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ABSTRACT
Data stream management systems may be subject to higher input
rates than their resources can handle. When overloaded, the sys-
tem must shed load in order to maintain low-latency query results.
In this paper, we describe a load shedding technique for queries
consisting of one or more aggregate operators with sliding win-
dows. We introduce a new type of drop operator, called a “Window
Drop”. This operator is aware of the window properties (i.e., win-
dow size and window slide) of its downstream aggregate operators
in the query plan. Accordingly, it logically divides the input stream
into windows and probabilistically decides which windows to drop.
This decision is further encoded into tuples by marking the ones
that are disallowed from starting new windows. Unlike earlier ap-
proaches, our approach preserves integrity of windows throughout
a query plan, and always delivers subsets of original query answers
with minimal degradation in result quality.

1. INTRODUCTION
Stream processing engines (SPEs) [8, 10, 21] have been shown

to be useful for many modern applications that have very high in-
put rates and that need low-latency response to a set of continuous
queries. Applications that have this characteristic include network
traffic monitoring, industrial process control, and sensor networks.

Providing meaningful service even under system overload is one
of the key challenges for stream processing engines. We assume
that overloads occur as temporary bursts. If an overload is sus-
tained, then the system is not provisioned properly, and an SPE
will likely not be able to provide acceptable guaranteed service.
Under such bursty conditions, queues will build up, thereby seri-
ously increasing the latency of results. Thus, if we are to operate
within the given latency bounds, there may be no alternative but to
shed load by dropping some tuples. Dropping tuples will produce
an approximation to the correct result. The goal then becomes to
develop load shedding algorithms that remove an overload and at
the same time minimize the degradation of the result.

The load shedding problem has been studied earlier. Two al-
ternative approximation models have been commonly used. One

∗ This work has been supported by the NSF, under the grants IIS-0086057
and IIS-0325838.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

model produces approximate answers by omitting tuples from the
correct answer [6, 11, 18, 23, 26]. In this model, all delivered tuples
are guaranteed to be asubsetof the exact answer. This property is
important since it allows the application to rely on the tuples that it
receives to be correct. The challenge here is to provide the largest
possible subset. An alternate approach to degrading the result is to
emit nearly the same number of tuples, each of which might be in-
accurate [7]. The challenge in this case is to ensure that the errors
are bounded by some amount. It is an application-level decision
as to whether it is better to have all values, some of which may be
inaccurate, or fewer values, all of which are accurate. The work
described in this paper is based on the subset result model.

Our subset-based approximation assumption is motivated by sev-
eral real-life applications. For example, consider the case of a dis-
tributed, multi-player game. An SPE could be used as the pub-
lish/subscribe engine that distributes events to interested client ma-
chines [3]. In many cases like this, the output stream is a sequence
of updates. Each new tuple updates the previous one. It is impor-
tant for the play of the game that positions of players and weapons
be reported accurately. An error in a position could cause the client
program to simulate a “hit” when one has not occurred. Thus, in
this example, it would be better to slow down the play (produce
“jerky” images) than to do the wrong thing.

Aggregates play a key role in many data stream applications.
Often we would like to produce a computation on ranges of con-
secutive input tuples (a window) as an arbitrary user-defined func-
tion. Most recent stream processing systems provide full support
for user-defined aggregates (e.g., [2, 19]). With such a capability,
it is highly likely to use them at arbitrary places in a query plan.
Thus,nested user-defined aggregateshave proven to be essential in
various applications, ranging from habitat monitoring with sensors
to online auctions [24], and highway traffic monitoring [5].

As a concrete example, consider the query plan in Figure 1, that
computes the number of times in an hour that IBM’s high price and
low price in a 5-minute window differ by more than 5. Box 2 is a
user-defined aggregate that collects all prices for a symbol in a 5-
minute window, and then emits a tuple that contains the difference
between the high and the low price. This stream is then filtered
to retain differences that are larger than a given threshold, in this
case, 5. A downstream aggregate then counts these extreme price
differences. This kind of behavior can nest to an arbitrary depth.

Filter FilterFilter Aggregate

2 3 4 5

Aggregate

symbol="IBM" window = 5 min
slide = 5 min

diff = high − low

diff > 5 window = 60 min
slide = 60 min

count

count > 0

1

Figure 1: An example nested aggregation query
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Load shedding techniques devised so far have applied drops in
units of individual tuples. Drops are implemented as a specific op-
erator, and this operator is pushed toward the inputs to avoid wasted
work. A major limitation of this approach is that windowed opera-
tors such as aggregates, either block the motion of such drops (e.g.,
drop must be placed between box 4 and box 5 in Figure 1), or result
in non-subset answers if drops are pushed across them. Further-
more, if inexact answers are produced through load shedding in the
middle of the query plan, it is difficult to understand how this er-
ror will propagate through subsequent downstream operators. This
further limits the query topologies across which such drops can be
placed (e.g., there can be at most one aggregate operator in the
query, at the leaf of the query tree [7]).

In this paper, we introduce a new approach which applies drops
in units of windows. This approach never produces wrong values
and does not suffer from any of the problems mentioned above.
It further enables the placement of drops at early points in a query
plan (e.g., before box 1 in Figure 1), maximizing the amount of pro-
cessing saved while keeping the error under control. More specif-
ically, in this paper, we study the problem of load shedding for
aggregation queries over data streams. The main contributions of
our work can be listed as follows:

• We propose a novel load shedding approach for windowed
aggregation queries which guarantees to deliver subset re-
sults.

• Our technique is general enough to handle arbitrary (user-
defined) aggregate functions, multiple levels of aggregate nest-
ing, and shared query plans.

• Regardless of where the aggregates appear in a query plan,
our approach enables pushing drops across them, to early
points in the plan, maximizing the amount of processing saved.

• We mathematically analyze the correctness and performance
of our approach.

• We experimentally evaluate the performance of our approach
on a stream processing system prototype.

The rest of this paper is organized as follows: Section 2 presents
an overview of models and assumptions underlying the stream pro-
cessing environment that we consider. Our subset-based, window-
aware load shedding approach is presented in detail in Section 3.
We present an experimental evaluation of this approach in Section
4. Section 5 summarizes the related work in this area. Finally,
we conclude in Section 6, outlining potential avenues for future
research.

2. BACKGROUND
The work presented in this paper is part of the Aurora/Borealis

1 stream processing system [1, 2]. We first give a brief overview
of our stream processing system with emphasis on its load shedder
component, followed by a detailed discussion of other models and
assumptions that are particularly relevant to the work described in
this paper.

2.1 System Overview
We model a data stream as an append-only sequence of tuples

with a uniform schema. Embedded in each tuple, is a header that
carries system-assigned annotations such as tuple’s arrival times-
tamp. Continuous queries are defined through a boxes-and-arrows-
based dataflow diagram, which we call aquery network. Each box
1Borealis is a distributed stream processing system. Each Borealis node
runs Aurora as its underlying query processing engine.

T = 1/2

input arrival timeline

output delivery timeline

21 3 4 5 6

L=2 L=3 L=4

T = 1/2

input arrival timeline

output delivery timeline

2 3 4 5 6

L=2 L=2 L=2

1

T = 1/2 tuple/sec

2 sec/tuple
cost = 1 tuple/sec

With load shedding:

Figure 2: A simple overload scenario

in this diagram represents a query operator and each arc represents
a data flow or a queue between the operators. Common subexpres-
sions can be shared across multiple queries by allowing multiple
arcs to emanate from a single box. Details of our data and query
model are further described in earlier work [2].

The load shedder component, which is the focus of this paper,
continuously monitors CPU load of a running query network. If
an overload is detected, drop operators are inserted into the query
network. These operators discard a certain fraction of their input
tuples to remove excess load from the system with minimal degra-
dation in quality of the delivered result.

Let us illustrate the basic idea of load shedding on a simple over-
load scenario. Consider the query in Figure 2 with a CPU cost of
2 seconds per input tuple. Also assume that the input arrives at the
rate of 1 tuples per second. The input arrival timeline shows the
points where a new tuple arrives with the indicated timestamp, and
the output delivery timeline shows the points where a result with
that timestamp is delivered. Since the system can only process 1
tuple every 2 seconds, a queue starts to build up and latency of out-
put tuples (L) starts increasing due to the queue waiting time. The
query throughput (T) is 1/2 tuples delivered per second. Now as-
sume that the load shedder inserts a drop at the query input which
drops 50% of its input. In Figure 2, tuples with bold timestamps
are the ones that are kept, while the italic ones are dropped. In this
case, the input rate will decrease to 1/2 tuples per second, and the
query will be able to keep up with the reduced input rate. As a re-
sult, there will be no queueing and tuple latencies will be limited
by the processing cost which is 2 seconds. Furthermore, the query
throughput will still be 1/2 tuples delivered per second. Hence,
by shedding load, both latency can be reduced and also the output
application can be updated with the highest possible throughput
frequency. Therefore, results do not get stale.

We studied this general notion of load shedding for data stream
management systems in our earlier work [26]. In this paper, we
build on our previous framework to enable load shedding on queries
with sliding window aggregates.

2.2 Aggregation Queries
An aggregation queryis composed of one or more aggregate

operators along with other operators. Aggregate operators act on
windows of tuples. Before we define the aggregate operator, we de-
scribe how we model its two important building blocks: windows
and aggregate functions.
The Window Model. Data streams are continuous sequences of
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data records that may have no end. Traditional set operations like
join or aggregate may block or may require unbounded memory if
data arrival is unbounded. Most applications, however, require pro-
cessing on finite portions of a stream rather than the whole. Each
such excerpt is called awindow. Windows can be modeled in var-
ious ways [16]. In our system, there are two ways to physically
build windows: (i) attribute-based windows, and (ii) count-based
windows. In the first case, an attribute is designated as the win-
dowing attribute (usually time), and consecutive tuples for which
this attribute is within a certain interval constitute a window (e.g.,
stock reports over the last 10 minutes). Here, tuples are assumed
to arrive in increasing order of their windowing attributes. In the
second case, a certain number of consecutive tuples constitute a
window (e.g., the last 10 readings from the temperature sensor).
Our system also uses a sliding window model in which a window’s
endpoints move by a given amount to produce the next window.
The Aggregate Function.An aggregate functionF takes in a win-
dow of values and performs a computation on them.F can be a
standard SQL-style aggregate function (sum, count, average, min,
max) or a user-defined function. Aggregate functions in our sys-
tem have the formF(init, incr, final), such that theinit
function is called to initialize a state when a window is opened;
incr is called to update that state whenever a tuple that belongs
to that window arrives; andfinal is called to convert the state to
a final result when the window closes. Note that, as will soon be-
come apparent, our approach is in fact independent of the particular
aggregate functions used in a query.
The Aggregate Operator.An aggregate operatorAggregate(S,
T ,G,F , ω, δ) has the following semantics. It takes an input stream
S, which is ordered in increasing order on one of its attributes de-
noted byT , which we call thewindowing attribute. If T is not
specified,Aggregate requires no order on its input stream. In prac-
tice,T usually corresponds to tuple timestamps which can either be
embedded in the tuple during its generation at the source (e.g., tem-
perature readings from a sensor, recorded with the time they were
measured), or can be assigned by the stream processing system at
arrival time. From here on, we will use the terms “timestamp” and
“windowing attribute” interchangeably.
S is divided into substreams based on optional group-by attribu-

te(s)G, if specified. Each substream is further divided into a se-
quence of windows on which the aggregate functionF is applied.
Aggregate’s window properties are defined by two important pa-
rameters:window sizeω andwindow slideδ. These parameters
can be defined in two alternative ways: (i) in units of the window-
ing attributeT (e.g., time-based window), (ii) in terms of number
of tuples (i.e., count-based window). According to the time-based
windowing scheme, a windowW consists of tuples whose times-
tamp values are less thanω apart. WhenAggregate receives a tu-
ple whose timestamp is equal to or greater than the smallest times-
tamp inW + ω, W has to be closed. Whileω denotes how large
a window is and thus when it should be closed,δ denotes when
new windows should be opened. Everyδ time units,Aggregate
has to open a new window. We assume that0 < δ ≤ ω. When
δ = ω, we say that we have atumbling window. Otherwise, we say
that we have asliding window. Tumbling windows constitute an in-
teresting case because they partition a stream into non-overlapping
consecutive windows.

Aggregate outputs a stream of tuples of the form(t, g, v), one
for each windowW processed.t is the smallest timestamp of the
tuples inW , g is the value of the group-by attribute(s) (skipped
whenG is not specified), andv is the final aggregate value returned
by thefinal function ofF . In this paper, we will assume thatS
consists of a single group and windows are time-based. Extensions

.. 30 15 30  20 10 30 .. 25 20
Average

.. 30 15 30  20 10 30 .. _ 15 _   20 10 _ .. 15 15
AverageDrop
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50%

Window
Drop
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Figure 3: Drop alternatives for an aggregate

to more general forms of aggregates are provided in the technical
report version of the paper [27].

2.3 The Subset-based Approximation Model
Approximate answers result from dropping tuples. We will shed

load such that the delivered answer is a subset of the original an-
swer, and the size of this subset is the largest possible. In case of
multiple queries, the goal is to maximize the amount of total per-
cent tuple delivery.

Additionally, we assume that each output application also spec-
ifies a threshold for its tolerance togaps. Gap represents a suc-
cession of tuples missing from the result. For example, we have
worked on a sensor network application [25], in which a person’s
physiological measurements must be delivered at least once per
minute, i.e., losing or choosing not to deliver results observed more
frequently is acceptable. We call the maximum output gap to which
an application can tolerate thebatch size. The system must guar-
antee that the amount of consecutive output tuples missed due to
load shedding never exceeds this value. Note that batch size can
be defined in terms of tuple counts or time units. In this paper, we
assume the former.

Note that batch size puts a lower bound on loss. Given a batch
sizeB, the query must at least deliver 1 tuple out of everyB +
1 tuples. Therefore, the fraction of tuples delivered can never be
below1/(B + 1). Under heavy workload, it may not be possible
to remove excess load while still meeting all applications’ bounds
onB. In this case, we apply “admission control” on queries, where
the most costly queries whose bounds can not be met have to be
completely shut down (by inserting drops at their inputs with drop
probabilityp = 1).

2.4 Load Shedding on Aggregates
In our subset-based load shedding framework, queries deliver

values all of which would also occur in the exact answer; no new
values are generated. As such, this framework has to address an im-
portant challenge when windowed aggregates are involved: drop-
ping individual tuples from streams does not guarantee subset re-
sults when such streams are to be processed by windowed aggre-
gates.

Let us illustrate our point with a simple example. Consider the
aggregate operator in Figure 3, which computes 3-minute averages
on its input in a tumbling window fashion. If we place a tuple-
based random drop before the Average which cuts the load down
by 50%, then we obtain a non-subset result of nearly the same size
as the original. In this case, the load between the Tuple Drop and
the Average is reduced by a factor of 50%, but the load is the same
downstream from the Average. Alternatively, we can place the Tu-
ple Drop after the Average, which drops tuples after the average
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has been computed. In this case, we produce a subset result of
smaller size. However, load reduction has been achieved too late
in the query plan, and we do not save from the computation of the
aggregate. As a result, there is a tradeoff between achieving subset
results and reducing load early in a query plan. We need a mech-
anism which would drop load before the Average, but would still
produce a subset result.Windowed aggregates deliver subset re-
sults if and only if they operate on original windows as indivisible
units. This observation led us to invent a new type of drop oper-
ator, called aWindow Drop. As shown in Figure 3, the Window
Drop can be placed before the Average, and applies drops in units
of windows. As a result, it can achieve early load reduction without
sacrificing the subset guarantee. Furthermore, our approach is gen-
eral enough to allow user-defined and nested aggregates to appear
anywhere in the query plan, even when there is sharing. We next
describe this approach in detail.

3. WINDOW-AWARE LOAD SHEDDING
In this section, we present our subset-based, window-aware load

shedding approach for aggregation queries over data streams. We
show how various types of aggregation queries are handled through
the use our new Window Drop operator.

3.1 The Window Drop Operator
A window drop operatorWinDrop(S, T ,G, ω, δ, p,B) takes

six parameters in addition to an input streamS. T denotes the win-
dowing attribute,G denotes the group-by attribute(s),ω denotes the
window size,δ denotes the window slide,p denotes the drop proba-
bility, andB denotes the drop batch size. TheT ,G, ω, δ parameters
of WinDrop are derived from the properties of the downstream
aggregate operators.p is determined by the load shedder according
to the amount of load to be shed. Finally,B is derived based on the
requirements of the output applications.

The basic functionality ofWinDrop is to encode window keep/
drop decisions into stream tuples to be later decoded by down-
stream aggregate operators.WinDrop logically divides its input
streamS into time windows of sizeω, noting the start of a new
window everyδ time units. For every group ofB consecutive win-
dows,WinDrop makes a probabilistic keep/drop decision. Each
decision is an independent Bernoulli trial with drop probabilityp.
The drop decision for a window is encoded into the tuple which is
supposed to be the window’s first (or starter) element, by annotat-
ing this tuple with awindow specificationvalue.

Each tuple has a window specification attribute as part of its
system-assigned tuple header, with a default value of -1. To allow
a downstream aggregate to open a window upon seeing a tuplet,
WinDrop sets the window specification attribute oft to a positive
value for the windowing attributeT . This value not only indicates
that a window can start at this tuple, but also indicates until which
T value the succeeding tuples should be retained in the stream to
ensure the integrity of the opened window. To disallow a down-
stream aggregate from opening a window upon seeing a tuplet,
WinDrop sets the window specification attribute oft to 0. Table
1 summarizes the semantics for the window specification attribute.

Consider an aggregate operatorAggregate(F , ω, δ) 2 and as-
sume that we would like to place a window drop beforeAggregate.
In order to dropp fraction from the output ofAggregate, we in-
sertWinDrop(ω, δ, p,B) atAggregate’s input. Note that the first

2We do not showS when the input stream is clear from the context. From
here on, we also drop theT andG parameters from both aggregate and win-
dow drop, simply assuming that windows are commonly defined on time,
andS consists of a single group.

Window Specification Description

-1 don’t care
0 window disallowed

τ
window allowed;
must preserve tuples withT < τ

Table 1: Window specification attribute

two parameters ofWinDrop are directly inherited fromAggregate
so thatWinDrop can divide the input stream into windows in ex-
actly the same way asAggregate would. Then it decides which of
those windows should be dropped and marks their starter elements.
Finally, when a tuplet is received byAggregate, Aggregate ex-
aminest’s window specification attribute and skips windows that
are disallowed. As a result of this, we save system resources at mul-
tiple levels. First, when a window is skipped,Aggregate need not
open and maintain state for that window. In other words,Aggregate
does less work upon seeing tuples that arrive immediately aftert
because there is one fewer open window that those tuples can con-
tribute to. Second, whenAggregate skips a window, it produces
no output for that window, thereby reducing data rate and saving
from processing in the downstream subnetwork. Third,WinDrop
not only encodes window specifications into tuples, but it is also ca-
pable of actually dropping tuples under certain conditions, which
we call anearly drop. More specifically, tuples that are marked
with a negative window specification value and that are beyond the
T range imposed by the most recently seen positive window speci-
fication value can be dropped right away, without waiting to be seen
by a downstream aggregate. Early drops are discussed in detail in
Section 3.4. It should be emphasized here that the ability to move a
drop upstream from an aggregate enables us to continue pushing it
toward the inputs. This is important as it can save computation for
the complete downstream subquery from where it ends up.

3.2 Handling Multiple Aggregates
There are two basic arrangements of aggregates in a query net-

work: (1) a pipeline arrangement, (2) a fan-out arrangement. Ta-
ble 2 summarizes the rules for setting window drop parameters for
these two arrangements. Any query network can be handled using
a composition of these two rules. We now discuss these rules and
how we derived them in detail.
Pipeline Arrangement of Aggregates.A query arrangement with
a sequence of operators where each operator’s output is fed into
another one is called apipeline arrangement.

Assume that we havek aggregates,Ai(Fi, ωi, δi), 0 < i ≤ k,
pipelined in ascending order ofi, as shown in the first row of Ta-
ble 2. We would like to dropp fraction from the output ofAk by
placingWinDrop(ω, δ, p,B) before the leftmost operator in the
pipeline (A1). WinDrop must have a slideδ that is equal to the
slide of the last aggregateAk in the pipeline. The reason for this is
thatAk is the last operator that divides the stream into windows and
produces one output everyδk time units. Droppingp fraction from
Ak ’s output requires that we encode a drop decision once every
δk time units. Furthermore,WinDrop must have a window size
which will guarantee the preservation of all tuples of a windowW
whenW is kept. If we only hadAk, the window size would sim-
ply beωk. However, there arek−1 aggregates precedingAk, each
with its own corresponding window of tuples to be preserved. To be
on the safe side, we consider the following worst case scenario: To
produce an output tupletm with timem, Ak needs outputs ofAk−1

in the range[tm, tm+ωk
); Ak−1 in turn needs outputs ofAk−2 in

the range[tm, tm+ωk+ωk−1−1); and so on. Finally,A2 needs out-
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Aggregate Arrangement Parameters for WinDrop

Pipeline:

Aggregate Aggregate
WinDrop B

A1 Ak

(Fk, ωk, δk)(F1, ω1, δ1)(ω, δ, B)

ω =
Pk

i=1 ωi − (k − 1)
δ = δk

B

Fan-out:

non−aggregate
operator

some

Aggregate

Aggregate

WinDrop

Bk

Ak

(F1, ω1, δ1)

(Fk, ωk, δk)

B1

A1

(ω, δ, B)

ω = lcm(δ1, . . . , δk)
+maxk

i=1{extent(Ai)}
whereextent(Ai) = ωi − δi

δ = lcm(δ1, . . . , δk)
B = mink

i=1{
Bi

lcm(δ1,...,δk)/δi
}

Table 2: Rules for setting window drop parameters

puts ofA1 in the range[tm, tm+ωk+...+ω2−(k−2)) andA1 needs
stream inputs[tm, tm+ωk+...+ω1−(k−1)) in order to guarantee the
desired range. Therefore,WinDrop has to preserve a window
of sizeω1 + . . . + ωk − (k − 1) whenever it decides to retain a
window, which forms its effective window size. Note that this is
a conservative formulation, based on the worst case scenario when
each aggregate’s window slide is such that the last time value in a
window opens up a new window. As such, it is an upper bound
on the required window size forWinDrop. Finally, the batch size
parameterB of WinDrop is assigned as specified by the output
application at the end of the pipeline.

The simple example in Figure 4 illustrates the pipeline arrange-
ment rule. We show a query that consists of two aggregates.A1

has a window size and slide of 3 and 2 respectively, followed by
A2 with window size and slide of 3 each. We first show how an in-
put stream with the indicated time values is divided into windows
by these aggregates consecutively. Then we show the correspond-
ing WinDrop to be placed before this arrangement. According to
our pipeline arrangement rule,WinDrop must have a window size
and slide of 5 and 3 respectively. Hence, it divides the input stream
as shown, marking the tuples that correspond to window starts. No-
tice howWinDrop considers input tuples with time values in the
range[1, 6) as an indivisible window unit to produce a result tuple
with time value of 1. The original query uses exactly the same time
range to produce its result with time value of 1.
Fan-out Arrangement of Aggregates.A query arrangement with
an operator whose output is shared by multiple downstream branch-
es is called afan-out arrangement.

When there are aggregates at child branches of a fan-out, we
need aWinDrop which makes window keep/drop decisions that
are common to all of these aggregates. Assumek sibling aggre-
gates,A1(F1, ω1, δ1), . . . , Ak(Fk, ωk, δk), as in the second row
of Table 2. A commonWinDrop for all aggregates would have a
drop probability ofp, a window slide of lcm(δ1, . . . , δk) and a win-
dow size of lcm(δ1, . . . , δk)+max(extent(A1), . . . , extent(Ak)
), whereextent(Ai) = ωi − δi. δ = lcm(δ1, . . . , δk) repre-
sents the lowest common multiple of slides of all sibling aggre-
gates, i.e., everyδ time units, all aggregates start a new window at
the same time point. AssumeT to be such a time point where
all aggregates meet to start a new window.extent(Ai) repre-
sents the number of time units thatAi needs beyondT in order
to cleanly close its most recently opened window.Ai must have
opened a window atT − δi, because its next window will be start-

ing atT . Therefore, its extent beyondT is ωi − δi. We take the
maximum of all the aggregates’ extents so that all aggregates can
cleanly close their open windows. As a result, the logical win-
dow that encloses all aggregate siblings must have a window size
of ω = lcm(δ1, . . . , δk) + max(extent(A1), . . . , extent(Ak)).
In other words, window slideδ is formulated such that each time
WinDrop slides, it positions itself to where all of the aggregates,
A1 throughAk, would attempt to start new windows. Window size
ω is formulated such that when a keep decision is made, enough
of the range is kept to preserve integrity of all of the aggregates’
windows. Finally, the batch size ofWinDrop is the minimum al-
lowed by all sibling aggregates. Note that we need to scale each
aggregate’s batch sizeBi before computing the minimum. This
scaling is required because, whenWinDrop slides once,Ai slides
lcm(δ1, . . . , δk)/δi times. Hence, lcm(δ1, . . . , δk)/δi consecutive
windows forAi correspond to 1 window forWinDrop.

The example in Figure 5 illustrates the fan-out arrangement rule.
We show a query that consists of two sibling aggregates. Window
sizes and slides of these aggregates are the same as in the pipeline
example of Figure 4. Both aggregates receive a copy of the stream
emanating from their parent, but they divide it in different ways
based on their window parameters. We first show how this is done
together with the extents and common window start positions for
the aggregates. Both aggregates start new windows at time values
1 and 7.A1 has an extent of 1 (i.e., its last window before a new
window starts at 7 extends until 8).A2 has an extent of 0 (i.e.,
its last window completely closes before a new window opens at
7). Based on these, we show the correspondingWinDrop that
must be placed before this aggregate arrangement.WinDrop must
have a window size and slide of 7 and 6 respectively. This way,
it makes window keep/drop decisions at time values where both
A1 andA2 expect to open new windows. Furthermore, in case of
a keep decision,WinDrop retains all tuples required to cleanly
close open windows of both of the aggregates.
Composite Arrangements.We will now briefly illustrate the com-
position of the rules in Table 2. Assume thatA0 in Figure 5 is an
aggregate withω0 = 4 andδ0 = 1 (i.e.,A0(4, 1)). Thus, we have a
combined arrangement with two pipelines and a fan-out. There are
two alternative ways to constructWinDrop for this arrangement:

1. We first apply the fan-out rule onA1 andA2, which gives
usWinDrop(7, 6) as illustrated in Figure 5. Then we apply
the pipeline rule onA0(4, 1) and WinDrop(7, 6), which
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Figure 5: Fan-out example

gives usWinDrop(10, 6).

2. We first apply the pipeline rule on paths[A0(4, 1), A1(3, 2)]
and [A0(4, 1), A2(3, 3)], which gives usWinDrop(6, 2)
andWinDrop(6, 3), respectively. We then apply the fan-
out rule on these, which gives usWinDrop(10, 6).

3.3 Decoding Window Specifications
As mentioned earlier in Section 3.1, window drop attaches win-

dow specifications to tuples that are potential window starters. The-
se specifications further indicate the fate of those windows and need
to be decoded by downstream aggregates in order for them to take
the right action. In this section, we describe how this decoding
mechanism works.

Table 3 summarizes how an aggregateAggregate with window
size ω decodes the window specifications coded by a preceding
WinDrop. First assume thatAggregate receives a tuple with
time valuet and according to the slide parameter ofAggregate, a
new window has to start att (upper half of Table 3). If the tuple has
a positive window specificationτ , thenAggregate opens a new
window with a window specification attribute ofτ − (ω − 1) (i.e.,
when this window closes and produces an output tuple, the window
specification of this output tuple will beτ − (ω − 1)). Aggregate
also has to make sure that all successive tuples with time values up
to τ − (ω − 1) are retained in the stream (i.e.,Aggregate sets its
keepuntil variable toτ−(ω−1)). If the tuple has a non-positive (0
or -1) window specification, thenAggregate checks ift is within
the time range that it must retain (i.e., ift < keepuntil). If so,
a new window is opened with the given window specification and
the keep range is set tomax(keepuntil, t+ω). If not, Aggregate
skips this window.

Now assume thatAggregate receives a tuple with time valuet
whereAggregate does not expect to open a new window (lower
half of Table 3).Aggregate will not open any new window. How-
ever, it has to still maintain the window specification attribute in
the tuple for other downstream aggregates’ disposal (if any). The
two important specifications areτ and 0, the former indicating the
opening of a window and the latter indicating the skipping of a
window. If the specification is -1,Aggregate does not need to
do anything. If the tuple has a positive window specificationτ ,
Aggregate updates its time range as well as the window specifi-
cation of the tuple. In both of the non-negative cases,Aggregate
marks this tuple as afake tuple. A fake tuple is one which has no

win start? win spec keepuntil relevant action

yes τ within open window
keepuntil = τ − (ω − 1)
win spec =τ − (ω − 1)

yes τ beyond open window
keepuntil = τ − (ω − 1)
win spec =τ − (ω − 1)

yes 0 within open window
keepuntil = t + ω, (if >)

yes 0 beyond skip window
yes -1 within open window

keepuntil = t + ω, (if >)
yes -1 beyond skip window

no τ within keepuntil = τ − (ω − 1)
win spec =τ − (ω − 1)
mark as fake tuple

no τ beyond keepuntil = τ − (ω − 1)
win spec =τ − (ω − 1)
mark as fake tuple

no 0 within mark as fake tuple
no 0 beyond mark as fake tuple
no -1 within ignore
no -1 beyond ignore

Table 3: Decoding window specifications

real content but only carries a window specification value that may
be significant to some downstream aggregates. Such tuples should
not participate in query computations and should be solely used for
decoding purposes.

We must point out here that fake tuples have one other impor-
tant use. A query network may have other types of operators lying
between a window drop and the downstream aggregates which are
supposed to decode window specifications generated by the win-
dow drop. We must make sure that window specifications correctly
survive through such operators. For example, assume that the filter
between the two aggregates in Figure 1 (box 3) decides to drop a
tuplet from the stream since this tuple does not satisfy its predicate.
If t is carrying a non-negative window specification, then we can
not simply discard it. Instead, we must markt as a fake tuple and
let it pass through the filter. This is becauset is carrying a message
for the downstream aggregate (box 4) about whether to open or to

804



skip a window at a particular time point.
Note that it can be argued that fake tuples introduce additional

tuples into the query pipeline. However, since these are not real tu-
ples, operators except aggregates will just pass them along without
doing any processing on them, whereas aggregates will check the
flag to see if they should open a window. Hence, it is unlikely that
fake tuples will drive the system into overload.

3.4 Early Drops
Window drop not only marks tuples, but it can also drop some

of them. In this section, we discuss how this early drop mechanism
works. We start with a useful definition.

DEFINITION 1 (WINDOW COUNT FUNCTION (WCF)).Con-
sider a streamS with tuples partially ordered in increasing order
of their time values. Assume that the very first tuple inS has a
time value ofθ. Consider an aggregateAggregate(S, ω, δ), where
ω = m ∗ δ + φ, m ≥ 1, 0 ≤ φ < δ. We define a Window Count
FunctionWCF : Z

∗ → N, that maps time valuet to the number
of consecutive windows to which tuples witht belong as:

WCF (t) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

i + 1, if t ∈ [θ + i ∗ δ, θ + (i + 1) ∗ δ − 1]
where0 ≤ i < m

m + 1, if t ∈ [θ + i ∗ δ,
θ + (i − m) ∗ δ + ω − 1]

wherei ≥ m
m, if t ∈ [θ + (i − m) ∗ δ + ω,

θ + (i + 1) ∗ δ − 1]
wherei ≥ m

Note that the first case only occurs once at the start of the stream.
Thereafter, the second and the third cases occur repeatedly one after
the other. If the aggregate window is tumbling (i.e.,ω = δ), then
the second case has a time range length of 0, i.e., it is skipped.
Also, the first case is equivalent to the third case sincem = 1. As
a result, for tumbling window aggregates,WCF (t) = m = 1 for
all tuples (i.e., each tuple belongs to only 1 window).

RULE 1 (EARLY DROPRULE). If a tuple with time valuet
belongs tok windows (i.e.,WCF (t) = k), then this tuple can be
early-dropped if and only if the window drop operator decides to
drop all of thesek windows.

If a window drop operatorWinDrop flips a coin every time it
observes a potential window start and decides to drop that window
with probabilityp, then for an early drop,WinDrop has to flip the
coin fork consecutive times, which has probabilitypk. Unlessp is
a big number ork is a small number (e.g., in the case of a tumbling
window), then the probability of an early drop is very small. In-
stead, to take advantage of early drops, we use the following (more
deterministic) drop mechanism: We mentioned in Section 2.3 that,
to indicate its tolerance to gaps in the answer, each query specifies
a constantB for the maximum number of consecutive windows that
can be shed. Given a drop probabilityp, WinDrop flips the coin
once for every batch ofB windows and drops themall with prob-
ability p. Based on the window count functionWCF , dropping
B consecutive windows corresponds to a certain number of early
drops. Note that to satisfyB, at least one window has to be opened
after each dropped batch. If the coin yields two consecutive drops,
then we allow the first window of the second batch to open and
compensate for it later by skipping a window when in fact the coin
yields a keep. This ensures that we satisfy bothB andp.

3.5 Window Drop Placement
In general, load reduction should be performed at the earliest

point in a query plan to avoid wasted work. However, there may
be certain situations where placing drops at inner arcs of the query

plan might be more preferable than placing them at the input arcs.
We will briefly discuss these situations.

UnlessB is large enough to allow early drops (i.e.,B ≥ ⌊ω
δ
⌋),

there is no benefit in placing a window drop operatorWinDrop
further upstream than the leftmost aggregate in the pipeline. For the
pipeline arrangement, as we placeWinDrop further upstream, the
difference betweenω andδ widens (i.e.,m = ⌊ω

δ
⌋ in Definition 1

grows). Similarly, for the fan-out arrangement, bothω andδ may
get larger across a split whileB may get smaller.WinDrop must
be placed at the earliest point in the query where it saves processing
while also not violating the constraints onB.

Although not so common, a query plan may have multiple aggre-
gates with different sliding window properties over the same data
stream (e.g., a pipeline arrangement with a mix of count-based and
time-based windows, and/or with different group-by attributes). In
this case, the window drop must be placed at a point where such
properties are homogeneous downstream. It requires further inves-
tigation to extend our framework to handle the heterogeneous case.

3.6 Analysis
Next we mathematically analyze our approach for correctness

and performance.
DEFINITION 2 (CORRECTNESS). A drop insertion plan is said

to be correct if it produces subset results at query outputs.
THEOREM 1. Window drop inserted aggregation queries pre-

serve correctness.
PROOF. The proof for this theorem has two parts, one for each

aggregate arrangement. We can prove each by induction. Con-
sider a pipelineP of N aggregatesAi(ωi, δi). Given a finite input
streamS, assume that the result ofP(S) is the setA, and the re-
sult for the window drop inserted version,P ′(S), is the setA′. For
N = 1, WinDrop(ω, δ) is inserted beforeA1 such thatω = ω1,
δ = δ1. Everyδ1 time units,WinDrop marks a tuplet as ei-
ther keep (τ , whereτ = t.time + ω), or drop (0). WhenA1

receivest with specification ofτ , it opens a new window att.time
and retains all tuples in time range[t.time, τ). In this case,A1

delivers an output tupleo ∈ A. WhenA1 receivest with a 0 or
−1 specification, it does not open a window. In this case,A1 adds
no output tuple to the result. Therefore,A′ ⊆ A. Next, assume
that the theorem holds forN = n. We will show that it must also
hold for N = n + 1. We are given that aWinDrop(ω, δ), with
ω =

Pn
i=1 ωi − (n − 1) and δ = δn, inserted beforeA2 pre-

serves correctness. Consider a windowW at A1 with a time range
of [T, T + ω1 − 1], when processed produces an aggregate out-
put with time valueT . Any aggregate downstream fromA1, that
includes a tuple with timeT in its window effectively incorporates
S values with time up toT + ω1 − 1. Therefore, ifWinDrop′ is
placed beforeA1, its effective window size must include this range
to preserve window integrity. As a result,WinDrop′ must have a
window size ofω′ = ω+ω1−1 =

Pn
i=1 ωi − (n−1)+ω1−1 =

Pn+1
i=1 ωi − (n + 1− 1). This proves our window size formulation

for a pipeline ofn + 1 aggregates. Finally, in order to produce
subset results, theWinDrop′ must produce results eitherδn+1

apart or in multiples of this quantity. Therefore,WinDrop′ must
have a window slide ofδ′ = δn+1. This concludes the first part of
our proof. The part for the fan-out case follows a similar inductive
reasoning, therefore we do not discuss it here.

We now analyze the effect of window drop on CPU performance.
We also compare it against the random drop alternative [26]. Con-
sider a query network as in Figure 6, where an aggregateA(ω, δ) is
present between two subnetworks of other non-aggregate operators,
whose total costs and selectivities are as shown. The CPU cycles
needed to process one input tuple across this query network can be
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Figure 6: Inserting drops into an aggregation query

estimated ascost1+sel1∗(cost2+sel2∗cost3). If the input stream
has a rate ofR tuples per time unit, then the CPU load as processing
cycles per time unit isR∗ (cost1 + sel1 ∗ (cost2 + sel2 ∗ cost3)).

If a random drop were inserted downstream from the aggregate
operator, the CPU load would become:

LRDrop = R ∗ (cost1 + sel1 ∗ (cost2 + sel2 ∗ (costRDrop+
(1 − p) ∗ cost3)))

The CPU cycles saved as a result of this would be:
SRDrop = R∗(sel1 ∗sel2 ∗p∗cost3−sel1 ∗sel2 ∗costRDrop)

Instead, if a window drop were inserted at the query input, the CPU
load would become:

LWinDrop = R ∗ (costWinDrop + cost′1 + cost′2
+sel1 ∗ sel2 ∗ (1 − p) ∗ cost3)

cost′1 = costfcheck + selw1 ∗ cost1 + selw2 ∗ costcopy

cost′2 = selw1

δ
∗ costwcheck + selw2 ∗ costwcheck

+selw1 ∗ sel1 ∗ cost2
SUBNET1 first checks if a tuple is fake or not (costfcheck). As-
sumeselw1 of tuples fromWinDrop are normal andselw2 of
them are fake. Then, the former are processed normally (selw1 ∗
cost1), and the latter are just copied across toA (selw2 ∗costcopy).
A checks window specification attributes for ones to be opened
( selw1

δ
∗costwcheck) and for ones to be skipped (selw2∗costwcheck).

Then, tuples in the former group go through normal aggregate pro-
cessing (selw1 ∗ sel1 ∗ cost2). The CPU cycles saved would be:

SWinDrop = R∗ (sel1 ∗ sel2 ∗ p ∗ cost3 + (1− selw1) ∗ cost1
+(1− selw1)∗ sel1 ∗ cost2 − costWinDrop

−costfcheck − selw2 ∗ costcopy

−( selw1

δ
+ selw2) ∗ costwcheck)

If we compareSRDrop with SWinDrop, we see thatSWinDrop has
two additional savings terms: it saves from the aggregate operator’s
cost (cost2) as well as from the first subnetwork’s cost (cost1) with
an amount determined byselw1 (as a result of any potential early
drops). On the other hand, there are three additional cost terms for
handling the flags introduced byWinDrop. We expect these costs
to be much smaller than the savings ofWinDrop. We experimen-
tally show the processing overhead of window drop in Section 4.

Let us now briefly show howselw1 andselw2 can be estimated.
For simplicity, we will assume a stream with one tuple per time
value. We drop windows in batches of sizeB. By definition, each
drop-batch must be preceded and followed by at least one keep-
window. The total number of tuples in a batch is(B − 1) ∗ δ + ω
(see Figure 8). Given a drop-batch,2 ∗ (ω− δ) of its tuples overlap
with the preceding and the following keep-windows, therefore the
number of tuples that belong only to the drop-batch is(B + 1) ∗
δ−ω. These are the tuples that can be early-dropped (assuming that
B ≥ ⌊ω

δ
⌋). This many tuples out of a total of(B−1)∗δ+ω can be

early-dropped and this would occur with probabilityp. Therefore,
we end up withselw1 = 1−p∗ (B+1)∗δ−ω

(B−1)∗δ+ω
of WinDrop’s output

tuples being kept as normal tuples. Furthermore, one tuple out of
everyδ tuples may have to be retained as a fake tuple since it carries
a 0 window specification. Thus,⌊ (B+1)∗δ−ω

δ
⌋ = (B + 1) − ⌊ω

δ
⌋

out of (B + 1) ∗ δ − ω will be additionally kept with probabilityp.

Therefore, we end up withselw2 = p ∗
(B+1)−⌊ ω

δ
⌋

(B+1)∗δ−ω
.

keep−window keep−windowdrop−batch

(B − 1) ∗ δ + ω

(B + 1) ∗ δ − ω ω − δω − δ

of B windows

Figure 8: Drop-batch (whenB ≥ ⌊ω
δ
⌋)

4. EXPERIMENTS
In this section, we experimentally evaluate our window drop ap-

proach. In Section 4.1, we first compare our approach against the
random drop alternative which can only provide the subset guaran-
tee by applying tuple-based drops when placed downstream from
all the aggregates in a query plan. As part of this initial set of
experiments, we also show the advantage of shedding load early
in a query plan, by placing the window drop operator at various
locations in a given plan and comparing the results. Then in Sec-
tion 4.2, we examine the effect of window parameters, by varying
window size and slide, and measuring the result degradation for
various query plans. We also compare these experimental results
against the analytical estimates of Section 3.6 to confirm their va-
lidity. Finally, in Section 4.3, we evaluate the processing overhead
of our technique.

We implemented the window drop operator as part of the load
shedder component of the Aurora/Borealis stream processing pro-
totype system. We conducted our experiments on a single-node
Borealis server, running on a Linux PC with an Athlon 64 2GHz
processor. We created a basic set of benchmark queries as will be
described in the following subsections. We used synthetic data to
represent readings from a temperature sensor as (time, value) pairs.
For our experiments, the data arrival rates and the query workload
were more important than the actual values of the data workload.
Thus, for our purposes, using synthetic data was sufficient.

4.1 Basic Performance
First we will show the basic performance of window drop for

both the pipeline and the fan-out (i.e., shared) query arrangements.
Nested Aggregates.For this experiment, we used the nested aggre-
gation query shown in Figure 7, which is similar to the stock count
example of Figure 1. There are two aggregate operators, each with
tumbling windows of size 10 and 100 respectively, and both with
count functions. We used a batch size of 10. We added delay oper-
ators before and after each aggregate to model other operators that
may exist upstream and downstream from the aggregates. A de-
lay operator simply withholds its input tuple for a specific amount
of time (busy-waiting the CPU) before releasing it to its successor
operator. A delay operator is essentially a convenient way to repre-
sent a query subplan with a certain CPU cost; its delay parameter
provides a knob to easily adjust the query cost. In Figure 7, we
used appropriate delay values to make different parts of the query
equally costly.

The goal of this experiment is twofold. First, we show how much
window drop degrades the result for handling a given level of ex-
cess load. Second, we compare it against two alternatives: one is
a variation of our window drop approach, where a window drop is
inserted in the middle of the query network; the other is random
drop that is placed downstream from both of the aggregates. Figure
7 illustrates these three alternative drop insertion plans.

Figure 10 presents our result. The excess rate on the x-axis rep-
resents the percentage of the input rate that is over full capacity.
The y-axis shows the drop rate (i.e. the fraction of the answer
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Figure 7: Drop insertion plans for the pipeline arrangement (RDrop,Nested1, and Nested2)
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that is missing from the result).RDrop represents random drop,
Nested1corresponds to window drop inserted in the middle, and
Nested2is for window drop placed at the input. At relatively low
input rates, RDrop shows comparable performance to window drop
approaches. However, as the rate gets higher, both Nested1 and
Nested2 scale far better than the RDrop approach. In fact, RDrop
stops delivering any results once the excess load gets beyond 65%.
Nested2 either results in equal or smaller degradation in the answer
compared to Nested1 at all load levels.

As a result, window drop is effective in handling system over-
load. It scales well with increasing input rate and outperforms the
random drop alternative. Note that the RDrop case is all that would
have been allowed by our previous work [26], since one could not
move drops past aggregates. Placing the window drop further up-
stream in a nested aggregation query significantly improves the re-
sult quality, as more load can be saved earlier in the query, which
reduces the total percentage of the data that needs to be shed.
Shared Query Plans. We repeated the previous experiment on a
shared query plan. We used a fan-out arrangement with two aggre-
gate queries as shown in Figure 9. The figure plots the three alter-
native load shedding plans that we compared.Shared WinDrop
is when window drop is placed at the earliest point in the query
plan, Split WinDrop is when each query has a separate window
drop placed after the split point, andSplit RDrop is when we ap-
ply tuple-based random load shedding downstream from the ag-
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Figure 10: Comparing alternatives (pipeline)

gregates. The parameters of the window drops are appropriately
assigned based on the rules in Table 2.

Figure 11 presents our result. The y-axis shows the total drop
rate for both of the queries, when the system experiences a certain
level of excess load. Similar to our earlier result, shedding load at
the earliest possible point in the query plan provides the smallest
drop rate, and hence, the highest result quality. Again, the win-
dow drop operator enables pushing drops beyond aggregates and
split points in a query plan, reducing quality degradation without
sacrificing the subset guarantee.

4.2 Effect of Window Parameters
Next we investigate the effect of window parameters on window

drop performance. We used a query with one aggregate operator
with a count function as shown in Figure 12. We again added delay
operators of 5 milliseconds each, before and after the aggregate,
and set the batch size to 10.

The bar chart in Figure 12 shows the effect of window size on
drops. An input rate that is 25% faster than the rate the system can
handle at full capacity is fed into the query. For each window size,
we measure the fraction of tuples that must be dropped to bring the
system load below the capacity. We take these measurements for a
window that slides by 1 (slowly sliding window) and for a window
that slides by the window size (tumbling window). In most cases,
the drop rates came out to be lower for the tumbling window case.
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This is because window drop can achieve early drops in this case.
A second observation is that drop rates stay almost fixed as the win-
dow size increases. Interestingly, the formulas presented earlier in
Section 3.6 also suggest that load should be independent of the ag-
gregate window size whenδ = 1 andδ = ω (seeselw1 andselw2).
We also measured average operator costs and plugged them into
our formulas. The formulas estimate drop rates to be 0.2 and 0.39
for the tumbling and the sliding window case, respectively (shown
with dotted lines). The latter case is experimentally confirmed in
Figure 12. However, our formulas underestimate the drop rate for
the tumbling window case. In this case, the aggregate operator has
a very small selectivity. It closes a window and produces an output
once everyω tuples, at which point the downstream delay operator
is scheduled. Our analysis models the average case behavior and
fails to capture cases where internal load variations may occur due
to changes in operator scheduling frequency.

Figure 13 details the effect of window slide on window drop per-
formance: Figure 13(a) shows our experimental result and Figure
13(b) plots the analytical estimates of Section 3.6. A window size
of 100 with four different slide values is used. A slide value of 1
corresponds to a large number of simultaneously open windows,
therefore, a high degree of window overlap, and high aggregate
selectivity. A slide value of 100 corresponds to one open win-

dow at a time, zero window overlap, and low aggregate selectiv-
ity, providing more opportunity for early drops. As we increase
the window slide, the number of saved CPU cycles upstream from
the aggregate increases (due to early drops) while the number to be
saved downstream from the aggregate decreases (due to low aggre-
gate selectivity). The required drop amount first increases, but then
starts decreasing due to additional savings from early drops. Note
that this decrease is observed when slide gets above 10 (i.e., when
⌊ω

δ
⌋ ≤ B). Window drop shows the best advantage as the degree

of window overlap decreases. We continue to observe this effect as
excess load increases. Our analysis, plotted in Figure 13(b), cap-
tures the general behavior very well, but as window slide grows, it
shows a departure from the measured results, for the same reason
as explained in the previous paragraph.

As a brief note, we also compared our window drop with a ran-
dom drop inserted after the aggregate. For slide=1, the performance
is similar (no early drops). For slide=100, random drop fails to
remove the overload, even at rate+25%. Thus, in the worst case
where there is a very high degree of window overlap and zero op-
portunity for early drops, window drop behaves similar to the ran-
dom drop. As slide grows, window drop achieves a clear advantage.

4.3 Processing Overhead
Next we evaluate the overhead of adding window drop into query

plans. This overhead has several potential sources: (1) an addi-
tional operator to be scheduled in the query plan, (2) other opera-
tors interpreting window specifications, (3) fake tuples.

In this experiment, we used the query layout shown in Figure
14. We varied the predicate of the filter to obtain various selectiv-
ity values. We used a tumbling window whose window size is also
varied. Table 4 shows the ratio of throughput values for a query that
contains a window drop that does not drop anything (p = 0) and
for the case when no window drop is present. We ran each query
for a minute, at a rate that is 50% higher than the system capacity.
Since no tuples are dropped in either case, the reduction (if any)
in the number of tuples produced with window drop must be due
to the additional processing overhead. First, Table 4 shows that in

FilterWinDrop AggregateDelay
10 msec

Figure 14: Filtered aggregation query
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window size selectivity=1.0 selectivity=0.5

25 0.99 0.96
50 0.99 0.98
75 1.0 0.98
100 1.0 1.0

Table 4: Throughput ratio (WinDrop( p = 0)/NoDrop)

general, the overhead is low. Second, as the window size increases,
the overhead decreases. This is due to the fact that the window
drop marks tuples less frequently. Third, for lower selectivity, the
overhead seems to be higher. This result accounts for the effect of
handling fake tuples. As we mentioned earlier in Section 3.3, fil-
ter generates fake tuples when its predicate evaluates to false but
the tuple has to be retained if it is carrying a non-negative window
specification. The chance of generating fake tuples increases as the
filter selectivity decreases. This may further lead to an increased
overhead of processing fake tuples in the downstream query net-
work. As shown in Table 4, we see only a slight increase in over-
head when the filter selectivity is lowered to 0.5.

5. RELATED WORK
There has been a great deal of recent work in the area of data

stream processing [16]. Several research prototypes have been built
[2, 10, 21]. Efficient resource management, adaptivity, and approx-
imation have been the main points of emphases.

Load shedding for aggregation queries over data streams has
been the subject of recent work by Babcock et al [7]. This work
inserts random drops into query trees and tries to minimize the
maximum relative error at outputs. This is achieved using statis-
tical bounds, based on mean and standard deviation statistics on
windows of tuples received by aggregates. Our approach tries to
produce maximum subset results, hence our approximation model
is quite different. Moreover, our approach targets a general class
of aggregation query topologies (i.e., aggregates can be nested and
can appear anywhere in a query plan, possibly with sharing), while
the proposed work assumes query trees, with a single aggregate
operator at the leaf level. Lastly, in that approach, the statistical
bounds apply to only a limited set of aggregate functions, whereas
our approach is independent of the actual aggregate functions and
can easily support user-defined functions.

Load shedding for sliding window joins in memory-limited en-
vironments have also been studied [6, 11, 18, 23]. Our approach
mainly considers CPU as the limited resource. The cited works
either produce maximum subset results or sampled subsets.

Punctuations are special annotations embedded into data streams
to specify end of a subset of data in the stream [29, 20]. They are
devised to overcome the blocking and unbounded memory problem
in stateful stream operators. As such, punctuations constitute an al-
ternative to windowed processing. Our work is relevant to punctua-
tions in the way we attach window indicators into tuples. Although
in both cases streams are annotated with information that is im-
portant in terms of optimizing query execution, the goals are quite
different. In punctuations case, annotations indicate some property
that naturally exists in the stream, whereas in our case, window
specifications are artificially injected to cope with overload. Also,
the previous work used similar windowing concepts to ours, but
their focus was on optimizing query evaluation and handling disor-
der in data streams [20]; whereas we inject window-awareness into
tuples to preserve result correctness when doing load shedding.

Lastly, approximate query processing techniques have long been
studied for both traditional static data sets and continuous data

streams [13]. Former techniques mostly rely on precomputed data
synopsis whereas latter approaches construct one-pass summaries
as streams arrive. Online aggregation [17] lies somewhere in-be-
tween by interleaving sampling with query evaluation, on stored
data. More recently, the data triage approach has proposed to shed
load on streams by summarizing excess data into synopsis data
structures instead of dropping it [22]. In addition to samples, syn-
opsis can take the form of histograms [14], sketches [12], or wave-
lets [9, 15]. In majority of the existing work, aggregate approxima-
tions are in the form of non-subset answers. To our knowledge, no
previous work has studied window behaviors in depth to perform
subset approximations on sliding window aggregates.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown a window-aware load shedding

technique that deals with sliding window aggregate operators. More-
over, we have done this in a way that preserves the subset result
guarantee. Our techniques also support load shedding in query net-
works in which aggregates can be arbitrarily nested. We believe
that this is very important since, in our experience with the Au-
rora/Borealis system, user-defined aggregates have been used ex-
tensively in practice for many tasks that involve operating on a sub-
sequence of tuples. Thus, they occur quite frequently in the interior
of query networks. Our contribution is the ability to handle aggre-
gates in a very general way that is consistent with a subset-based
error model.

We have shown that, as is expected, with the added ability to
push drops past aggregates, we can recover more load early; thereby,
regaining the required CPU cycles while minimizing the total util-
ity loss. By focusing on dropping windows, we can better control
the propagation of error through the downstream network.

Some of the complexity in our solution is a result of the simple
flat data model. For example, not being able to denote windows as
sets of tuples results in a tuple marking scheme. However, a simple
model simplifies implementation and allows for faster execution in
the general case.

We plan to extend this work in the following directions:
Prediction-based Load Shedding. Subset-based load shedding
approaches lead to gaps in query results. One way for the out-
put application to interpret these gaps is to predict what might be
missing from the result based on what is delivered (e.g., based on
linear interpolation). Using a prediction-based interpretation of the
subset result also gives us an opportunity to compare our approach
against the relative-error based approaches (e.g., [7]). We have
conducted some preliminary experiments in this direction based
on linear interpolation. Our results on real data traces show that
for small gaps (i.e, low batch size), our approach produces results
with lower average error. Additionally, we have also observed that
larger slide values result in higher error for both approaches, but
our approach seems to scale better with increasing slide. We need
to conduct a more comprehensive experimental study to provide a
detailed quantitative comparison.
Window-awareness on Joins.Joins also operate on windows of
tuples. However, the semantics is quite different. A join window
involves two input streams, A and B. It defines which tuples from
input B are in the range of a given tuple from input A so that the
join predicate can be applied on them. Unlike aggregates, where
window behavior is crucial in producing subset results, this is not
the main issue for joins. Dropping inputs necessarily produces a
subset and load shedding on joins is mostly about controlling the
size of that subset. Consider a query with an Aggregate followed
by a Join. Window Drop placed before the Aggregate causes Ag-
gregate to produce a somewhat random subset per aggregate group.
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This further affects the overall query result from the Join in differ-
ent ways, depending on the form of the join predicate as well as
tuple values.
Memory-constrained Environments. Query networks with large
number of stateful operators like aggregates may also require load
shedding due to insufficient memory. An aggregate, with window
sizeω and window slideδ has at most⌈ω

δ
⌉ open window states per

group. However, depending on the form of the aggregate function
(i.e., distributive/algebraic vs. holistic), a window state may be-
come unbounded [4]. We are planning to adapt our window drop
approach to such memory-constrained environments.
Distributed Load Shedding. We are also extending this work into
the distributed setting. Borealis [1, 3], the successor to Aurora,
maps query networks to a large number of machines of varying
computational capability (sensors, servers, and everything in be-
tween). In this case, load shedding requires that nodes cooperate in
choosing where and how much load to shed. A downstream node
will often request that its upstream nodes shed a certain amount
of load on its behalf. That request can be further subdivided and
passed (in part) upstream. We are currently investigating heuristic
approaches to the distributed load shedding problem [28].
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[26] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load Shedding in a Data Stream Manager.
In VLDB Conference, Berlin, Germany, September 2003.

[27] N. Tatbul and S. Zdonik. Window-aware Load Shedding for
Data Streams. Technical Report CS-04-13, Brown
University, Computer Science, November 2004.

[28] N. Tatbul and S. Zdonik. Dealing with Overload in
Distributed Stream Processing Systems. InIEEE
International Workshop on Networking Meets Databases
(NetDB’06), Atlanta, GA, April 2006.

[29] P. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
Punctuation Semantics in Continuous Data Streams.IEEE
TKDE, 15(3), May 2003.

810


