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ABSTRACT
With the advent of RFID (Radio Frequency Identification)
technology, manufacturers, distributors, and retailers will be
able to track the movement of individual objects throughout
the supply chain. The volume of data generated by a typical
RFID application will be enormous as each item will gen-
erate a complete history of all the individual locations that
it occupied at every point in time, possibly from a specific
production line at a given factory, passing through multiple
warehouses, and all the way to a particular checkout counter
in a store. The movement trails of such RFID data form gi-
gantic commodity flowgraph representing the locations and
durations of the path stages traversed by each item. This
commodity flow contains rich multi-dimensional information
on the characteristics, trends, changes and outliers of com-
modity movements.

In this paper, we propose a method to construct a warehouse
of commodity flows, called flowcube. As in standard OLAP,
the model will be composed of cuboids that aggregate item
flows at a given abstraction level. The flowcube differs from
the traditional data cube in two major ways. First, the
measure of each cell will not be a scalar aggregate but a
commodity flowgraph that captures the major movement
trends and significant deviations of the items aggregated
in the cell. Second, each flowgraph itself can be viewed
at multiple levels by changing the level of abstraction of
path stages. In this paper, we motivate the importance of
the model, and present an efficient method to compute it
by (1) performing simultaneous aggregation of paths to all
interesting abstraction levels, (2) pruning low support path
segments along the item and path stage abstraction lattices,
and (3) compressing the cube by removing rarely occurring
cells, and cells whose commodity flows can be inferred from
higher level cells.

∗The work was supported in part by the U.S. National Sci-
ence Foundation NSF IIS-03-08215/05-13678 and NSF BDI-
05-15813.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘06 , September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1. INTRODUCTION
With the rapid progress of radio frequency identification
(RFID) technology, it is expected that in a few years, RFID
tags will be placed at the package or individual item level for
many products. These tags will be read by a transponder
(RFID reader), from a distance and without line of sight.
One or more readings for a single tags will be collected
at every location that the item visits and therefore enor-
mous amounts of object tracking data will be recorded. This
technology can be readily used in applications such as item
tracking and inventory management, and thus holds a great
promise to streamline supply chain management, facilitate
routing and distribution of products, and reduce costs by im-
proving efficiency. However, the enormous amount of data
generated in such applications also poses great challenges on
efficient analysis.

Let us examine a typical such scenario. Consider a nation-
wide retailer that has implemented RFID tags at the pal-
let and item level, and whose managers need to analyze the
movement of products through the entire supply chain, from
the factories producing items, to international distribution
centers, regional warehouses, store backrooms, and shelves,
all the way to checkout counters. Each item will leave a
trace of readings of the form (EPC, location, time) as it is
scanned by the readers at each distinct location1. If we con-
sider that each stores sells tens of thousands of items every
day, and that each item may be scanned hundreds of times
before being sold, the retail operation may generate several
terabytes of RFID data every day. This information can be
analyzed from the perspective of paths and the abstraction
level at which path stages appear, and from the perspective
of items and the abstraction level at which the dimensions
that describe an item are studied.

Path view. The set of locations that an item goes through
forms a path. Paths are interesting because they provide in-
sights into the patterns that govern the flow of items in the
system. A single path can be presented in different ways de-
pending on the person looking at the data. Figure 1 presents
a path (seen in the middle of the figure) aggregated to two
different abstraction levels, the path at the top of the fig-
ure shows the individual locations inside a store, while it
collapses locations that belong to transportation. This view
may be interesting to a store manager, that requires de-
tailed transition information within the store. The path at

1Electronic Product Code (EPC) is a unique identifier asso-
ciated with each RFID tag
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the bottom of the figure on the other hand, collapses loca-
tions that belong to stores, and keeps individual locations
that belong to transportation. This view may be interesting
to transportation manager in the company.

dist. center truck shelf checkout

transportation shelf checkout

dist. center truck store

Store View:

Transportation View:

backroom

backroom

Figure 1: Path views: The same path can be seen
at two different abstraction levels.

Item view. An orthogonal view into RFID commodity
flows is related to items themselves. This is a view much
closer to traditional data cubes. An item can have a set
of dimensions describing its characteristics, e.g., product,
brand, manufacturer. Each of these dimensions has an as-
sociated concept hierarchy. Figure 2 presents the different
levels at which a single item may be looked at along the
product dimension. It is possible that a high level manager
at a retailer will only look at products at the category level.
But that the manager for a particular line of products may
look at individual items in that line.

Shirt Jacket

Clothing

ShoesOuterwear

Item Level

Type Level

Category Level

...

Figure 2: Item view: A product can be seen at dif-
ferent levels of abstraction

The key challenge in constructing a data cube for a database
of RFID paths is to devise an efficient method to compute
summaries of commodity flows for those item views and path
views that are interesting to the different data analysts uti-
lizing the application. Full materialization of such data cube
would be unrealistic as the number of abstraction levels is
exponential in the number of dimensions describing an item
and describing a path.

In this paper we propose flowcube, a data cube model that
summarizes commodity flows at multiple levels of abstrac-
tion along the item view and the path view of RFID data.
This model will provide answers to questions such as:

1. What are the most typical paths, with average duration
at each stage, that shoes manufactured in China take
before arriving to the L.A. distribution center, and list
the most notable deviations from the typical paths that
significantly increase total lead time before arrival?

2. Present a summarized view of the movements of elec-
tronic goods in the northeast region and list the possi-
ble correlations between the durations spent by items at
quality control points in the manufacturing facilities and
the probability of being returned by customers.

3. Present a workflow that summarizes the item movement
across different transportation facilities for the year 2006
in Illinois, and contrast path durations with historic flow
information for the same region in 2005.

The measure of each cell in the flowcube is called a flow-
graph, which is a tree shaped probabilistic workflow, where
each node records transition probabilities to other nodes,
and the distribution of possible durations at the node. Ad-
ditionally nodes keep information on exceptions to the gen-
eral transition and duration distributions given a certain
path prefix that has a minimum support (occurs frequently
in the data set). For example, the flowgraph may have a
node for the factory location that says that items can move
to either the warehouse or the store locations with proba-
bility 60% and 40% respectively. But it may indicate that
this rule is violated when items stay for more than 1 week in
the factory in which case they move to the warehouse with
probability 90%.

Computation of the flowgraph for each cell of the flowcube
can be divided into two steps. The first is to collect the
necessary counts to find the transition and duration proba-
bilities for each node. This can be done efficiently in a single
pass over the paths aggregated in the cell. The second is to
compute the flowgraph exceptions, this is a more expensive
operation as it requires computing all frequent path seg-
ments in the cell, and checking if they cause an exception.
In this paper we will focus on the problem of how to com-
pute frequent path segments for every cell in the flowcube in
an efficient manner. The technical contribution of the paper
can be summarized as follows:

1. Shared computation. We explore efficient computa-
tion of the flowcube by sharing the computation of fre-
quent cells and frequent path segments simultaneously.
Similar to shared computation of multiple cuboids in
BUC-like computation [4], we propose to compute fre-
quent cells in the flowcube and frequent path segments
aggregated at every interesting abstraction level simul-
taneously. For example, in a single scan of the path
database we can collect counts for items at the product
level and also at the product category level. Further-
more, we can collect counts for path stages with loca-
tions at the lowest abstraction level, and also with loca-
tions aggregated to higher levels. The concrete cuboids
that need to be computed will be determined based on
the cube materialization plan derived from application
and cardinality analysis. Shared computation minimizes
the number of scans of the path database by maximizing
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the amount of information collected during each scan. In
order to efficiently compute frequent cells and frequent
path segments we will develop an encoding system that
transforms the original path database into a transaction
database, where items encode information on their level
along the item dimensions, and stages encode informa-
tion on their level along the path view abstraction levels.

2. Pruning of the search space using both the path
and item views. To speed up cube computation, we
use pre-counting of high abstraction level itemsets that
will help us prune a large portion of the candidate space
without having to collect their counts. For example if we
detect that the stage shelf is not frequent in general, we
know that for no particular duration it can be frequent;
or if a store location is not frequent, no individual loca-
tion within the store can be frequent. Similarly, if the
clothing category is not frequent, no particular shirt can
be frequent. In our proposed method we do not incur
extra scans of the path database for pre-counting, we
instead integrate this step with the collection of counts
for a given set of candidates of a given length.

3. Cube compression by removing redundancy and
low support counts. We reduce the size of the flowcube
by exploring two strategies. The first is to compute only
those cells that contain only a minimum number of paths
(iceberg condition). This makes sense as the flowgraph
is a probabilistic model that can be used to conduct sta-
tistically significant analysis only if there is enough data
to support it. The second strategy is to compute only
flowgraphs that are non-redundant given higher abstrac-
tion level flowgraphs. For example, if the flow patterns
of 2% milk are similar to those of milk (under certain
threshold), then by registering just the high level flow-
graph we can infer the one for 2% milk, i.e., we expect
any low level concept to behave in a similar way to its
parents, and only when this behavior is truly different,
we register such information in the flowcube.

The rest of the paper is organized as follows. Section 2
presents the structure of the path database. Section 3 in-
troduces the concept of flowgraphs. Section 4, defines the
flowcube, and the organization of the cuboids that compose
it. Section 5, develops an efficient method to compute fre-
quent patterns for every cell of a flowcube. Section 6, re-
ports on experimental and performance results. We discuss
related work in Section 7 and conclude our study in section
8.

2. PATH DATABASE
An RFID implementation usually generates a stream of data
of the form (EPC, location, time) where EPC is an elec-
tronic product code associated with an item, location is the
place were the tag was read by a scanner, and time is when
the reading took place. If we look at all the records associ-
ated to a particular item and sort them on time, they will
form a path. After data cleaning, each path will have stages
of the form (location, time in, time out). In order to study
the way patterns flow through locations we can discard ab-
solute time and only focus on relative duration, in this case
the stages in each path are of the form (location, duration).
Furthermore, duration may not need to be at the precision

of seconds, we could discretize the value by aggregating it
to a higher abstraction level, clustering, or using any other
numerosity reduction method.

A path database is a collection of tuples of the form 〈d1, ..., dm :
(l1, t1)...(lk, tk)〉, where each d1, ..., dm are path independent
dimensions (the value does not change with the path tra-
versed by the item) that describe an item, e.g., product,
manufacturer, price, purchase date. The pair (li, ti) tells us
that the item was at location li for a duration of ti time
units.

Table 1 presents a path database with 2 path independent
dimensions: product and brand. The nomenclature used for
stage locations is d for distribution center, t for truck, w for
warehouse, s for store shelf, c for store checkout, and f for
factory.

id product brand path
1 tennis nike (f, 10)(d, 2)(t, 1)(s, 5)(c, 0)
2 tennis nike (f, 5)(d, 2)(t, 1)(s, 10)(c, 0)
3 sandals nike (f, 10)(d, 1)(t, 2)(s, 5)(c, 0)
4 shirt nike (f, 10)(t, 1)(s, 5)(c, 0)
5 jacket nike (f, 10)(t, 2)(s, 5)(c, 1)
6 jacket nike (f, 10)(t, 1)(w, 5)
7 tennis adidas (f, 5)(d, 2)(t, 2)(s, 20)
8 tennis adidas (f, 5)(d, 2)(t, 3)(s, 10)(d, 5)

Table 1: Path Database

3. FLOWGRAPHS
A duration independent flowgraph is a tree where each node
represents a location and edges correspond to transitions
between locations. All common path prefixes appear in the
same branch of the tree. Each transition has an associated
probability, which is the percentage of items that took the
transition represented by the edge. For every node we also
record a termination probability, which is the percentage
of paths that terminate at the location associated with the
node.

We have several options to incorporate duration informa-
tion into a duration independent flowgraph, the most direct
way is to create nodes for every combination of location and
duration. This option has the disadvantage of generating
very large flowgraphs. A second option is to annotate each
node in the duration independent flowgraph with a distribu-
tion of possible durations at the node. This approach keeps
the size of the flowgraph manageable and captures duration
information for the case when (i) the duration distribution
between locations is independent, e.g., the time that milk
spends at the shelf is independent to the time it spent in
the store backroom; and (ii) transition probabilities are in-
dependent of duration, e.g., the probability of a box of milk
to transition from the shelf to the checkout counter does not
depend on the time it spent at the backroom.

There are cases when conditions (i) and (ii) do not hold, e.g.,
a product that spends a long time at a quality control station
may increase its probability of moving to the return counter
location at a retail store. In order to cover these cases we
propose to use a model which we call flowgraph, that not
only records duration and transition distributions at each
node, but that also stores information on significant devia-
tions in duration and transition probabilities given frequent
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path prefixes to the node. A prefix to a node is a sequence
of (location, duration) pairs that appear in the same branch
as the node but before it. The construction of a flowgraph
requires two parameters, ε that is the minimum deviation
of a duration or transition probability required to record an
exception, and δ the minimum support required to record
a deviation. The purpose of ε is to record only deviations
that are truly interesting in that they significantly affect the
probability distribution induced by the flowgraph; and the
purpose of δ to prevent the exceptions in the flowgraph from
being dominated by statistical noise in the path database.
Figure 3 presents a flowgraph for the path database in Table
1.

factory

dist. center

truck

0.65

0.35

truck
1.0

shelf checkout
0.67 1.0

warehouse
0.33

 5  : 0.38
10 : 0.62

Duration Dist.

...

dist. center  : 0.65
truck          : 0.35
terminate    : 0.00

Transition Dist.

Figure 3: Flowgraph

The flowgraph in Figure 3 also registers significant excep-
tions to duration and transition probabilities (not shown in
the figure), e.g., the transition probability from the truck to
the warehouse, coming from the factory, is in general 33%,
but that probability is 50% when we stay for just 1 hour
at the truck location. Similarly we can register exceptions
for the distribution of durations at a location given previ-
ous durations, e.g., items in the distribution center spend
1 hour with probability 20% and 2 hours with probability
80%, but if an item spent 5 hours at the factory the distri-
bution changes and the probability of staying for 2 hours in
the distribution center becomes 100%.

Definition 3.1. (Flowgraph) A Flowgraph is a tuple (V,
D, T, X), where V is the set of nodes, each node corresponds
to a unique path prefix in the path database. D is a set
of multinomial distributions, one per node, each assigns a
probability to each distinct duration at a node. T is a set
of multinomial distributions, one per node, each assigns a
probability to each possible transition from the node to every
other node, including the termination probability. X is the
set of exceptions to the transition and duration distributions
for each node.

Computing a flowgraph can be done efficiently by: (1) con-
structing a prefix tree for the path database (2) annotat-
ing each node with duration and transition probabilities (3)
mining the path database for frequent paths with minimum
support δ, and checking if those paths create exceptions
that deviate by more than ε from the general probability.
Steps (1) and (2) can be done with a single scan of the path
database, and for step (3) we can use any existing frequent
pattern mining algorithm.

4. FLOWCUBE
The next step we take in our model is to combine flowgraph
analysis with the power of OLAP type operations such as
drill-down and roll-up. It may be interesting for example to
look at the evolution of the flowgraphs for a certain product
category over a period of time to detect how a change in
suppliers may have affected the probability of returns for a
particular item. We could also use multidimensional analy-
sis to compare the speed at which products from two differ-
ent manufacturers move through the system, and use that
information to improve inventory management policies. Fur-
thermore, it may be interesting to look at paths traversed
by the items from different perspectives. A transportation
manager may want to look at flowgraphs that provide great
detail on truck, distribution centers, and sorting facilities
while ignoring most other locations. A store manager on
the other hand may be more interested in looking at move-
ments from backrooms, to shelfs, checkout counters, and
return counters and largely ignore other locations.

In this section we will introduce the concept of a flowcube,
which is a data cube computed on an RFID path database,
where each cell summarizes commodity flows at at a given
abstraction level of the path independent dimensions, and
path stages. The measure recorded in each cell of the flowcube
is a flowgraph computed on the paths belonging to the cell.

In the next sections we will explore in detail the different
components of a flowcube. We will first introduce the con-
cepts of item abstraction lattice and path abstraction lat-
tice, which are important to give a more precise definition
of the cuboid structure of a flowcube. We will then study
the computational challenges of using flowgraphs as mea-
sures. Finally we introduce the concepts of non-redundant
flowcubes, and iceberg flow-cubes as a way to reduce the size
of the model.

4.1 Abstraction Lattice
Each dimension in the flow cube can have an associated con-
cept hierarchy. A concept hierarchy is a tree where nodes
correspond to concepts, and edges correspond to is-a re-
lationships between concepts. The most concrete concepts
reside at the leafs of the tree, while the most general concept,
denoted ‘*’, resides at the apex of the tree and represents
any concept. The level of abstraction of a concept in the
hierarchy is the level at which the concept is located in the
tree.

Item Lattice. The abstraction level of the items in the path
database can be represented by the tuple (l1, ..., lm), where
li is the abstraction level of the path independent dimension
di. For our running example we can say that the items in
the path database presented reside at the lowest abstraction
level. The set of all item abstraction levels forms a lattice.
A node n1 is higher in the lattice than a node n2, denoted
n1 ¹ n2 if the levels all dimensions in n1 are smaller or equal
to the ones in n2.

Table 2 shows the path independent dimension from Table
1 with the product dimension aggregated one level higher
in its concept hierarchy. The “path ids” column lists the
paths in the cell, each number corresponds to the path id in
Table 1. We can compute a flowgraph on each cell in Table
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2. Figure 4 presents the flowgraph for the cell (outerwear,
nike).

product brand path ids
shoes nike 1,2,3
shoes adidas 7,8
outerwear nike 4,5,6

Table 2: Aggregated Path Database

factory truck

1.0

shelf checkout

0.67
1.0

warehouse
0.33

Figure 4: Flowgraph for cell (outerwear, nike, 99)

Path Lattice. In the same way that items can be associ-
ated with an abstraction level, path stages will also reside at
some level of the location and duration concept hierarchies.
Figure 5 presents an example concept hierarchy for the lo-
cation dimension of the path stages. The shadowed nodes
are the concepts that are important for analysis; in this case
the data analyst may be a transportation manager that is
interesting in seeing the transportation locations at a full
level of detail, while aggregating store and factory locations
to a higher level. More formally, the path abstraction level
is defined by the tuple (〈v1, v2, ..., vk〉, tl) where each vi is a
node in the location concept hierarchy, and tl the level in the
time concept hierarchy. Analogously to the item abstraction
lattice definition, we can define a path abstraction lattice.

In our running example, assuming that time is at the hour
level, the path abstraction level corresponding to Figure 5
is (〈dist. center, truck, warehouse, factory, store〉 ,hour).

Transportation

Truck

StoreFactory

*

Dist. Center Backroom Shelf CheckoutWarehouse

Figure 5: Location Concept Hierarchy

We aggregate a path to abstraction level (〈v1, v2, ..., vk〉, tl)
in two steps. First, we aggregate the location in each stage
to its corresponding node vi, and we aggregate its duration
to the level tl. Second, we merge consecutive locations that
have been aggregated to the same concept level. The merg-
ing of consecutive locations requires us to define a new dura-
tion for the merged stage. The computation of the merged
duration would depend on the application, it could be as
simple as just adding the individual durations, or it could

involve some form of numerosity reduction based on cluster-
ing or other well known methods.

Aggregation along the path abstraction lattice is new to
flowcubes and is quite different to the type of aggregation
performed in a regular data cube. In a data cube, an aggre-
gated cell contains a measure on the subset of tuples from
the fact table that share the same values on every aggregated
dimension. When we do path aggregation, the dimensions
from the fact table remain unchanged, but it is the measure
of the cell itself which changes. This distinct property re-
quires us to develop new methods to construct a flowcube
that has aggregation for both item and path dimensions.

Definition 4.1 (Flowcube). A flowcube is a collec-
tion of cuboids. A cuboid is a grouping of entries in the fact
table into cells, such that each cell shares the same values
on the item dimensions aggregated to an item abstraction
level Il; and the paths in the cell have been aggregated to a
path abstraction level Pl. The measure of a cell is a flow-
graph computed on the paths in the cell. A cuboid can be
characterized by the pair 〈Il, Pl〉.

4.2 Measure computation
We can divide a flowgraph into two components, the first
is the duration and transition probability distributions, the
second is the set of exceptions. In this section we will show
that while the first component is an algebraic measure, and
thus can be computed efficiently, the second component is a
holistic measure and requires special treatment.

Assume that we have a dataset S that has been partitioned
into k subsets s1, ..., sk such that S =

S
i si and si ∩ sj =

φ for all i 6= j. We say that a measure, or function, is
algebraic if the measure for S can be computed by collecting
M (positive bounded integer) values from each subset si.
For example, average is distributive as we can collect count()
and sum() (M = 2) from each subset to compute the global
average. A holistic measure on the other hand is one where
there is no constant bound on the number of values that need
to be collected from each subset in order to compute the
function for S. Median is an example of a holistic function,
as each subset will need to provide its entire set of values in
order to compute the global median.

Lemma 4.2. The duration and transition distributions of
a flowgraph are algebraic measures.

Proof Sketch. Each node n in the flowgraph contains a
duration probability distribution d and a transition proba-
bility distribution t. For each node in the flowgraph, d(ti) =

count(ti)/
Pk

i=1 count(ti), where d(ti) is the probability of
duration ti, count(ti) is the number of items that stayed at
the node for duration ti and k is the number of distinct du-
rations at the node. We can compute d for each node in a
flowgraph whose dataset has been partitioned into subsets,
by collecting the following k values count(t1), ..., count(tk).
Similarly we can argue that the transition distribution t
can be computed by collecting a fixed number of transition
counts from each subset. Given that the number of nodes
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and distinct durations per node in a flowgraph is fixed (after
numerosity reduction), we can collect a bounded number of
counts from each subset to compute the duration and tran-
sition distributions for the flowgraph.

The implication of lemma 4.2 is that we can compute a
flowcube efficiently by constructing high level flowgraphs
from already materialized low level ones without having to
go to the path database.

Lemma 4.3. The set of exceptions in a flowgraph is a
holistic measure.

Proof Sketch. The flowgraph exceptions are computed on
the frequent itemsets in the collection of paths aggregated
in the cell, thus proving that a function that returns the
frequent itemsets for a cell is not algebraic is sufficient. As-
sume that the set S is the union of s1, ..., sn, and that the
sets f1, ..., fn are the frequent itemsets for each subset si.
We need to compute F the frequent itemsets for S, assume
that f j

i is frequent pattern j in set i, in order to check if f j
i is

frequent in S we need to collect its count on every subset sk,
and thus we need every subset to provide counts for every
frequent pattern on any other subset, this number is clearly
unbounded as it depends on the characteristics of each data
set.

The implication of lemma 4.3 is that we can not compute
high level flowgraphs from low level ones by just passing a
fixed amount of information between the levels. But we can
still mine the frequent patterns required to determine excep-
tions in each cell in a very efficient way by entirely avoiding
the level by level computation approach and instead using a
novel shared computation method that simultaneously finds
frequent patterns for cuboids at every level of abstraction.
In section 5 we will develop the mining method in detail.

4.3 Flowgraph Redundancy
The flowgraph registered for a given cell in a flowcube may
not provide new information on the characteristics of the
data in the cell, if the cells at a higher abstraction level
on the item lattice, and the same abstraction level on the
path lattice, can be used to derive the flowgraph in the cell.
For example, if we have a flowgraph G1 for milk, and a
flowgraph G2 from milk 2% (milk is an ancestor of milk 2%
in the item abstraction lattice), and G1 = G2 we see that
G2 is redundant, as it can be inferred from G1.

Before we give a more formal definition of redundancy we
need a way to determine the similarity of two flowgraphs.
A similarity metric between two flowgraphs is a function
ϕ : G1×G2 → R. Informally the value of ϕ(G1, G2) is large
if the G1 and G2 are similar and small otherwise. There are
many options for ϕ and the one to use should use depends
on the particular RFID application semantics. One possible
funtion is to use the KL-Divergence of the probability dis-
tributions induced by two flowgraphs. But other similarity
metrics, based for example on probabilistic deterministic fi-
nite automaton (PDFA) distance could be used. Note that
we do not require ϕ to be a real metric in the mathematical
sense, in that the triangle inequality does not necessarily
need to hold.

Definition 4.4 (Redundant flowgraph). Let G be
a flowgraph for cell c, let p1, ..., pn be all the cells in the item
lattice that are a parent of c and that reside in a cuboid at the
same level in the path lattice as c’s cuboid. Let G1, ..., Gn

be the flowgraphs for cells p1, ..., pn, let ϕ be a flowgraph
similarity metric. We say that G is redundant if ϕ(G, Gi) >
τ for all i, where τ is the similarity threshold.

A flowcube that contains only cells with non-redundant flow-
graphs is called a non-redundant flowcube. A non-redundant
flowcube can provide significant space savings when com-
pared to a complete flowcube, but more interestingly, it pro-
vides important insight into the relationship of flow patterns
from high to low levels of abstraction, and can facilitate the
discovery of exceptions in multi-dimensional space. For ex-
ample, using a non-redundant flowcube we can quickly de-
termine that milk from every manufacturer has very similar
flow patterns, except for the milk from farm A which has
significant differences. Using this information the data an-
alyst can drill down and slice on farm A to determine what
factors make its flowgraph different.

4.4 Iceberg Flowcube
A flowgraph is a statistical model that describes the flow
behavior of objects given a collection of paths. If the data
set on which the flowgraph is computed is very small, the
flowgraph may not be useful in conducting data analysis.
Each probability in the model will be supported by such a
small number of observations and it may not be an accurate
estimate of the true probability. In order to minimize this
problem, we will materialize only cells in the flowcube that
contain at least δ paths (minimum support). For example,
if we set the minimum support to 2, the cell (shirt, ∗) from
Table 1 will not be materialized as it contains only a single
path.

Definition 4.5 (Iceberg flowcube). A flowcube that
contains only cells with a path count larger than δ is called
an Iceberg flowcube.

Iceberg flowcubes can be computed efficiently by using apri-
ori pruning of infrequent cells. We can materialize the cube
from low abstraction levels to high abstraction ones. If at
some point a low level cell is not frequent, we do not need
to check the frequency of any specialization of the cell. The
algorithm we develop in the next section will make exten-
sive use of this property to speed up the computation of the
flowcube.

5. ALGORITHMS
In this section we will develop a method to compute a non-
redundant iceberg flowcube given an input path database.
The problem of flowcube construction can be divided into
two parts. The first is to compute the flowgraph for each
frequent cell in the cube, and the second is to prune uninter-
esting cells given higher abstraction level cells. The second
problem can be solved once the flowcube has been mate-
rialized, by traversing the cuboid lattice from low to high
abstraction levels, while pruning cells that are found to be
redundant given the parents. In the rest of this paper we
will focus on solving the first problem.
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The key computational challenge in materializing a flowcube
is to find the set of frequent path segments, aggregated at
every interesting abstraction level, for every cell that ap-
pears frequently in the path database. Once we have the
counts for every frequent pattern in a cell determining ex-
ceptions can be done efficiently by just checking if counts
of these patterns change the duration or transition proba-
bility distributions for each node. The problem of mining
frequent patterns in the flowcube is very expensive as we
need to mine frequent paths at every cell, and the number
of cells is exponential in the number of item and path dimen-
sions. Flowcube materialization combines two of the most
expensive methods in data mining, cube computation, and
frequent pattern mining. The method that we develop in
this section solves these two problems with a modified ver-
sion of the Apriori algorithm [3], by collecting frequent pat-
tern counts at every interesting level of the item and path
abstraction lattices simultaneously, while exploiting cross-
pruning opportunities between these two lattices to reduce
the search space as early as possible. To further improve
performance our algorithm will use partial materialization
to restrict the set of cuboids to compute, to those most use-
ful to each particular application. The algorithm is based
on the following key ideas:

Construction of a transaction database. In order to
run a frequent pattern algorithm on both the item and path
dimensions at every abstraction level, we need to transform
the original path database into a transaction database. Val-
ues in the path database need to be transformed into items
that encode their concept hierarchy information and thus fa-
cilitate efficient multi-level mining. For example, the value
“jacket” for the product dimension in Table 1, can be en-
coded as “112”, the first digit indicates that it is a value of
the first path independent dimension, the second digit indi-
cates that is of type outerwear, and the third digit tells us
that it is a jacket (for brevity we omit the encoding for prod-
uct category as all the products in our example belong to
the same category: clothing). Path stages require a slightly
different encoding, in addition to recording the concept hi-
erarchy for the location and time dimensions for the stage,
each stage should also record the path prefix leading to the
stage so that we can do multi-level path aggregation. For
example the stage (t,1) in the first path of the path database
in Table 1 can be encoded as (fdt,10), to mean that it is the
third stage in the path: factory → dist. center → truck, and
that it has a duration of 10 time units.

Table 3 presents the transformed database resulting from
the path database from Table 1.

TID Items
1 {121,211,(f,10),(fd,2),(fdt,1),(fdts,5),(fdtsc,0)}
2 {121,211,(f,5),(fd,2),(fdt,1),(fdts,10),(fdtsc,0)}
3 {122,211,(f,10),(fd,1),(fdt,2),(fdts,5),(fdtsc,0)}
4 {111,211,(f,10),(ft,1),(fts,5),(ftsc,0)}
5 {112,211,(f,10),(ft,2),(fts,5),(ftsc,1)}
6 {112,211,(f,10),(ft,1),(ftw,5)}
7 {121,221,(f,5),(fd,2),(fdt,2),(fdts,20)}
8 {121,221,(f,5),(fd,2),(fdt,3),(fdts,10),(fdtsd,5)}

Table 3: Transformed transaction database

Shared counting of frequent patterns. In order to min-
imize the number of scans of the transformed transaction

database we share the counting of frequent patterns at ev-
ery abstraction level in a single scan. Every item that we
encounter in a transaction contributes to the support of all
of its ancestors on either the item or path lattices. For ex-
ample, the item 112 (jacket) contributes to its own support
and the support of its ancestors, namely, 11* (outerwear)
and 1** (we will later show that this ancestor is not really
needed). Similarly an item representing a path stage con-
tributes to the support of all of its ancestors along the path
lattice. For example, the path stage (fdts,10) will support its
own item and items such as (fdts,*), (fTs,10) and (fTs,*),
where f stands for factory, d for distribution center, t for
truck, s for shelf, and T for transportation (T is the parent
of d, and t, in the location concept hierarchy).

Shared counting processes patterns from short to long. In
the first scan of the database we can collect all the pat-
terns of length 1, at every abstraction level in the item and
path lattices. In the second scan we check the frequency of
candidate patterns of length 2 (formed by joining frequent
patterns of length 1). We continue this process until no
more frequent patterns are found. Table 4 presents a por-
tion of the frequent patterns of length 1 and length 2 for the
transformed path database of Table 3.

Length 1 frequent
Itemset Support
{121} 5
{12*} 5
{(f,10)} 5
{(f,*)} 8
{(fd,2)} 4
... ...

Length 2 frequent
Itemset Support
{12*,211} 3
{12*,21*} 3
{211,(f,10)} 4
{(f,5)(fd,2)} 3
{(f,*),(fd,*)} 3
... ...

Table 4: Frequent Itemsets

Pruning of infrequent candidates. When we generate
candidates of length k + 1 based on frequent patterns of
length k we can apply several optimization techniques to
prune large portions of the candidate space:

• Precounting of frequent itemsets at high levels of
abstraction along the item and path lattices. We
can take advantage of the fact that infrequent itemsets
at high abstraction levels of the item and path lattice
can not be frequent at low abstraction levels. We can
implement this strategy by, for example, counting fre-
quent patterns of length 2 at a high abstraction level
while we scan the database to find the frequent patterns
of length 1. A more general precounting strategy could
be to count high abstraction level patterns of length k+1
when counting the support of length k patterns.

• Pruning of candidates containing two unrelated
stages. Given our stage encoding, we can quickly deter-
mine if two stages can really appear in a the same path,
and prune all those candidates that contain stages that
can not appear together. For example we know that the
stages (fd, 2) and (fts, 5) can never appear in the same
path, and thus should not be generated as a candidate.

• Pruning of path independent dimensions aggre-
gated to the highest abstraction level. We do not
need to collect counts for an item such as 1**, this item
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really mean any value for dimension 1; and its count will
always be the same as the size of the transaction table.
These type of items can be removed from the transaction
database.

• Pruning of items and their ancestors in the same
transaction. This optimization was introduced in [17]
and is useful for our problem. We do not need to count
an item and any of its ancestors in the same candidate as
we know that the ancestor will always appear with the
item. This optimization can be applied to both path
independent dimension values, and path stages. For
example we should not consider the candidate itemset
{121, 12∗} as its count will be the same of the itemset
{121}.

Partial Materialization. Even after applying all the op-
timizations outlined above, and removing infrequent and re-
dundant cells the size of of flowcube can still be very large in
the cases when we have a high dimensional path database.
Under such conditions we can use the techniques of partial
materialization developed for traditional data cubes [12, 11,
16].

One strategy that seems especially well suited to our prob-
lem is that of partial materialization described in [11], which
suggests the computation of a layer of cuboids at a minimum
abstraction level that is interesting to users, a layer at an
observation level where most analysis will take place, and
the materialization of a few cuboids along popular paths in
between these two layers.

5.1 Shared algorithm
Based on the optimization techniques introduced in the pre-
vious section, we propose algorithm Shared which is a mod-
ified version of the Apriori algorithm [3] used to mine fre-
quent itemsets. Shared simultaneously computes the fre-
quent cells, and the frequent path segments aggregated at
every interesting abstraction level along the item and path
lattices. The output of the algorithm can be used to com-
pute the flowgraph for every cell that passes the minimum
support threshold in the flowcube.

5.2 Cubing Based Algorithm
A natural competitor to the Shared algorithm is an iceberg
cubing algorithm that computes only cells that pass the ice-
berg condition on the item dimensions, and that for each
such cell calls a frequent pattern mining algorithm to find
frequent path segments in the cell. The precise cubing al-
gorithm used in this problem is not critical, as long as the
cube computation order is from high abstraction level to low
level, because such order enables early pruning of infrequent
portions of the cube. Examples of algorithms that fall into
this category are BUC [4] and Star Cubing [20].

Algorithm 2 takes advantage of pruning opportunities based
on the path independent dimensions, i.e., if it detects that a
certain value for a given dimension is infrequent, it will not
check that value combined with another dimension because
it is necessarily infrequent. What the algorithm misses is the
ability to do pruning based on the path abstraction lattice.
It will not, for example, detect that a certain path stage is

Algorithm 1 Shared

Input: A path database D, a minimum support δ
Output: Frequent cells and frequent path segments in every
cell
Method:

1: In one scan of the path database compute the trans-
formed path database into D′, collect frequent items of
length 1 into L1, and pre-count patterns of length > 1
at high abstraction levels into P1.

2: for k = 2,Lk−1 6= φ,k + + do
3: generate Ck by joining frequent patterns in Lk−1

4: Remove from Ck candidates that are infrequent given
the pre-counted set Pk−1, remove candidates that in-
clude stages that can not be linked, and remove can-
didates that contain an item and its ancestor.

5: for every transaction t in D′ do
6: increment the count of candidates in Ck supported

by t, and collect the counts of high abstraction level
patterns of length > k into Pk

7: end for
8: Lk = frequent items in Ck

9: end for
10: Return

S
k Lk.

infrequent in the highest abstraction level cuboid and thus
will be infrequent in every other cuboid, the algorithm will
repeatedly generate that path stage as a candidate and check
its support just to find that it is infrequent every single time.
Another disadvantage of the cubing based algorithm is that
it has to keep long lists of transaction identifiers as measures
for the cells, when the lists are long, the input output costs
of reading them can be significant. In our experiments even
for moderately sized data sets these lists where much larger
than the path database itself. With the algorithm shared,
we only record frequent patterns, and thus our input output
costs are generally smaller.

6. EXPERIMENTAL EVALUATION
In this section, we perform a thorough analysis our proposed
algorithm (shared) and compare its performance against a
baseline algorithm (basic), and against the cubing based
algorithm (cubing) presented in the previous section. All
experiments were implemented using C++ and were con-
ducted on an Intel Pentium IV 2.4GHz System with 1GB of
RAM. The system ran Debian Sarge with the 2.6.13.4 kernel
and gcc 4.0.2.

6.1 Data Synthesis
The path databases used for our experiments were gener-
ated using a synthetic path generator that simulates the
movement of items in a retail operation. We first generate
the set of all valid sequences of locations that an item can
take through the system. Each location in a sequence has
an associated concept hierarchy with 2 levels of abstraction.
The number of distinct values and skew per level are varied
to change the distribution of frequent path segments. The
generation of each entry in the path database is done in two
steps. We first generate values for the path independent di-
mensions. Each dimension has a 3 level concept hierarchy.
We vary the number of distinct values and the skew for each
level to change the distribution of frequent cells. After we
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Algorithm 2 Cubing

Input: A path database D, a minimum support δ
Output: Frequent cells and frequent path segments in every
cell
Method:

1: Divide D into two components Di, which contains the
path independent dimensions, and Dp which contains
the paths.

2: Transform Dp into a transaction database by encoding
path stages into items, and assign to each transaction a
unique identifier.

3: Compute the iceberg cube C on Di, use as measure the
list of transaction identifiers aggregated in the cell.

4: for each cell ci in C do
5: cp

i = read the transactions aggregated in the cell.

6: cf
i = find frequent patterns in cp

i by using a frequent
pattern mining algorithm

7: end for
8: return

S
i cf

i .

have selected the values for the path independent dimen-
sions, we randomly select a valid location sequence from the
list of possible ones, and generate a path by assigning a ran-
dom duration to each location. The values for the levels
in the concept hierarchies for path independent dimensions,
stage locations, and stage durations, are all drawn from a
Zipf distribution [21] with varying α to simulate different
degrees of data skew.

For the experiments we compute frequent patterns for ev-
ery cell at every abstraction level of the path independent
dimensions, and for path stages we aggregate locations to
the level present in the path database and one level higher,
and we aggregate durations to the level present in the path
database and to the any (*) level, for a total of 4 path ab-
straction levels.

In most of the experiments we compare three methods: Shared,
Cubing, and Basic. Shared is the algorithm that we propose
in section 5.1 and that does simultaneous mining of frequent
cells and frequent path segments at all abstraction levels.
For shared we implemented pre-counting of frequent pat-
terns of length 2 at abstraction level 2, and pre-counting of
path stages with duration aggregated to the ’*’ level. Cubing
is an implementation of the algorithm described in section
5.2, we use a modified version of BUC [4] to compute the
iceberg cube on the path independent dimensions and then
called Apriori [3] to mine frequent path segments in each cell.
Basic is the same algorithm as Shared except that we do not
perform any candidate pruning based on the optimizations
outlined in the previous section. In the figures we will use
the following notation to represent different data set param-
eters N for the number of records, δ for minimum support,
and d for the number of path independent dimensions.

6.2 Path database size
In this experiment we look at the runtime performance of
the three algorithms when varying the size of path database,
from 100,000 paths to 1,000,000 paths (disk size of 6 megabytes
to 65 megabytes respectively). In Figure 6 we can see that
the performance of shared and cubing is quite close for

smaller data sets but as we increase the number of paths
the runtime of shared increases with a smaller slope than
that of cubing. This may be due to the fact that as we
increase the number of paths the data set becomes denser
BUC slows down. Another influencing factor in the differ-
ence in slopes is that as the data sets become denser cubing
needs to invoke the frequent pattern mining algorithm for
many more cells, each with a larger number of paths. We
were able to run the basic algorithm for 100,000 and 200,000
paths, for other values the number of candidates was so large
that they could not fit into memory.
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Figure 6: Database Size (δ = 0.01, d = 5)

6.3 Minimum Support
In this experiment we constructed a path database with
100,000 paths and 5 path independent dimensions. We var-
ied the minimum support from 0.3% to 2.0%. In Figure 7
we can see that shared outperforms cubing and basic. As we
increase minimum support the performance of all the algo-
rithms improves as expected. Basic improves faster that the
other two, this is due to the fact that fewer candidates are
generated at higher support levels, and thus optimizations
based on candidate pruning become less critical. For every
support level we can see that shared outperforms cubing,
but what is more important we see that shared improves
its performance faster than cubing. The reason is that as
we increase support shared will quickly prune large portions
of the path space, while cubing will repeatedly check this
portions for every cell it finds to be frequent.

6.4 Number of Dimensions
In this experiment we kept the number of paths constant at
100,000 and the support at 1%, and varied the number of
dimensions from 2 to 10. The datasets used for this exper-
iment were quite sparse to prevent the number of frequent
cells to explode at higher dimension cuboids. The sparse
nature of the datasets makes all the algorithms achieve a
similar performance level. We can see in Figure 8 that both
shared and cubing are able to prune large portions of the
cube space very soon, and thus performance was compa-
rable. Similarly basic was quite efficient as the number of
candidates was small and optimizations based on candidate
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Figure 7: Minimum Support (N = 100, 000, d = 5)

pruning did not make a big difference given that the number
of candidates was small to begin with.
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Figure 8: Number of Dimensions. (N = 100, 000,
δ = 0.01)

6.5 Density of the path independent dimen-
sions

For this experiment we created three datasets with varying
numbers of distinct values in 5 path independent dimen-
sions. Dataset a had 2, 2, and 5 distinct values per level
in every dimension; dataset b has 4, 4, and 6; dataset c has
5, 5, and 10. In Figure 9 we can see that as we increase
the number of distinct items, data sparsity increases, and
fewer frequent cells and path segments are found, which sig-
nificantly improves the performance of all three algorithms.
Due to the very large number of candidates we could not
run the basic algorithm for dataset a.

6.6 Density of the paths
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Figure 9: Item density (N = 100, 000, δ = 0.01, d = 5)

In this experiment we kept the density of the path inde-
pendent dimensions constant and varied the density of the
path stages by varying the number of distinct location se-
quences 10 to 150. We can see in Figure 10 that for small
numbers of distinct path sequences, we have many frequent
path fragments and thus mining is more expensive. But
what is more important is that as the path database be-
comes denser shared gains a very significant advantage over
cubing. The reason is that in a few scans of the database
shared is able to detect every frequent path segment at every
abstraction level, while cubing needs to do find frequent path
segments independently for each frequent cell, and given the
high density of paths, mining of frequent path segments is an
expensive operation. We could not run the basic algorithm
on this experiment as the number of candidates exploded
with dense paths.
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6.7 Pruning Power
This is experiment we show the effectiveness of the optimiza-
tions described in section 5 to prune unpromising candidates
from consideration in the mining process. We compare the
number of candidates that the basic and shared algorithms
need to count for each pattern length. We can see in Figure
11 that shared is able to prune a very significant number of
candidates from consideration. Basic on the other hand has
to collect counts for a very large number of patterns that
end up being infrequent, this increases the memory usage
and slows down the algorithm. We can also see in the figure
that shared considers patterns only up to length 8, while
basic considers patterns all the way to length 12. This is
because basic is considering long transactions that include
items and their ancestors.
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Figure 11: Pruning Power (N = 100, 000, δ = 0.01,
d = 5)

In this section we have verified that the ideas of shared
computation, simultaneous mining of frequent patterns, and
pruning techniques based on both item and path abstraction
lattices are effective in practice and provide significant cost
savings versus alternative algorithms.

7. RELATED WORK
RFID technology has been extensively studied from mostly
two distinct areas: the electronics and radio communication
technologies required to construct readers and tags [7]; and
the software architecture required to securely collect and
manage online information related to tags [14, 15]. More re-
cently a third line of research dealing with mining of RFID
data has emerged. [6] introduces the idea of creating a ware-
house for RFID data, but does not go into the data struc-
ture or algorithmic details; [8] presents a concrete warehouse
architecture for RFID data; their model exploits character-
istics of item movements to create a summary of large RFID
data sets, but this summary is based on scalar aggregates
and does not handle the concept complex measures such as
flowgraphs.

Induction of flowgraphs from RFID data sets, shares many
characteristics with the problem of process mining [19]. Work-

flow induction, may be the area closest to our work, it stud-
ies the problem of discovering the structure of a workflow
from event logs represented by a list of tuples of the form
(casei, activityj) sorted by the time of occurrence; casei

refers to the instance of the process, and activityj to the
activity executed. [2] first introduced the problem of pro-
cess mining and proposed a method to discover workflow
structure, but for the most part their methods assumes no
duplicate activities in the workflow, and does not take activ-
ity duration into account, which is a very important aspect
of RFID data. Another area of research very closed to flow-
graph construction is that of grammar induction [5, 18], the
idea is to take as input a set of strings and infer the prob-
abilistic deterministic finite state automaton (PDFA) that
generated the strings. This approach differs from ours in
that it does not consider exceptions to transition probabil-
ity distributions, or duration distributions at the nodes.

There are several areas of data mining very related to our
work. Data cubes were introduced in [1] and techniques
to compute iceberg cubes efficiently studied in [4, 10, 20].
Flowcubes differ from this line of research in that our mea-
sure is a complex probabilistic model and not just an scalar
aggregate such as count or sum, and that our aggregates
deal with two interrelated abstraction lattices, one for item
dimensions and another for path dimensions. The computa-
tion of frequent patterns in large data sets was introduced
by [3]; [17] and [9] study the problem of mining multi-level
association rules, and [13] deals with mining frequent se-
quences in a multidimensional space. We borrow ideas from
this line of work, such as Apriori pruning and concept hierar-
chy encoding, but we also differ significantly as we develop
techniques that deal with paths, which are not present in
their data models, and our algorithms are designed to han-
dle both item and path abstraction lattices.

8. CONCLUSIONS
We introduced the problem of constructing a flowcube for a
large collection of paths. The flowcube is data cube model
useful in analyzing item flows in an RFID application by
summarizing item paths along the dimensions that describe
the items, and the dimensions that describe the path stages.
We also introduced the flowgraph, a probabilistic workflow
model that is used as the cell measure in the flowcube, and
that is a concise representation of general flows trends and
significant deviations from the trends. Previous work on
management of RFID data did not consider the probabilistic
workflow view of commodity flows, and did not study how
to aggregate such flows in a data cube.

The flowcube is a very useful tool in providing guidance to
users in their analysis process. It facilitates the discovery
of trends in the movement of items at different abstraction
levels. It also provides views of the data that are tailored
to the needs of each user. The flowcube is particularly well
suited for the discovery of exceptions in flow trends, as it
only stores non-redundant flowgraphs that by definition de-
viate from their ancestor flowgraphs.

We developed an efficient method to compute the flowcube
based on the ideas of shared computation of frequent flow
patterns at every level of abstraction of the item and path
lattices. Pruning of the search space by taking taking ad-
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vantage of the relation between the path and the item view
on RFID data. Compression of the cube by the removal of
infrequent cells, and redundant flowgraphs. And partial ma-
terialization of high dimensional flowcubes based on popular
cuboids.

Through an empirical study we verify the feasibility of our
model and materialization methods. We compared the per-
formance of our proposed algorithm with the performance
of two competing algorithms and showed that our solution
achieves better performance than those methods under a va-
riety data sizes, data distributions, and minimum support
considerations.
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