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ABSTRACT
In this paper, we introduce the concept of frequent closed
cube (FCC), which generalizes the notion of 2D frequent
closed pattern to 3D context. We propose two novel algo-
rithms to mine FCCs from 3D datasets. The first scheme
is a Representative Slice Mining (RSM) framework that can
be used to extend existing 2D FCP mining algorithms for
FCC mining. The second technique, called CubeMiner, is a
novel algorithm that operates on the 3D space directly. We
have implemented both schemes, and evaluated their per-
formance on both real and synthetic datasets. The experi-
mental results show that the RSM-based scheme is efficient
when one of the dimensions is small, while CubeMiner is
superior otherwise.

1. INTRODUCTION
Frequent pattern mining plays an important role in many

data mining tasks, such as association rule analysis [1], se-
quential patterns [2], episodes [7], partial periodicity [5],
and etc. However, frequent pattern (FP) mining is a time-
consuming process. Moreover, it may generate too many
patterns and rules (a large number of which are “redundant”
in the sense that they do not shed additional insights) for
users to digest. To overcome these problems, Pasquier et. al.
proposed [10] the notion of frequent closed pattern (FCP).
While the number of FCPs are much smaller than the FPs,
they carry the same information as the FPs.

Several efficient FCP mining algorithms have been pro-
posed in the literature, including feature enumeration algo-
rithms [11, 17], row enumeration algorithms [8] and dense-
data mining algorithms [3]. However, these algorithms are
all limited to 2D dataset analysis, for example, the gene-
time, gene-sample biological datasets in microarray dataset
analysis, and the transaction-itemset datasets in ‘market
basket’ analysis. With recent advances in microarray tech-
nology, the expression levels of a set of genes under a set
of samples can be measured simultaneously over a series of
time points, which results in 3D gene-sample-time microar-
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ray data [6]. Even in the traditional ‘market-basket’ anal-
ysis, it is not uncommon to have consumer information on
a number of dimensions, e.g., region-time-items data that
stores the sales of itemsets in certain locations over certain
time periods. This trend motivates us to extend existing 2D
frequent closed pattern analysis to 3D context. We refer to
the frequent closed pattern in 3D context as frequent closed
cube (FCC). Designing efficient algorithms to discover FCCs
is the theme of this paper.

Association analysis based on FCCs can deliver more in-
teresting information in 3D context. Let us first take biolog-
ical microarray datasets for example. Association analysis
based on FCCs can reveal patterns about how the expres-
sion of one gene may be associated with the expression of a
set of genes under a set of environments during a set of time
points. Given such information, we can easily infer that the
genes involved participate in some kind of gene networks.
Moreover, such association rules can be used to relate the
expression of genes to their cellular environments and time
periods simultaneously. Such associations can help to detect
cancer genes in different cancer developing stages, especially
when cancer is caused by a set of genes acting together in-
stead of a single gene. Like clustering, gene function can be
inferred based on the other genes in such association rule.
Next, we give an example in ‘market basket’ analysis. While
the association analysis based on 2D frequent pattern rep-
resents a set of items that is likely to be purchased together
in a set of transactions, a 3D FCC over a sales (region-time-
items) dataset would represent a set of items that is likely to
be purchased together in several locations over a set of time
periods. Such information would enable suppliers to deploy
their products to chains located at different places during
certain periods where consumers share similar purchasing
behaviors.

In this paper, we tackle the problem of mining FCC from
3D datasets. Our contributions are as follows. First, we
introduce the notion of FCC and formally define it. Sec-
ond, we propose two approaches to mine FCCs. The first
approach is a three-phase framework, called Representative
Slice Mining algorithm (RSM) that exploits 2D FCP mining
algorithms to mine FCCs. The basic idea is to transform a
3D dataset into a set of 2D datasets, mine the 2D datasets
using an existing 2D FCP mining algorithm, and then prune
away any frequent cubes that are not closed. The second
method is a novel scheme, called CubeMiner, that operates
directly on the 3D dataset to mine FCCs. Third, we also
show how RSM and CubeMiner can be easily extended to
exploit parallelism. Finally, we have implemented RSM and
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CubeMiner, and conducted experiments on both real and
synthetic datasets. To our knowledge, there has been no
prior work that mine FCCs.

The rest of this paper is organized as follows. Section 2
reviews some related works. In Section 3, we formally de-
fine the FCC mining problem. Section 4 presents the pro-
posed RSM framework, while Section 5 presents the pro-
posed CubeMiner algorithm. In Section 6, we show how
RSM and CubeMiner can be extended to exploit parallelism.
Section 7 reports experimental results on RSM and Cube-
Miner, and finally, we conclude in Section 8.

2. RELATED WORK
Traditionally, frequent pattern mining algorithms [1, 18,

14] typically generate a large number of patterns and many
of them are redundant. To reduce the number of frequent
patterns, frequent closed pattern (FCP) mining algorithms
have been proposed. A-close [10] uses a breadth-first search
to find FCPs. CLOSET [11] and CLOSET+ [16] adopt a
depth-first, feature enumeration strategy. CLOSET uses a
frequent pattern tree for a compressed representation of the
dataset. CLOSET+, an enhanced version of CLOSET, uses
a hybrid tree-projection method to build conditional pro-
jected table in two different ways according to the density
of the dataset. Both MAFIA [4] and CHARM [17] use a
vertical representation of the datasets. MAFIA adopts a
compressed vertical bitmap structure while CHARM enu-
merates closed itemsets using a dual itemset-tidset search
tree and adopts the Diffset technique to reduce the size
of the intermediate tidsets. Since these methods adopt a
feature enumeration strategy, they cannot efficiently handle
datasets with a large number of features (columns).

More recently, several schemes have been designed to han-
dle “large columns small rows” datasets. In [8], the scheme
CARPENTER combines depth-first, row enumeration strat-
egy with some efficient search pruning techniques. In [9],
COBBLER dynamically switches between feature enumer-
ation and row enumeration depending on the data charac-
teristic in the process of mining. Both schemes, however,
cannot handle dense datasets. In [3], D-miner was proposed
to identify closed sets of attributes (or items) for dense and
highly-correlated boolean contexts. D-miner generates and
employs a set of cutters (containing “0” information) to di-
vide the whole dataset into small dense spaces.

Although the above-mentioned algorithms perform well
in their respective application domains in 2D datasets, they
cannot mine FCCs in 3D context.

In [13], a scheme was proposed to discover calendric asso-
ciation rules. Although time intervals are taken as a third
dimension, they are pre-defined by users as calendric in-
formation. Hence, no thorough enumeration on the third
dimension is employed and no ‘close’ constraint is put on
any dimension. In [12], sequential pattern mining is stud-
ied in multi-dimensional context. However, it is still 2D
frequent pattern mining along with multi-dimensional pro-
jected database. The third or even the fourth dimensions
do not fully enumerate on different entries as what the two
base dimensions do, and different entries on the third/fourth
dimension are only employed to divide the data records into
different projected groups. Moreover, no “close” relation-
ships between the third/fourth dimension and the two base
dimensions are delivered. Thus, these works cannot be ex-
tended to mine FCCs.

More recently, [6] and [19] proposed clustering algorithms
to analyze clusters on 3D microarray data, however, such
algorithms cannot be employed to mine 3D frequent closed
patterns.

In this paper, we attempt to mine FCCs that deliver
“close” relationships among three dimensions. That is, we
want to find the maximum patterns in a 3D context. The
3D pattern is maximum in that an increase in any dimen-
sion will cause a direct decrease in at least one of the other
two dimensions; i.e., no further expansion in any dimension
can be made on the pattern.

3. PRELIMINARIES
We shall first define some notations that we will be using

throughout this paper, and then give the problem descrip-
tion.

Let R = {r1, r2, . . . , rn} denote a set of rows, C = {c1, c2,
. . . , cm} denote a set of columns, and H = {h1, h2, . . . , hl}
denote a set of heights. Then a three-dimension dataset can
be represented by a l×n×m binary matrix O = H×R×C =
{Ok,i,j} with k ∈ [1, l], i ∈ [1, n] and j ∈ [1, m]. Each cell
okij corresponds to the relationship among height hk, row
ri, and column cj . The value true (i.e., “1”) denotes the
relationship that any two dimensions are “simultaneously
contained (S-contained)” in the third one.

Table 1 shows an example of a three-dimension dataset in
Boolean context. In Table 1, h1 and r4 are S-contained in
c3 and c5, denoted as C(h1×r4) = {c3, c5}; h2 and c5 are S-
contained in r1 and r4, denoted as R(h2 × c5) = {r1, r4}; r2

and c1 are S-contained in h1 and h3, denoted as H(r2×c1) =
{h1, h3}.

Table 1: Example of Binary Data Context.
H = h1

R/C c1 c2 c3 c4 c5

r1 1 1 1 0 1
r2 1 1 1 0 0
r3 1 1 1 1 1
r4 0 0 1 0 1

H = h2

R/C c1 c2 c3 c4 c5

r1 1 1 1 1 1
r2 0 1 1 1 0
r3 1 1 1 1 0
r4 1 1 1 0 1

H = h3

R/C c1 c2 c3 c4 c5

r1 1 1 1 0 0
r2 1 1 1 0 0
r3 1 1 1 1 0
r4 1 1 0 1 1

Definition 3.1 Height Support Set and H-Support:
Given a set of rows R′ ⊆ R and a set of columns C′ ⊆ C, the
maximal set of heights that simultaneously contain R′ and
C′ is defined as the Height Support Set H(R′ × C′) ⊆ H.
The number of heights in H(R′ × C′) is defined as the H-
Support of (R′×C′), denoted as |H(R′×C′)|. For example,
in Table 1, let R′ = {r1, r2} and C′ = {c1, c2, c3}, then
H(R′ ×C′) = {h1, h3} since both h1 and h3 simultaneously
contain {r1, r2} and {c1, c2, c3}, and no other heights contain
them simultaneously.
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We can define Row Support Set R(C′ × H ′) and R-
Support |R(C′ × H ′)|, and also Column Support Set
C(R′ × H ′) and C-Support |C(R′ × H ′)| in a similar way.

Definition 3.2 Closed Cube: Given a set of rows R′ ⊆
R, a set of columns C′ ⊆ C, and a set of heights H ′ ⊆ H,
a cube A = (H ′ × R′ × C′) ⊆ O is defined as a Closed Cube
if (1) R′ = R(C′ ×H ′); (2) C′ = C(R′ ×H ′); and (3) H ′ =
H(R′ × C′). For clarity, A = (H ′ × R′ × C′) is written as
A = (H ′, R′, C′). Moreover, conditions (1), (2) and (3) are
referred to as “closed” in row set, column set and height set
respectively. Intuitively, a closed cube is complete (with all
‘1’s inside) and maximal (no larger complete cubes contain
it).

Definition 3.3 Frequent Closed Cube (FCC): A cube
A = (H ′, R′, C′) ⊆ O is called a frequent closed cube if (1) the
H-Support |H(R′ × C′)|, R-Support |R(H ′ × C′)|, and C-
Support |C(R′×H ′)| are higher than the minimum H-Support
threshold (minH), minimum R-Support threshold (minR),
and minimum C-Support threshold (minC) respectively; and
(2) A is a closed cube. For example, given that minH =
minR = minC = 2, the cube A = {h1, h3} × {r1, r2, r3} ×
{c1, c2, c3} will be a frequent closed cube in Table 1. How-
ever, A′ = {h1, h3} × {r2, r3} × {c1, c2, c3} is not a frequent
closed cube in that {r2, r3} �= R({h1, h3} × {c1, c2, c3}) =
{r1, r2, r3}. For clarity, cube A′ = {h1, h3} × {r2, r3} ×
{c1, c2, c3} is written as A′ = (h1h3, r2r3, c1c2c3).

Problem Definition: Given a three-dimension dataset
O, our problem is to discover all frequent closed cubes with
respect to the user support thresholds minH, minR, and
minC.

4. REPRESENTATIVE SLICE MINING
In this section, we propose a framework, called Repre-

sentative Slice Mining (RSM), to mine FCCs. Under this
framework, any 2D FCP mining algorithms can be adapted
to work on the 3D dataset. This framework is based on the
idea that the 3D dataset O = H×R×C can be presented as
O = H×SliceR×C . Hence, any dimension such as H set can
be enumerated first, which results in all possible combina-
tions of slices. Then on each combination of slices, 2D FCP
algorithms can be applied on the other two dimensions such
as R and C. Finally, a post-processing strategy is applied on
the results to remove unclosed cubes due to the first enumer-
ated dimension H. Based on this idea, we divide the RSM
framework into three phases. In phase 1, representative slice
is generated based on one-dimension enumeration and slices
combination; in phase 2, any 2D frequent closed pattern
mining algorithm can be applied to mine 2D FCPs on each
representative slice; in phase 3, a post-pruning scheme is
applied to remove FCCs unclosed in the enumerated dimen-
sion. We shall present the details of the three phases below,
before discussing the correctness of the scheme.

4.1 Representative Slice Generation
In phase 1, we first take the height dimension H as our

base dimension1, and enumerate set H = {h1, h2, . . . , hl} to
get all subsets of H (denoted H ′) such that |H ′| >= minH.

1Note that we can pick any of the dimensions as the base
dimension. In fact, as we shall see, because the base di-
mension has to be enumerated over all combinations of its
values, picking the dimension that has the smallest number
of values is a good heuristic. WLOG, we shall use the height
dimension for our discussion.

Given the dataset in Table 1 for example, let minH = 2,
we will get the subsets {h1, h2}, {h1, h2, h3}, {h1, h3}, and
{h2, h3}.

Second, slices within the same subset are combined to
form a new representative slice (RS). Given a 3D dataset
O = H × R × C = {Ok,i,j} with k ∈ [1, l], i ∈ [1, n] and
j ∈ [1, m], and let H ′ = {h1, . . . , hx} be the subset to be
combined. Then the RS of H ′ can be represented as a
n × m matrix such that ∀O′

i,j ∈ RS, O′
i,j =

∑x
k=1 ∩Ok,i,j

where i ∈ [1, n] and j ∈ [1, m]. That is, the cell value of the
representative slice is 1 only when all of its make-up values
are 1; otherwise, the cell value is 0. And we say that the
heights in H ′ “contribute to” the RS of H ′. The 2nd col-
umn of Table 2 shows the representative slices of the above
example.

4.2 2D FCP Generation
In phase 2, any existing FCP mining algorithm can be

applied on each representative slice to mine 2D FCPs based
on dimensions R and C. In our experiments, we adopted
D-Miner [3] as it has been shown to be efficient on relatively
dense datasets with long patterns. After mining, we will
have a set of 2D FCPs for R and C dimensions. For our
running example, the FCPs are shown in the 3rd column of
Table 2.

4.3 3D FCC Generation by Post-pruning
In phase 3, 3D frequent patterns are generated by com-

bining each 2D FCP with the heights contributing to its
representative slice. However, not all those 3D frequent
patterns are FCCs. Some of them are not closed in the
height set and should be pruned off. For example, in Ta-
ble 2, after combining the first 2D FCP “r1r3 : c1c2c3, 2 : 3”
with the contributing heights “h2, h3”, a 3D frequent pattern
“h2h3 : r1r3 : c1c2c3, 2 : 2 : 3” is generated. This 3D fre-
quent pattern is not a FCC in that it is unclosed in the height
set and has a superset “h1h2h3 : r1r3 : c1c2c3, 3 : 2 : 3”(the
4th FCC in the 4th Column of Table 2). That is, the 2D
FCP is not only contained in slices h2 and h3, but also con-
tained in slice h1.

To remove all unclosed 3D frequent closed patterns, we
develop a post-pruning strategy based on Lemma 1. If a 2D
FCP is contained in other height slices besides its contribut-
ing height slices, it is unclosed and hence can be removed;
otherwise, it is retained.

Lemma 1. Post-pruning Strategy: Let O′ = H ′ × R′ ×
C′ be a 3D frequent pattern and H be the whole height set.
If ∃H ′′ ∈ (H \ H ′) such that ∀hk ∈ H ′′, ∀ri ∈ R′, ∀cj ∈
C′, Ok,i,j = 1, O′ is unclosed in the height set and can be
pruned off; otherwise, O′ is retained.

Proof: ∃H ′′ ∈ (H \H ′) such that ∀hk ∈ H ′′, ∀ri ∈ R′, ∀cj ∈
C′, Ok,i,j = 1. So, there exists Os = ((H ′′ ∪H ′)×R′ ×C′),
which is the superset of O′ = (H ′ × R′ × C′). Hence, O′ is
not closed in the height set, which contradicts the condition
(3) of Closed Cube definition. That is, O′ is not a closed
cube and should be pruned off. �

In the post pruning process, not all relative cells in all
non-contributing slices are checked. During the slice check-
ing process, any one cell with value ‘0’ can stop one slice
checking. And any slice passing the checking process (all
relative cells value ‘1’) without early termination can stop
other slices’ checking process in that the pattern is already
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Table 2: RSM Example (minH = minR = minC = 2).
Height Set Representative Slices 2D FCPs 3D FCCs

h2, h3 11100 r1r3 : c1c2c3, 2 : 3
01100 r1r3r4 : c1c2, 3 : 2 h2h3 : r1r3r4 : c1c2, 2 : 3 : 2
11110 r1r2r3 : c2c3, 3 : 2
11001

h1, h3 11100 r1r2r3 : c1c2c3, 3 : 3 h1h3 : r1r2r3 : c1c2c3, 2 : 3 : 3
11100
11110
00001

h1, h2 11101 r1r4 : c3c5, 2 : 2 h1h2 : r1r4 : c3c5, 2 : 2 : 2
01100 r1r3 : c1c2c3, 2 : 3
11110 r1r2r3 : c2c3, 3 : 2
00101

h1, h2, h3 11100 r1r3 : c1c2c3, 2 : 3 h1h2h3 : r1r3 : c1c2c3, 3 : 2 : 3
01100 r1r2r3 : c2c3, 3 : 2 h1h2h3 : r1r2r3 : c2c3, 3 : 3 : 2
11110
00001

confirmed to be unclosed. This strategy ensures that we
finish the close checking process as early as possible. For
the example in Table 2, after the post-pruning process, the
resulting FCCs are shown in the 4th column.

Theorem 1. Let FCCs be the set of frequent closed cubes
of a 3D dataset. Let ξ denote the resultant frequent closed
cubes obtained from running RSM on the dataset. Then
FCCs = ξ. In other words, RSM correctly generates all
and only all FCCs.

Proof: Let MineFCP (RS) denote the 2D FCP mining al-
gorithm on slice RS. First, we prove that FCCs ⊆ ξ. Let δ
be the set of unclosed 3D frequent patterns removed by the
post-pruning strategy. Given any FCC O′ = H ′ × R′ × C′,
then there must exist a representative slice RSH′ such that
H ′ contributes to RSH′ . That is, (R′ × C′) ⊆ RSH′ . Since
R′ × C′ is closed for H ′, (R′ × C′) ⊆ MineFCP (RSH′).
Hence, O′ ∈ (ξ ∪ δ). As proved in Lemma 1, the post-
pruning strategy only removes unclosed 3D frequent pat-
terns, so O′ /∈ δ. Thus, O′ ∈ ξ. Hence, we conclude that
FCCs ⊆ ξ.

Next, we prove ξ ⊆ FCCs by contradiction. Assume
there exists a 3D pattern O′ ∈ ξ but O′ /∈ FCCs. Then O′

is either not satisfied by monotonic support constraints or
not closed. Suppose that O′ = H ′×R′×C′ does not satisfy
minH threshold, then RSH′ will be pruned off during subset
enumeration, and O′ will not be generated. Suppose that O′

does not satisfy minR or minC threshold, then (R′ × C′)
of O′ will be pruned off during 2D FCP generation, and
O′ will not be generated. This is contrary to the assump-
tion. Hence, we gather that O′ satisfies monotonic support
constraints but it is not closed.

Suppose that O′ is not closed in the H set, then there
exists a closed FCC O′′ = (H ′ ∪ Ha) × R′ × C′ such that
∀hk ∈ Ha, ri ∈ R′, cj ∈ C′, Ok,i,j = 1, where Ha ∈ (H \H ′).
Hence, in the post-pruning process, O′ is pruned off, which is
contrary to the assumption that O′ ∈ ξ. Thus, we conclude
that O′ is closed in the H set.

Suppose that O′ is not closed in the R set, then there
exists a closed FCC O′′ = H ′×(R′∪Ra)×C′ such that ∀hk ∈
H ′, ri ∈ (R′ ∪ Ra), cj ∈ C′, Ok,i,j = 1, where Ra ⊆ (R \ R′).
Hence, ((R′ ∪ Ra) × C′) ⊆ RSH′ . Then ((R′ ∪ Ra) × C′) ⊆

MineFCP (RSH′) and R′×C′ is pruned off by the 2D FCP
mining algorithm in that it is unclosed in the row set. Hence,
O′ cannot be generated, which is contrary to the assumption
that O′ ∈ ξ. Thus, we conclude that O′ is closed in the R
set. Using the same logic, we can prove that O′ is closed in
the C set.

Now that we conclude that O′ is closed and satisfies all
monotonic constraints. Hence, O′ ∈ FCCs and our assump-
tion that there exists a 3D pattern O′ ∈ ξ but O′ /∈ FCCs
is wrong. That is, ξ ⊆ FCCs. So, our RSM framework for
mining FCCs is correct in that ξ = FCCs. �

5. CUBEMINER
While RSM has the advantage that it can reuse existing

FCP mining algorithms, the number of 2D slices could be
large. In this section, we present a novel approach that mine
FCCs directly from the 3D dataset. We shall first present
the principle behind our proposed CubeMiner scheme. Then,
we will look at the algorithm, and finally we shall show the
correctness of CubeMiner.

5.1 CubeMiner Principle
CubeMiner is a novel algorithm for mining FCC (H ′, R′, C′)

under constraints. It builds the sets H ′, R′, and C′ and uses
monotonic support threshold constraints simultaneously on
H, R, and C to reduce the search space. A FCC indicates
that all its heights, rows, and columns are in “S-contained”
relation.

We use Z to denote a set of cell groups which are partitions
of the false values (i.e., “0”) of the boolean matrix. An
element (W, X, Y ) ∈ Z is called a “cutter” if ∀hk ∈ W ,
∀ri ∈ X, and ∀cj ∈ Y , Ok,i,j = 0. And we call W, X, Y the
left atom, middle atom, and right atom of cutter (W, X, Y )
respectively. We summarize the “0” cells row by row, hence,
Z contains as many cutters as rows in all height slices of the
3D data matrix. Each cutter is composed of the cell valued
by 0 in the row. Table 3 shows the 10 cutters of the matrix
in Table 1. The cutters are sorted by ascending order of left
atom first and middle atom second.

CubeMiner starts with the whole dataset O(H, R, C) and
then splits it recursively using the cutters of Z until all cut-
ters in Z are used and consequently all cells in each resulting
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Table 3: Z(cutter set).
W, X, Y
h1, r1, c4

h1, r2, c4c5

h1, r4, c1c2c4

h2, r2, c1c5

h2, r3, c5

h2, r4, c4

h3, r1, c4c5

h3, r2, c4c5

h3, r3, c5

h3, r4, c3

cube have the value 1. A cutter (W, X, Y ) in Z is used to
cut a cube (H ′, R′, C′) if W ∩ H ′ �= ∅, X ∩ R′ �= ∅, and
Y ∩ C′ �= ∅. In this case, we say that the cutter is “ap-
plicable” to the cube. By convention, we define the left
son of (H ′, R′, C′) by (H ′ \ W, R′, C′), the middle son by
(H ′, R′ \X, C′) and the right son by (H ′, R′, C′ \Y ). Recur-
sive splitting leads to all FCCs, but also some non-maximal
unclosed cubes. Pruning Strategies need to be applied to en-
sure that we obtain all FCCs and only the FCCs. We shall
consider how to develop such pruning strategies. Figure 1
shows the tree generated from the 3D matrix in Table 1.

From Figure 1, we see that the 10 cutters in Table 3 split
the original dataset into the resulting leaves in 10 steps (lev-
els). We define the steps from the root to a node as the
node’s “path”. Each node is split into three new nodes in
the next level if the cutter is applicable. We only keep and
show nodes satisfying support thresholds (given minH =
minR = minC = 2) due to space limitation. However,
in each level, not all nodes generated are useful for further
splitting. There are four categories of useless nodes:

(a) Left son from a middle/right branch by the cutter
whose left atom has cut the node’s path before. For ex-
ample, the left atom h1 of cutter (h1, r2, c4c5) has already
cut the paths of left sons L(h2h3, r2r3r4, c1c2c3c4c5) (a1 in
Level 2) and L(h2h3, r1r2r3r4, c1c2c3c5) (a2 in Level 2) in
Level 2. a1 from the middle branch is unclosed in row
set and a2 from the right branch is unclosed in column
set. They are to be pruned off as the subsets of node
L(h2h3, r1r2r3r4, c1c2c3c4c5) (1st node in Level 1).

(b) Middle son from a right branch by the cutter whose
middle atom has cut the node’s path before. For example,
the middle atom r2 of cutter (h2, r2, c1c5) has already cut the
path of middle son M(h1h2h3, r1r3, c1c2c3) (b1 in Level 4).
This middle son is unclosed in column set and should be
pruned off as the subset of node M(h1h2h3, r1r3, c1c2c3c5)
(2nd node in Level 3). Middle sons b2, b3 and b4 are all
in such cases: they are either duplicates or subsets of other
nodes.

(c) Nodes that are unclosed in height set. For exam-
ple, node R(h2h3, r1r3, c1c2c3) (c1 in Level 7) is unclosed in
height set because there exists its superset node R(h1h2h3,
r1r3, c1c2c3) (5th node in Level 5). Such nodes should be
pruned off to ensure closure in height set. Nodes c2, c3, c4

are all such examples.
(d) Nodes that are unclosed in row set. For example, node

R(h1h2h3, r2r3r4, c1c2c3) (d1 in Level 2) is unclosed in row
set because there exists its superset node R(h1h2h3, r1r2r3r4,
c1c2c3) (6th node in Level 2). Such nodes should be pruned

off to ensure closure in row set. Node R(h2h3, r1r4, c1c2c3)
(d2 in Level 7) is also one such example to be pruned off as
it is not closed due to row r3. Note that there exists some
nodes that are closed in row set although they may have
a temporary superset node in the processing. For exam-
ple, node R(h1h2h3, r3r4, c3c5) (d3 in Level 3) has a tempo-
rary superset node R(h1h2h3, r1r3r4, c3c5) (d4 in Level 3).
Though node d3 appears to be temporarily ‘unclosed’ due to
row r1, we detect that after applying a later cutter (h3, r1, c4

c5) in level 7, node d4 loses its superset status, and d3’s off-
spring L(h1h3, r3r4, c3c5) (d5 in Level 7) just serves as a
reason to remove the middle son M(h1h3, r3r4, c3c5) (b2, an
offspring of d4) safely. Hence, such row set nodes which are
temporary unclosed during processing are retained in that
they are row set closed in the whole scenario.

To remove useless nodes of (a) and (b) types, we maintain
two sets TL = {W1, W2, . . . , Wp}, TM = {X1, X2, . . . , Xq}
in each node to keep track of the left and middle atoms of
cutters that cut its path. And based on the two sets, we
develop Left Track Checking in Lemma 2 and Middle Track
Checking in Lemma 3. In the initial status, TL = TM = ∅
for the root. Since only left sons from a middle/right branch
need to be checked, TL set is updated only on a newly gen-
erated middle/right son. Similarly, since only middle sons
from a right branch need to be checked, TM set is updated
only on a newly generated right son. We shall denote the
TL (and TM) set of node O as TLO (and TMO).

Lemma 2. Left Track Checking: Let L = (H ′ \W, R′, C′)
be the left son of node O′ = (H ′, R′, C′) by cutter z =
(W, X, Y ). If W ∩ TLO′ �= ∅, L can be pruned off.

Proof: Since W ∩ TLO′ �= ∅, W ⊆ TLO′ , hence ∃z′ =
(W, X ′, Y ′) ∈ Z cuts O′’s ancestor O′

a = (H ′
a, R′

a, C′
a). Let

Ol = (Hl, Rl, Cl) be the left sibling of O′
a by cutter z′. Then,

either (1) Hl = H ′
a \ W, R′

a = Rl \ X ′ ⊂ Rl, C
′
a = Cl or

(2) Hl = H ′
a \W, R′

a = Rl, C
′
a = Cl \ Y ′ ⊂ Cl. Since cutters

between z′ and z are all with left item W , which are not
applicable to Ol, Ol remains unchanged after all z′ to z
cuttings and H ′ \ W = H ′

a \ W = Hl, R
′ ⊆ Ra, C′ ⊆ C′

a.
So, in both (1) and (2), we can draw the conclusion that
L ⊂ Ol. Hence, L can be pruned off. �

For example, in Figure 1, the left son L(h2h3, r2r3r4, c1c2

c3c4c5) (a1 in level 2) of parent P (h1h2h3, r2r3r4, c1c2c3c4c5)
(2nd node in level 1) by cutter (h1, r2, c4c5) is pruned off in
that W ∩ TLp = {h1} �= ∅.

Lemma 3. Middle Track Checking: Let M = (H ′, R′ \
X, C′) be the middle son of node O′ = (H ′, R′, C′) by cutter
z = (W, X, Y ). If X ∩ TMO′ �= ∅, M can be pruned off.

We can use the same logic in Lemma 2 to prove the cor-
rectness of Lemma 3, and hence we omit it here.

For example, in Figure 1, the middle son M(h1h2h3, r1r3,
c1c2c3) (b1 in level 4) of parent P (h1h2h3, r1r2r3, c1c2c3)
(4th node in level 3) by cutter (h2, r2, c1c5) is pruned off in
that X ∩ TMp = {r2} �= ∅.

To remove useless nodes of (c) and (d) types, we develop
Close Height Set Checking in Lemma 4 and Close Row Set
Checking in Lemma 5

Lemma 4. Close Height Set Checking: Let O′′ = (H ′′, R′′,
C′′) be the middle/right son of node O′ and Z be the whole
cutter set. If ∃hw ∈ (H \ H ′′) (H is the full height set
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Figure 1: FCC Mining Tree.
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of O) such that ∀({hw}, {rx}, Cy) ∈ Z where rx ∈ R′′,
C′′ ∩ Cy = ∅, then O′′ is unclosed in the height set and
can be pruned off. Since the left son never satisfies the con-
dition, only the middle and right sons need this checking.

Proof: ∃hw ∈ (H \ H ′′) such that ∀({hw}, {rx}, Cy) ∈ Z
where rx ∈ R′′, C′′∩Cy = ∅, i. e., ∀Ow,x,y ∈ ({hw}, R′′, C′′),
Ow,x,y = 1. So, there exists Os = (H ′′ ∪ {hw}, R′′, C′′),
which is the superset of O′′ = (H ′′, R′′, C′′). Hence, O′′ is
not closed in the height set and can be pruned off. �

For example, in Figure 1, node R(h2h3, r1r2r3, c2c3) (c2
in level 7) is not closed in the height set because there is
h1 ∈ (H \ {h2, h3}) such that for cutters (h1, r1, c4) and
(h1, r2, c4c5), {c2, c3} ∩ {c4} = ∅ and {c2, c3} ∩ {c4c5} = ∅.
And we find c2’s superset in node R(h1h2h3, r1r2r3, c2c3)
(5th node in level 4).

Lemma 5. Close Row Set Checking: Let O′′ = (H ′′, R′′,
C′′) be the left/right son of node O′ and Z be the whole cutter
set. If ∃rx ∈ (R \ R′′) (R is the full row set of O) such that
∀({hw}, {rx}, Cy) ∈ Z where hw ∈ H ′′, C′′ ∩ Cy = ∅, then
O′′ is unclosed in the row set and can be pruned off. Since
the middle son never satisfies the condition, only the left and
right sons need this checking.

Again, we can use the same logic in Lemma 4 to prove the
correctness of Lemma 5, so it is omitted here.

For example, in Figure 1, node R(h2h3, r1r4, c1c2c3) (d2
in level 7) is not closed in the row set because ∃r3 ∈ (R \
{r1, r4}) such that for cutters (h2, r3, c5) and (h3, r3, c5),
{c1, c2, c3} ∩ {c5} = ∅. And we find d2’s superset in node
R(h2h3, r1r3r4, c1c2c3) (3th node in level 6).

5.2 Algorithm CubeMiner
We are now ready to present CubeMiner algorithmically.

CubeMiner is a depth-first method to mine FCCs. Algo-
rithm 1 contains the pseudo-code of CubeMiner. First, the
left/middle track set TL/TM is initialized with empty set
and the set Z of cutters is computed, and then the recursive
function cut() in Algorithm 2 is called.

Algorithm 1 CubeMiner

1: CubeMiner()
2: Global variables: H the set of heights, R the set of rows,

C the set of columns, monotonic constraints minH,
minR, and minC on H, R, C respectively.

3: Input: 3D Matrix O with l heights, n rows and m
columns.

4: Output: ξ the set of FCCs.
5: TL ← empty(), TM ← empty();
6: Z and |Z| are computed from O;
7: ξ ← cut((H, R, C), Z, 0, |Z|, TL, TM);

Function cut() cuts a node O′ = (H ′, R′, C′) with the
first cutter Z[i] = (W, X, Y ) that satisfies the following con-
straints. First, (H ′, R′, C′) must have a non empty intersec-
tion with Z[i]. If it is not the case, cut() is called with the
next cutter.

To build the left son L = (H ′\W, R′, C′) (lines 9-14), three
checks are required: monotonic constraint check minH(H ′ \
W ), left track check, and close row set check (Rcheck() in
Algorithm 4). If L is not pruned off by the three checks,
cut() is called to process L, and there is no update on
TL, TM sets for L.

To build the middle son M = (H ′, R′ \ X, C′) (lines 15-
20), three checks are required: monotonic constraint check
minR(R′\X), middle track check, and close height set check
(Hcheck() in Algorithm 3). If M is not pruned off by the
three checks, cut() is called to process M , and the TL set
for L is updated to TL ∪ W .

To build the right son R = (H ′, R′, C′ \ Y ) (lines 21-
29), three checks are required: monotonic constraint check
minC(C′\Y ), close height set check and close row set check.
If R is not pruned off by the three checks, cut() is called
to process R, and the TL, TM sets for L are updated to
TL ∪ W, TM ∪ X respectively.

Since the size of Z and the order of cutters inside Z are
important to performance, the algorithm can be optimized
by preprocessing the 3D dataset. We adopt two heuristics.
First, we transpose the 3D data matrix to make |H| < |C|
and |R| < |C|, which helps to minimize the size of |Z|. Sec-
ond, we sort the height slices such that height slices with
more 0s are always in front of those with fewer 0s. This helps
to accelerate the mining by pruning off the search space as
early as possible.

Algorithm 2 Cutting

1: cut((H ′, R′, C′), Z, 0, |Z|, TL, TM)
2: Input: Node (H ′, R′, C′), cutters list Z, iteration num-

ber i, |Z| the size of Z, left and right atoms tracks TL
and TM .

3: Output: ξ the set of FCCs.
4: (W, X, Y ) ← Z[i];
5: if i ≤ |Z| − 1 then
6: if W ∩ H ′ = ∅ or X ∩ R′ = ∅ or Y ∩ C′ = ∅ then
7: ξ ← ξ ∪ cut((H ′, R′, C′), Z, i + 1, |Z|, TL, TM);
8: else
9: if minH(H ′ \ W ) satisfied and W ∩ TL = ∅ then

10: β ← Rcheck((H ′ \ W, R′, C′), Z);
11: if β = 1 then
12: ξ ← ξ ∪ cut((H ′ \ W, R′, C′), Z, i +

1, |Z|, TL, TM);
13: end if
14: end if
15: if minR(R′ \ X) satisfied and X ∩ TM = ∅ then
16: α ← Hcheck((H ′, R′ \ X, C′), Z);
17: if α = 1 then
18: ξ ← ξ ∪ cut((H ′, R′ \ X, C′), Z, i + 1, |Z|, TL ∪

W, TM);
19: end if
20: end if
21: if minC(C′ \ Y ) satisfied then
22: α ← Hcheck((H ′, R′, C′ \ Y ), Z);
23: if α = 1 then
24: β ← Rcheck((H ′, R′, C′ \ Y ), Z);
25: if β = 1 then
26: ξ ← ξ∪cut((H ′, R′, C′\Y ), Z, i+1, |Z|, TL∪

W, TM ∪ X);
27: end if
28: end if
29: end if
30: end if
31: else
32: ξ ← (H ′, R′, C′);
33: end if
34: return ξ;
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Algorithm 3 Close Height Set Check

1: Hcheck((H ′, R′, C′), Z)
2: Input: node (H ′, R′, C′) and cutters list Z.
3: Output: flag α.
4: if ∃hw ∈ (H\H ′) such that ∀({hw}, {rx}, Cy) ∈ Z where

rx ∈ R′ , C′ ∩ Cy = ∅ then
5: α ← 0;
6: else
7: α ← 1;
8: end if
9: return α;

Algorithm 4 Close Row Set Check

1: Rcheck((H ′, R′, C′), Z)
2: Input: node (H ′, R′, C′) and cutters list Z.
3: Output: flag β.
4: if ∃rx ∈ (R\R′) such that ∀({hw}, {rx}, Cy) ∈ Z where

hw ∈ H ′, C′ ∩ Cy = ∅ then
5: β ← 0;
6: else
7: β ← 1;
8: end if
9: return β;

Theorem 2. Let FCCs be the set of frequent closed cubes
of a 3D dataset. Let LV be the set of leaf nodes derived
from CubeMiner on the dataset. Then, FCCs = LV . In
other words, CubeMiner can correctly generate all and only
all FCCs.

Proof: First, we prove that FCCs ⊆ LV . Let (H, R, C) be
the original dataset, Z be the whole cutter set and P be the
set of pruned nodes. Since FCCs ⊆ (H, R, C), and in the
tree building process, only cells valued ‘0’ are removed off by
cutters (verified by node’s son definition) and only useless
nodes (subsets of other nodes) are pruned off (verified by
Lemma 2 to Lemma 5), hence, FCCs ⊆ (H, R, C) \ Z \ P ,
that is, FCCs ⊆ LV .

Second, we prove LV ⊆ FCCs by contradiction. Assume
there exists a leave A ∈ LV but A /∈ FCCs. Then A is
either not satisfied by monotonic support constraints or not
closed. Let A = (Ha, Ra, Ca) and Zl, Zm, Zr be the set
of cutters associated to the left, middle, right branches of
the path from the root to A respectively. During the tree
building process, each time we cut off a node’s height set, the
monotonic constraint minH is checked to be satisfied, hence,
Ha satisfies the monotonic support constraint. Similarly, Ra

and Ca both satisfy their monotonic constraints. Hence, we
gather that A is not closed.

Suppose that A is not closed in the column set, then there
exists A′ = (Ha, Ra, Ca ∪ C′

a) where C′
a ⊆ C \ Ca, and

∀hk ∈ Ha, ∀ri ∈ Ra, ∀cj ∈ Ca ∪ C′
a, Ok,i,j = 1. And since

the whole column set C is cut into Ca from the root to A
by cutters in Zr, so there exists a set of cutters Za ⊆ Zr to
cut off C′

a and ∀(W, X, Y ) ∈ Za, either (a) W ⊆ H \ Ha or
(b) X ⊆ R\Ra. Given any of A’s ancestor B = (Hb, Rb, Cb)
derived from a cutter (W, X, Y ) ∈ Za. Since B is a right son,
W ⊆ Hb, X ⊆ Rb, and the TL and TM sets are updated into
TL ∪ W and TM ∪ X respectively. For case (a), W � Ha,
there must exist a cutter in Zl to remove off W on the path

from B to A. That is, between B and A, there must exist a
left-son offspring of B. However, since the left atom of the
cutter Wl ∩ TL = W �= ∅, the left-son offspring is pruned
off and hence no A will be generated, which is contrary to
the previous assumption. For case (b), it is similar to (a):
during the process to remove off X from Rb, the middle-son
offspring of B is pruned off due to Xm ∩ TM = X �= ∅. As
a result, A will not be generated and it is contrary to the
assumption too. Hence, we conclude that the assumption is
wrong and A is closed in the column set.

Suppose that A is not closed in the row set, then there
exists A′ = (Ha, Ra ∪ R′

a, Ca) where R′
a ⊆ R \ Ra, and

∀hk ∈ Ha, ∀ri ∈ Ra ∪ R′
a, ∀cj ∈ Ca, Ok,i,j = 1. And since

the whole column set R is cut into Ra from root to A by
cutters in Zm, so there exists a set of cutters Za ⊆ Zm to
cut off R′

a and ∀(W, X, Y ) ∈ Za, either (c) W ⊆ H \ Ha or
(d) Y ⊆ C \Ca. Given any of A’s ancestor B = (Hb, Rb, Cb)
obtained from a cutter (W, X, Y ) ∈ Za. Since B is a middle
son, W ⊆ Hb, Y ⊆ Cb, and the TL set is updated into TL∪
W . Case (c)’s proof is the same as case (a) above. As for
case (d), Y � Ca, there must exist cutters in Zr to remove
off Y on the path from B to A. Let B′ = (Hb, Rb, Ca)
be the right-son offspring of B after removing Y . Since
X ∩ Rb = ∅, and X ∩ R′

a �= ∅, ∃ru = X ∩ R′
a such that

∀hk ∈ Ha, ∀cj ∈ Ca, Ok,u,j = 1. Hence B′ is not row set
closed due to ru and will be pruned off in the close row
set checking of right son building process. As a result, A
will not be generated, which is contrary to the assumption.
Hence we conclude that the assumption is wrong and A is
closed in the row set.

Suppose that A is not closed in the height set, then there
exists A′ = (Ha ∪ H ′

a, Ra, Ca) where H ′
a ⊆ H \ Ha, and

∀hk ∈ Ha ∪ H ′
a, ∀ri ∈ Ra, ∀cj ∈ Ca, Ok,i,j = 1. And since

the whole height set H is cut into Ha from the root to A
by cutters in Zl, so there exists a set of cutters Za ⊆ Zl to
cut off H ′

a and ∀(W, X, Y ) ∈ Za, either (e) X ⊆ R \ Ra or
(f) Y ⊆ C \ Ca. Like the proof in case (d), in case (e)/(f),
the ancestor of A will be pruned off as it will be unclosed
in the height set checking during middle/right son building
process. Hence, A will not be generated, and it is contrary to
the assumption. We conclude that the assumption is wrong
and A is closed in the height set.

Now, we have concluded that A is closed and satisfies all
monotonic constraints. Hence, A ∈ FCCs and our assump-
tion that there exists a leave A ∈ LV but A /∈ FCCs is
wrong. That is, LV ⊆ FCCs. So, our algorithm for mining
FCCs is correct in that LV = FCCs. �

6. PARALLEL FCC MINING
Given that FCC mining is computationally expensive, a

solution to reduce the response time is to exploit parallelism.
In this section, we shall show how our proposed RSM and
CubeMiner can be parallelized easily.

In general, a parallel algorithm typically comprises three
logical phases: (a) a task generation phase that splits the
original task into smaller sub-tasks; (b) a task allocation
phase that assigns the sub-tasks to the processors; (c) a
task execution phase where every processor operates on the
allocated sub-tasks. An important factor in parallelism is
to minimize interference during the execution phase, so that
all processors can operate independently and concurrently
without having to communicate with one another.

It turns out that both RSM and CubeMiner fit nicely into
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the above framework: tasks can be generated and allocated
to processors to be executed independently.

• Parallel RSM. In RSM, the mining of each repre-
sentative slice corresponds to a task, in other words,
the maximum number of tasks is the number of eu-
merations of the base dimensions (those enumerations
that do not meet the minimum thresold requirement
are dropped). Each of these tasks can be allocated to
a processor, and can be processed independently.

• Parallel CubeMiner. In CubeMiner, each branch
of the tree splitting process can be processed indepen-
dently, and thus, each branch corresponds to a task.
In other words, we can allocate a branch of the tree
splitting process to a processor.

For both Parallel-RSM and Parallel-CubeMiner, to ensure
that the tasks can be processed independently each proces-
sor requires a copy of the entire dataset. This is necessary
so that the post-pruning phase can be performed indepen-
dently. Fortunately, the communication overhead (to trans-
mit the dataset to all processors) is not significant: (a) the
dataset can be transmitted while the tasks are being gen-
erated, so the response time is not much affected; (b) the
communication cost is relatively small compared to the min-
ing cost.

7. EXPERIMENTAL RESULTS
We have implemented the RSM framework and CubeM-

iner in C. For the RSM framework, we employed D-Miner
[3] in phase two as the 2D FCP mining scheme. This is
because D-Miner keeps the supporting row set of each FCP
during the processing, which is important for close check
of 3D FCC. Moreover, D-Miner has been shown to per-
form well in relatively dense datasets. We conducted a per-
formance study to evaluate the efficiency of RSM against
CubeMiner, and study the optimization of CubeMiner. In
addition, we also study the parallel versions of RSM and
CubeMiner. For our experiments, we use two real 3D mi-
croarray datasets: the yeast cell-cycle regulated genes [15]
(http://genomewww.stanford.edu/cellcycle) in the Elutria-
tion Experiments and CDC15 Experiments respectively. To
study the effect of the proposed schemes on scalability, we
also use synthetic datasets generated by the IBM data gener-
ator. The generator is available at http://www.cs.umbc.edu
/∼cgiannel/assoc gen.html. All the experiments are run on
a Pentium 4 PC with 1 GB RAM.

7.1 Results from Real Microarray Datasets
In this section, we experiment on two real microarray

datasets. For the Elutritration Experiments, there are a
total of 7161 genes whose expression values are measured
from time 0 to 390 minutes at 30 minute intervals (a to-
tal of 14 time points). And for the CDC15 Experiments,
there are a total of 7761 genes whose expression values are
measured from time 70 to 250 minutes at 10 minute inter-
vals (a total of 19 time points). Finally, we use 9 of the
attributes of the raw data as the samples (e.g., the raw
values for the average and normalized signal for Cy5 and
Cy3 dyes, the ratio of those values, etc.) [19]. Thus, from
the Elutritration dataset, we obtain a 3D expression ma-
trix of size: T × S × G = 14 × 9 × 7161; and from the

CDC15 dataset, we obtain a 3D expression matrix of size:
T × S × G = 19 × 9 × 7761.

We normalize the 3D datasets to make its cell value ‘1’
or ‘0’, where value ‘1’ means high expression value and ‘0’
otherwise. For dataset O′ = T × S × G = {O′

k,i,j} with
k ∈ [1, l], i ∈ [1, n] and j ∈ [1, m]. We normalize O′ into a
T × S × G matrix O as follows:

Ok,i,j =

{
1 if O′

k,i,j ≥
∑m

j=1 O′
k,i,j

m
,

0 if O′
k,i,j <

∑m
j=1 O′

k,i,j

m
.

7.1.1 CubeMiner Optimization
Before comparing the performance of CubeMiner and the

RSM framework, we first study the optimization of CubeM-
iner. We experiment on the Elutritration dataset and sort
the original dataset by Time Slice. We first sort the time
slice such that time slices with more 0s are always in front of
those with fewer 0s, which is called “Zero Decreasing Order”;
then we sort the time slice such that time slices with fewer
0s are always in front of those with more 0s, which is called
“Zero Increasing Order”. We compare the performance of
CubeMiner on the original order, Zero Decreasing Order and
Zero Increasing Order. Figure 2 shows the results as we vary
minH, minR and minC respectively. First, we observe that
with the increase in minH, minR and minC values, regard-
less of the ordering of the datasets, the processing time of
CubeMiner decreases. This is expected since a larger thresh-
old value means that we can prune a larger space as the
answer size is smaller. Second, in all the three cases, we
observe that CubeMiner performs best on the dataset with
Zero Decreasing Order, and worst on the dataset with Zero
Increasing Order. The performance of CubeMiner on the
original dataset stays in the middle position. CubeMiner
performs best when the dataset is sorted by the Zero De-
creasing Order because applying cutters with more 0s first
will remove the patterns that do not satisfy the minimum
thresholds early. That is, it helps to prune off the search
space early, and hence accelerates the mining process. Based
on these results, in the following experiments, we adopt an
optimized version of CubeMiner that pre-sorts the datasets
in Zero Decreasing Order before performing FCC mining.

7.1.2 Vary Monotonic Constraints
In this experiment, we vary the monotonic support con-

straints minH, minR and minC, and study the perfor-
mance of RSM and CubeMiner respectively. For RSM, we
examine two versions using dimensions H and R as the base
dimensions respectively. We denote these versions as ‘RSM-
H’ and ‘RSM-R’ respectively. As we will be enumerating the
H and R dimensions, the constraint minC on dimension C
will have a relatively smaller effect. Hence, we study the
effect of minC first.

The results are shown in Figure 3. In Figure 3(a), we
see clearly that RSM-R is much faster than RSM-H. This is
because |R| < |H| and a larger enumerated dimension leads
to more representative slices. Hence, the enumeration on
the smallest dimension always leads to better performance of
RSM. When we refer to RSM in the following experiments,
we default it as taking the smallest dimension to enumerate.

We also see that the execution time of CubeMiner and
RSM-R both decrease with the increase of minC. More-
over, for the Elutritration dataset, RSM-R is faster than
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Figure 2: CubeMiner Optimization.

CubeMiner when minC is below 1000. However, CubeM-
iner catches up and performs better when minC increases
above 1100. Similarly, for the CDC15 dataset, RSM is faster
when minC is less than 1100. This is due to the underlying
working strategies of RSM and CubeMiner. As we know,
the number of cutters in CubeMiner has an important ef-
fect on the tree’s depth, and hence affects its performance.
RSM mines on each representative slice, which has much
fewer rows compared with the number of cutters in CubeM-
iner. That is, the datasets (representative slice) that RSM
works on, is much smaller than the ones (whole dataset) that
CubeMiner does. And the execution time of RSM is the
sum of the execution time on each representative slice. This
makes RSM efficient if the number of representative slices is
not large. However, the number of representative slices in-
creases very quickly with the increase of the dimension size
to be enumerated, which limits the advantage of RSM to a
great extent. That’s why RSM runs faster when the enu-
merated dimension is very small but runs much slower as
the smallest dimension grows. As we may see from RSM-H
in Figure 3 (a), when the enumerated dimension has a size
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Figure 3: Vary minC.

of 14, RSM-H performs worse than CubeMiner. And, as
we shall see shortly, in the synthetic datasets where larger
dimension size is used, this trend is more obvious.

Even when the enumerated dimension has a small size of 9
for RSM, with the increase in minC, CubeMiner catches up
quickly. This is because CubeMiner directly works on the
3D dataset which prunes off the search space as soon as pos-
sible while RSM takes time in representative slice generation
before performing space pruning.

Next, we study the variation of minH, minR on the two
3D datasets and set minC = 1000 for the Elutritration
dataset and minC = 1100 for the CDC15 dataset. The
minC values are selected such that CubeMiner has a nearly
similar but little longer processing time than RSM, to mini-
mize the effects of minC on the performance. Figure 4 and
Figure 5 show the results respectively. The relative perfor-
mance between RSM and CubeMiner remains largely the
same for the same reasons given in the other experiments.

7.1.3 Effect of Parallelism
In this experiment, we study the effect of the number of

processors on the processing time. The number of processors
is varied from 1 to 32. We present the results on the CDC15
dataset. The results are shown in Figure 6. First, we observe
that the parallel version of RSM-R outperforms the parallel
version of CubeMiner. This is because, for this experiment,
the experimental setup favors RSM-R, i.e., this is the setting
where the uniprocessor RSM-R also outperforms CubeMiner
(see Figure 3 where minC = 1000). Second, we note that as
the degree of parallelism increases, the response time also
decreases. Moreover, as in traditional parallel processing,
there is a certain “optimal” number of processors beyond
which additional parallelism leads to only marginal gain. In
this experiment, for both schemes, the speedup is good for
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Figure 4: Vary minH.

upto 8 processors. Beyond 8 processors, the speedup starts
to degrade.

7.2 Results on Synthetic Datasets
To study the scalability of our proposed schemes, we gen-

erate synthetic datasets using the IBM data generator. Since
RSM’s efficiency depends greatly on the size of the small-
est dimension, in the first set of experiments, we study the
effects of the size of smallest dimension on the execution
time. We experiment on seven syntactic datasets with 30%
density (percentage of cells with value one), 20 rows, 1000
columns, and the number of heights varied from 8 to 20.
We set minH = minR = 3, and minC = 30 for all the ex-
periments. Figure 7 shows the execution time in logarithm
(second) scale. We see that the execution time of RSM and
CubeMiner increase with increasing height number. We also
observe that RSM’s execution time increases much faster as
the size of the heights increases. For larger datasets, Cube-
Miner is clearly much more efficient than RSM.

To study the scalability on large dataset, we generate syn-
tactic datasets with 100 heights, 100 rows, 10000 columns,
and 10% density. We study the execution time of RSM and
CubeMiner with the variation of minH, minR, and minC.
RSM failed to finish processing after long hours even on very
high support constraints, which is incomparable to CubeM-
iner. Even its parallel version takes longer time than Cube-
Miner. This is because, with 100 heights, the number of
slices to be enumerated is very large. Hence, we only report
the execution time of CubeMiner and its parallel version
P-CubeMiner with 8 processors (the “optimal” number) in
Figure 8. From the results, we can confirm that (for the
dataset used) 8 processors offer very good speedup. More-
over, we note that the parallel version of CubeMiner can
reduce the computational cost significantly.
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From the experiments on synthetic datasets, we see that
CubeMiner scales well on large datasets while RSM works
efficiently only on datasets with a small size in one dimen-
sion.

8. CONCLUSION
In this paper, we have generalized 2D frequent closed

pattern mining into 3D context. We defined the model of
3D frequent closed pattern – Frequent Closed Cube (FCC).
We proposed two schemes to mine FCCs - while the Rep-
resentative Slice Mining framework (RSM) enables us to
reuse existing 2D frequent closed pattern mining algorithm,
CubeMiner operates on the 3D space directly. We also
presented parallel versions of the two schemes. We con-
ducted extensive performance study on both real and syn-
thetic datasets. Our results showed that both schemes can
mine FCC efficiently, in particular, CubeMiner is superior
for large datasets, while RSM performs best when one of the
dimensions is small. Moreover, the parallel versions of both
schemes can further reduce the computation time signifi-
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cantly. As future research, we plan to study 3D association
rule analysis and classifier based on frequent closed cubes.
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