Image Invariance: Depending on the application we may

wish to retrieve shapes that are enantiomorphic (mirror images)
to the query. For example, in matching skulls, the best match
may simply be facing the opposite direction. In contrast when
matching letters we don’t want to match a “d” to a “b”. If
enantiomorphic invariance is required we can trivially achieve
this by augmenting matrix C to contain Ci and reverse(Ci) for 1
≤ i ≤ n.

Rotation-Limited Invariance: In some domains it may be useful
to express rotation-limited queries. For example, in order to
robustly retrieve examples of the number “6”, without retrieving
examples of the number “9”, we can issue a query such as:
“Find the best match to this shape allowing a maximum rotation
of ± 15 degrees”. Our framework trivially supports such
rotation-limited queries, by removing from the matrix C all time
series that correspond to the unwanted rotations.

Thus far we have shown a brute force search algorithm that can
support rotation invariance, rotation-limited invariance and/or
mirror image invariance. We simply put the appropriate time
series into matrix C and invoke the algorithm in Table 3. This
algorithm, even though speeded up by the early abandoning
optimization, is too slow for large datasets. In the next section we
introduce our novel search mechanism.

4. WEDGE BASED ROTATION MATCHING
We will begin by showing how we can efficiently search for the
best match in main memory. Since large datasets may not fit on
disk we will further show how we can index the data.

4.1 Fast and Exact Main Memory Search
We begin by defining time series wedges. Imagine that we take
several time series, C1,..,Ck , from our matrix C. We can use these
sequences to form two new sequences U and L:

Ui = max(C1i,..,Cki)
Li = min(C1i,..,Cki)

U and L stand for Upper and Lower respectively. We can see why
in Figure 4. They form the smallest possible bounding envelope
that encloses all members of the set C1,..,Ck from above and
below. More formally:

 ∀i Ui ≥ C1i,..,Cki ≥ Li
For notational convenience, we will call the combination of U and
L a wedge, and denote a wedge as W:

W = {U, L}

885

Figure 4: Top) Two time series C1 and C2. Middle) A time series
wedge W, created from C1 and C2. Bottom) An illustration of
LB_Keogh

We can now define a lower bounding measure between an
arbitrary time series Q and the entire set of candidate sequences
contained in a wedge W:

∑
= ⎪

⎩

⎪
⎨

⎧

<−
>−

=
n

i
iiii

iiii

otherwise

LqifLq

UqifUq

WQKeoghLB
1

2

2

0
)(
)(

),(_

For brevity we do not show a proof of this lower bounding
property. A proof appears in [10] and also in [15], where the
authors use this representation for different problem.
Note that the LB_Keogh function has been used before to support
DTW [11][20][21][23], uniform scaling [13], and query filtering
[26]. For these tasks the lower bounding distance function is the
same, but the definition of U and L are different.
There are two important observations about LB_Keogh. First, in
the special case where W is created from a single candidate
sequence, it degenerates to the Euclidean distance. Second, not
only does LB_ Keogh lower bound all the candidate sequences
C1,..,Ck, but we can also do early abandon with LB_Keogh.
While the latter fact might be obvious, for clarity we make it
explicit in Table 5.

Table 5: LB_Keogh optimized with early abandonment

algorithm [dist, num_steps] = EA_LB_Keogh(Q, W, r)
accumulator = 0

for i = 1 to length(Q) // Loop over time series
 if qi > W.Ui // Accumulate error contribution
 accumulator += (ci - W.Ui)

2

 elseif qi < W.Li

 accumulator += (ci - W.Li)
2

 end

 if accumulator > r 2 // Can we abandon?
 return [infinity, i] // Terminate and return an infinite error

 end // to signal the early abandonment.
end

return [sqrt(accumulator), length(Q)] // Terminate with true dist

Note once again that the value returned in “num_steps” is merely
a bookkeeping device to allow a post mortem evaluation of
efficiency.

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

C2

C1

U

L

U

L

U

L

Q

W

W

Suppose we have just two time series C1 and C2 of length n, and
we know that in future we will be given a time series query Q and
asked if one (or both) of C1 and C2 are within r of the query. We
naturally wish to minimize the number of steps we must perform
(“steps” are measured by “num_steps”). We are now in a position
to outline two possible approaches to this problem.
• We can simply compare the two sequences, C1 and C2 (in

either order) to the query using the early abandon algorithm
introduce in Table 1. We will call this algorithm, classic.

• We can combine the two candidate sequences into a wedge,
and compare Q to the wedge using LB_Keogh. If the
LB_Keogh function early abandons, we are done. We can
say with absolute certainty that neither of the two candidate
sequences is within r of the query. If we cannot early
abandon on the wedge, we need to individually compare the
two candidate sequences, C1 and C2 (in either order) to the
query. We will call this algorithm, Merge.

Let us consider the best and worst cases for each approach. For
classic the worst case is if both candidate sequences are within r
of the query, which will require 2n steps. In the best case, the first
point in the query may be radically different to the first point in
either of the candidates, allowing immediate early abandonment
and giving a total cost of 2 steps.
For Merge, the worst case is also if both candidate sequences are
within r of the query, because we will waste n steps in the lower
bounding test between the query and the wedge, and then n steps
for each individual candidate, for a total of 3n. However the best
case, also if the first point in the query is radically different,
would allow us to abandon with a total cost of 1 step.
Which of the two approaches is better depends on:
• The shapes of C1 and C2. If they are similar, this greatly

favors Merge.
• The shape of Q. If Q is truly similar to one (or both) of the

candidate sequences, this would greatly favor classic.
• The matching distance r. Here the effect is non monotonic

and dependent on the two factors above.
We can generalize the notion of wedges by hierarchically nesting
them. Let us begin by augmenting the notation of a wedge to
include information about the sequences used to form it. For
example, if a wedge is built from C1 and C2, we will denote it as
W(1,2). Note that a single sequence is a special case of a wedge, for
example the sequence C1 can also be denoted as W1. We can
combine W(1,2) and W3 into a single wedge by finding maximum
and minimum values for each ith location, from either wedge.
More concretely:

 Ui = max(W(1,2)i, W3i)
Li = min(W(1,2)i, W3i)
W((1,2),3) = {U, L}

In Figure 5 we illustrate this notation. We call W(1,2) and W3
children of wedge W((1,2),3). Since individual sequences are special
cases of wedges, we can also call C1 and C2 children of W(1,2).

886

Figure 5: An illustration of hierarchically nested wedges

Given the generalization to hierarchal wedges, we can now also
generalize the Merge approach. Suppose we have a time series Q
and a wedge W((1,2),3). We can compare the query to the wedge
using LB_Keogh. If the LB_Keogh function early abandons, we
are done. We know with certainty that none of the three candidate
sequences is within r of Q. If we cannot early abandon on the
wedge, we need to compare the two child wedges, W(1,2) and W3 to
the query. Again, if we cannot early abandon on the wedge W(1,2),
we need to individually compare the two candidate sequences, C1
and C2 (in either order) to the query. We call this algorithm H-
Merge (Hierarchal Merge).
The utility of a wedge is strongly correlated to its area. We can
get some intuition as to why by visually comparing LB_Keogh(Q,
W(1,2)) with LB_Keogh(Q, W((1,2),3)) as shown in Figure 6. Note
that the area of W((1,2),3) is much greater than that of W(1,2), and that
this reduces the value returned by the lower bound function and
thus the possibility to early abandon.

Figure 6: Top) An illustration of LB_Keogh(Q, W(1,2)). Bottom) An
illustration of LB_Keogh(Q, W((1,2),3)). Note that the tightness of the
lower bound is proportion to the number and (squared) length of
vertical lines

For some problems, the H-Merge algorithm can give
exceptionally poor performance. If the wedge W(1,2), created from
C1 and C2 has an exceptional large area (i.e. C1 and C2 are very
dissimilar), it is very unlikely to be able to prune off any steps.
At this point we can see that the efficiency of H-Merge is
dependent on the candidate sequences and Q itself. In general,
merging similar sequences into a hierarchal wedge is a good idea,
but merging dissimilar sequences is a bad idea.
The observations above motivate a final generalization of H-Merge.
Recall that to achieve rotation invariance we expanded our time
series C into a matrix with n time series. Given these n sequences,

we can merge them into K hierarchal wedges, where 1 ≤ K ≤ n.
This merging forms a partitioning of the data, with each sequence
belonging to exactly one wedge. We will use W to denote a set of
hierarchal wedges:

C1 (or W1) C2 (or W2) C3 (or W3)

W(1, 2)

W((1, 2), 3)

C1 (or W1) C2 (or W2) C3 (or W3)

W(1, 2)

W((1, 2), 3)

W = {Wset(1) , Wset(2) ,.., Wset(K)} , 1 ≤ K ≤ n
where Wset(i) is a (hierarchically nested) subset of the n candidate
sequences. Note that we have

Wset(i) ∩ Wset(j) = ∅ if i ≠ j, and

| Wset(1) ∪Wset(2) ∪..∪ Wset(K) | = n
We will attempt to merge together only similar sequences. We
can then compare this set of wedges against our query. Table 6
formalizes the algorithm.

Table 6: Algorithm H-Merge

algorithm [dist] = H-Merge(Q, W,K, r)

S = {empty } // Initialize a stack.
for i = 1 to K // Place all the wedges into the stack.

 enqueue(Wset(i) ,S)

end

while not empty(S)

 T = dequeue(S)

 dist = EA_LB_Keogh(Q,T,r) // Note that is early abandon version.

 if isfinite(dist) // We did not early abandon.

 if cardinality(T) = 1 // T was an individual sequence.

 disp(‘The sequence ’,T, ‘is ’, dist, ‘ units from the query’)

 return[dist]

 else // T was a wedge, find its children

 enqueue(children(T) ,S) // and push them onto the stack.

 end

 end

end

W(1,2)

Q

W((1,2),3)

Q

W(1,2)

QQ

W((1,2),3)

QQ

Note that this algorithm is designed to replace the
Test_All_Rotations algorithm that is invoked as a subroutine in the
Search_Database_for_Rotated_Match algorithm shown in Table 3.
As we shall see in our empirical evaluations, H-Merge can
produce very impressive speedup if we make judicious choices in
the set of hierarchal wedges that make up W. However, the
number of possible ways to arrange the hierarchal wedges is
greater than KK, and the vast majority of these arrangements will
be very poor, so specifying a good arrangement of W is critical.
A simple observation alleviates the need to invent a new
algorithm to find a good arrangement of W. Note that hierarchal
clustering algorithms have very similar goals to an ideal wedge-
producing algorithm. In particular, hierarchal clustering
algorithms can be seen as attempting to minimize the distances
between objects in each subtree. A wedge-producing algorithm
should attempt to minimize the area of each wedge. However the
area of a wedge is simply the maximum Euclidean distance
between any sequences contained therein (i.e Newton-Cotes rule
from elementary calculus). This motivates us to derive wedge sets
based on the result of a hierarchal clustering algorithm. Figure 8
shows wedge sets W, of every size from 1 to 5, derived from the
dendrogram shown in Figure 7.

887

Figure 7: A dendrogram of five sequences C1, C2,..., C5, clustered
using group average linkage

Given that the clustering algorithm produces the tentative wedge
sets, all we need to do is to choose the best one. We could attempt
to do this by eye, for example in Figure 8 it is clear that any
sequence that early abandons on W3, will almost certainly also
early abandon on both W2 and W5; similar remarks apply to W1
and W4. At the other extreme, the wedge at K = 1 is so “fat” that it
is likely have poor pruning power. The set W = {W((2,5),3), W(1,4)}
is probably the best compromise. However because the set of time
series might be very large, such visual inspection is not scalable.

Figure 8: Wedge sets W, of size 1 to 5, derived from the dendrogram
shown in Figure 7

The problem is actually even more complex, in that the best value
for K also depends on the current value of r (Recall r is the “best-
so-far” in nearest neighbor search.). If r is large then very little
early abandoning is possible and this favors a large value for K. In
contrast, if r is small we can do a lot of early abandoning, and we
are better off having many sequences in a single wedge so we can
early abandon all of them with a single calculation. Note however
that for nearest neighbor search the value of r will get smaller as
we search through the database.
With this in mind, we dynamically choose the wedge set based on
a fast empirical test. We start with the wedge set where K = 2.
Each time the bestSoFar value changes, we test a subset of the
possible values of K and choose the most efficient one (as
measured by num_steps) as the next K to use. Which subset to test

is decided on-the-fly based on the current K value. They are the
values which evenly divide the ranges [1, current_K] and
[current_K, max_K] into 5 intervals. Note that on average the
bestSoFar value only changes log(m) during a linear search, so this
slight overhead in adjusting the parameter is not too burdensome,
however we do include this cost in all experiments in Section 5.

C1 (or W1)

C4 (or W4)

C2 (or W2)

C5 (or W5)

C3 (or W3)

C1 (or W1)

C4 (or W4)

C2 (or W2)

C5 (or W5)

C3 (or W3)

4.2 Lower Bounding in Index Space
True rotation invariance has traditionally been so demanding in
terms of CPU time that little or no effort was made to index it (or
it was indexed with the possibility of false dismissals). As we
shall see in the experiments in Section 5.2, the ideas presented in
the last section produce such dramatic reductions in CPU time
that it is worth considering indexing the data.
There are several possible techniques we could consider for
indexing. Recent years have seen dozens of papers on indexing
time series envelopes that we could attempt to leverage off
[11][15][20][21][23]. The only non-trivial adaptation to be made
is that instead of the query being a single envelope, it would be
necessary to search for the best match to K envelopes in the
wedge set W.
Note however that we do not necessarily have to use the
enveloping idea in the indexing phase. So long as we can lower
bound in the index space we can use an arbitrary technique to get
(hopefully a small subset of) the data from disk to main memory,
where our H-Merge can very efficiently find the distance to the
best rotation. One possible method to achieve this indexable
lower bound is to use Fourier methods. Many authors have
independently noted that transforming the signal to the Fourier
space and calculating the Euclidean distance between the
magnitude of the coefficients produces a lower bounds to any
rotation [24]. We can leverage of this lower bound to use a VP-
tree to index our time series as shown in Table 7.

W3

W2

W5

W1

W4

W3

W(2,5)

W1

W4

W3

W(2,5)

W(1,4)

W((2,5),3)

W(1,4)

W(((2,5),3), (1,4))

K = 5 K = 4 K = 3 K = 2 K = 1

W3

W2

W5

W1

W4

W3

W2

W5

W1

W4

W3

W(2,5)

W1

W4

W3

W(2,5)

W1

W4

W3

W(2,5)

W(1,4)

W3

W(2,5)

W(1,4)

W((2,5),3)

W(1,4)

W(((2,5),3), (1,4))

K = 5 K = 4 K = 3 K = 2 K = 1

Table 7: A Vantage Point Tree for Indexing Shapes
Algorithm [BSF] = NNSearch(C)
 BSF.ID = null; // BSF is the Best-So-Far variable
 BSF.distance = infinity;
 W = convert_time_series_to_wedge_set(C);
 Search(

root
Subroutine Search(NODE, W, BSF)

Q ,W, BSF); // Invoke subroutine on the root of index

if NODE.isLeaf // we are at a leaf node.
 for each compressed time-series cT in node
 LB = computeLowerBound(cT, W);
 queue.push(cT,LB); // sorted by lower bound.
 end
 while (not (queue.empty()) and (queue.top().LB < BSF.distance))
 if (BSF.distance > queue.top().LB)
 retrieve full time series Q of queue.top() from disk;
 distance = H-Merge(Q, W, BSF.distance) // calculate full distance.
 if distance < BSF.distance // update the best-so-far
 BSF.distance = distance; // distance and location.
 BSF.ID = Q;
 end
 end
 end
else // we are at a vantage point.
 LB = computeLowerBound(VP, W);
 queue.push(VP,LB);
 if LB < (node.median + BSF.distance)
 search(NODE.left, W, BSF); // recursive search left.
 else
 search(NODE.right, W, BSF); // recursive search right.
 end
end

This technique is adapted from [24], and we refer the reader to
this work for a more complete treatment.

888

4.3 Generalizing to other Distance Measures
As we shall see in Section 5, the Euclidean distance is typically
very effective and intuitive as a distance measure for shapes.
However in some domains it may not produce the best possible
precision/recall or classification accuracy [2][20]. The problem is
that even after best rotation alignment, subjectively similar shapes
may produce time series that are globally similar but contain local
“distortions”. These distortions may correspond to local features
in that are present in both shapes but in different proportions. For
example in Figure 9 we can see that the larger brain case of the
Lowland Gorilla changes the locations in which the brow ridge
and jaw map to in a time series relative to the Mountain Gorilla.

Figure 9: The Lowland Gorilla and Mountain Gorilla are
morphologically similar, but have slightly different proportions.
Dynamic Time Warping can be used to align homologous features in
the time series representation space

Even if we assume that the database contains the actual object
used as a query, it is possible that the two time series are distorted
versions of each. Here the distortions may be caused by camera
perspective effect, differences in lighting causing shadows which
appear to be features, parallax etc.
Fortunately there is a well-known technique for compensating
such local misalignments, Dynamic Time Warping (DTW)
[11][20]. While DTW was invented in the context of 1D speech
signals others have noted its utility for matching shapes, including
face profiles [4], leafs [20], handwriting [21] and general shape
matching [1].
To align two sequences using DTW, an n-by-n matrix is
constructed, where the (ith, jth) element of the matrix is the
distance d(qi, cj) between the two points qi and cj (i.e. d(qi, cj) =
(qi - cj)2). Each matrix element (i, j) corresponds to the alignment
between the points qi and cj, as illustrated in Figure 10.
A warping path P is a contiguous set of matrix elements that
defines a mapping between Q and C. The tth element of P is
defined as pt = (i, j)t so we have:

P = p1, p2, …, pt, …, pT n ≤ T < 2n-1
The warping path that defines the alignment between the two time
series is subject to several constraints. For example, the warping
path must start and finish in diagonally opposite corner cells of
the matrix; the steps in the warping path are restricted to adjacent
cells (including diagonally adjacent cells); the points in the
warping path must be monotonically spaced in time. In addition to
these constraints, virtually all practitioners using DTW also
constrain the warping path in a global sense by limiting how far it
may stray from the diagonal [11][20][21]. A typical constraint is
the Sakoe-Chiba Band which states that the warping path cannot
deviate more than R cells from diagonal.

Mountain Gorilla
Gorilla gorilla beringei

Lowland Gorilla
Gorilla gorilla graueri

Mountain Gorilla
Gorilla gorilla beringei

Lowland Gorilla
Gorilla gorilla graueri

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

R

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

R

Figure 10: Left) Two time series sequences which are similar but out of
phase. Right) To align the sequences we construct a warping matrix, and
search for the optimal warping path, shown with solid squares. Note that
Sakoe-Chiba Band with width R is used to constrain the warping path

The optimal warping path can be found in O(nR) time by dynamic
programming [11]. As we shall show experimentally in the
Section 5, DTW can significantly outperform Euclidean distance
on real datasets.
Based on an arbitrary wedge W and the allowed warping range R,
we define two new sequences, DTW_U and DTW_L:

DTW_Ui = max(Ui-R : Ui+R)
DTW_Li = min(Li-R : Li+R)

They form an additional envelope above and below the wedge, as
illustrated in Figure 11.

C2

C1

U

L

W
U

L

W

W

DTW_U

DTW_L

W

DTW_U

DTW_L

W

Q

W

A

B

C

D

C2

C1

U

L

W
U

L

W

W

DTW_U

DTW_L

W

DTW_U

DTW_L

W

Q

W

A

B

C

D

Figure 11: The idea of bounding envelopes introduced in Figure 4 is
generalized to allow DTW. A) Two time series C1 and C2. B) A time
series wedge W, created from C1 and C2. C) In order to allow lower
bounding of DTW, an additional envelope is created above and below
the wedge. D) An illustration of

DTWKeoghLB _

We can now define a lower bounding measure for DTW distance
between an arbitrary query Q and the entire set of candidate
sequences contained in a wedge W:

889

∑
= ⎪

⎩

⎪
⎨

⎧

<−
>−

=
n

i
iiii

iiii

DTW

otherwise

LDTWqifLDTWq

UDTWqifUDTWq

WQKeoghLB
1

2

2

 0
)(
)(

),(_

A B

B

C

This region will
not be matched

DTW

LCSS
Alignment

A B

B

C

This region will
not be matched

DTW

LCSS
Alignment

We make the following claim:
Proposition 1: For any sequence Q of length n and a wedge W
containing a set of time series C1, …, Ck of the same length n, for
any global constraint on the warping path of the
form , the following inequality holds: RjiRj +≤≤−

))(DTW(Q, C(Q, W)LB_Keogh sDTW min≤ , where s = 1, 2, ..., k.
Because of space limitations we refer the interested reader to [10]
for the proof. In addition, space limitations also prohibit a
discussion of the minor modifications required to index
LB_KeoghDTW(Q,W), however [23] contains the necessary
modifications for both DTW and for LCSS which is discussed
below.
To facilitate later efficiency comparisons to Euclidean distance
and other methods, it will be useful to define the time complexity
of DTW in terms of “num_steps” as returned by Table 1 and
Table 5. The variable “num_steps” is the number of real-value
subtractions that must be performed, and completely dominates
the CPU time, since the square root function is only performed
once (and can be removed, see [12]). If we construct a full n by n
warping matrix, then DTW clearly requires at least n2 steps.
However as we noted above and illustrated in Figure 10, we can
truncate the corners of the matrix to reduce this number to
approximately nR, where R is the width of the Sakoe-Chiba Band.
While nR is the number of steps for a single DTW, we expect the
average number of steps to be less, because some full DTW
calculations will not be needed if the lower bound test fails. Since
the lower bound test requires n steps, the average number of steps
when doing m comparisons should be:

 m
nmnRam)()(+∗

Where a is the fraction of the database that requires the full DTW
calculated. Note that even this is pessimistic, since both DTW2
and LB_KeoghDTW are implemented as early abandoning (recall
Table 5). We therefore simply count the “num_steps” required by
each approach and divide it by m to get the average number of
steps required for one comparison.
In addition to DTW, several researchers have suggested using
Longest Common SubSequence (LCSS) as a distance measure for
shapes. The LCSS is very similar to DTW except that while DTW
insists that every point in C maps onto one (or more) point(s) in
Q, LCSS allows some points to go unmatched. The intuition
behind this idea in a time series domain is that subsequences may
contain additions or deletions, for example an extra (or forgotten)
dance move in a motion capture performance, or a missed beat in
ECG data. Rather than forcing DTW to produce an unnatural
alignment between two such sequences, we can use LCSS, which
simply ignores parts of the time series that are too difficult to
match. In the image space the missing section of the time series
may correspond to a partial occlusion of an object, or to a
physically missing part of the object, as shown in Figure 12.

2 Note that a recursive implementation of DTW would always require nR

steps, however iterative implementation (as used here) can potentially
early abandon with as few as R steps.

Figure 12: A) The famous Skhul V is generally reproduced with the
missing bones extrapolated in epoxy, however the original Skhul V (B)
is missing the nose region, which means it will match to a modern
human (C) poorly, even after DTW alignment (inset). In contrast, LCSS
alignment will not attempt to match features that are outside a “matching
envelope” (heavy gray line) created from the other sequence.

While we considered LCSS for generality, we will not further
explain how to incorporate it into our framework. It has been
shown in [23] that it is trivial to lower bound LCSS using the
envelope-based techniques described above. The minor changes
include reversing some inequality signs since LCSS is a similarity
measure, not a distance measure. Our omission here of a detailed
discussion is due to space limitations and to a slight bias against
the method. Unlike Euclidean distance which has no parameters,
or DTW, which has one intuitive and easy to set parameter, LCSS
requires 2 parameters, and tuning them is nontrivial. In
experiments we found that we could sometimes tune LCSS to
slightly beat DTW on some problems, however we did not have
large enough datasets to allow training/test splits that guarded
against overfitting to a statistically significant standard.

5. EXPERIMENTAL RESULTS
In this section we empirically evaluate our approach. We begin by
stating our experimental philosophy. In a recent paper Veltkamp
and Latecki attempted to reproduce the accuracy claims of several
shape matching papers but discovered to their dismay that they
could not match the claimed accuracy for any approach [22]. One
suggested reason is the observation that many approaches have
highly tuned parameters, a fact which we believe makes
Euclidean distance (zero parameters) and DTW (one parameter)
particularly attractive. Veltkamp and Latecki conclude “It would
be good for the scientific community if the reported test results
are made reproducible and verifiable by publishing data sets and
software along with the articles”. We completely concur and have
placed all datasets at the following URL [10].

890

5.1 Effectiveness of Shape Matching

• De Brazza monkey

• De Brazza monkey
(juvenile)

• Human (modern)

• Human Ancestor
(Skhul V)

• Red Howler
Monkey

• Mantled Howler
Monkey

• Orangutan
(juvenile)

• Orangutan

• De Brazza monkey

• De Brazza monkey
(juvenile)

• Human (modern)

• Human Ancestor
(Skhul V)

• Red Howler
Monkey

• Mantled Howler
Monkey

• Orangutan
(juvenile)

• Orangutan
In general this paper is not making any claims about the
effectiveness of shape matching. Because we are simply speeding
up arbitrary distance calculations on arbitrary 1-dimensional
representations of shapes, we automatically inherit the well-
documented effectiveness of other researchers published work
[1][2][3][7][8][20][24].
Nevertheless, for completeness and in order to justify the extra
computational expense of DTW, we will show the effectiveness
of shape matching on several publicly available datasets.
Table 8 shows the error rate of one-nearest neighbor classification
as measured using leaving-one-out evaluation. Recall that
Euclidean distance has no parameters, DTW has a single
parameter (the warping window width R) which was learned by
looking only at the training data. For the Face and Leaf datasets
the (approximate) correct rotation was known [20]. We removed
this information by randomly rotating the images.

Table 8: The Error of Euclidean distance and DTW on
several publicly available datasets

Name Number of
Classes

Number
of

Instances

Euclidean
Error (%)

DTW
Error (%) {R}

Face 16 2240 3.839% 3.170% {3}
Swedish Leaves 15 1125 13.33% 10.84% {2}
Chicken 5 446 19.96% 19.96% {1}
MixedBag 9 160 4.375% 4.375% {1}
OSU Leaves 6 442 33.71% 15.61% {2}
Diatoms 37 781 27.53% 27.53% {1}

The MixedBag dataset is small enough to run the more
computationally expensive Chamfer [5] and Hausdorff [18]
distance measures. They achieved an error rate of 6.0% and 7.0%
respectively [24], slightly worse than Euclidean distance.
Likewise the Chicken dataset allows us to compare directly to
[17], which used identical experiments to test 6 different
algorithms based on discrete sequences extracted from the shapes.
The best of these algorithms had an error rate of 20.5% and took
over a minute for each distance calculation, whereas our approach
takes an average time of 0.0039 seconds for each distance
calculation3. For the Diatom dataset, the results are competitive
with human experts, whose error rates ranged from 57% to 13.5%
[8], and only slightly worse than the Morphological Curvature
Scale Spaces (MCSS) approach of [8], which got 26.0%. Note
however that the Euclidean distance requires zero parameters
once the time series have been extracted, whereas the MCSS has
several parameters to set.
In general these experiments show two things (which had been
noted before), the extra effort of DTW is useful in some domains,
and very simple time series representations of shapes are
completive to other more complex representations.
We also performed extensive “sanity check” experiments using a
large database of primate skulls. For all species where we have at
least two examples we perform a hierarchal clustering and check
to see if both samples of the same species clustered together.
Figure 13 shows a typical example.

3 We are aware that one should normally not compare CPU times from

different computers, however here the 4 orders of magnitude offers a
comfortable margin that dwarfs implementation details.

Figure 13: A group average hierarchal clustering of eight primate
skulls based on the lateral view, using Euclidean distance

It is important to recall that Figure 13 shows a phenogram, not a
phylogenetic tree. However on larger scale experiments in this
domain (shown in [10]) we found that large subtrees of the
dendrograms did conform to the current consensus on primate
evolution.

5.2 Main Memory Experiments
There is increasing awareness that comparing two competing
approaches using only CPU time opens the possibility of
implementation bias [12]. As a simple example, while the Haar
wavelet transform is O(n) and DFT is O(nlogn), the DFT is much
faster in the popular language Matlab, simply because it is a
highly optimized subroutine. For this reason many recent papers
compare approaches with some implementation-free metric
[11][20][23][24]. As we noted earlier, the variable “num_steps”
returned by Table 1 and Table 5 allows an implementation free
measure to compare performance.
For Euclidean distance queries we compare to brute force and
Fourier (FFT) methods, which are the only competitors to also
guarantee no false dismissals. The cost model for the FFT lower
bound is nlogn steps. If the FFT lower bound fails we allow the
approach to avail of our early abandoning techniques discussed in
Section 3.
We tested on two datasets, a homogeneous database of 16,000
projectile point images, all of length 251 and a heterogeneous
dataset consisting of all the data used in the classification
experiments, plus 1,000 projectile points. In total the
heterogeneous dataset contains 5,844 objects of length 1,024. To
measure the performance we averaged over 50 runs, with the
query object randomly chosen and removed from the dataset.
We measure the average number of steps required by each
approach for a single comparison of two shapes, divided by the
number of steps require by brute force. For our method, we
include a startup cost of O(n2), which is the time require to build
the wedges. Because the utility of early abandoning depends on
the value of the best-so-far, we expect our method to do better as
we see larger and larger datasets.
Figure 14 shows the results on the projectile points dataset using
Euclidean distance.

891

B rut e for c e

FFTEarly abandonWedge
80004000200010005002501256432

Heterogeneous Dataset

Number of objects in database (m)

Number of objects in database (m)

0

0.2

0.4

0.6

0.8

1.0

Brute forceBrute Force, R =5
Early abandonWedge80004000200010005002501256432

Euclidean DTW

B rut e for c e

FFTEarly abandonWedge

FFTEarly abandonWedge
80004000200010005002501256432

Heterogeneous Dataset

Number of objects in database (m)

Number of objects in database (m)

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

Brute forceBrute Force, R =5
Early abandonWedge80004000200010005002501256432

Euclidean DTW

0

0.2

0.4

0.6

0.8

1.0

Brute forceFFTEarly abandonWedge1600080004000200010005002501256432

Projectile Points
Euclidean

Number of objects in database (m)

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

Brute forceFFTEarly abandonWedge1600080004000200010005002501256432

Projectile Points
Euclidean

Number of objects in database (m)

Figure 14: The relative performance of four algorithms on the
Projectile Points dataset using the Euclidean distance measure

We can see that for small datasets our approach is slightly worse
than FFT and simple Early abandon because we had to spend
some time building the wedges. However, by the time we have
seen 64 objects we have already broken even, and thereafter
rapidly race towards beating FFT and Early abandon by one
order of magnitude and Brute force by two orders of magnitude.
The results on the projectile points dataset using DTW are shown
in Figure 15, and are even more dramatic.

Figure 15: The relative performance of four algorithms on the
Projectile Points dataset using the DTW distance measure. The inset
shows a zoom-in of the 3 best algorithms when m = 16,000

Here the cost of building the wedges is dwarfed by a single brute
force DTW-rotation-invariant comparison, so our approach is
faster even for a database of size 3. By the time we have
examined the entire database, our approach is more than 5,000
times faster than the brute force approach. It is interesting to note
that the early abandoning strategy is by itself quite competitive,
yet to our knowledge no one uses it. We suspect this is because
most people are more familiar with the elegant and terse recursive
version of DTW, which does not allow early abandoning, than the
iterative implementation, which does. Note however that even
though our highly optimized early abandoning strategy is
competitive, our wedge approach is still an order of magnitude
faster once the dataset is larger than 500 objects.
Sometimes indexing methods that work well for highly
homogeneous datasets do not work well for heterogenous
datasets, and vice versa. We consider this possibility by testing on
the heterogenous dataset in Figure 16.

Figure 16: The relative performance of four algorithms on the
Heterogeneous dataset using Euclidean distance (left) and DTW (right)

In this dataset it takes our wedge approach slightly longer to beat
Early abandon (and FFT for Euclidean search), however by the
time we have seen 8,000 objects our approach is two orders of
magnitude faster than its Euclidean competitors, and for DTW it
is an order of magnitude faster than Early abandon and 3,976
times faster than brute force.
Recall that our algorithm requires the setting of a single
parameter, the number of intervals to search for a new value for K
every time the bestSoFar variable is updated. In all the experiments
above this value was set to 5. We found that we can change this
value to any number in the range 3 to 20 without affecting the
performance of our algorithm by more than 4%, we therefore omit
further discussion of this parameter setting.

0

0.2

0.4

0.6

0.8

1.0

Brute forceBrute Force, R =5
Early abandonWedge1600080004000200010005002501256432

Projectile Points
DTW

0

0.02

0.04

0.06

0.08

0.1

0.12
m = 16000

Number of objects in database (m)

Inset

B
ru

te
 F

or
ce

, R
=5

Ea
rly

 a
ba

nd
on

W
ed

ge

0

0.2

0.4

0.6

0.8

1.0

Brute forceBrute Force, R =5
Early abandonWedge1600080004000200010005002501256432

Projectile Points
DTW

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

Brute forceBrute Force, R =5
Early abandonWedge1600080004000200010005002501256432

Projectile Points
DTW

0

0.02

0.04

0.06

0.08

0.1

0.12
m = 16000

Number of objects in database (m)

Inset

B
ru

te
 F

or
ce

, R
=5

Ea
rly

 a
ba

nd
on

W
ed

ge

As a final sanity check we also measured the wall clock time of
our best implementation of all method. The results are essentially
identical to those shown above.

5.3 Disk Access Experiments
The results in the previous section show that we can do true
rotation invariant matching so fast that CPU time is no longer the
bottleneck, and we should therefore also attempt to minimize disk
accesses. We will compare to Linear Scan, which is the only other
competitor that we are aware of that allows exact rotation
invariant indexing under Euclidean distance and DTW with a
guarantee of no false dismissals. Recall that the lower bound used
by the VP-tree requires transforming the signal to the Fourier
space and calculating the Euclidean distance between the
coefficient magnitudes [24]. It is well understood that most of the
energy of the signal will be concentrated in a relatively small
number of these coefficients [23] and that using just a few large
valued coefficients is better than using all of them. We therefore
will perform experiments keeping just the first D coefficients,
were D = {4, 8, 16, 32}.
We count the fraction of items that must be retrieved from disk.
Figure 17 illustrates the results for the full projectile points and
heterogeneous datasets over a range of dimensionalities.

Figure 17: The fraction of items retrieved from disk to answer a 1-
nearest neighbor query, using dimensionalities D = {4, 8, 16, 32}.

Projectile Points

321684
0

0.02

0.04

0.06

0.08

0.1

0.12

Fr
ac

tio
n

of
 o

bj
ec

ts
 re

tri
ev

ed

Dimensionality
Wedge: Euclidean

Wedge: DTW 321684
0

Wedge: Euclidean

Wedge: DTW

HeterogeneousProjectile Points

321684
0

0.02

0.04

0.06

0.08

0.1

0.12

Fr
ac

tio
n

of
 o

bj
ec

ts
 re

tri
ev

e

Dimensionality
Wedge: Euclidean

Wedge: DTW 321684
0

Wedge: Euclidean

Wedge: DTW

Heterogeneous

d

892

6. CONCLUSIONS AND FUTURE WORK
We have introduced a method to support fast rotation-invariant
search of large shape datasets with arbitrary representations and
distance functions. Our method supports rotation limited queries
and mirror image invariance if desired.
Future work includes both extensions and applications of the
current work. We will attempt to extend this approach to the
indexing of 3D shapes, and we have begun to use our algorithm as
a subroutine in several data mining algorithms which attempt to
cluster, classify and discover motifs in a variety of
anthropological datasets, including petroglyph and projectile point
databases.
Reproducible Research Statement: All datasets and images used
in this work are freely available at this URL [10].
Acknowledgements and Dedication: We would like to
acknowledge Chotirat Ann Ratanamahatana and Longin Jan
Latecki for useful suggestions and Jason Dorff for help with skull
images. In addition we thank the many donors of datasets.
This paper, together with [11] and [13] is the final part of the
LB_Keogh/VLDB trilogy. I would like to thank the VLDB
reviewers and chairs that made this possible. I composed most of
this paper in my head while on a flight to Dublin to see my
mother for the last time (in an unsuccessful attempt to distract
myself). She was proud to see her last name in print. This paper is
dedicated to Emily (Peggy) Keogh, 1927 - 2005.

7. REFERENCES

[1] Adamek, T. and O’Connor, N.E. A multiscale representation method
for nonrigid shapes with a single closed contour. IEEE Circuits and
Systems for Video Technology, 14(5): 742-753, 2004.

[2] Adamek, T. and O'Connor, N.E. Efficient contour-based shape
representation and matching. Multimedia Information Retrieval
2003: 138-143.

[3] Attalla, E. and Siy, P. Robust shape similarity retrieval based on
contour segmentation polygonal multiresolution and elastic
matching. Pattern Recognition, 38(12): 2229-2241, 2005.

[4] Bhanu, B. and Zhou, X. Face recognition from face profile using
dynamic time warping. In Proceedings of International Conference
on Pattern Recognition (ICPN’04), pp. 499-502, 2004.

[5] Borgefors, G. Hierarchical Chamfer Matching: A Parametric Edge
Matching Algorithm. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 10(6): 849-865, November 1988.

[6] Cardone, A., Gupta, S.K., and Karnik, M. A survey of shape
similarity assessment algorithms for product design and
manufacturing applications. ASME Journal of Computing and
Information Science in Engineering, 3(2): 109-118, 2003.

[7] Gdalyahu, Y. and Weinshall, D. Flexible syntactic matching of
curves and its application to automatic hierarchical classification of
silhouettes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(12): 1312-1328, Dec. 1999.

[8] Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M., Bayer, M.M.,
and Juggins, S. Automatic Diatom Identification using Contour
Analysis by Morphological Curvature Scale Spaces. Machine Vision
and Applications, 16(4): 217-228, 2005.

[9] Karydis, Y., Nanopoulos, A., Papadopoulos, A.N., and
Manolopoulos, Y. Evaluation of Similarity Searching Methods for
Music Data in Peer-to-Peer Networks. International Journal of
Business Intelligence and Data Mining, 1(2): 210-228, 2005.

[10] Keogh, E. www.cs.ucr.edu/~eamonn/shape/shape.htm, 2006.

[11] Keogh, E. Exact indexing of dynamic time warping. In Proceedings
of the 28th International Conference on Very Large Data Bases,
Hong Kong. pp 406-417, 2002.

[12] Keogh, E. and Kasetty, S. On the Need for Time Series Data Mining
Benchmarks: A Survey and Empirical Demonstration. In
Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton, Canada. pp 102-
111, 2002.

[13] Keogh, E., Palpanas, T., Zordan, V., Gunopulos, D., and Cardle, M.
Indexing Large Human-Motion Databases. In Proceedings of the 30th
International Conference on Very Large Data Bases, Toronto,
Canada, pp 780-791, 2004.

[14] Li, D. and Simske, S. Shape Retrieval Based on Distance Ratio
Distribution. HP Tech Report. HPL-2002-251, 2002.

[15] Li, Q., Lopez, I., and Moon, B. Skyline Index for Time Series Data.
IEEE Transactions on Knowledge and Data
Engineering. 16(6): pp 669-684, 2004.

[16] Ling, H. and Jacobs, D.W. Using the Inner-Distance for
Classification of Articulated Shapes. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Vol. II, pp 719-726, 2005.

[17] Mollineda, R. A., Vidal, E., and Casacuberta, F. Cyclic Sequence
Alignments: Approximate Versus Optimal Techniques. International
Journal of Pattern Recognition and Artificial Intelligence (IJPRAI),
16(3): 291-299, 2002.

[18] Olson, C. F. and Huttenlocher, D. P. Automatic Target Recognition
by Matching Oriented Edge Pixels. IEEE Transactions on Image
Processing, 6(1): 103-113, January 1997.

[19] Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. Shape
Distributions. ACM Transactions on Graphics, 21(4): 807-832,
October, 2002.

[20] Ratanamahatana, C. A. and Keogh, E. Three Myths about Dynamic
Time Warping. In Proceedings of SIAM International Conference on
Data Mining (SDM '05), Newport Beach, CA, April 21-23, pp 506-
510, 2005.

[21] Rath, T. and Manmatha, R. Lower-Bounding of Dynamic Time
Warping Distances for Multivariate Time Series. Tech Report MM-
40, University of Massachusetts Amherst, 2002.

[22] Veltkamp, R. C. and Latecki, L. J. Properties and Performance of
Shape Similarity Measures. In Proceedings of IFCS 2006
Conference: Data Science and Classification. July, 2006.

[23] Vlachos, M., Hadjieleftheriou, M., Gunopulos, D. and Keogh. E.
Indexing Multi-Dimensional Time-Series with Support for Multiple
Distance Measures. In Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pp 216-225, August 24-27, 2003, Washington, DC, USA.

[24] Vlachos, M., Vagena, Z., Yu, P. S., and Athitsos, V. Rotation
invariant indexing of shapes and line drawings. In Proceedings of
ACM Conference on Information and Knowledge Management
(CIKM), pp 131-138, 2005.

[25] Wang, Z., Chi, Z., Feng, D., and Wang, Q. Leaf Image Retrieval with
Shape Features. In Proceedings of the 4th International Conference
on Advances in Visual Information Systems, pp 477- 487, 2000.

[26] Wei, L., Keogh, E., Van Herle, H., and Mafra-Neto, A. Atomic
Wedgie: Efficient Query Filtering for Streaming Time Series. In
Proceedings of the 5th IEEE International Conference on Data
Mining (ICDM 2005), pp 490-497, 2005.

[27] White, T. D. Human Osteology. 2nd edition. San Diego: Academic
Press, 2000.

[28] Zhang, D. and Lu, G. Review of shape representation and description
techniques. Pattern Recognition, 37(1): 1-19, 2004.

[29] Zunic, J., Rosin, p., and Kopanja, L. Shape Orientability. ACCV (2)
2006: pp 11-20.

893

http://www.computer.org/tpami/
http://www.computer.org/tpami/

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Landmarking
	Rotation Invariant Features
	Brute Force Rotation Alignment

	ROTATION INVARIANT MATCHING
	WEDGE BASED ROTATION MATCHING
	Fast and Exact Main Memory Search
	Lower Bounding in Index Space
	Generalizing to other Distance Measures

	EXPERIMENTAL RESULTS
	Effectiveness of Shape Matching
	Main Memory Experiments
	Disk Access Experiments

	CONCLUSIONS AND FUTURE WORK
	7. REFERENCES

